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Insights From Closed-Form Expressions for Injection- and
Production-Induced Stresses in Displaced Faults

J. D. Jansen1 , P. Singhal1 , and F. C. Vossepoel1

1Department of Geoscience and Engineering, Delft University of Technology, Delft, Netherlands

Abstract We consider fluid-induced seismicity and present closed-form expressions for the elastic
displacements, strains, and stresses resulting from injection into or production from a reservoir with
displaced faults. We apply classic inclusion theory to two-dimensional finite-width and infinite-width
reservoir models. First, we simplify the fault model to the bare minimum while still maintaining its
essential features: a vertical fault in a homogeneous reservoir of infinite width in an infinite domain.
We confirm and sharpen findings from earlier numerical studies and furthermore conclude that
the development of infinitely large elastic shear stresses in a displaced fault, at the internal and external
reservoir/fault corners, implies that even small amounts of injection or production will result in some
amount of slip or other nonelastic deformation. Another finding is that there is a marked difference
between the shear stress patterns resulting from injection and production in a reservoir with a displaced
fault. In both situations two slip patches emerge but at the start of injection some amount of slip occurs
immediately in the overburden and underburden, whereas during production the slip may remain inside
the reservoir region. Next we derive similar but more complicated expressions for displaced inclined
(normal or reverse) faults and conclude that our findings for vertical faults also apply to inclined faults.

Plain Language Summary Injection of waste water or CO2 in the deep subsurface, or
production of natural gas from subsurface reservoirs, may produce earthquakes. Earlier studies have
shown that these are especially likely to occur when the reservoir contains faults that have undergone
earlier movements (“displaced faults”). We derive mathematical expressions that allow for an improved
understanding of the stresses in these faults compared to earlier computer studies. We conclude, among
other findings, that there is an essential difference between injection and production: for injection the fault
movement is much more likely to propagate outside the reservoir than for production. Our theoretical
insights do not have direct quantitative predictive value but are relevant for the interpretation of
experimental and computer studies. They may also help to drastically speed up computer studies, for
example, for hazard and risk assessments of injection into or production from deep reservoirs.

1. Introduction
We consider the incremental displacements, strains, and stresses inside and just outside subsurface reser-
voirs as a result of anthropogenic injection or production of fluids. More specifically, we consider situations
where these quantities result from unequal deformations across faults (“differential compaction”) and in
particular across faults with a nonzero throw (“displaced faults”). Such fluid-induced stress changes are a
likely cause for seismicity during production or reinjection (storage) operations in natural gas fields in the
Netherlands (Nagelhout & Roest, 1997; Orlic et al., 2013; Roest & Kuilman, 1994) and in particular the huge
Groningen field (Bourne & Oates, 2017; Buijze et al., 2017, 2019; Lele et al., 2016; Mulders, 2003; Orlic &
Wassing, 2013; Thibault et al., 2018; Van den Bogert, 2015; Van Wees et al., 2017, 2018; Zbinden et al., 2017)
and fields in Northern Germany that are located in a similar geological setting (Haug et al., 2018). The poten-
tial for induced seismicity due to reactivation of displaced faults has also been assessed for subsurface CO2
storage in, for example, Cappa and Rutqvist (2011) and Rutqvist et al. (2016).

All of the above-mentioned studies employed numerical models to describe the effects of faulting on induced
seismicity to various levels of detail and complexity. In the present paper we use analytical methods and
consider a fault model that has been stripped to the bare minimum while still maintaining the essential fea-
tures of a displaced fault. We aim to confirm numerical findings and gain further insight in the mechanisms
that govern induced seismicity. Therefore, we will analytically compute the stresses in a faulted reservoir
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resulting from injection or production and, in particular, the normal and shear stresses in the fault plane
such that we can determine the locations where slip will occur.

2. Inclusion Theory and the Nucleus of Strain Concept
Linear elastic displacements, strains, and stresses inside and outside a reservoir undergoing injection or pro-
duction can be determined with the “theory of inclusions” as introduced by Eshelby (1957). Inclusion theory
is closely related to the “nucleus of strain” concept (Love, 1927) as discussed in detail by Rudnicki (2002);
see also Mura (1987) and section S1 of the supporting information for this paper. Inclusion theory and the
nucleus of strain concept have been reported in the geophysics literature for various purposes: to compute
stresses around boreholes (Geertsma, 1966), to estimate production-induced subsidence above hydrocarbon
reservoirs (Gambolati, 1972; Geertsma, 1973; Segall, 1992; Walsh, 2002), and to compute stress fields around
producing reservoirs in order to establish the risk on reactivation of nearby (nondisplaced) faults (Segall,
1985, 1989, 1992; Segall et al., 1994). The latter four papers, by Segall and coworkers, address stresses and
their potential effect on fault reactivation outside the reservoir. A follow-up paper (Segall & Fitzgerald, 1998)
also considers the stresses inside the reservoir, based on the classic results in Eshelby (1957) for an elliptic
inclusion. Further work along those lines was done by Rudnicki (1999), who considered a reservoir with
elastic properties that differed from those of the surroundings and by Soltanzadeh and Hawkes (2008, 2009)
who elaborated on the effects of reservoir geometry and orientation. A detailed analysis, based on inclu-
sion theory, of the radial and vertical deformations around a vertical well under transient conditions was
presented by Marck et al. (2015).

3. Displacements, Strains, and Stresses
The three-dimensional (3-D) equations for poroelasticity were first derived by Biot (1941) and have since
been reproduced in various forms; see, for example, Wang (2000) or Cheng (2016) for overviews. We consider
an application of the theory in the form of 2-D expressions for incremental displacements ui(x, y), i ∈ {x, y}
under plane-strain conditions resulting from the injection or production of fluids in a reservoir (i.e., a porous
and permeable medium) which forms an inclusion Ω inside an otherwise nonpermeable infinite domain
with the same elastic properties as the inclusion

ui(x, 𝑦) = ∫ ∫Ω
D(𝜁, 𝜉) gi(x, 𝑦, 𝜁 , 𝜉) dΩ. (1)

Here x and y are the usual 2-D Cartesian coordinates, while 𝜁 and 𝜉 are x and y coordinate values inside
Ω. The symbol gi indicates Green's functions (with SI unit meter inverse) which are given in Segall (1985)
and which have been reproduced, together with a brief derivation, in section S1 of the supporting informa-
tion. (Note that all variables and their SI units have been listed in section S5 of the supporting information).
These Green's functions are solutions of the equilibrium equations from the theory of elasticity for the dis-
placements in a solid caused by a “center of dilation,” also known as a center of dilatation. Such a center
is a particular form of a “nucleus of strain,” consisting of two orthogonal pairs of opposing point forces of
equal strength (in 2-D) which, in our case, represent the injection or production of fluid from the reser-
voir (Dougall, 1897; Huynen & Detournay, 2014; Love, 1927; Rudnicki, 2002; Wang, 2000). The integral in
equation (1) ensures linear superposition to represent the effect of nuclei of strain distributed over the entire
reservoir domain Ω.

