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Abstract

Modular exponentiation is the basis needed to perform RSA encryption and decryption.
Execution of 4096-bit modular exponentiation using an embedded system requires many
arithmetic operations. This work aims to improve the performance of modular exponentia-
tion for an existing FPGA platform containing a soft core RISC-V processor. The solution is
to introduce a peripheral that performs Montgomery multiplication with 4096-bit operands.
These operands are represented using the Residue Number System (RNS) and each residue
is assigned to a RNS processor core. In total, the system consists of 121 RNS cores and
each core is responsible for a 34-bit residue. RNS Montgomery multiplication requires a
base extension algorithm, which will be represented by the Bajard and the Shenoy base ex-
tensions. Two designs are proposed: one using a tree-based reduction circuit and one with
an iterative reduction circuit. The former focuses on performance overall, while the latter
is more efficient in terms of performance per area. Synthesis for a XCKU035 FPGA gives
an area usage of 83484 LUTs for the tree-based design and 41857 LUTs for the iterative
design. Both designs also require 132.5 BRAMs and 485 DSP blocks and are running at
a clock frequency of 400 MHz. The tree-based design performs Montgomery multiplication
using 4096-bit operands in 434 cycles (1.09 µs), while the iterative design does that in 577
cycles (1.44 µs). For performing modular exponentiation, the sliding window method is used
with an optimal window size of seven. A modular exponentiation with 4096-bit operands
takes on average 5.09 ms for the tree-based design, while the iterative version needs 6.78 ms.
Few other implementations were found performing Montgomery multiplication using 4096-
bit operands. However, compared to those the proposed design provides better performance.

Keywords: 4096 bits, RSA, RNS, FPGA, Montgomery multiplication, modular reduction,
base extension, exponentiation, hardware accelerator, multi-core, parallel processing, hetero-
geneous architecture, encryption, decryption.
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1 Introduction

More than 40 years after the introduction of the RSA standard, it still is widely used for
encryption and the signing of digital messages. The strength of RSA encryption depends,
among other things, on the size of two randomly generated prime numbers. Since the
original proposal of the algorithm, the computational power of processors has increased
significantly. RSA encryption can be broken by factoring the modulus. The modulus is
equal to the multiplication of the two randomly generated primes. So although there exist
faster processors now, increasing the size of the primes makes factoring still difficult.

Nowadays 2048-bit RSA encryption is used for most communication channels, while for more
sensitive information 4096-bit encryption is used. Decryption of a 4096-bit cipher requires
a lot of arithmetic operations, but commonly used desktop computers are able to perform
it quite fast. However, embedded platforms have difficulty decrypting this kind of cipher
as they provide limited arithmetic processing capacity. Enabling such a platform with the
ability to perform 4096-bit RSA encryption and decryption poses a challenge.

Many types of embedded platforms exist, but in this thesis we focus on a platform containing
a Field-Programmable Gate Array (FPGA). An FPGA chip contains logical blocks that can
be programmed to perform arithmetic operations like addition, multiplication or division.
There is also storage available in the form of flip-flops/registers and small blocks of Random
Access Memory (RAM). Using the building blocks provided by the FPGA, an implementation
is made of a cryptographic accelerator that is able to perform 4096-bit RSA encryption.

1.1 Research goal

The PrimeLink from Technolution is a product that enables secure communication over the
Internet between two or more private networks by creating a Virtual Private Network (VPN).
It is compliant with the Dutch government’s requirements for the securing of classified in-
formation and provides a high level of confidentiality. Internally, the PrimeLink contains
a FPGA chip with a processor that runs the software for creating and maintaining VPN
tunnels. This software is based on an implementation of OpenVPN-NL.

The device is designed to create a large number of secure tunnels at the same time. A
certificate with a RSA signature is used in order to validate the authenticity of the endpoint
for the connection. As the current design does not contain a dedicated accelerator for RSA
encryption, validation of the certificate is a very slow operation. When setting up hundreds
of tunnels this process takes a considerable amount of time to complete. The goal of this
thesis is to design a logic circuit that accelerates 4096-bit RSA encryption.

For logic circuit design the two programming languages used most are: VHSIC Hardware
Description Language (VHDL) and Verilog. As VHDL is the industry standard in Europe
and it also is taught at the TU Delft, the RSA accelerator will be made using VHDL.
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1.2 Contributions

The main contributions of this thesis are summarized as followings:

• Theoretical comparison of several existing exponentiation algorithms using addition
chains and finding the optimal windows size for a 4096-bit exponent.

