
Closing the gap between the Web and Peer to Peer

Final Report

Ste�an Norberhuis

1509306

Quinten Stokkink

4016270

Faculty Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

17 June 2013

1

Summary

During the course of Q4 of the 2012-2013 academic year, we have worked on the project of
a Peer-to-Peer web browser. After a two week orientation phase, a six week programming
phase and �nally another two week reporting phase we deliver our product. The �nal
result of this endeavor is an integrated web browser in the Tribler platform [1], which
supports automatic retrieval and distribution of resources encountered on the web page.

Acknowledgements

During our project we were assisted by a number of people, who were crucial to its success.
We would like to thank Dr.ir. J.A. Pouwelse for being our supervisor and making sure
we were on track with our project and at the same time delivering quality. We would
like to thank Ir. E. Bouman for helping us with the technical side of programming with
Tribler, assessing the viability of our project and of course letting us mess with Tribler
in the �rst place. We would also like to thank the rest of the Tribler team for keeping
up with our issue on GitHub and providing feedback on our ideas. We thank Dr. M.A.
Larson for being our general supervisor and assessing our �nal product. Lastly we would
like to thank our retired collegue M. de Vries for his input the �rst part of the project.

2

Contents

1 Project description 5
1.1 Actors . 5
1.2 Mission . 5
1.3 Assignment . 6

2 Methodology 6
2.1 Strategy . 6
2.2 Available materials . 7
2.3 Work�ow . 7

3 Orientation phase 9
3.1 Milestones . 9
3.2 Research . 9
3.2.1 Python . 9
3.2.2 Tribler . 10
3.2.3 wxPython. 10
3.3 Architecture . 11

4 Eternal Webpages phase 11
4.1 Milestones . 11
4.2 Architecture . 12
4.2.1 WebBrowser class . 12
4.2.2 SiteRipper module . 13
4.3 Code quality. 15
4.3.1 Code quality. 15
4.3.2 Test coverage . 16
4.4 Licenses . 16

5 TUPT phase 16
5.1 Milestones . 16
5.2 Architecture . 17
5.2.1 Webbrowser module . 18
5.2.2 TUPT module. 18
5.2.3 Infobar module . 30
5.2.4 Plug-in module . 30
5.3 Code quality. 30
5.3.1 Code quality. 31
5.3.2 Test coverage . 32
5.4 Licenses . 32

6 Testing and documentation phase 33
6.1 Bug hunting . 33

3

6.2 Documentation . 33
6.2.1 UML diagrams . 33
6.2.2 SIG deliverable . 34
6.2.3 Final report . 34

7 Evaluation and conclusion 34
7.1 Customer satisfaction. 34
7.2 Self evaluation. 35
7.3 Project time sinks . 35
7.4 Future work . 36
7.5 Conclusion . 37

A Docstrings 38

B Class diagrams 39
B.1 Eternal Webpages . 39
B.2 TUPT .. 40

4

1 Project description

In this section we will provide a general overview of our project. This section will contain
an objective view of what the assignment was when we took it on and how it developed
over time. Next to that we will go over the actors and their interests, our personal visions
and the materials we had available to us.

1.1 Actors

During our project we came in contact with several actors who have played a role in our
project. In this subsection we will explain who these actors were and how they in�uenced
our project.

Product owner

The product owner, Ir. E. Bouman of the Tribler team, was (naturally) interested in
expanding Tribler functionality. This meant for us, that we were confronted with a
healthy amount of ideas, which we had to interpret to get a good direction for the project.
The overall direction we took with our project was essentially the distilled version of all
of these ideas.

Supervisor

Our personal supervisor, Dr.ir. J.A. Pouwelse of the TUDelft Parallel and Distributed
Systems group, took an interest in the planning of our project. This lead to us creating
clear targets for ourselves so we knew exactly where we were headed and how we were
going to get there. By having a clear set of targets we could also commit ourselves to
delivering a quality product.

Tribler team

The Tribler team is a non-pro�t research group from the Delft University of Technology
and Vrije Universiteit Amsterdam. The team consists of professors, phd students and
software engineers from both universities. The group is funded by several di�erent entities
like the European Union CORDIS FP7 research program[2], Petamedia[3] and the I-
Shareproject[4].

The Tribler team had an interesting role to �ll in our project. With the status updates
we provided via GitHub came immediate feedback by other Tribler team members. This
meant we could immediately see if a certain decision we made would be 'acceptable'.

1.2 Mission

Our mission was to close the gap between (anonymous) web browsing and P2P by creating
a fully functional web browser which also supports (anonymous) P2P video streaming.
We take pride in being able to report that our �nal deliverable prototype does just this,

5

it binds P2P sharing to a fully functional web browser, which is then able to stream the
found resources. But there will be more on that subject in the rest of the report.

1.3 Assignment

After our initial research we produced a report stating concretely what our product would
be. This product would be able to rip images and Youtube videos from sites and use
torrents to distribute and fetch them. It would also �nd and replace direct links to these
types of resources.

We altered our course when it became clear after the �rst 3 weeks we were basicly done
with our assignment, and then we went above and beyond the original target.

Orientation

• Create orientation report
• Seed an image on a website
• Retrieve an image on a
website

Eternal Webpages

• Seed a webpage
• Display a webpage
• Search for a webpage

TUPT

• Play a movie with one click
• Manage channels
• Provide smooth user expe-
rience

Documentation and Testing

• Improve code quality
• Improve tests
• Create documentation
• Create �nal report

Figure 1: Overview of the product phases in our project

In the end our product had gone through 4 phases: the orientation phase, the Eternal
Webpages phase, The Ultimate Piracy Tool (TUPT) phase and �nally the documentation
and testing phase. This led to two di�erent products: the Eternal Webpages product
and the TUPT product. The rest of this report will summarize the contents, the design
decisions and the research for each phase. The overall picture of this process is given in
Figure 1.

2 Methodology

In this section we describe our approach to the methodology of the project. We will �rst
go over the software engineering outline of our methodology. Lastly we will describe the
work�ow we utilized.

2.1 Strategy

Our project employed an agile approach using a methodology resembling the Scrum
methodology [5]. We held weekly meetings with our TU Delft supervisor and company
supervisor. In these meetings we discussed our progress of the past week or demostrated

6

the progress made on the software, our plans for the following week and what functionality
we prioritized. We used milestones to track project features and issues to track what
needed to be done for a speci�c feature.

As our team consisted of only two developers more process organization was not needed.
We were in constant communication sitting next to each other. We always discussed
when a task was �nished and what task would be worked on next. The meetings with
our supervisor and product owner made sure all our supervisors were up-to-date on the
state of our product.

2.2 Available materials

To produce our product we were granted several materials.
Firstly we were granted a workspace by the Parallel and Distributed systems department
of the TUDelft [6] in the lab on the 9th �oor. Our actual workspace became the public
Drebbelweg labs though, because it was simply much less busy there.

The GitHub issues of the Tribler project [7] are publicly accessible and here we could
communicate our e�orts with the Tribler team and receive feedback. We ended up using
this mostly during the initial stages of the project.

Lastly our own materials were our personal lap-tops, running the Ubuntu OS. We ended
up using the Eclipse IDE [8] with the PyDev plug-in [9] to develop our product. We also
made use of the GitHub platform for version control of our code, other deliverables and
our product backlog [10]. Our project utilized a private repository for project documents
(like this one), and a public repository for the actual code and technical documentation.
The public repository is a fork from the actual Tribler repository.