The dimensionless function D(𝜁, 𝜉) is defined as

D(𝜁, 𝜉) =
(1 − 2𝜈)𝛼p(𝜁, 𝜉)

2𝜋(1 − 𝜈)G
=

(1 + 𝜈)𝛼p(𝜁, 𝜉)
3𝜋(1 − 𝜈)K

, (2)

where p is the incremental pore pressure in the reservoir (positive for injection and negative for production)
which may be a function of location (𝜁, 𝜉). The parameter 𝛼 is Biot's coefficient, K and 𝜈 are the bulk modulus
and Poisson's ratio under drained conditions (i.e., only reflecting the stiffness of the grains), and G is the
shear modulus. For definitions and physical interpretations of these parameters, see, for example, Wang
(2000), Verruijt (2016), or Cheng (2016). Alternatively, D(𝜁, 𝜉) can be expressed as, for example,

D(𝜁, 𝜉) =
B(1 + 𝜈u)v𝑓 (𝜁, 𝜉)

3𝜋(1 − 𝜈u)
=

B(1 + 𝜈u)m𝑓 (𝜁, 𝜉)
3𝜋𝜌0(1 − 𝜈u)

, (3)

JANSEN ET AL. 7194
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Figure 1. Reservoir with a displaced normal fault.

where B is Skempton's pore pressure coefficient, 𝜈u is Poisson's coefficient
under undrained conditions, 𝜌0 is initial fluid density, vf is the incre-
mental fluid volume per unit reservoir volume and mf is the incremental
fluid mass per unit reservoir volume. The latter variety of equation (3),
expressed in terms of mf , is the form used in Segall, (1985, 1989); the for-
mulation in equation (2) in terms of p is used in Soltanzadeh and Hawkes
(2008, 2009) and also in the remainder of this paper. We refer to Rudnicki
(2002) for a detailed discussion of these formulations.

Expressions similar to equation (1) can be obtained for the incremen-
tal stresses 𝜎ij, i ∈ {x, y}, j ∈ {x, y} inside and outside the reservoir in
response to injection or production

𝜎i𝑗(x, 𝑦) = ∫ ∫Ω
C(𝜁, 𝜉) gi𝑗(x, 𝑦, 𝜁 , 𝜉) dΩ − C(x, 𝑦) 2𝜋𝛿Ω, (4)

where C = GD (with SI unit Newton per meter squared) and gij(x, y, 𝜁 , 𝜉)
are Green's functions for the incremental stresses which, like the ones
for incremental displacements used in equation (1), are given in Segall

(1985) and have been reproduced in section S1 of the supporting information. The symbol 𝛿Ω is a modified
Kronecker delta defined as

𝛿Ω =
{

1 if (x, 𝑦) ∈ Ω
0 if (x, 𝑦) ∉ Ω

, (5)

which ensures that the term C(x, y)2𝜋, representing “eigen stresses” 𝜎∗
i𝑗 resulting from the injection or

production of fluids, is only subtracted for points inside the reservoir; see section S1 of the supporting infor-
mation. If we ignore transient effects, that is, if we assume pseudo steady-state pore pressure changes in
the reservoir, the functions C(x, y) and D(x, y) become parameters C and D, respectively, and the integrals in
equations (1) and (4) only have to be taken over the Green's functions.

Note that in equations (2) and (3), we employ the notation p, vf , and mf to indicate incremental quantities,
that is, in addition to those before starting injection or production. In a similar fashion we use the variables
ui and 𝜎ij to indicate incremental displacements and incremental stresses. However, from now on we will
simply refer to these quantities as “displacements” and “stresses” and avoid the use of the adjective “incre-
mental” except in situations where the difference between initial and incremental quantities is important.
Also, note that a 2-D description uses the concept of unit thickness (perpendicular to the paper plane, i.e.,
in the strike direction of the fault). Relevant quantities should therefore be interpreted as being defined per
unit strike length with the corresponding dimensions and units. For example, shear forces in a fault are
expressed in SI units Newton per meter rather than in Newton as they would in 3-D.

4. Faulted Reservoir
Consider a finite reservoir in an infinite domain, with height h and width w (after faulting); see Figure 1.
The domain and the reservoir are both divided into two parts through the presence of a fault of infinite
extent with dip 𝜃 and throw t and various other geometrical features as indicated in the figure from which
it follows that

h = a + b, (6)

w = c + d, (7)

t = b − a. (8)

We assume that flow from the reservoir to the surrounding area or vice versa is impossible. Moreover, we
assume that the reservoir and the surroundings have identical, uniform elastic properties and that the fault is
nonsealing but does not transmit pressure outside the reservoir. The latter assumption could be relaxed, and
the effects of pressure propagation in the fault above and below the reservoir zone could also be addressed
with inclusion theory. However, we have chosen not to do so, to simplify the analysis.

JANSEN ET AL. 7195
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Figure 2. Scaled horizontal displacements ux
D . The dimensionless scaling parameter D has magnitude 3.63 × 10−4 for

the parameter values listed in Table 1.

5. Vertical Fault in a Finite Reservoir
As a first step, we further restrict our analysis to the case of a vertical fault (i.e., 𝜃 = 𝜋∕2), which we consider
to be an acceptable approximation if the reservoir is located in a normal faulting regime where faults are
typically steeply dipping. (Exact solutions for normal and reverse faults will be addressed in section 9). To
compute the displacements ui, we need to integrate Green's function gi over the reservoir domains Ωl and
Ωr to the left and the right of the fault

Gi(x, 𝑦) = ∫ ∫Ωl

gi(x, 𝑦, 𝜁 , 𝜉) dΩ + ∫ ∫Ωr

gi(x, 𝑦, 𝜁 , 𝜉) dΩ

= ∫
0

−c ∫
a

−b
gi(x, 𝑦, 𝜁 , 𝜉) d𝜉d𝜁 + ∫

d

0 ∫
b

−a
gi(x, 𝑦, 𝜁 , 𝜉) d𝜉d𝜁.

(9)

The integrals can be evaluated in closed form, and the results for a general rectangular domain have been
given in section S2 of the supporting information. Their values represent scaled horizontal and vertical

Figure 3. Scaled vertical displacements u𝑦

D . Scaling parameter D as in Figure 2.
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Table 1
Reservoir Properties and Fault Geometry for Example 1

Symbol Property Value SI units
a See Figure 1 100 m
b See Figure 1 200 m
c See Figure 1 1,000 or ∞ m
d See Figure 1 2,000 or ∞ m
G Shear modulus 6,500 MPa
p Incremental reservoir pressure 20 MPa
p0 Initial reservoir pressure 35 MPa
𝛼 Biot's coefficient 0.9 —
𝜃 Dip angle 𝜋∕2 rad
𝜇st Static friction coefficient 0.60 —
𝜈 Poisson's coefficient 0.15 —
𝜎0

xx Initial horizontal stress −60 MPa
𝜎0

x𝑦 Initial shear stress 15 MPa

displacements according to

Gi(x, 𝑦) =
ui

D
. (10)

Note that D is a linear function of the incremental pressure p such that a change in sign of p, that is, a change
from injection to production, also results in a sign change of ui but not of Gi.

