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Abstract—Computation-in-Memory (CIM) architectures
present a promising solution for efficient implementation
of Neural Networks. Particularly, SRAM-based digital CIM
architectures are optimal candidates to realize them. Re-
cent studies have revealed potential weaknesses in these
architectures, particularly against power attacks. This study
introduces a novel attack method enabling weight extraction
through the analysis of the adder tree component within
the architecture. In our attack, the k-means clustering
technique is employed to identify the hamming weights of the
CIM weights. Subsequently, we correlate traces belonging to
known weights with traces belonging to Hamming groups
with unknown weights in order to identify their weight
values. As a case study, the attack was applied on SRAM
CIM implementation based on 40nm TSMC technology. The
results indicate that the weights stored in the CIM crossbar
can be retrieved with 100% accuracy purely by analyzing
the power consumption.

Index Terms—side-channel attack, CIM, Machine Learn-
ing, SRAM, Adder-tree

I. INTRODUCTION

The traditional Von Neumann architecture, with its
inherent limitations, poses a significant bottleneck for data-
intensive applications such as Machine Learning (ML) and
Artificial intelligence (AI) [1]. In order to address these
limitations and meet the growing demand for ML and
Al applications, novel architectures are being developed
aimed at enhancing throughput and energy efficiency
[2]. One such innovative architecture is Computation-
in-Memory (CIM) that integrates storage and computing
within the memory, thereby reducing time and energy
spent on data fetching [3]. However, their focus on ef-
ficiency makes them vulnerable to attacks, such as side
channel attacks, which can compromise valuable intellec-
tual property (IP) of CIM-based Neural Networks (NN).
Therefore, considering security threats during the design
phase is crucial to ensure robust protection against such
attacks.

Several studies in the literature have focused on side
channel attacks aimed at extracting both micro-parameters
(such as weights and biases) and macro-parameters (such
as architecture, layer count, and activation functions) from
NN models implemented on conventional microcontrollers
and FPGAs [4, 5]. Furthermore, there has been a signifi-
cant effort to exploit side-channel vulnerabilities in CIM
based architectures, aiming to extract critical information
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including NN weights [6], NN taxonomy [7], input data
[8], and secret keys [9]. For example, the attack presented
in [7] reverse engineered a ReRAM-based NN model
architecture using power side-channel attacks. On the other
hand, Read et al. [6] presented an attack with the aim to
steal the weights stored in emerging nonvolatile memory
(eNVM) cells with 99% accuracy employing semi-invasive
photonic emission analysis technique. Although various
side-channel attacks on NN implementations within analog
CIM devices have been studied in literature, research on
the vulnerability assessment of digital CIM devices against
such attacks is lacking.

This work presents a successful side-channel attack on a
small-scale but representative digital CIM [10] comprising
of a memory array, an adder tree and an accumulator
register. The goal of this work is to explore a leakage
model that allows us to use power side channel to extract
the stored weights. It is important to mention that all the
analysis are performed in the pre-silicon phase to explore
zero-day vulnerabilities and mitigate them in actual imple-
mentations. To the best of our knowledge, this is the first
attack carried out on digital CIM design. The contributions
of this study are summarized as follow:

« Proposal of a novel approach to extract weights from

digital CIM-based neural networks.

o Implementation of a small-scale but representative
digital CIM macro [10] using 40nm CMOS technol-
ogy as a case study.

« Validation of the proposed attack using gate-level
implementation.

The rest of this paper is structured as follows. Section 11
provides a background on Digital SRAM CIM, power
side-channel attacks and k-means clustering. Section III
presents the methodology. Section IV presents the results.
Section V discusses the limitations and concludes this
work.

II. BACKGROUND

This section provides a brief background on SRAM-
based CIM, power side channel attacks, and k-means
clustering.

A. SRAM CIM

Limited area and power footprint proposed by CIM
makes them an ideal candidate for Deep Neural Net-
works (DNN) accelerators, especially in edge devices [11].
While eNVM-based CIM architectures face challenges
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Fig. 1: Schematic of a Digital CIM [10]