2.3 Work�ow

We used the GitHub issuetracker to statisfy our need to track our progress and product
backlog. The GitHub issue tracker allows you to create issues and categorize them using
milestones and labels. This allowed quick overview of what a issue was for, what kind of
issue it was and it allowed to only view relevant issues.

Every issue was tracked using a milestone in GitHub. The milestones were used to distin-
guish complete additions of functionality and iterations. After completing the milestone,
the code was at a stage of being ready to be released. Milestones were not exactly
completed in a week's time, but closely followed a week rotation.

Next to the milestones we used labels to categorize issues. We used the following labels:

• Bug: a bug in the software.

• Code maintenance: Refactoring or cleaning up code to increase the maintainability.

7

• Enhancement: Addional functionality.

• Testing: Testing or adding unit tests for a part of the software.

• Documentation: Documenting the usage or technical description of the software.

• Research: Perform research to determine what technology or architecture should
be used for the next part of the project.

We also used secondary labels to indicate for what part of the software the issue was for.
A page from our list of closed issues is shown in Figure 2.

Figure 2: A screenshot of a page of our list of closed issues.

With the TUPT part of the project we really started to work on di�erent parts of the
system in parallel. The Eternal webpages project consisted of only two parts, whereas
the TUPT project can be divided in seven parts. To increase code quality and share
knowledge with each other we started to use pull requests inside GitHub. This allowed
us to easily manage code reviews and comment on the code without disrupting the other
in his work�ow.

8

3 Orientation phase

In the orientation phase we were set on easing our way into Tribler. We would start out
with distributing images in the �rst phase and at the end of the project handle playing
and distributing Youtube video �les.

3.1 Milestones

In the orientation phase our milestones were:

• Seed an image on a website using Tribler
This sprint would result in a prototype that could identify an image on a webpage
by its tag name, download the image by its src location, create a torrent �le for
this resource and lastly seed the �le using Tribler.

• Retrieve an image on a website using Tribler
This sprint would result in a prototype that could identify an image on a webpage
by its tag name, create a query for Tribler based on the src location and then search
for and download the corresponding torrent �le.

3.2 Research

In the orientation phase we oriented ourselves on the di�erent packages we had to use
if we were to use Tribler. In the following subsections we will lay out the discoveries we
made while evaluating the new software/API's we were going to have to use.

3.2.1 Python

Because the Tribler source code is written in Python, we would also use Python to extend
Tribler's functionality. Python is a programming language with a main distinguishing
feature of being dynamicly typed [11]. With our team having primarily experience with
staticly typed programming languages, it took some time to get used to, but we adapted
to it and made use of its advantages in the end.

To develop our Python code we utilized the Eclipse IDE together with the PyDev pack-
age. This allows for a easy project overview and easy execution of the code. Our ini-
tial research on how to set-up this toolchain was even included on the o�cial Tribler
GitHub wiki (which can be viewed on https://github.com/Tribler/tribler/wiki/

Compiling-Tribler-from-sources-under-Eclipse).

Default standards for Python are lacking for object oriented programming. Function
names are expected to be be in underscore_format [12], which hardly anyone has adopted.

9

https://github.com/Tribler/tribler/wiki/Compiling-Tribler-from-sources-under-Eclipse
https://github.com/Tribler/tribler/wiki/Compiling-Tribler-from-sources-under-Eclipse

This has resulted in that pretty much everyone de�nes their own standards. We did this
as well, with respect to the rest of the code we were going to work with. We adopted
the standard from the wx package we were using, by using UpperCamelCase for method
names and class names and lowerCamelCase for variable names. When appropriate, we
tried to de�ne private member variables.

The great danger that comes with using Python, that we would like to point out, is the
fact that most syntax errors are only detected at runtime. This means the language is
very sensitive to type-o's. To deal with this, it is even more important for all python
code to be thoroughly tested, checked and reviewed.

3.2.2 Tribler

Tribler is a Peer-to-Peer �le sharing platform made by the Tribler team from the Parallel
and Distributed systems department of the TUDelft [6]. Tribler supports decentralized
torrent tracking and is in the process of supporting anonymous torrenting [1]. The Tri-
bler features we use, are its integrated video player (based on a VLC python wrapper),
its library for creating torrents, its functionality to stream torrents and its channel man-
agement capabilities.

The streaming torrent functionality is based on a library called `Swift' and is able to
download the torrent as sequentially as possible [13]. While this streaming functionality
is fully supported, the videoplayer cannot handle playing this stream correctly for all
video formats. The Tribler team is currently working on the next beta version of Tribler
that will actually support streaming any video �le, making our tool that much more
useful.

The channel functionality is based on a library called 'Dispersy', which takes care of
synchronizing communities around a channel �lled with torrent �les [14]. We use this
functionality to keep the Tribler platform clean of duplicate torrent �les and make sure
they are stored in an appropriate location.

3.2.3 wxPython

This is a package of wx bindings for Python. There are several versions of the wxPython
bindings released [15]. The version of wxPython used by Tribler is version 2.8. The
o�cial, stable release is the 2.8 release. This release is the version used in the Ubuntu
package manager.

The o�cial development wxPython is the 2.9.4.0 release. The development release of
2.9.4.0 is also the release that makes the wx WebView class available, which we used for
implementing a web browser in Tribler. This meant that we had to port Tribler from
wxPython 2.8 to wxPython 2.9.4.0. The amount of work that went into porting Tribler
to this new wxPython version was very minimal however and did not cause any major

10

instability to the existing code.

The downside to using wxPython 2.9.4.0 is that Linux users will have to compile the
package themselves, which we would like to rank as non-trivial. We ourselves spent
several days compiling the package before it worked.

While wxPython has the up-side of being completely cross platform, another downside
to it, is that it is very unstable. The threading in wxPython is particularly unsafe. Any
parallel GUI calls will cause the back-end to segfault out of execution or shut down by
error.

3.3 Architecture

The �rst proof of concept we created in the orientation phase was able to parse the
HTML structure (called the DOM tree) of a webpage and locate an image based on a
name value given to the image. A python package called BeautifulSoup [16] would handle
walking through the HTML structure. When the given name identi�er was encountered,
we would retrieve the object's src �eld value. The url pointed to by this src �eld would
then be downloaded and put into a torrent �le. This torrent �le was then registered (and
therefore shared) through Tribler.

4 Eternal Webpages phase

In the Eternal Webpages phase we were focused on the technical aspect of resource
(re)location and identi�cation. The problems we faced in this phase were on a more
intellectual level than simply creating a torrent �le for some image. Now we had to
resolve con�icts and store resources properly.

4.1 Milestones

• Seed a WebPage.
This sprint would result in a prototype that could, with the click of a button, seed
the webpage that was currently being viewed in the webbrowser. The webpage
would then have all its resources downloaded and added to a tar �le, which would
be seeded on Tribler.

• Display a Web Page retrieved from Tribler
This sprint would result in a prototype that would open a webpage from a local
tar �le by unpacking it and then displaying it in the webbrowser using the local
content.

• Search for a WebPage in Tribler
This sprint would result in a prototype that would use an o�ine and online viewing

11

mode where the o�ine viewing mode automaticly downloads a torrent according
to a speci�ed url. This sprint built on the previous two.

Figure 3: A screenshot of the Eternal Webpages product in action.

4.2 Architecture

The achitecture of the Eternal Webpages extension can be divided into two parts: the
WebBrowser class and the SiteRipper module. The extension is built into Tribler as part
of the GUI: an extra tab is added to the menu that allows users to go to our part of the
system.