Figures 2 and 3 display the values for Gx(x, y) and Gy(x, y) (with SI unit meter) as computed with the expres-
sions from section S2 of the supporting information for an isotropic reservoir with parameters given in
Table 1. The parameter values have the same order of magnitude as those of the Groningen natural gas
reservoir (NAM, 2016) except for the relatively high initial shear stress. This implies that the fault is initially
near-critically stressed which is generally believed not to be the case in the Groningen field, as will be dis-
cussed in more detail below. We chose values for the initial horizontal stress 𝜎0

xx and initial shear stress 𝜎0
x𝑦

directly, instead of computing those from an initial vertical stress and a ratio of horizontal to vertical stresses,
as is the usual approach, to allow for the specification of initial shear stress on the vertical fault. In section 9
we will address inclined faults and consider the usual situation in which the horizontal and vertical stresses
are also the principal stresses, which is not the case in the present example. However, we note that neither
the initial near-critically stressed state of the fault nor the unusually oriented principal stresses influence the
main conclusions of our paper. The positive value of p as used in the definition of D corresponds to injection
resulting in expansion of the reservoir.

Note that, because we consider an infinite domain, the upward displacements at the top of the reservoir are
just as large as the downward displacements at the bottom. In an actual situation the vertical displacements
will be nearly completely accommodated by an upward motion of the overburden. For a complete analysis
of the displacement field one should therefore revert to the infinite half-space solution as detailed in Segall
(1989). However, in the present paper we primarily address the stresses around the fault which depend
on the relative displacements rather than the absolute ones. For a sufficiently deep reservoir (relative to
the reservoir height) the free surface effects on the relative displacements are negligible and therefore the
relatively simple infinite space solution is suitable for our purpose.

Numerical experiments based on the expressions from section S2 of the supporting information indicate that
for an increasing reservoir width w, that is, for increasing values of c and d, the stress concentrations near the
two vertical outer boundaries are decreasingly affecting the displacements near the fault, even though their
values at the boundaries do increase. In the present paper we are primarily interested in the behavior of the
reservoir and its surroundings in the vicinity of a displaced fault that is sufficiently away from the edges of
the reservoir. Therefore, we will from now on use the limit of an infinitely wide reservoir. (For discussions
about the behavior of a rectangular reservoir bounded by a fault at the edge, see, e.g., Orlic & Wassing, 2013
and Van Wees et al., 2014).

JANSEN ET AL. 7197
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Figure 4. Scaled horizontal displacements ux
D . Scaling parameter D as in Figure 2.

6. Vertical Fault in an Infinite Reservoir
6.1. Displacements
Closed-form expressions for the limit of an infinite reservoir, that is, for c = d → ∞ while −c < x < d,
are given in section S3 of the supporting information. The values of Gx and Gy corresponding to Example
1, but now with an infinite width, have been displayed in Figures 4 and 5 which are now only showing the
area around the fault. Note the difference in scale (color bars) between Figures 2 and 4. It can be seen that
horizontal displacements are concentrated in the areas where the reservoir rock juxtaposes the overburden
and underburden, whereas the vertical displacements are relatively smoothly following the throw of the
fault. Recall that we consider an elastic solution for the displacements. In reality inelastic deformations may
occur in areas of high stresses (in the form of plasticity or fault slip) which will then modify the displacement
patterns in Figures 2 to 5.

6.2. Stresses
We also derived closed-form expressions for the integrals Gij which represent scaled (dimensionless) stresses
according to

Figure 5. Scaled vertical displacements u𝑦

D . Scaling parameter D as in Figure 2.
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Figure 6. Dimensionless horizontal stresses 𝜎xx
C . The scaling parameter C has magnitude 2.36 × 106 N/m2 for the

parameter values listed in Table 1.

Gi𝑗(x, 𝑦) − 2𝜋𝛿Ω =
𝜎i𝑗

C
(11)

and which are sometimes referred to as “arching ratios” or “normalized stress path parameters”; see, for
example, Mulders (2003), Soltanzadeh and Hawkes (2008), or Van Wees et al. (2017) who used similar defi-
nitions but with slightly different scale factors. Note that the sign of Gij is independent of the sign of C, just
as the sign of Gi was independent of the sign of D in equation (10). The full expressions for the integrals
Gxx, Gyy, and Gxy over a rectangular domain are given in section S2 of the supporting information, while
their approximations for an infinite reservoir are given in section S3. Figures 6, 7 and 8 display the scaled
near-fault stresses corresponding to the parameters for Example 1 listed in Table 1 but now with c = d = ∞.

It can be seen from Figures 6 and 7 that the expansion of the reservoir results in compression (negative
normal stresses) inside the reservoir and mostly very small tension (positive normal stresses) around it. The
values of the horizontal tension stresses outside the reservoir are approaching zero because compressive
stresses in the finite-height reservoir are compensated by tension stresses in the infinitely high and deep
overburden and underburden. Note that the normal stresses perpendicular to the reservoir boundaries and
the shear stresses are continuous, whereas the normal stresses parallel to the reservoir boundaries (which
are sometimes referred to as “hoop stresses”) show a jump, a well-known feature of inclusion theory. The
magnitude of the jump, in our scaled formulation, is equal to 2𝜋C as can be verified with the aid of the color
bars. Also note that the horizontal stresses have a magnitude of −𝜋C in those parts of the fault where the
reservoir rock juxtaposes the overburden and underburden, while they have a magnitude of −2𝜋C in the
part of the fault where reservoir juxtaposes reservoir. Figure 9 shows the (scaled) average of the two in-plane
stresses 𝜎xx and 𝜎yy which is linearly related to total strain 𝜖 = 𝜖xx + 𝜖yy. It can be seen that this average is
zero outside the reservoir and has a constant value −𝜋C inside. This illustrates that there is no dilation (i.e.,
that 𝜖 = 0) and only distortion outside the reservoir which is also a known effect for rectangular inclusions
(Bhargava & Kapoor, 1966). We reiterate that, similar to the displacements in Figures 2 to 5, the stresses in
Figures 6 to 9 are based on an elastic solution. Inelastic deformations in areas of high stresses may therefore
modify the stress patterns. Finally, we note that although we restrict the analysis to a 2-D configuration, the
underlying inclusion theory allows for the derivation of similar expressions in 3-D (Mura, 1987).

6.3. Expressions for the Fault Plane
If we only consider the values in the fault, that is, if we set x = 0, equations (C.1) and (C.2) for the integrals
Gx and Gy given in section S3 of the supporting information can be reduced to

Gx(0, 𝑦) = ln
[
(𝑦 − a)2] × 𝑦 − a

4
− ln

[
(𝑦 + b)2] × 𝑦 + b

4

+ ln
[
(𝑦 + a)2] × 𝑦 + a

4
− ln

[
(𝑦 − b)2] × 𝑦 − b

4
,

(12)

JANSEN ET AL. 7199



Journal of Geophysical Research: Solid Earth 10.1029/2019JB017932

Figure 7. Dimensionless vertical stresses 𝜎𝑦𝑦

C . Scaling parameter C as in Figure 6.