• Elaborate examples with calculations for RSA encryption, arithmetic in RNS and the
Shenoy base extension, which is also applicable for the Bajard base extension.

• To show that using fixed-point precomputed constants for the Diophantine base ex-
tension is not suited for an implementation in VHDL, based on numerical analysis.

• First VHDL implementation of a fixed modulo reduction circuit using the iterative
reduction approach consisting of table lookups, additions and shifting.

• Area- and performance-improved tree-based fixed modulo reduction circuit, in com-
parison to the fixed modulo reduction implementation generated by Vivado 2018.2.

• A very fast RSA encryption accelerator running at 400 MHz implemented in VHDL.

1.3 Thesis outline

The thesis contains five sections: background theory, design considerations, implementation
overview, benchmark results and conclusion. Background theory is an overview of all theo-
retical knowledge needed to understand how the design works and can be found in Section 2.
In Section 3, the theory to create a foundation for the implementation is discussed. Section 4
gives a top-down explanation on how the design for the RSA accelerator is implemented in
hardware. In order to determine the performance of the accelerator, some benchmarks are
executed and those results are presented in Section 5. Finally, Section 6 provides a sum-
mary of everything discussed before and gives some ideas for further optimizations and future
work.

An important remark to make before reading further: in this thesis an additional notation
for the modulo operator is used. In addition to the mod operator, the following notation
applies:

x mod y = |x|y

This notation is also used in most of the papers regarding the background theory.
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2 Background theory

This section contains all theoretical knowledge needed to understand how the design works.
It provides an introduction to RSA cryptography, the Residue Number System (RNS), ex-
ponentiation algorithms, reduction methods and Montgomery multiplication. Finally, an
explanation is given about performing Montgomery multiplication in RNS.

2.1 RSA cryptography

In February 1978 the ACM magazine published an article written by R.L. Rivest, A. Shamir
and L. Adleman about an implementation of a “public-key cryptosystem” [1]. The methods
described are currently known under the acronym RSA encryption, which refers to the initials
of the authors’ surnames. It can be used to encrypt a message such that only receivers with
knowledge of a certain decryption key are able to decipher it. RSA was a completely new
algorithm, because it uses different keys for encryption and decryption. And because the
encryption key is given as public information, it is called public-key encryption.

The color notation used for variables in this section denotes them either being public or
secret. Sending just one of the orange-colored variables over a public domain enables anyone
intercepting traffic to decrypt the secret message. The mathematical basis of RSA encryption
is called modular exponentiation and can be summarized with Eq. (2.1).

c = me mod n (2.1)

where m is the secret message, e is the exponent, n is the modulus and c is the resulting
cipher. Modulus n is derived by multiplying two random large prime numbers q and p. For
w-bit RSA encryption, primes q and p should contain w/2 bits each, so that n contains w
bits. Exponent e can be chosen arbitrary, but should be pairwise prime to p− 1. Common
choices for e are 3, 5, 17, 257 and 65537, because of their low Hamming weight (number of
ones in binary form). This reduces the number of multiplications needed for exponentiation.

Reversing the cipher-text can be done by calculating m = cd mod n, where d is the decryption
key. Decryption key d is the modular multiplicative inverse of e with respect to ϕ = (p− 1) ·
(q − 1) and is denoted by d = |e−1|ϕ. This notation means that d follows from the relation
e · d mod ϕ ≡ 1, which can be solved for d using the Extended Euclidean algorithm from [2],
referred to as EGCD. The steps for RSA key generation are as follows:

1. Select exponent e, a small prime with low Hamming weight.

2. Generate two large random primes q and p.

3. Calculate the modulus n = p · q.

4. Calculate the Euler totient function ϕ = (p− 1) · (q − 1).
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5. Verify that the GCD(e, ϕ) = 1, if not go back to step 2.

6. Calculate the decryption key d = |e−1|ϕ using EGCD.

7. Publish e and n in a public domain, so anyone can send you an encrypted message.

RSA has survived many years of analysis, but it can be broken when the random number
generator is not suited for cryptographic usage [3]. To ensure correct usage, extra require-
ments should be placed on the generation of prime values q and p [4]. Also, the sender should
make sure that message m is properly padded with a mechanism such as OAEP [5]. The
following scenario is given to illustrate the encryption and decryption process.