4.2.1 WebBrowser class

The WebBrowser class is responsible for displaying the webbrowser itself and the seed-
button. It consists of one GUI class that encompasses a wxWebView object and provides
all browsing functionality needed. The wxWebView object natively supports HTML5
and provides us with everything we need in order to display webpages. The webbrowser
object can be manipulated in a way that you can load WebPage objects from a �le. See
Figure 3 for the �nal result.

When we found out that wxPython 2.9.4.0 did not support resource handlers, which were
essential to ripping out all the resources from a web page, we had to switch to a version
of wxPython that did support it. This is how we came to use wxPhoenix, the latest
iteration of wxPython.

12

The wxPhoenix package is an in-development package that has not been released yet and
has to be downloaded from the versioning repository from wxPython [17]. It is easier
to compile than the development release of wxPython and has better documentation.
The wxPhoenix package was named Phoenix, according to the site, because it broke
everything and was reborn better. A lot of code of wxPhoenix is refactored and there is no
backwards compatibility. From an objective standpoint this is the truth, the wxPhoenix
package architecture is made much better than the wxPython 2.9.4.0 package. Sadly,
this major refactorization of code meant that Tribler broke down completely. Even after
a week of bug hunting, Tribler still wasn't completely stable when we left the Eternal
Webpages project.

4.2.2 SiteRipper module

The SiteRipper module is responsible for being able to store and retrieve webpages in
torrent�les.

Seeding

To be able to seed a webpage all resources have to be known. This is why a ResourceSnif-
fer object detects all resource calls made by the WebBrowser when browsing and records
all the resource URLs on particulair webpage. The actual resources are not saved, but
only their URLs. This is a design choice we made with the fact in mind that most web
pages would not be seeded, therefore keeping track of all the actual resource �les for
every web page loaded would hurt the performance of web browsing too much.

After the seedbutton is pressed a new folder is made. Inside that folder the HTML source
and all resources of the webpage are saved to �le. After everything is downloaded the
folder is compressed to a tar�le and the tar is added to a torrent. This torrent is then
added to Tribler and Tribler starts to seed the torrent.

To map a URL to a local �le resource e�ciently, we can not simply store a resource
with the name of the URL. Storing an additional mapping �le per web page package
is ine�cient. Trying to modify the links in a web page itself is infeasible because of
javascript dynamicly building links. Therefore we came to the conclusion that storing
resources by MD5-hash was the best way to do real-time mapping of resources. This
meant that there was no need for additional �les, �le names are short and there is very
little chance of resources being unlocatable.

See Figure 4 for a activity diagram of seeding a webpage.

View mode based web browsing

View mode based web browsing is the idea that you can freely change modes when
viewing a web page and change the way a webpage is retrieved accordingly. WebBrowser

13

Figure 4: Activity diagram of seeding mode webbrowsing.

has two viewmodes: internet mode and swarm mode.

In internet mode the webbrowser functions like normal. All webpages' HTML sources are
retrieved using HTTP by URL. The webpage starts showing as soon as the HTML source
is downloaded. Any links to resources in the HTML source are downloaded using HTTP
and these resources are dynamically shown. This is the same way any other webbrowser
would display a webpage and everything is handled by the backend of wxWebView.

The other view mode is swarm mode. In this mode URLs would be transformed into
torrent identi�ers and downloaded from Tribler. Inside the torrent a tar�le is stored that
contains everything that is needed to display the webpage. The tar�le inside the torrent
is unpacked and the HTML source inside is loaded into the wxWebView object. Any
resource calls are now not satis�ed by downloading the resource from the internet, but
this time the URL to the resource is translated to its corresponding hashfunction and

14

the �le is retrieved from �le. See Figure 5 for a activity diagram of webbrowsing.

Figure 5: Activity diagram of viewmode based webbrowsing.

4.3 Code quality

The Eternal Webpages product was the �rst of the two products we created. This means
we were still in the phase of learning about Python while we were creating the product.
While this does not mean code quality and test coverage are terrible, they are de�nitely
worse than in the TUPT product.

4.3.1 Code quality

Our own opinion of the code quality of the Eternal Webpages package is that the code
comments (also known as docstrings) are proper, but the code itself is slightly lacking.The

15

code blocks are too large and too complex. The coupling between the classes is too high.
Lastly the package coupling is also too high. As mentioned before, wxPheonix also makes
Tribler too unstable.

The SIG feedback for the Eternal Webpage package is that there exists a block of code
in our WebBrowser initialization code, which is too long. We agree with the SIG in their
�nding and we split this GUI code into several di�erent methods in the �nal version of
our product.
This is an issue we did know about, but ignored in favor of other higher priority jobs.
This is bad etiquette on our behalf and because of our laxity the same issue existed and
had to be changed in the TUPT package as well .

4.3.2 Test coverage

Our own opinion of the test coverage we provided for the Eternal Webpage package is
that it is lacking very much. This is mostly due to the fact that we have high package
coupling though, and can therefore not easily seperate functionality into unit-tests. Most
code also needs real world interactions with a webpage. This also limits the ability to
unit test. If anyone were ever to continue work on this package, this would have to be
improved.

4.4 Licenses

The Eternal Webpages product does not utilize any functionality other than that, which
was already included in Tribler. This means that the Eternal Webpages project shares
the Tribler LGPL Open Source license. We do not impose additional restrictions to our
product.

5 TUPT phase

The TUPT phase was by far the largest phase in terms of goals and targets. The
software we implemented in this phase was more end-user centric and the back-end was
more complicated. Our personal goal in this phase was to create something that people
really wanted to use (see Figure 6 for the result).

5.1 Milestones

In the TUPT phase our milestones were:

• Increase stability of Tribler

16

Figure 6: A screenshot of the TUPT product in action.

This sprint would result in improvements done to the software that would increase
the stability of Tribler and our extension.

• Be able to play a movie on a website with one click
This sprint would result in a prototype that could view any webpage and the
webpage would be automatically be parsed for possible movies. The parsed movies
would be corrected according to multiple matchers and be ready to stream by using
torrents provided by several torrent providers.

• Add torrents to channels in Tribler
This sprint would result in downloaded movie torrents to be added to Tribler chan-
nels without duplication between the channels. This functionality would be based
on the correct movie meta data.

• Streamline user experience using TUPT
This sprint would result in a prototype that would better inform the user about
what was going on while the user waited. It would show website loading status and
torrent retrieval loading status.

5.2 Architecture

The TUPT architecture is fairly simple and consists of four parts: the Webbrowser
module, the TUPT module, the Infobar module and the plug-in module.

17

5.2.1 Webbrowser module

The Webbrowser module is still responsible for displaying the webpages. Listeners can be
registered to it and these will be noti�ed if a webpage is loaded. This Observer pattern
allows decoupling of the Webbrowser class and any class dependent on state changes
in Webbrowser in a generic way. The pattern was implemented because TUPT control
needs to be noti�ed when a new webpage is being loaded.

In the TUPT phase we switched back to wxPython 2.9.4.0 instead of wxPhoenix for
stability reasons. Fixing Tribler to work with wxPhoenix was not our main objective
and the Eternal Webpages prototype was too slow in loading web pages.

5.2.2 TUPT module

The TUPT control is the core class of the module that controls the �ow of retrieving
the movie options, showing the options to the user and processing the user interaction
to start playing a movie. The TUPT control listens to the Webbrowser and will recieve
the page HTML source when a new page is loaded.

The �ow that the TUPT control class controls consists of the following steps:

• Parse the HTML source for movies.

• Correct the metadata of the movies.

• Find torrent corresponding to the movies.

• Display the movie options to the user.

• Start streaming the movie.

• Add the movie to the Tribler channel.