G𝑦(0, 𝑦) =
𝜋

4
(|𝑦 + a| − |𝑦 − a| − |𝑦 − b| + |𝑦 + b|) . (13)

Similarly, the values at x = 0 of the integrals Gxx, Gyy, and Gxy for an infinite reservoir can be derived from
equations 43, 44, and 45 in section S3 of the supporting information as

lim
x↓0

Gxx(x, 𝑦) =
𝜋

2
[
sgn(𝑦 + a) + sgn(𝑦 − a) − sgn(𝑦 − b) − sgn(𝑦 + b)

]
, (14)

G𝑦𝑦(0, 𝑦) =
𝜋

2
[
sgn(𝑦 + a) − sgn(𝑦 − a) − sgn(𝑦 − b) + sgn(𝑦 + b)

]
, (15)

Gx𝑦(0, 𝑦) =
1
2

ln (𝑦 − a)2(𝑦 + a)2

(𝑦 − b)2(𝑦 + b)2 , (16)

where

Figure 8. Dimensionless shear stresses 𝜎x𝑦
C . Scaling parameter C as in Figure 6.
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Figure 9. Dimensionless average in-plane stresses (𝜎xx+𝜎𝑦𝑦)
2C . Scaling parameter C as in Figure 6.

sgn(·) =
⎧⎪⎨⎪⎩

1 if (·) > 0
0 if (·) = 0

−1 if (·) < 0
. (17)

Note that for Gxx we consider a limit that is valid for values to the right of the fault. It can be seen from
equation (16) that the shear stresses have singularities at y = ±a and y = ±b which implies that their
values approach plus or minus infinity at those points. This is a well-known feature for the corners of rect-
angular inclusions (Goodier, 1937; Bhargava & Kapoor, 1966). In reality, small amounts of slip in the fault
and nonelastic deformation of the reservoir rock in those regions with high shear stresses will flatten the
peaks such that the stress values remain finite. Note that we restricted the scale in Figure 8 to the range
−4 ≤ Gxy ≤ 4, such that the infinite shear stress values are suppressed. The dashed lines in Figure 8 indi-
cate the boundaries between positive and negative shear stresses as given by equation (57) in the supporting
information. It can also be seen from equation (16) above that for a zero throw fault, that is, when a = b,
the shear stresses vanish.

7. Shear and Coulomb Stresses
7.1. Shear Stresses
To further analyze the nature of the shear stresses Gxy, we revert to equation (45) in the supporting
information

Gx𝑦(x, 𝑦) =
1
2

ln
[
x2 + (𝑦 − a)2] [x2 + (𝑦 + a)2][
x2 + (𝑦 − b)2

] [
x2 + (𝑦 + b)2

] , (18)

which reduces to equation (16) for x = 0. Values of Gxy for Example 1, for various fixed values of x, have
been displayed in Figure 10. The figure illustrates that the shear stresses have their maximum value in the
fault and drop to negligible values at horizontal distances from the fault equal to approximately the height
of the reservoir. Note that, like before, we restricted the scale, in this case to the range −8 ≤ Gxy ≤ 8, such
that the infinite shear stress values in the fault at y = ±100 m and y = ±200 m are suppressed.

The boundaries between positive and negative shear stresses for x = 0 follow from equation (57) in the
supporting information as

𝑦0 = ±
√

a2 + b2

2
= ±

√
h2 + t2

2
, (19)

which for Example 1 results in y0 = ±158 m. It is clear from Figure 8 that there are four locations along
the fault where shear stress concentrations occur, two with negative and two with positive values, symmet-
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Figure 10. Dimensionless shear stresses 𝜎x𝑦
C for constant values of x. Scaling parameter C as in Figure 6.

rically oriented with respect to the x axis. Accordingly, the total shear force along the fault can be divided
in four contributions, two with a negative and two with a positive magnitude. Section S4 of the supporting
information gives closed-form expressions for these contributions and also demonstrates that the total shear
force along the fault is equal to zero.

It follows from equations (11) and (18) that the elastic shear stress pattern, that is, the shape of the curves
in Figure 10, only depends on the values of the geometric parameters a and b (or, alternatively, h and t)
for an infinite reservoir. The scale factor C, and therefore the pressure p, just acts as a linear multiplier for
the magnitude of the scale. Similar conclusions hold for the patterns of the horizontal and vertical stresses
and for finite-width reservoirs in which case the relevant geometric parameters are a, b, c, and d (or h, t, c,
and d). However, in reality the occurrence of fault slip will result in a redistribution of stresses such that an
increasing or decreasing p does influence the stress patterns.

7.2. Coulomb Stresses
Slip-provoking conditions at the vertical fault plane occur when

0 < |𝜎0
x𝑦 + 𝜎x𝑦| + 𝜇st(𝜎′0

xx + 𝜎′
xx), (20)

where 𝜇st is the static friction coefficient and 𝜎0
x𝑦 and 𝜎′0

xx are the initial shear stress and the initial effective
horizontal stress, respectively (present before the start of fluid injection or production), while 𝜎xy and 𝜎'xx
are their incremental counterparts. We did not include cohesion in the friction model, but this could be
done without difficulty. The initial effective horizontal stress is related to the initial total horizontal stress
𝜎0

xx according to

𝜎′0
xx = 𝜎0

xx + 𝛼p0, (21)

where p0 is the initial pore pressure, while a similar expression holds for the incremental effective horizontal
stress

𝜎′
xx = 𝜎xx + 𝛼p. (22)

(Recall that in our sign convention compressive normal stresses are negative whereas pore pressure is
positive.) The right-hand side of equation (20) is known as the Coulomb stress which is a convenient con-
cept if the faulting tendency is known, that is, if the initial shear stress 𝜎0

x𝑦 has a known sign and is large
enough to avoid a sign reversal after addition of the incremental shear stress 𝜎xy. However, the presence of
infinitely high incremental shear stresses of both positive and negative sign implies that slip will occur in
both directions. We therefore rewrite equation (20) as
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Figure 11. Stresses at the fault plane during injection (p = 20 MPa) for Example 1 with c = d → ∞. (a) Horizontal
(normal) stresses; orange: 𝜎′0

xx , green: 𝜎xx , blue:𝜎'xx, red: 𝜎′0
xx + 𝜎′xx . (b) Shear stresses; orange: 𝜎0

x𝑦, blue: 𝜎xy, red:
𝜎0

x𝑦 + 𝜎x𝑦. (c) Regions of slip; red: 𝜎0
x𝑦 + 𝜎x𝑦 (shear stresses), gray: ±𝜇st(𝜎′

0
xx + 𝜎′xx ; (slip thresholds); shear values to the

left of the left threshold and to the right of the right threshold will result in fault slip.