like endurance and reliability which limits their use to
inference-only accelerators, SRAM-based CIMs support
both on-chip training and inference [6, 12]. SRAM-based
CIMs can be realized in either analog or digital domain.
Analog CIMs perform the MAC operation by multiply-
ing weights stored in SRAM/ReRAM cells with inputs
provided through word lines (WL), resulting in a current
through bitlines (BLs) [13]. Digital CIM devices outper-
form their analog counterparts due to a mature CMOS
technology and efficient realization [12]. The operands in
digital CIM for vector matrix multiplication (VMM) are
arranged in such a way that the input is provided as a
vector using WLs, and the matrix is stored in crossbar
within the SRAM cells. Bit-multiplication is performed
using modified SRAM cells with additional transistors for
logical operation. The result is sent to an adder tree using
the BLs to compute the sum. A typical digital CIM macro
is provided in [10]. It consists of an SRAM cell array, a
dedicated adder tree for each of the 64 sub-CIM unit and
an accumulation register to store partial sums. The internal
structure of this sub-CIM unit is shown in Figure 1. It
consists of a column containing 256x4 weight cells where
the 256 inputs are simultaneously fed to the crossbar using
WLs. The bit-wise multiplication, realized by a NOR
operation (which in essence is an AND operation with
inverted inputs), is performed inside the crossbar and the
result is provided to the adder tree for sum computation.

B. Power Side Channel Attacks

Side channel attacks are hardware attacks that exploit
unintended leaks (e.g power consumption, electromag-
netic emissions, or timing information) to extract secret
information from a system [4, 14]. Power side channel
attacks (PSCA) extract information through the analysis
of variations in power consumption during execution, such
as identifying the switching power of registers [15].

There are various abstraction levels of PSCA. Simple
power analysis (SPA) relies on the visual characteristics
of the power trace, hence is the most basic type of at-
tack. Correlation power analysis (CPA) relies on statistical
methods to deduce a pattern between secret data and power
consumption [4, 14, 15]. Advanced AI techniques like
deep learning [16] are also employed for sophisticated side
channel attacks. This work demonstrates that the digital
SRAM CIMs are vulnerable to power attacks, utilizing
ML approach such as k-means [17] to reveal the secret
weights stored in SRAM cells.
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Fig. 2: Single Row Activation

C. K-means Clustering Algorithm

Clustering is a technique used to group data with similar
attributes. The k-means algorithm [18] is widely used
and highly recognized for its simplicity and efficiency. It
partitions datasets into k clusters by iteratively reallocating
each data point to the centroid with the lowest distance.
The centroids are then updated by averaging the data
points within each cluster. This iterative process continues
until centroids stabilize or a set number of iterations
is reached. Particularly suitable for our study, k-means
identifies power characteristics based on their Hamming
weight (HW), often revealing distinct and recognizable
patterns.

III. SIDE-CHANNEL ATTACK FRAMEWORK

This section describes the attack framework. It starts
by motivating the attack followed by describing each
framework step in detail.

A. Motivation

Training neural networks is a resource-intensive pro-
cess, requiring significant time and financial investment, as
discussed in Huang et al. [9]. The pre-trained weights of
these networks, being intellectual property, hold consider-
able value. For instance, in scenarios such as commercially
available autonomous vehicles, adversaries can exploit
reverse engineering attacks on NN accelerators to steal
weights for producing counterfeit devices or selling them
to competitors. Therefore, it is imperative to identify
and mitigate side-channel vulnerabilities in the pre-silicon
phase before mass production.

In the design under attack shown in Figure 1, it is
observed that bit-serial multiplication is performed as first
step of execution. By manipulating the input, it is possible
to confine the switching activity to a single 4-bit weight.
As shown in Figure 2, the weight in the first row (circled
in red) serves as our target weight. The NOR operation
between input 0 and weight ‘1011° in first row results
in ‘0100’, while similar operations in the remaining rows
where a 1 is applied as input results in all zeros. This
allows us to compute the targeted HW by performing
power analysis and ultimately derive the weight values.
This process is repeated by setting the input to zero for
the next rows, one at a time.

B. Threat Model

We assume that the target device operates in a non-
trusted environment, allowing the adversary to perform
power measurements. Additionally, the adversary has
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physical and logical access to the device’s data inputs.
Furthermore, we assume the device is solely dedicated
for inference operations with fixed weights. Although we
consider that the attacker is acquainted with the acceler-
ator’s functionality, we assume that the attacker has no
knowledge of the implemented NN.