For every step the TUPT control class does not execute the step itself, but only calls the
appropriate class. This follows the single responsibility principle and allows functionality
to be easily reused in other places without any trouble.

See Figure 7 for a activity diagram of the TUPT control.

Parsing

Parsing is done by the ParserControl class. The control will determine if it has a plug-in
that can parse the webpage. If it has a plug-in that can parse the website it will run
that plug-in on the webpage HTML source. This is done defensively by not allowing the
plug-in to crash the whole program and checking the results of the plug-in on correctness.

18

Figure 7: Activity diagram of general TUPT functionality.

19

Parser plug-ins have to implement the IParserPlugin interface. This will ensure the plug-
in has all the functionality needed by the ParserControl.

We created a parser plugin that can parse imdb.com by using the IMDbPy package.
The IMDbPy package is a screen scraping package for imdb.com [18]. It can process
di�erent imdb web pages and �nd movies speci�ed on a certain page. We would use this
functionality to parse results for speci�c query URLs and to try to �gure out if a current
web page being viewed, contained movies.

Correcting metadata

The movie metadata correction is done using multiple sources. Multiple sources can
return di�erent values for a single metadata attribute. The �nal value is determined
using a trust-based frequency mechanism. This system allows an end-user to specify a
trust for a certain movie database. For example see Table 1 : website A might be correct
90% of the time, website B is trusted for 60% and website C has so many spelling errors
and other problems that it is only 20% trustworthy.

Table 1: Example of multiple metadata providers.

(a) Attribute-value pairs of A
(trust 0.9)

Attribute Value

title Example

releaseYear 1947

discs 5

(b) Attribute-value pairs of B
(trust 0.6)

Attribute Value

title exaMple

releaseYear 1946

actorCount 12

(c) Attribute-value pairs of C (trust 0.2)

Attribute Value

title example

releaseYear 1947

add Visit my website!

What happens next is the construction of a frequency table per attribute-value pair for
the movie. For every attribute a plug-in claims to have for a movie, a value is voted upon
with the trust we have for a plug-in. A minimum trust of 0.5 is chosen to �lter out very
untrustworthy sites from making it into the corrected metadata. An example of such a
frequency table is given in Table 2.

In the example the di�erent and con�icting values given by plug-ins A, B and C from
Table 1 are inserted. The rows that have insu�cient trust value to make it to the �nal
table have been greyed out. When the unwanted values have been removed the resulting

20

Table 2: Trust-based multi-source metadata correction.
Attribute Value Trust

title Example 0.9
exaMple 0.6
example 0.2

releaseYear 1947 1.1
1946 0.6

discs 5 0.9

actorCount 12 0.6

add Visit my website! 0.2

Table 3: Final movie metadata
Attribute Value

title Example

releaseYear 1947

discs 5

actorCount 12

metadata for a movie is left over. The �nal metadata table for our example is shown in
Table 3.

The MatcherControl class takes care of this functionality. It runs defensivly every
matcher plugin and records the results given by the plug-in. After all plugins are run
the �nal values are determined and returned. We created two plugins that use a source
to correct metadata. The IMDbMatcher plugin and TheMovieDbMatcher plugin, that
respectively use imdb.com and themoviedb as a source to correct metadata. See Figure 8
for an activity diagram of the MatcherControl.

Torrent �nding

The software has to ensure only quality torrents are presented to the user, because if the
torrents presented to the user are of a too low quality, it will hurt the user experience.
This will also hurt the image and adoption of our product. We thought of two ways to
ensure quality: downloading and reviewing by the user and user voting.

Downloading and reviewing would work as follows. First only the �rst few megabytes of
a torrent's video �le are downloaded. This �le will then be opened and screened to see if
it was not all black, if it has sound and if the pixel ratio on screen is good enough. The
big drawback of doing it like this, is that it takes a very long time to evaluate a torrent,
in the range of several minutes. The time it would take to evaluate several torrents is
too long to be a viable option.

Manual voting requires users to vote for a movie after they have watched it. This is

21

Figure 8: Activity diagram of the Matcher sub-package.

dependent on users both voting correctly and voting at all. An automatic system could
be also implemented, which would autovote after a user has watched a movie for a certain
percentage. This special voting system would be unique to Tribler: so every movie would
have to be downloaded, viewed and ranked through Tribler, before we could determine
whether the torrent is any good. After this initial set-up the voting makes it very easy
to identify good torrents. The drawback is that this set-up may take days, weeks or even
years: making new entries very slow as well. Another drawback is that the voting system
is limited to Tribler and it does not take into account other valuations of users not using
Tribler.

In the end however, it occurred to us that a voting system is already in place and this
voting system transcends Tribler. The amount of peers connected to a torrent (seeders
and leechers) can be seen as a way people vote on the quality of a torrent. A good torrent
will have the crowd to support it. Any torrent that has inferior quality will also have
inferior support. This method is much faster than the other two methods and it also uses
input from peers outside Tribler. It still has the same drawback as the voting systems
inside Tribler. If there is no crowd then our tool can not guarantee getting a quality
torrent. But this drawback is far less because the crowd is much larger then the voting
system inside Tribler would have.

Torrent ranking

To construct a torrent ranking algorithm we had the following inputs to utilize: the

22

number of seeders for a torrent, the number of leechers for a torrent, the name match
rate of a torrent's name with the movie data, the name match rate of a torrent's name
with some user de�ned terms and lastly the user's trustedness of the plug-in. We will
describe these inputs and how we take them into account in the next paragraphs.

Matching

In this context the match rate of a list of terms with a single name is determined by the
summation of the matching rate of every term in the list with the single name:

name match rate =

n∑
i=0

ratio(term[i], name)

Where the ratio() function is de�ned on [0.0, 1.0].
Note that the name match rate may be anywhere in the range of [0.0, n〉 for a list
of terms that is very much alike itself. If all terms were fully disjunct however, the
name match rate would be in the range of [0.0, 1.0].
Take, for example, the disjunct set T's matching to the string �abc�:

T = [�a�,�b�,�c�]

name match rate =
2∑

i=0

ratio(T [i],�abc�)

= 1
3 + 1

3 + 1
3 = 1

However if T is not disjunct:

T = [�a�,�b�,�ab�]

name match rate =

2∑
i=0

ratio(T [i],�abc�)

= 1
3 + 1

3 + 2
3 = 11

3 > 1

This means that some terms in the term table have more weight than others when
matching. This is not expected behavior of a matching algorithm, but in our case we
assume the term table is disjunct enough, for simplicity of the algorithm.

It is possible to �x this behaviour though. In our usage, the strings to match to are
dynamic and the term table T stays the same. Therefore the term table could have the
term covariance calculated at initialization to preserve algorithm speed.

Speed estimate

To estimate the potential speed a torrent may achieve, we can use statistical analysis.
Let u be the average upload speed of a peer in a swarm, S the amount of seeders and ,

23

L is the amount of leechers. Assume a leeching peer's download progress be uniformly
distributed over the interval [0, 1〉. Assume a leeching peer will attempt to upload every
part of the �le the leeching peer itself has.

Now the expected value of the download progress for each leeching peer is 0.5 (or 50%):

E[U] = µ =
1

2
(α+ β) =

1

2
(0 + 1) = 0.5

This means that on average a leeching peer can upload 50% of a �le at upload speed
u. In turn this means that the average upload speed of a leecher l for en entire �le is
u × 0.5 = 0.5u. This makes the total estimated available download speed for a torrent
equal to the sum of the expected download speed from the seeding peers and of the
expected download speed from the leeching peers:

download speed estimation = uS + 0.5uL = u(S + 0.5L)

We note that this estimation is based on a uniformly distributed download completion
rate, whilst in reality it may be more of a normal distribution skewed to the right.
Additional research is required to con�rm this.