Alice wants to send Bob a secret PIN-code m = 12021993 to open a locker. She does not trust
the medium over which they are communicating and therefore she wants to encrypt the code.
Before Alice can perform encryption, Bob needs to generate a pair of RSA keys. Following
the steps described previously, he chooses primes p = 62639, q = 53987 and exponent e = 5.
From this decision follows that n = p ·q = 3381691693 and ϕ = (p−1) ·(q−1) = 3381575068.
Taking the modular multiplicative inverse of e with respect to ϕ results in decryption key
d = 2028945041. These steps are summarized in Table 2.1.

Generated Calculated
e = 5 n = p · q = 3381691693
p = 62639 → ϕ = (p− 1) · (q − 1) = 3381575068
q = 53987 d = |e−1|ϕ = 2028945041

Table 2.1: Example of variables needed to perform 32-bit RSA encryption and decryption.

The public key pair {n, e} is given to Alice. To encrypt the PIN-code, she computes:

c = me mod n = 120219935 mod 3381691693 = 1227753926

Now she can send the encrypted code c over an untrusted medium. Cipher c cannot be
related to the PIN-code without having decryption key d, which is only available to Bob.
Finally, Bob can decrypt the message by computing:

m = cd mod n = 12277539262028945041 mod 3381691693 = 12021993

Having obtained the secret PIN-code m, Bob is now able to open the locker. The security of
RSA encryption is related to the factorization problem. Decryption key d can be calculated
from p, q and e. Because n is available to anyone, being able to reverse the operation n = p·q
will break encryption. For the 32-bit modulo used in the example, it is trivial to do with any
modern computer. So for practical applications, larger prime numbers should be generated.
The largest n currently reported to be successfully factorized has a length of 768 bits [6].
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2.2 Residue number system

In RNS an integer is represented by taking the modulo of that number with respect to a set
of pairwise primes called the moduli. A set of k moduli is called a RNS base and is denoted
by B = {m1,m2, ...,mk}. Pairwise prime means that the Greatest Common Divisor (GCD)
for each pair of moduli in B is equal to 1. The range of numbers M that can be represented
by RNS base B is equal to the product of all moduli mi. Conversion of integer X < M to
RNS base B containing k moduli, results in residues XRNS = {x1, x2, ..., xk}.

The advantage of RNS is that numbers can be split into parts and those can be processed
in parallel. This approach improves the speed of addition, subtraction and multiplication
compared to standard representation. Divisions that have an exact answer are calculated by
multiplying them with the multiplicative inverse of the dividend. However, divisions with a
non-exact answer cannot be computed, as the system only represents integers.

Another disadvantage is that the magnitude of a number cannot be determined while in RNS.
To perform these operations, the number should be converted to another format that allows
it, like regular binary arithmetic. Conversions from and to the RNS domain are computa-
tionally expensive, which will be shown in the next section. Executing a single calculation
in RNS will not make that calculation any faster. However, performing many consecutive
calculations while keeping the number in the RNS domain, will increase performance.

For example, converting X = 1976 to RNS with base B = {5, 7, 13, 17} will result in residues
XRNS = {1, 2, 0, 4}, as derived from Eq. (2.2).

X mod 5 = 1
X mod 7 = 2
X mod 13 = 0
X mod 17 = 4

→ XRNS = {1, 2, 0, 4} (2.2)

Conversion from the RNS domain back to the positional system requires more calculations.
It can be computed using the Chinese Remainder Theorem (CRT) [7]. Let Mi = M/mi be
the product of all moduli but one. X can then be derived from Eq. (2.3).

X =
k∑

i=1

xi ·Mi

∣∣M−1
i

∣∣
mi

mod M =

∣∣∣∣∣
k∑

i=1

xi ·Mi

∣∣M−1
i

∣∣
mi

∣∣∣∣∣
M

(2.3)

To find X, each residue xi has to be multiplied with a weight factor Wi = Mi

∣∣M−1
i

∣∣
mi

. Note
that |M−1

i |mi
is the modular multiplicative inverse of Mi with respect to mi. Following up

on the previous example, dynamic range M = 5 · 7 · 13 · 17 = 7735. The weight factors for
RNS base B = {5, 7, 13, 17} can now be calculated as shown by the equations in Table 2.2.
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Calculate Mi Calculate weight factor Wi

M1 = 7735/5 = 1547 W1 = 1547 · |1547−1|5 = 1547 · |2−1|5 = 4641
M2 = 7735/7 = 1105 W2 = 1105 · |1105−1|7 = 1105 · |6−1|7 = 6630
M3 = 7735/13 = 595 W3 = 595 · |595−1|13 = 595 · |10−1|13 = 2380
M4 = 7735/17 = 455 W4 = 455 · |455−1|17 = 455 · |13−1|17 = 1820

Table 2.2: Calculation of weight factor Wi for each modulo mi in RNS base B.