𝜎0
x𝑦 + 𝜎x𝑦 > −𝜇st(𝜎′0

xx + 𝜎′
xx) if 𝜎0

x𝑦 + 𝜎x𝑦 > 0,
𝜎0

x𝑦 + 𝜎x𝑦 < 𝜇st(𝜎′0
xx + 𝜎′

xx) if 𝜎0
x𝑦 + 𝜎x𝑦 < 0.

(23)

Thus, we start from a fault with a given offset and given initial elastic stresses. Next we add the incremental
elastic stresses resulting from injection or production, and thereafter, we use the Coulomb friction model to
determine at which locations of the fault additional slip will occur.

For an inclined fault in the coordinate system displayed in Figure 1, a positive shear stress corresponds to
a normal faulting tendency which is in line with the depicted configuration where the right and left blocks
are the footwall and the hanging wall, respectively. For a vertical fault the difference between normal and
reverse faulting is not defined, and a positive shear stress just implies that the left block moves downward
relative to the right block. To avoid complexities in the interpretation of sign changes, we will not use the
dimensionless stresses Gij but work with dimensional expressions directly. For the incremental stresses we
can then write

𝜎′
xx = C

(
Gxx − 2𝜋 𝛿Ω

)
+ 𝛼p 𝛿Ω = C

[
Gxx + 2𝜋

( 1 − 𝜈

1 − 2𝜈
− 1

)
𝛿Ω

]
, (24)

𝜎x𝑦 = CGx𝑦. (25)

Simple expressions for Gxx and Gxy, valid for an infinitely wide reservoir, are given by equations (14) and (16),
while expressions for a finite-width reservoir can be obtained from section S2 of the supporting information.

Figure 11 depicts the normal and shear stresses along the fault plane for Example 1 with an infinite reser-
voir. It can be seen in Figure 11a that although the total incremental stresses (green) are negative, that is,
compressive, over the entire height of the reservoir, the effective incremental stresses (blue) are positive for
this example. The combined initial (orange) and incremental (blue) effective stresses are indicated with a
red line and are compressive. Figure 11b depicts the shear stresses. The orange line indicates the initial shear
stresses, the blue line the incremental shear stresses, and the red line the combined (initial plus incremen-
tal) shear stresses. Figure 11c depicts the same combined shear stresses (red) in combination with two slip
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thresholds (gray). Shear stresses to the right of the right threshold result in “normal” slip such that the right
block moves up and the left one down. Shear stresses to the left of the left threshold result in “reverse” slip.

In the initial situation, that is, before the start of injection or production, the magnitude of the initial shear
stress, 𝜎0

x𝑦 = 15 MPa, is below the magnitude of the right slip threshold, 𝜎slip,st = 𝜇st|𝜎xx + 𝛼p0| = 0.60 ×| − 60 + 0.9 × 35| = 17.1 MPa, where we used a static friction coefficient 𝜇st = 0.60. However, the fault is
near-critically stressed in the sense that even for a mild stress drop under dynamic conditions, for example,
for a dynamic friction coefficient 𝜇dyn = 0.50, we find that 𝜎slip,dyn = 𝜇dyn|𝜎xx + 𝛼p0| = 14.25 MPa such
that the initial shear stress exceeds the slip threshold. In other words, the static shear capacity utilization
(SCU) is 15∕17.1 = 0.88 but the dynamic SCU is 15∕14.25 = 1.05. Consequently, in this initial situation any
initiation of slip may result in a runaway propagation of slip along the fault until reaching a heterogeneity
or a change in stress state that stops the slip patch from growing further. We reiterate that this near-critical
initial stress state is not an essential part of the theory in our paper, and the main conclusions therefore also
hold for situations where the initial stresses are noncritical.

Qualitatively, the results for regular slip in Figure 11c are in agreement with those found in earlier numerical
studies; see, for example, Figures 7a, 7c, 7e, and 8a in Van Wees et al. (2017), with the exception of one major
difference: Van Wees et al. (2017) considered production rather than injection resulting in the occurrence of
positive peak shear stresses at the internal corners of the reservoir and the fault (located at y = ±100 m in our
example), whereas for the injection case in Figure 11c the positive peak stresses occur at the external corners
(i.e., at y = ±200 m). This has potential consequences as will be discussed in the next section. Another,
minor, difference is that the occurrence of localized reverse slip is not immediately clear from those earlier
figures, because of the limitation of the Coulomb friction concept, although the possibility of reverse slip in
displaced faults has been mentioned before; see Van den Bogert (2015) and Buijze et al. (2017, 2019).

The linear elastic assumptions underlying the analytical solutions in our paper are restrictive, and a full
analysis of the development of aseismic and seismic slip along the fault would require nonlinear quasi-static
and dynamic analyses, such as in Wassing et al. (2016), Van Wees et al. (2017), Buijze et al. (2019). However,
our linear elastic analytical results do give an indication of some typical features of the development of
injection- or production-induced seismic events in displaced faults as will be discussed below.

8. Insights
8.1. Onset of Slip
The occurrence of infinitely large elastic shear stresses at the corner points of the reservoir bordering the
faults (at y = ±100 m and y = ±200 m in Figure 11) implies that even the smallest amount of injection
or production will result in some amount of slip. As a consequence, in our model there does not exist a
maximum injection level below which slip will be avoided when injecting in a faulted reservoir with finite
fault throws. Similarly, there does not exist a “slip-free” minimum pressure for production from such a
faulted reservoir. This is as opposed to earlier findings from numerical simulations of similar models in
which spatial discretization limitations resulted in finite values of the elastic shear stresses; see, for example,
Van den Bogert (2015) and Buijze et al. (2017). We note that in Figures 11b and 11c of our paper the shear
stresses also erroneously display finite values at y = ±100 m and y = ±200 m, because of a finite resolution
in the plotting algorithm; however, the singularities in the analytical elastic solution clearly indicate the
presence of infinitely high elastic stresses at these points; see equation (16).

The infinite peaks in the shear stresses correspond to the perfectly sharp corners at the reservoir/fault inter-
face in our reservoir model. In reality such sharp corners may not be present because the fault zone has a
complex structure of breccia and gouge material. However, even though realistic shear stresses will not be
infinitely large, they will still be sharply peaked and slip will already occur for small amounts of injection
or production.

Earlier studies of production-induced slip in displaced faults indicate that slip will initially occur aseismi-
cally until a critical slip length has been achieved whereafter seismicity of an increasing magnitude will
develop (Buijze et al., 2017, 2019; Van Wees et al., 2017). In particular, Buijze et al. (2017) demonstrate that
the presence of peak shear stresses in a displaced fault leads to an earlier development of slip patches than
in a fault without throw but that the resulting seismicity is typically lower because of a much longer period
of aseismic slip preceeding it. In that sense the presence of infinitely large peaks in our analytical solu-
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Figure 12. Shear stresses resulting from different incremental reservoir pressures p. (a) Injection; orange: p = 0 MPa,
blue: p = 5 MPa, red: p = 20 MPa, green: p = 35 MPa. (b) Production; orange: p = 0 MPa, blue: p = −5 MPa, red:
p = −20 MPa, green: p = −35 MPa. The gray and black lines in both figures indicate the right slip thresholds for
increasing or decreasing pressures; light gray: p = 0 MPa, medium gray: p = ±5 MPa, dark gray: p = ±20 MPa, and
black: p = ±35 MPa. In both figures, slip is implied when a colored line is to the right of its corresponding threshold.
Only the top half of the reservoir region (0 m < y ≤ 300 m) has been displayed.

tions, rather than the finite ones in earlier numerical studies, is a positive finding as it could imply a lower
magnitude of induced seismic events.