We also note the fact that starting leechers are not fully connected to the swarm yet.
This means we would discover more peers with higher completion rates. This would
further shift the estimated download speed to the right.

All notes combined, we assume our 1.5u download speed estimate is too low, but we do
not have the resources to pursue this problem further.

User terms

This algorithm also takes into account some trusted terms set by the user. In the context
of movies this may be a quality term like �1080p�. This would prioritize a torrent with
the name �Some Movie 1080p� over another movie named �Some Movie 720p�. We have
chosen to let the user de�ne these quality terms, for they may shift over time. This also
leaves room for expansion to di�erent content other than movies. For example we might
prefer series from the �BBC� over any others.

Torrent �nding algorithm

Finally, to tie everything together we will multiply the user trust, the name match rate
of the torrent's name with the movie data and the name match rate of the torrent's name
with the user terms with the estimated download speed for a torrent.

Here we make sure that the di�erent matchings can only increase the rank of a torrent.
Hence, not having the special term �BBC� will not decrease the rank of a torrent, or for
example not having a movie description. What should be able to decrease the rank of
a torrent, is the trust the user has in the torrent provider. For example, if we trust a
website for 0%, we don't want it in our list at all, even if it has a near in�nite amount of
seeding peers.

24

The �nal function for determining a torrent's rank then becomes:

rank = trust× (1 + name match rate(movie, torrent))× (1 +
name match rate(user terms, torrent))× download speed estimation

It should be noted that this rank is in units of avarage download speed per torrent swarm.
For simplicity we assume that this average speed is the same for all torrents. In reality
however, it won't be because di�erent torrents will attract people with di�erent internet
speeds.

The TorrentFinderControl class is responsible for �nding torrents of a movie and ranking
them. It uses di�erent plug-ins that will all retrieve torrents from a di�erent source.
Every plug-in is run defensively so that no crashes in a plug-in will crash the rest of
the software. The torrents are ranked using an algorithm we will describe later. We
created three plug-ins that use Kat.ph, Fenopy and Tribler's overlay network as sources
for torrents.

See Figure 9 for a activity diagram of the TorrentFinderControl.

25

Figure 9: Activity diagram of the TorrentFinder sub-package.

Display the movie options to the user

The TUPT control uses the infobar module to inform the user of the status of the TUPT
extension. The module has several states and the module itself checks which state it is
in. This is done using the information stored in the MovieIterator object. Its states are:

• Parsing: a movie was found but there are no torrents yet.

• Movie: a movie was found and a torrent was found for this movie.

• No Results Found: no movie was found or no torrent was found.

26

When a TorrentFinder plug-in has �nished �nding torrents from its source, it will call-
back to the TUPTControl if it has new results. The TUPTControl will instruct the
TorrentInfoBar to update its state and show the new options to stream.. After all Tor-
rentFinder plug-ins have run for all movies found on the webpage, the TUPTControl
will do a �nal call on the TorrentInfoBar. If no torrent was found the infobar will go
from parsing state to no result found state. See Figure 10 for a activity diagram of the
infobar.

Figure 10: Activity diagram of the TorrentInfoBar.

Streaming a torrent

After the user has pressed the play button the TorrentInfoBar will return the selected
torrent to the TUPTControl. The TUPT control will download the torrent regardless
if it is a magnetlink or a normal torrent �le. The torrent is then added to Tribler like
a regular download. After the torrent download is started, Tribler is called to start
streaming the movie.

27

Channel insertion

To distribute torrents within Tribler, every user has his own channel. This channel (if it
is open to outside moderation) can then be moderated by outside sources. Even though
the front-end of Tribler does not support more than one channel per user, the back-end
supports multiple channels per user. We have modi�ed the Tribler database to support
additional hidden channels, whilst retaining the original Tribler personal channels per
user.

The channels we created are open to outside moderation to allow for easier merges
between channels.

The way channels are managed is by �rst searching for an apt channel to store a torrent
in. To do this, we need a resource that has completely correct metadata (so it shows up
the same for all clients) and then distill a universal name for it. So, no matter where the
resource is collected from, the identi�er will still be the same.

When we have our unique identi�er for a channel, one of three things can occur. The
channel might either (a) not exist, and we need to create it ourselves, (b) exist already
(either because we made it or someone else made it) or in the worst case (c) there are
multiple matching channels to insert into.

In the third case (c) we simply select the channel with the most torrents to insert into.
If it so happens that we own our own version of the channel and we are not the most
popular channel, then we insert all the torrents (that are not already in the other channel)
into the other channel. Now that our peer knows of this other channel, it is also easier
to disperse the other channel, quickly making it the only channel of its kind through a
survival of the �ttest strategy.

Once we have a channel to insert our torrent into, we can inspect the channel to see if
the torrent already exists. One of three things may happen now. Either (a) the torrent
does not exist yet and we can insert it, (b) the exact torrent resource we found already
exists as our universal name or (c) another torrent with the same universal name exists,
but it does not point to our found torrent resource.

In the third case (c) we need to �nd out which of the resources is the best. The best
torrent is determined by the highest amount of seeders for the torrent. If this turns out
to be our torrent, we remove the other torrent in the channel and substitute it with our
own.

See Figure 11 for a activity diagram of channel insertion.

28

Figure 11: Activity diagram of the ChannelInsertion sub-package.

29

5.2.3 Infobar module

The infobar module is a small GUI element that displays the results found by the TUPT
extension and allows the user to choose a movie and quality and start playing the movie.
The infobar gets updated asynchronously by the TUPT control. The infobar is imple-
mented in a generic way that will allow to display any other information, but is currently
only used by the TUPT control.

5.2.4 Plug-in module

We decided on a plug-in structure for two reasons. The plug-in structure allows for easy
additional functionality added by other developers. Developers can easily create other
plugins that our tool can use if they implement the simple interface. A parser plug-in for
a new website or a torrent�nder plug-in for another torrent source can be easily added
this way. The second reason is that because of licensing concerns we had to make sure
that code can be easily run seperated. This allows several licenses to be applicable to
di�erent parts of the system.

Because we were now supporting plug-ins we needed a plug-in package for python. For
plug-in support we then decided to use the Yapsy python plug-in support package.

Yapsy is a Sourceforge project that supports plug-ins for python [19]. Yapsy searches
for plug-in metadata �les in a programmer speci�ed folder and then loads the plug-in
module from the metadata �le into the current environment. This also allowed us to
easily add metadata of our own to plug-ins. The implementation of Yapsy was very easy.

The downside to Yapsy is that it exposes the entire inner architecture of our project and
lets plug-ins do whatever they want. This means we can not guarentee our users that
running user scripts is safe.

The PluginManager module handles all functionality corresponding to the plug-ins and
has been built in such a generic way that it can handle any new additon of a plug-in
category without any e�ort. It facilitates all interactions with Yapsy to provide the plug-
in functionality. The plug-ins are fetched based on a category and returned as a list of
objects. The objects can then be called to perfom plug-in functionality. A con�guration
tab has been added to the Tribler con�guration menu that allows easy administration of
the plugins.

5.3 Code quality

The second product we delivered, the TUPT package, has a much better code quality
and test coverage than the �rst deliverable. This is because we started o� with a better
design than we had for the Eternal Webpages product. This meant we could decouple
classes better and therefore test them better.