C. Attack Methodology

Our methodology revolves around manipulating input
values to incorporate or exclude specific 4-bit weights in
the addition process by providing ones or zeros as input,
enabling selective selection of weights in the SRAM.
Our attack strategy, which is depicted in Figure 3, is
divided into two phases. In Phase 1, weights are cate-
gorized based on their HW using clustering, as weights
with identical Hamming values exhibit similar switching
activities and hence power consumption. By varying input
values, selective selection of weights and employing k-
means clustering, we accurately determine the HW of each
weight. The result of the clustering algorithm are 5 clusters
identifying traces contain HWs of 0 to 4. Phase 2 utilizes
weights with HW 4 (uniquely identified as value 15) to
determine the remaining unknown weight values. This is
achieved by activating and adding the known weights with
unknown weights of same HW category. An example is
shown in the bottom part of Figure 3 where weights with
HW=1 can be identified when such weights are added
with 15, as each result has a unique HW. This iterative
process is optimized by employing exhaustive search to
minimize additions, allowing deduction of all unknown
weight values.

IV. EXPERIMENTAL RESULTS

This section presents the experimental setup and results.

A. Setup

To validate the security of the SRAM-based CIM design
against power side channel attacks, a combination of tools
was employed: Questasim [19] for simulation, Cadence
Genus [20] for synthesis, and Synopsys Spyglass [21]
for generating power traces. The adder tree has been
synthesized to a gate-level netlist using TSMC 40 nm
technology. In this paper, we focused on 4-bit weight
values, but the methodology is generally applicable. The
attacks are carried out in Python using various supporting
libraries such as scikit-learn [22].
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Fig. 4: First Phase: Clustering Results

B. Phase 1: Clustering

During the initial phase of the attack, we analyzed the
power trace of each individual weight by activating only
one of them at a time. Results for selected weights are
shown in Figure 4, indicating a clear relationship between
weight HW and power consumption patterns during adder
tree operation. Power traces exhibited distinct clustering
by the k-means algorithm, highlighting significant differ-
ences between each HW category.

C. Phase 2: Weight Identification

The next step is to determine the value of weights after
determining the HW of each weight in phase 1. We analyze
each HW set ranging from O to 4 obtained from clustering
and start with traces in the sets with extreme HWs (0
and 4), whose corresponding values are known (0 and 15,
respectively). Next, we analyze traces from the weights
in the HW 1 set. To precisely quantify power patterns
associated with these values, we activate two weights
simultaneously: one unknown weight with HW 1 and a
known weight with a value of 15. Subsequently, we move
on to other HW values to acquire unique identifier. For
example, Figure 5 illustrates the power consumption for
the adder tree using unknown weights with HW 3 (values
7, 11, 13, and 14), with and without the activation of
a known weight of value 1. This reveals distinct power
patterns and HWs for each value (HW=1 for 7+1, HW=2
for 11+1, HW=3 for 13+1, and HW=4 for 14+1). Note
that, despite the measurements being taken in a controlled
and noise-free environment, the distinctive patterns among
the various HW are quite evident. Therefore, this level
of clarity suggests that the same traces would still be
vulnerable to attacks even in the presence of noise.

V. DISCUSSION & CONCLUSION

This study introduced a novel attack method on adder
tree based digital SRAM CIMs. The first phase of the
attack applies k-means clustering on power traces to
identify the HWs of the weights, while second phase
identifies the unknown weights by correlating them with
known weight values. The attack achieves 100% extraction
of NN weight values. Based on our results, we conclude
the following:
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Fig. 5: Second Phase: Hamming Weight Three Results

Comparison with State-of-the-Art: Our study considered
digital SRAM-based CIM as the target architecture, in
contrast to other studies that focuses on ReRAM and
analog SRAM. Wang et al. [7] conducted a non-profiled
attack to extract the architecture information, while En-
san et al. [23] employed a template-based side-channel
analysis (SCA) method to deduce the functionality of the
system. Our study is unique as it demonstrates a novel non-
profile attack on digital CIM that has not been explored
previously.

Countermeasures: As our attack targets the HWs pro-
duced as partial sum, a practical solution is to mask this
information such that the adversary is unable to distin-
guish between the HWs of dot products. For example,
the technique proposed in [24] utilized masking as a
countermeasure to thwart side-channel attacks on DNN
accelerators. Masking breaks the input-result relationship
by splitting weights into two columns through the addition
and subtraction of a pseudo-random number, ensuring
correctness of the final result.

SMT Solver: In the second phase, we combined known
and unknown values with known HWs to identify the
unknowns, aiming to find a suitable sum for each pair
that yields a distinct HW. An SMT solver can enhance
the efficiency of this search procedure, especially for
larger weight sets. This integration optimizes the process,
enhancing efficiency in handling complex scenarios and
datasets.
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