8.2. Difference Between Injection and Production
Figure 12a depicts four shear stress distributions corresponding to the initial pressure and three increasing
injection pressures. Note that, because of symmetry, only the top half of the fault has been displayed where
0 m < y ≤ 100 m corresponds to “reservoir against reservoir,” 100 m< y ≤200 m to “reservoir against
overburden,” and 200 m < y to “overburden against overburden.” The figure also displays the right slip
thresholds, corresponding to the four reservoir pressures, with gray and black lines. They display a shift
because a change in pressure results in a change in the effective horizontal stress; see equations (22) and
(23). The red and dark gray lines in Figure 12a, corresponding to p = 20 MPa, are identical to the red and
gray lines in Figure 11c. Figure 12b depicts four similar shear stress distributions corresponding to the initial
pressure and three decreasing production pressures where the largest pressure decrease (p = −35 MPa)
implies full depletion of the reservoir (i.e., down to a reservoir pressure of 0 MPa).

A consequence of the different shear stress patterns for injection and production is that for injection a small
increase in pressure results in an exceedance of the slip threshold at the external corners of the reservoir
and the fault (i.e., at y = ±200 m), whereas for the production case a small decrease in pressure results
in slip at the internal corners (i.e., at y = ±100 m). This implies that for the injection case some amount
of slip occurs immediately in the overburden and underburden, whereas for production the slip remains
inside the reservoir region, that is, inside the zones where either reservoir juxtaposes reservoir or where
reservoir juxtaposes nonreservoir. If the fault is (near-)critically stressed, as in our example, the injection
case will therefore likely result in seismic events with two growing slip regions, one above and one below the
reservoir. Opposedly, the production case may also experience seismic (or aseismic) slip but with patches
that mainly grow inward. Note that in the internal zones the slip thresholds increase in magnitude with
increasing pressure drop which further reduces the severity of the seismicity in the production case. In
reality the presence of gravity, and thus a pressure gradient, will break the symmetry around the x axis,
and slightly different shear stress patters will emerge at the top and bottom parts of the reservoir. Moreover,
differences in elastic properties between overburden and underburden may result in a preferential growth
direction (Buijze et al., 2019). However, the essential difference in shear stress pattern between injection
and production persists under these asymmetries.
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As an aside, we note that the first observation of production-induced seismicity in the Groningen gas reser-
voir was only made after about half the reservoir was depleted and that it is generally concluded that this is
a sign that the many faults in the reservoir are far from being critically stressed (Buijze et al., 2017; Van Wees
et al., 2017). Although the absence of natural seismicity in the Groningen area strongly supports this con-
clusion, the possibility cannot be ruled out that the “internally directed” development of slip has played a
role in the late development of seismicity in the Groningen field. The possibility that strongly negative shear
stresses at the external corners act as barriers for the propagation of slip into the overburden and underbur-
den has been mentioned before (Buijze et al., 2017, 2019; Van Wees et al., 2017; Zbinden et al., 2017), and
our analytical results support these observations.

8.3. Slip Patch Growth
Another notable feature in the production situation is the partial exceedance of the (right) slip threshold by
the “valley” in the shear stress near the middle of the reservoir (i.e., around y = 0 m). The valley in the blue
line in Figure 12b is still almost completely to the left of the corresponding medium gray slip threshold and
only the peaks at y = ±100 m result in small amounts of slip in two isolated patches that will each grow in
both upward and downward directions with further decreasing pressure. The red line, corresponding to a
15 MPa lower pressure, is already partly crossing the dark gray slip threshold, while the valley in the green
line, corresponding to another drop of 15 MPa, has completely crossed the black threshold and therefore
indicates the occurrence of slip over the entire part of the fault where reservoir rock juxtaposes reservoir
rock (−100 < y < 100 m). Once the shear stress at the “bottom of the valley” has passed the slip threshold,
the growth of the two slip patches toward the middle of the reservoir ceases whereafter they will only grow
in the direction of the overburden and underburden. For the fault in the production case in Example 1, the
combined shear stress �̂�x𝑦 = 𝜎0

x𝑦 + 𝜎x𝑦 follows from equations (16) and (25) as

�̂�x𝑦(0, 𝑦) = 𝜎0
x𝑦 +

C
2

ln (𝑦 − a)2(𝑦 + a)2

(𝑦 − b)2(𝑦 + b)2 , (26)

while the corresponding right slip threshold follows from equations (14) and (24) as

𝜎sl(𝑦) = −𝜇st

[
𝜎′0

xx + 𝜎′
xx(0, 𝑦)

]
, (27)

where (see also Figures 6 and 11a)

𝜎′
xx(0, 𝑦) =

⎧⎪⎨⎪⎩
0 if 𝑦 ≤ −b ∨ b ≤ 𝑦

2𝜋C
{

1−𝜈
1−2𝜈

− 1
2

if −b < 𝑦 ≤ −a ∨ a ≤ 𝑦 < b

2𝜋C
{

1−𝜈
1−2𝜈

− 1 if −a < 𝑦 < a
. (28)

Intersections of the shear stress profile with the corresponding slip threshold can be obtained in closed form
by solving for y from �̂�x𝑦(0, 𝑦) = 𝜎sl(𝑦), with the aid of equations (26) to (28), resulting in values y1,2,3,4 where
−b < y1 < −a < y2 < 0 < y3 < a < y4 < b as long as the slip patches have not merged and y2 < −b < y1 <

0 < y4 < b < y3 thereafter; see equations (63) and (64) in the supporting information. Figure 13 depicts the
development of y3 and y4 with decreasing pressure, where y3 and y4 are the intersections of the upward and
downward growing parts of the upper slip patch (i.e., the one emerging from y = 100 m). The figure shows
an increasingly rapid decrease in the value of y3 with decreasing pressure (i.e., an increasingly rapid growth
of the “inner” slip patch length) when it approaches the value y3 = 0, that is, just before it merges with the
bottom slip patch that grows upward from y = −100 m. This effect has also been observed by Van den Bogert
(2015). The red line in Figure 13 depicts the total slip half-length Lsl = (y4−a)+(a−y3) = y4−y3. The vertical
dashed line indicates the pressure pmer at which the patches will definitely have merged (according to elastic
theory) which can also be determined in closed form; see equation (66) in the supporting information. For
Example 1 shown in Figure 12b we find pmer = −30.8 MPa, although the inelastic redistribution of stresses
as a result of slip near the peaks will in reality result in an earlier merger.