30

5.3.1 Code quality

We believe that the code quality we delivered for the TUPT package is very high. Besides
that, we believe the architecture we designed re�ects a nice separation of activity �ows
in its package design, the functionality can be easily extended and components can be
easily reused. Class and package coupling is low. Most of the �les are not bloated and
methods are not longer then necessary. Code comments (docstrings) are of high quality
and standardised throughout the �les. For the de�nition of these standardized docstrings
see Appendix A.

In the TUPT phase we also started using pylint to check our code quality. Pylint is a
code analysis tool that can be automatically run. The �rst time running it introduced
alot of warnings and errors. Most of these are small refactorings to adhere to the code
standard, but it also found two bugs and good refactoring opportunities. This proved
the value of running code analysis tools on our code. The results for the major classes
are shown in Table 4 .

We did consciously disable particulair pylint warnings in lines of code. This was alway
done with a good explanation why we disabled that warning. An example is that we
catch a too general Exception, but this was done because of defensively execution plug-
ins. We also globally disabled the warning that states that a method not referencing its
class could be used as a function. We believe this rule clutters the namespace too much
and is too much of a

Table 4: Pylint ratings
Filename Rating Work

TUPTControl 9.77 refactor amount of attributes

WebBrowser 8.99 several refactorings need to be done

MovieChannelControl 9.51 several refactorings need to be done

MatcherControl 10 no work needed

ParserControl 10 no work needed

TorrentFinderControl 10 no work needed

WebBrowser 9.92 refactor method name to code standard.

PluginManager 10 no work needed

The feedback the SIG gave us about our code quality is the fact that there is GUI code in
the WebBrowser class which is too long. We agree with this �nding of the SIG and will
split this functionality into several di�erent methods in the �nal version of our product.
The SIG also mentioned the fact that our *MovieTorrentDef classes had high duplication.
We also agree with this �nding and will use an abstract class instead of an interface for
use by the di�erent *MovieTorrentDef classes in the �nal version of our product.

31

5.3.2 Test coverage

Table 5: Test results
Test name Classes Coverage (%) Execution time (s)

test_PluginManager PluginManager 86.7 0.006

test_ChannelControl MovieChannelControl 44 0.003

test_IMDbMatcherPlugin IMDbMatcherPlugin 87.8 2.381

test_MatcherControl MatcherControl 86 5.634

test_TheMovieDBMatcherPlugin TheMovieDBMatcherPlugin 100 2.416

test_IMDbParserPlugin IMDbParserPlugin 98 0.696

test_ParserControl ParserControl 85.5 0.001

test_SortedTorrentList SortedTorrentList 100 0.009

test_TorrentFinderControl TorrentFinderControl 84.5 0.020

test_TUPTControl TUPTControl 50 0.019

The test coverage we provided with the TUPT package is rather high. Most tests score
over 80% coverage, and all tests score over 44% (see Table 5). The only thing we could
see, which could be held against us, is the fact that some unit-tests are slow because they
require internet �les. We did this because we needed to parse the imdb website which
is copyrighted material and we did not want to upload this to GitHub. The unittests
now also function as a good test to see if the software can parse the imdb webpage after
real-world changes, but it slows down the tests.

5.4 Licenses

The TUPT product uses third party libraries, next to those used in Tribler. The in-
tegrated plug-in manager Yapsy is distributed under the simpli�ed BSD license. This
means the integrated Yapsy package does not pose any more strict rules on the license
than the LGPL Open Source license already used by Tribler.

The IMDbPy package, which is used in a plug-in, is distributed under the GPL 2 license.
The code can be easily seperated and run separately, because of this it does not impose
restrictions on the Tribler license. This will hold for any other user plug-in. Because it
can be seperated it does not have any e�ect on the Tribler license.

Since we do not impose any additional restrictions, the product retains the LGPL Open
Source license already in use by Tribler.

32

6 Testing and documentation phase

To conclude the programming we did for this project, we ended with the testing and
documentation phase. In this phase we would make sure that all the deliverables were of
su�cient quality through additional testing and complete documentation. The additional
testing consisted of code reviews (coding style, code complexity, etc.) and system testing.
This quality assurance would cost us about two weeks of our time.

6.1 Bug hunting

A big part of our testing and documentation phase consisted of getting our TUPT product
�Grandma Proof�. In other words, we wanted to deliver an uncrashable application. We
delved into the reports our tools gave us on test coverage and coding style to check for
possibly problematic sections of code. In a handful of cases this actually led to us �nding
sections of code that behaved normally under tests, but were actually wrong.

The other part of our bug hunting was intense system testing. This meant that we would
abuse our product as much as possible to discover possible errors. Even though our
system is very resilient, the wx GUI package is somewhat unreliable with threaded calls.
Through intense testing we could then discover deadlock situations caused by the GUI
back-end and avoid these situations.

6.2 Documentation

Because our product invites expansion, improvement and end-user interaction, we wanted
to make sure that the documentation we delivered with our product was of su�cient
quality. In this phase we made sure our technical documentation was delivered with
the product, in the form of UML class and activity diagrams. We also made sure we
documented our work in a SIG technical documentation deliverable and in this report.

6.2.1 UML diagrams

A big part of understanding any code is understanding the architecture. To this end, we
made a complete package of class diagrams and activity diagrams, for both the Eternal
Webpages and the TUPT package. All of the activity diagrams can be found in their
respective chapter in this report. The class diagrams for the Eternal Webpages project
can be found in subsection B.1. The class diagrams for the TUPT project can be found in
subsection B.2. We did not use any generation tool for these class diagrams and activity
diagrams. We felt it would be more clear what the functionality was, if we separated the
di�erent aspects of our code by hand. It took us two days to produce all of the diagrams
for this project.

33

6.2.2 SIG deliverable

To produce the SIG deliverable we had to make sure we had documentation on our code
and a separated version of our code. Separating our code from the Tribler code was no
big issue. During our project we had made sure that our code was in our own folders
as much as possible. We had just a single class that existed inside a Tribler folder. We
also wanted to make sure that the tests we delivered were runnable. Due to a cascaded
dependency, intially only 3 out of 10 tests were runnable without the Tribler code. We
then set out to decouple a single class, which instantly boosted our testable amount to 8
out of 10 tests runnable without Tribler. The �nal 2 test classes were nested so deeply
into Tribler library code, that we felt they were not worth decoupling.

In the end, the SIG deliverable contained a document that covered the projects architec-
ture (including the UML diagrams we made) and the test suite, the separated code for
the Eternal Webpages project and the TUPT project and lastly the test code. It took
us 3 days to complete the SIG documentation.

6.2.3 Final report

The bulk of the testing and documentation phase was spent creating this report. With
all of the work we put into our project, we wanted to make sure we covered everything
we had done. This led to the fact that we had a lot of text to write. Writing all of
the text we needed to write took us 5 days. We then submitted a draft to our personal
supervisor and when we were reviewing our text, we discovered we had a lot of text with
little structure. This lead to the fact we would spend another three days rewriting our
report to adhere to a better report structure. All in all we went through another 29
GitHub issues on our private repository, just for the �nal report.

7 Evaluation and conclusion

In this section we will focus on some more global subjects of our project. We will talk
about both the customer's satifaction and our own satisfaction after the project. Lastly
we will discuss the time sinks we ran into and the future work that can be pursued when
working with our deliverables.