The growth pattern of the fault slip with decreasing reservoir pressure is different from the development of
the slip length in the injection case, where the two patches do not meet each other, at least not for the param-
eters chosen in Example 1; see Figure 12a. For different pressures, initial stresses, reservoir dimensions, and
elastic properties, the merging of the two slip patches may occur earlier or may not occur at all. In particu-
lar, Example 1 concerns a case with a relatively high initial shear stress (𝜎0

x𝑦 = 15 MPa, corresponding to an
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Figure 13. Intersections y3 and y4 of the shear stress profile with the slip threshold for the upper slip patch and total
slip patch half-length Lsl∕2 = y4 − y3 as a function of incremental pressure p during production. The figure illustrates
the nonstationary growth in slip length (red curve) and the strong downward (green curve) and weak upward (black
curve) growing tendency of the upper slip patch during production. (Note that this is an approximate result based on an
elastic stress pattern without redistribution of stresses in the areas where the shear stresses exceed the slip boundary.)

SCU of 0.88). When repeating the example with only slightly lower values of 𝜎0
x𝑦 (i.e., below 𝜎0

x𝑦 = 14.7 MPa,
corresponding to an SCU of 0.86), the merging was already absent even at full depletion. A small increase
of the friction coefficient also leads to an absence of merging. At the other hand, inelastic stress redistribu-
tion and dynamic effects will influence these elastic (i.e., approximate) results and may lead to slip patch
merging at milder depletion pressures.

8.4. Further Results
Various other relationships and insights can be obtained from the analytical expressions for a vertical fault
provided in the supporting information such as, for example, an expression for the seismic moment, which
happens to be identical to an earlier result obtained by Bourne and Oates (2017), an expression for the
minimum pressure leading to slip patch merging during production, and another one for the excess shear
force in the fault as a function of reservoir depletion; see section S4 of the supporting information. (Note that
all these results are approximate because they are based on elastic stress patterns without redistribution of
shear stresses in areas where these exceed the slip boundary.) An interesting observation is that integrals of
the shear stresses, which are required to compute (excess) shear forces in the fault, are finite notwithstanding
the singularities in the shear stresses. The closed-form nature of all these expressions makes it possible to
obtain insights into their dependency on geometrical and stiffness parameters such as fault throw, reservoir
height, shear modulus, and Poisson's ratio.

9. Expressions for an Inclined Fault
A similar application of inclusion theory as we used to obtain expressions for a vertical fault can be used
to derive expression for the stresses in and around an inclined fault. Instead of considering two displaced
rectangles, we then have to consider two trapezoids, each consisting of a triangle and a rectangle. The expres-
sions become somewhat more cumbersome but can still be reproduced in compact form; see section S1 of
the supporting information for a finite-width reservoir, section S2 for an infinitely wide reservoir, and section
S3 for normal and shear stresses along the inclined fault plane in an infinite reservoir. The latter are given by

G⟂ = −1
2
× ln

{
(𝑦 − a)2(𝑦 + a)2

(𝑦 − b)2(𝑦 + b)2

}
× sin 𝜃 cos 𝜃

− 𝜋

2
[
sgn(𝑦 + b) − sgn(𝑦 − a)

]
× sin2𝜃

+ 𝜋

2
[
sgn(𝑦 + a) − sgn(𝑦 − b)

]
× (1 + cos2𝜃),

(29)
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Figure 14. Shear stresses resulting from injection and production in a reservoir with an inclined normal fault (𝜃 = 𝜋∕3;
i.e., a 60◦ dip). Incremental reservoir pressure: p = ±20 MPa. Left: injection; right: production. Legend: orange: 𝜎0

x𝑦;
red: 𝜎0

x𝑦 + 𝜎x𝑦. The gray lines indicate the corresponding slip thresholds; light gray: ±𝜇st(𝜎′
0
xx); dark gray:

±𝜇st(𝜎′
0
xx + 𝜎′xx). Shear values to the right of the corresponding right thresholds or to the left of the corresponding left

thresholds will result in fault slip. The triangles represent numerical results, the solid lines the analytical ones.

G|| = 1
2
× ln

{
(𝑦 − a)2(𝑦 + a)2

(𝑦 − b)2(𝑦 + b)2

}
× sin2

𝜃

− 𝜋

2
[
sgn(𝑦 + a) − sgn(𝑦 − a) − sgn(𝑦 − b) + sgn(𝑦 + b)

]
× sin 𝜃 cos 𝜃.

(30)

Note that for 𝜃 = 𝜋

2
these expressions for an inclined fault reduce to those for a vertical fault as given in

equations (14) and (16). In analogy to the vertical results, G⟂ − 2𝜋𝛿Ω and G|| represent scaled stresses that
need to be multiplied with C to obtain their corresponding dimensional values.

Figure 14 depicts the shear stresses in an inclined displaced normal fault with a dip angle of 60◦, resulting
from injection (p = 20 MPa; left) or production (p = −20 MPa; right). The other relevant parameters are
given in Table 2. As before, we consider an infinitely wide reservoir. The initial horizontal stress is now
chosen to be a function of the vertical stress, according to a predefined ratio of effective horizontal to normal
stresses K′ = 0.5. The combined vertical and horizontal stresses can be resolved in normal and tangential
(shear) components acting at the fault plane. It can be seen in Figures 14a and 14b that the initial shear
stress (orange) is well below the corresponding slip threshold (light gray). Also, the shear stresses at 20 MPa
overpressure (red curve; left) or 20 MPa depletion (red curve; right) remain below the slip threshold (dark
gray) for nearly the entire fault. Only at the internal and external corners of the reservoir and the fault (i.e.,
at y = ±100 m and y = ±200 m), the shear stresses obtain infinitely high values, similar to what we observed
for vertical faults; c.f. Figure 12.

To verify the analytical expressions, we computed the same stress patterns with a commercial geomechanics
finite element code (Plaxis, 2016) where we calibrated the initial normal and shear stresses at the center
of the fault (i.e. at y = 0). The initial and incremental stresses as computed numerically are depicted with
triangles in Figure 14, and it can be seen that they generally correspond very well with the analytical results,
except for the values near the singularities at y = ±100 m and y = ±200 m where the finite resolution of the
numerical simulation does not allow for a detailed representation of the stress peaks.

Note that for the vertical fault in Figure 12 we disregarded gravity effects resulting in a symmetric stress
field (with respect to the x axis) such that only positive y values needed to be displayed. Here we do con-
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Table 2
Reservoir Properties and Fault Geometry for Example 2

Symbol Property Value SI units
a See Figure 1 100 m
b See Figure 1 200 m
c See Figure 1 ∞ m
d See Figure 1 ∞ m
D0 Depth at reservoir center (y = 0) 3,500 m
g Acceleration of gravity 9.81 m/s2

G Shear modulus 6,500 MPa
K′ Ratio of effective horizontal to vertical stress 0.5 or 1.2 —
p Incremental reservoir pressure at reservoir center ±20 MPa
p0 Initial reservoir pressure at reservoir center 35 MPa
𝛼 Biot's coefficient 0.9 —
𝜃 Dip angle 𝜋∕3 or 5𝜋∕6 rad
𝜇st Static friction coefficient 0.60 —
𝜈 Poisson's coefficient 0.15 —
𝜌f Fluid density 1,020 kg/m3

𝜌s Solid density 2,650 kg/m3

𝜙 Porosity 0.15 —

sider gravity, resulting in a slightly asymmetric stress pattern which therefore warrants displaying the entire
reservoir height. The major qualitative difference between the two figures is in the shape of the slip thresh-
olds for nonzero depletion: while in Figure 12 the thresholds have simple stepped shapes with finite values,
in Figure 14 they are more curvy and contain infinite values because of the contribution of the logarithmic
shear stress term Gxy to the normal stress G⟂; see equation (29). (Recall that because of a finite resolution of
the plotting algorithm, the infinite values corresponding to singularities at the internal and external corners
are erroneously depicted as finite peaks.)