7.1 Customer satisfaction

To assess the satisfaction of the client, we will base ourselves on the reactions of the
client during our meetings. The �rst reaction we got on our progress, during the second
meeting, was �Well then, you've done everything we wanted, what are you going to do the
coming weeks?�. This tells us that we have gone above and beyond the initial project's

34

expectations. However, over time expectations shift and in pursuing our �nal goal of
getting our product �Grandma proof� (uncrashable) we do feel we have let our client
down. So whilst we do feel we have risen above and beyond the original project, we do
feel disappointed we did not manage to provide the so called icing on the cake.

This does not mean we failed or let our client down however, quite the contrary. We
have both, even though we are �just� Bachelor students, been o�ered jobs at Tribler
to continue our work. This means the client must have been impressed enough by the
quality of our coding and the progress we have made, that it meets the standards of a
professional programming company.

7.2 Self evaluation

The goals we had speci�ed for ourselves in the orientation phase of the project were:
to learn more about peer-to-peer communication and to prove ourselves as software
engineers. We feel we have accomplished both goals.

During our work with Tribler we came in contact with several cutting edge peer-to-
peer techniques. By utilizing the Tribler functions we also got to learn a lot about
how decentralized tracking works, how decentralized communities are synchronized, how
torrents are sequentially downloaded instead of by random piece and many more topics.

During this project we have written over 4000 lines (including tests and comments),
changed 131 �les, closed 130 GitHub issues and made 404 commits in 6 weeks with a
two-man team. To produce so much content - which is all subject to our own high quality
standards - while working with experimental packages, is a personal accomplishment.

7.3 Project time sinks

During our project we �nished most of the features rather quickly (within a day or two).
There were also parts of the project that did not go quite as swimmingly however.

A big hindrance during our project was using the wxPython bindings. The functionality
we were using was still relatively new and in the case of wxPython 2.9.4.0: only half-
implemented. The main problem with the wxPython bindings were that they would
segfault or mystery error out of execution because of bad threading policy on its back-
end. It was an absolute nightmare to �gure out where, how and why crashes related to
the GUI happened.

The better implementation of wxPython (wxPhoenix) was also a big time sink. Instead
of being broken on the end of wxPhoenix, the entirety of Tribler became unstable. With
no access to GUI testing tools, we had to probe around the entire Tribler environment
to discover any refactorizations. This is made extra di�cult by python being dynamicly
typed, so not even name refactorizations were caught at compiile time.

35

7.4 Future work

The code we leave Tribler is very much a platform for them to expand on. We expose
a great many things they can further build upon or research. In this section we explain
the di�erent things that can be altered or expanded upon in our project.

Eternal Webpage versioning

A big problem that remains to be solved for the Eternal Webpages product is how to
di�erentiate versions of a website inside the swarm. If the content of a webpage is
changed, then the swarm should be noti�ed that a new version is available and the
newest version should be preferred. It should not necessarily be guaranteed that the
newest version is always displayed, but a balans should be found. This is a very di�cult
problem, but a very relevant one for the Parallel and Distributed systems department
of the TUDelft. Problems arise very quickly when a malicious user inserts fake versions
into the network.

Eternal Webpage integration

A remaining potential expansion of the Eternal Webpage product is to seemlessly inte-
grate the entire chain into the web browser. This would mean pages are automaticly
checked for availability from the internet and retrieved from the swarm if they are not
available. Also, pages should be automaticly seeded in some smart fashion.

Eternal WebpageAuthenticating

Authenticating the webpages retrieved through Tribler is a problem. Currently the soft-
ware has no safegaurds to ensure the webpage retrieved from Tribler is a correct replica
of the webpage on the internet. Malevolent hackers can start sharing webpages that
resemble webpages, but include harmfull code. A way to authenticating the webpages
without going directly to the webpage itself should be designed.

TUPT plug-in development

The TUPT product thrives on having as many quality plug-ins as possible. Especially
matching plug-ins and torrent �nding plug-ins are useful for getting the best quality
search results.

TUPT categories

The TUPT product is created in such a way that it should be fairly easy to expand
it to categories other than movies. It could be used to disperse texts, books, subtitles,
television series and more.

TUPT torrent ranking

The torrent �nding algorithm used by TUPT is e�ective, but also quite primitive. Re-
searchers with interests in ranking algorithms could probably come up with better and
more sophisticated solutions than the heuristic we used.

TUPT paid services

The TUPT package can be extended to allow for paid services to include quality content.

36

This might be a pay-per-play construction or a subscription construction.

TUPT global parser

An extension of the TUPT product can be to create a web page parser that is capable of
interpreting text and �nding potential resources. This is on the level of Human-machine
interaction and would require an application to understand the text on a page and �nd
out where on the page a movie is referenced.

7.5 Conclusion

Looking back on our progress we believe we have succeeded in achieving our goals. The
client and we ourselves are pleased with our end products. We overcame programming
blocks in the form of malfunctioning packages and complicated problems, within a very
short time span. And, in the end we delivered a quality product, which we �rmly believe
will attract users to Tribler. Most importantly, we achieved all of this, with just a
two-man team.

The products we leave may not be perfect, but this is not the point of their creation.
One of the best things about what we delivered is that they provide a lot of potential for
expansion and research. This is the ultimate intellectual legacy.

37

A Docstrings

In our delivered code we have utilized a standardized docstrings (see Table 6). We chose
a standardized format to ensure that all our comments were of high quality. We also
made sure not to put too much information in a docstring, as to keep the docstrings
maintainable.

Table 6: Standardized docstrings
Type Standard Example

Class """ class MyClass:

Classname """
Class description MyClass

This is an example description.
Package dependencies Filling a second line here.

"""
Depends on: Test package, ExtendedMath package

"""

Method """ def SomeMethod(input1, input2):
Method description """

Perform some arithmetic on 'input1'.
Expected input types Also prints "Hello World".

Return value(s) Args:
""" 'input1' (str): This is a very long description

for input argument 'input1'
'input2' (SomeClass): Input2 representing something.

Returns transformed value of 'input1' (str)
"""

38

B Class diagrams

This appendix contains all the class diagrams we made for the Eternal Webpages package
(B.1) and the ones we made for the TUPT package (B.2). These diagrams are here for
reference only, if you wish to know about the activities and interactions of these classes
you should check out the Design section of this paper.

B.1 Eternal Webpages

Tribler

SiteRipper

1

1

ResourceSni�er

+ GetFile(uri)
+ StartLoading(url)
+ GetWebPage()
+ Seed()

ResourceSeeder

+ SeedWebpage(tar�le, webpage, accessdate)

WebPage

+ DownloadContent()
+ AddResource(uri)
+ GetContent()
+ SetContent(content)
+ GetUrl()
+ SetUrl(url)
+ CreateFromFile(tarFileName)
+ RemoveTempFiles(tarFileName)
+ GetFileName(url)

+ GetResourceFileName(url)

+ GetURLName(�lename)

+ GetTarName(url)

+ GetTarFilepath(url)

+ CreateTar()
+ MapResource(url)

WebPageTorrentHeader

+ CreateTorrentDef(session)
+ GetSeededFile()
+ GetFileFolder()

Figure 12: Class diagram for Eternal Webpages.

39

B.2 TUPT

Tribler

PluginManager

TUPT

Channels

Matcher Parser TorrentFinder

11

1
*

1
*

1
1

PluginManager

Movie

TUPTControlMovieTorrentIterator

MovieTorrent TorrentInfoBar

Figure 13: Class diagram for the TUPT top package.