For a vertical fault, we concluded that the presence of infinitely large shear stresses at the internal and
external reservoir/fault corners implies that even the smallest amount of injection or production will result
in some amount of slip or other nonelastic deformation. It can be seen in Figure 14 that also for the inclined
case there are always singularities, either at the internal or the external corners, where infinitely high shear
stresses exceed slip thresholds with infinitely high values of opposite sign. Although infinitely high values
do not occur in reality, because of nonelastic effects, this finding implies that also for inclined normal faults
it is not meaningful to search for elastic solutions that correspond to slip-free maximum injection pressures
or minimum production pressures.

As regards the other findings that we made for vertical faults, we conclude that qualitatively there is little
difference between the response of vertical and inclined displaced normal faults. In particular, for verti-
cal faults we observed an essential difference between injection and production in that injection causes an
immediate growth of the slip patches into the overburden and underburden, whereas production results in
an initial growth of the slip patches inside the reservoir; see the results of increasing and decreasing pres-
sures in Figures 12a and 12b. Repeating the experiment for an inclined normal fault, we observed the same
patterns.

Finally, we also investigated the stresses in inclined displaced reverse faults. Figure 15 depicts the situation
for a case with 𝜃 = 5𝜋∕6 (150◦; that is, a 30◦ dipping reverse fault) and K′ = 1.2, both for injection and
production. It can be seen that qualitatively the same results are obtained as for normal faults. The major
difference is that because of the relatively large horizontal stress, which is a necessity to cause reverse (thrust)
faulting, the slip thresholds have much higher (absolute) magnitudes than in the normal faulting example
in Figure 14 such that the SCU is, on average, much smaller.
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Figure 15. Shear stresses resulting from injection and production in a reservoir with an inclined reversed fault
(𝜃 = 5𝜋∕6; i.e., a 30◦ dip). Key as in Figure 14.

10. Conclusions
We considered the elastic displacements, strains, and stresses resulting from injection into or produc-
tion from finite-width or infinite-width reservoirs containing a displaced fault. As a first step we derived
closed-form expressions for a 2-D homogeneous infinite-width reservoir with a vertical fault. We applied
those to an example with reservoir properties mostly of the same order of magnitude as those of the
Groningen natural gas reservoir and obtained the following insights:

• We confirmed and sometimes sharpened several findings from earlier numerical studies. This concerns in
particular the following results which were described or mentioned before in some form by Van den Bogert
(2015), Buijze et al. (2017), Van Wees et al. (2017), Zbinden et al. (2017), and recently, Buijze et al. (2019).

• The elastic stress patterns for incremental horizontal, vertical, and shear stresses are independent of the
magnitude of the incremental pressure p and only depend on the values of the geometric reservoir param-
eters. The pressure acts as a linear multiplier for the magnitude of the scale. In reality, the occurrence of
fault slip will result in a nonelastic redistribution of stresses such that an increasing or decreasing p does
influence the stress patterns.

• Production from a reservoir with a displaced fault produces a peaked shear stress profile with large positive
(slip-provoking) shear stresses at the internal corners of the reservoir-fault interface and the presence of
strongly negative shear stresses at the external corners which act as barriers for the propagation of slip into
the overburden and underburden in case of production-induced seismicity.

• At high initial positive shear stress levels, corresponding to a (near-)critically stressed fault, the two slip
patches in the production case grow mainly inward into the reservoir at an exceedingly high rate with
decreasing reservoir pressure until they merge. The effect is strongly sensitive to initial shear stress, and
friction coefficient values and merging may or may not occur for production. For the injection case merg-
ing is unlikely to occur anyway. Aseismic or seismic slip leading to readjustment of the fault stress may
accelerate the merging.

In addition, we made the following observations:

• The development of infinitely large elastic shear stresses in a displaced fault, at the sharp internal and exter-
nal reservoir/fault corners, implies that even the smallest amount of injection or production will result in
some amount of slip or other nonelastic deformation. As a consequence there does not exist a maximum
injection level below which slip will be avoided when injecting in a faulted reservoir with sharp reser-
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voir/fault corners. Similarly, there does not exist a slip-free minimum pressure for production from such an
idealized faulted reservoir. This conclusion may not strictly hold for more elaborate reservoir models that
contain realistic details of the reservoir/fault corner regions. However, also in those cases the occurrence
of slip for small amounts of injection or production is very likely.

• There is a marked difference between the shear stress patterns resulting from injection and production in a
reservoir with a displaced fault. In both situations two slip patches emerge. However, for the injection case
an increase in pressure results in an exceedance of the slip threshold at the external corners of the reservoir
and the fault, whereas during production a decrease in pressure results in slip at the internal corners.
This implies that at the start of injection some amount of slip occurs immediately in the overburden and
underburden, whereas during production the slip may remain inside the reservoir region.

• Various closed-form expressions can be derived that describe specific aspects of induced seismicity in
reservoirs with a displaced fault. These include an expression for the seismic moment, earlier found by
Bourne and Oates (2017), the excess (nonelastic) shear force and the length of slip patches as a function
of incremental pressure, and the pressure at which slip patches merge according to elastic theory.

Next, we derived closed-form expressions for an inclined fault and concluded that the findings for displaced
vertical faults as listed above also apply to displaced inclined (normal or reverse) faults.

We note that these conclusions are based on an analytical elastic model of a displaced fault that does not
take into account aseismic or seismic stress redistribution after the onset of slip. More elaborate numerical
studies that were performed earlier and that did take into account inelastic and dynamic effects displayed
typically similar stress patterns, and we therefore hypothesize that our conclusions will also hold under
more realistic conditions. Other assumptions include the simplified 2-D shape of the reservoir and the use
of an infinite space rather than a half-space; absence of gravity, multiphase, and pressure transient effects; a
perfectly straight and infinitely thin fault that does not transmit pressure beyond the reservoir boundaries;
and the use of uniform elastic properties for the reservoir and its surroundings. Clearly, an analytical model
with so many simplifications is not intended to provide quantitative results with predictive value for real
reservoirs, for which field observations, laboratory experiments, and numerical simulations will be essential.
However, we consider the insights from our closed-form solutions to be of relevance for the interpretation
of such experimental and numerical work and hope that they will be a source of inspiration for continued
research into injection- and production-induced seismicity.
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