40

TUPT

11

1

*

1

*

1

1

Movie

+ dictionary : dict

TUPTControl

+ CoupleGUI(gui)
+ webpageLoaded(event, html)
+ UpdateInforBar()
+ DownloadHDMovie(n)
+ DownloadSDMovie(n)

MovieTorrentIterator

+ append(movieTorrent)
+ GetSize()
+ HasHDTorrent(n)
+ HasSDTorrent(n)
+ HasTorrent(n)
+ GetMovie(n)
+ GetNextHDTorrent(n)
+ GetNextSDTorrent(n)

MovieTorrent

+ HasHDTorrent()
+ HasSDTorrent()
+ HasTorrent()
+ GetNextHDTorrent()
+ GetNextSDTorrent()

TorrentInfoBar

+ Update()
+ ShowParsingState()
+ ShowMovieState(validMovieIndices)
+ playButtonPressed(event)
+ RemoveHDQuality()
+ RemoveSDQuality()
+ MovieSelectionUpdated(event)

Figure 14: In-depth class diagram for the TUPT top package.

41

Channels

1 1

MovieInserter

+ PrettyMovieName(movie, isHD)
+ AddTorrentToChannel(channelId, torrentDef, name)
+ ResolveTorrentCon�ict(channelId, torrentDef, otherInfoHash)
+ Insert(torrentDef, movie, isHD)
+ InsertThreaded(torrentDef, movie, isHD)()

MovieChannelControl

+ initAuto()
+ initWithChannelSearchManager(manager)
+ GetChannelNameForYear(year)
+ GetChannelDescriptionForYear(year)
+ GetChannelIDForYear(year)
+ RemoveChannelByYear(year)
+ RemoveChannelById(channelId)
+ GetKnownTUPTChannels()
+ GetKnownYears()
+ GetChannelObjectFromID(channelID)
+ UpVoteChannel(channelID)
+ AddTorrentToChannel(channelID, torrentDef)
+ ChannelHasTorrent(channelID, torrentDef)
+ ChannelGetTorrentFromName(channelID, name)
+ RemoveTorrentFromChannel(channelID, torrentDef)
+ RenameChannelTorrent(channelID, torrentDef, name)

Figure 15: Class diagram for the TUPT Channels package.

Matcher

1 *

MatcherControl

+ CorrectMovie(movie)

�interface�
IMatcherPlugin

+ MatchMovie(movie)
+ GetMovieAttributes()
+ GetAttribute(attribute)

TheMovieDBMatcherPlugin

Figure 16: Class diagram for the TUPT Matcher package.

42

Parser

1 *

ParserControl

+ HasParser(url)
+ ParseWebsite(url, html)

�interface�
IParserPlugin

+ ParseWebSite(url, html)
+ GetParseableSites()

IMDbParserPlugin

NoParserFoundException IllegalParseResultException

Figure 17: Class diagram for the TUPT Parser package.

43

TorrentFinder

1
1

1
*

12

�interface�
IMovieTorrentDef

+ GetSeeders()
+ GetLeechers()
+ IsHighDef()
+ GetMovieDescriptor()
+ GetTorrentName()
+ GetTorrentURL()
+ GetTorrentProviderName()

FenopyMovieTorrentDef KatPhMovieTorrentDef TriblerMovieTorrentDef

�interface�
ITorrentFinderPlugin

+ GetTorrentDefsForMovie(movie)

FenopyTorrentFinderPlugin KatPhTorrentFinderPlugin TriblerTorrentFinderPlugin

PluginThread

+ run()

IllegalTorrentResultException

SortedTorrentList

+ GetList()
+ Insert(torrentDef, trust)
+ SetUserDict(dict)

TorrentFinderControl

+ FindTorrents()
+ ProcessTorrentDefList(torrentDefList, trust)
+ ProcessTorrentDef(de�nition, trust)
+ GetTorrentList()
+ GetHDTorrentList()
+ GetSDTorrentList()
+ HasTorrent()
+ HasHDTorrent()
+ HasSDTorrent()
+ run()

Figure 18: Class diagram for the TUPT TorrentFinder package.

44

References

[1] Tribler. Available at: http://www.tribler.org/, [Accessed 21 June 2013].

[2] European union cordis fp7 research program. Available at: http://cordis.europa.
eu/fp7, [Accessed 21 June 2013].

[3] Petamedia. Available at: http://www.petamedia.eu/, [Accessed 21 June 2013].

[4] I-share project. Available at:www.freeband.nl, [Accessed 21 June 2013].

[5] Scrum. Available at: http://www.scrum.org/, [Accessed 21 June 2013].

[6] Tudelft department of parallel and distributed systems. Available at: http://www.
pds.ewi.tudelft.nl/, [Accessed 21 June 2013].

[7] Tribler/tribler - github. Available at: https://github.com/Tribler/tribler, [Ac-
cessed 21 June 2013].

[8] Eclipse ide. Available at: http://www.eclipse.org/, [Accessed 21 June 2013].

[9] Pydev. Available at: http://www.pydev.org/, [Accessed 21 June 2013].

[10] norberhuis/tribler - github. Available at: https://github.com/norberhuis/

tribler, [Accessed 21 June 2013].

[11] Python. Available at: http://www.python.org/, [Accessed 21 June 2013].

[12] G. van Rossum. Style guide for python code. Available at: http://www.python.

org/dev/peps/pep-0008/, [Accessed 21 June 2013].

[13] libswift. Available at: http://libswift.org/, [Accessed 21 June 2013].

[14] N. Zeilemaker B. Schoon J. Pouwelse. Dispersy bundle synchronization. Technical
report, Delft University of Technology, January 2013. ISSN 1387-2109.

[15] wxpython. Available at: http://www.wxpython.org/, [Accessed 21 June 2013].

[16] Beautiful soup. Available at: http://www.crummy.com/software/BeautifulSoup/,
[Accessed 25 June 2013].

[17] wxphoenix. Available at: http://wiki.wxpython.org/ProjectPhoenix, [Accessed
21 June 2013].

[18] Imdbpy. Available at: http://imdbpy.sourceforge.net/, [Accessed 21 June 2013].

[19] Yapsy. Available at: http://yapsy.sourceforge.net/, [Accessed 21 June 2013].

45

http://www.tribler.org/
http://cordis.europa.eu/fp7
http://cordis.europa.eu/fp7
http://www.petamedia.eu/
www.freeband.nl
http://www.scrum.org/
http://www.pds.ewi.tudelft.nl/
http://www.pds.ewi.tudelft.nl/
https://github.com/Tribler/tribler
http://www.eclipse.org/
http://www.pydev.org/
https://github.com/norberhuis/tribler
https://github.com/norberhuis/tribler
http://www.python.org/
http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://libswift.org/
http://www.wxpython.org/
http://www.crummy.com/software/BeautifulSoup/
http://wiki.wxpython.org/ProjectPhoenix
http://imdbpy.sourceforge.net/
http://yapsy.sourceforge.net/

	Project description
	Actors
	Mission
	Assignment

	Methodology
	Strategy
	Available materials
	Workflow

	Orientation phase
	Milestones
	Research
	Python
	Tribler
	wxPython

	Architecture

	Eternal Webpages phase
	Milestones
	Architecture
	WebBrowser class
	SiteRipper module

	Code quality
	Code quality
	Test coverage

	Licenses

	TUPT phase
	Milestones
	Architecture
	Webbrowser module
	TUPT module
	Infobar module
	Plug-in module

	Code quality
	Code quality
	Test coverage

	Licenses

	Testing and documentation phase
	Bug hunting
	Documentation
	UML diagrams
	SIG deliverable
	Final report

	Evaluation and conclusion
	Customer satisfaction
	Self evaluation
	Project time sinks
	Future work
	Conclusion

	Docstrings
	Class diagrams
	Eternal Webpages
	TUPT