Note that this process only depends on the set of moduli in B and can be precomputed when
B is constant. Continuing with Eq. (2.3), the next step is to multiply each Wi with the
corresponding residue xi, sum all intermediate results and reduce them to modulo M . The
conversion of XRNS = {1, 2, 0, 4} to its original representation is shown by Eq. (2.4).

X =

∣∣∣∣∣
4∑

i=1

xi ·Wi

∣∣∣∣∣
M

= (1 · 4641 + 2 · 6630 + 0 · 2380 + 4 · 1820) mod 7735

= 25181 mod 7735 = 1976

(2.4)

Addition, subtraction and multiplication of two RNS numbers (which have equal base B) can
be performed on the individual residues. Operations on the residues of two RNS numbers
are always reduced to modulo mi, to keep results within dynamic range M . For example,
you can calculate X2

RNS = XRNS ·XRNS using Eq. (2.5).

x1 = 1 · 1 mod 5 = 1
x2 = 2 · 2 mod 7 = 4
x3 = 0 · 0 mod 13 = 0
x4 = 4 · 4 mod 17 = 16

→ X2
RNS = {1, 4, 0, 16} (2.5)

The expected result of this operation is X2 mod M = 19762 mod 7735 = 6136. Converting
X2

RNS = {1, 4, 0, 16} using the CRT from Eq. (2.3) results in Eq. (2.6).

X2 =

∣∣∣∣∣
4∑

i=1

x2
i ·Wi

∣∣∣∣∣
M

= (1 · 4641 + 4 · 6630 + 0 · 2380 + 16 · 1820) mod 7735

= 60281 mod 7735 = 6136

(2.6)

It can be observed that the result matches the expected outcome.
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2.3 Exponentiation

Exponentiation is a mathematical operation to calculate xe. A straightforward implemen-
tation would be to initialize a variable to 1 and multiply it e times with x. However, this
approach is slow for large values of e. It can be improved by reusing intermediate values and
multiplying those with each other. But which order should the intermediate values be mul-
tiplied to result in the least number of multiplications? The following sections will discuss
methods for finding a reasonable number of multiplications to perform exponentiation.

2.3.1 Addition chains

Since exponents are additive, the problem of finding an optimal chain of multiplications can
be reduced to finding a chain of additions [8]. An addition chain is a sequence of integers
starting at 1, with the property that the next number is calculated by adding any of the
current values to the most recent one. The goal is to find the shortest list of additions that
result into the number of interest e. For example, a possible chain for calculating e = 8190
consists of the following 16 addition steps:

1 2 3 6 7 14 28 56 63 126 252 504 1008 2016 4032 4095 8190

It can be seen that when appending one integer to the chain, the number of possible paths
is multiplied by the current length of the chain. For an addition chain of length l elements
(omitting start number 1), there are l! paths that can be created. The problem grows
exponentially, although there are multiple paths leading to the same result. These duplicates
can be ignored, because we are interested in the most efficient (i.e. shortest) path only.

Figure 2.1: A tree that minimizes the number of multiplications, for e ≤ 100 [8].
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The tree depicted in Fig. 2.1 shows the shortest addition chains for e ≤ 100. Determining the
optimal addition chain for any exponent has been proven NP-complete [9]. In practice, this
means that for large values of e approximation algorithms are used to find close-to-optimal
chains. The next sections will review some of these algorithms.

2.3.2 Binary exponentiation

The most widely known exponentiation algorithm is binary exponentiation. It is easy to
implement in hardware and has low memory requirements. There are two versions of binary
exponentiation: right-to-left and left-to-right. These refer to the order in which the bits of
the exponent are processed, least significant bit (LSB) or most significant bit (MSB) first.

In terms of addition chains, binary exponentiation is a more restricted version of the con-
ditions set on the generic addition chain. To calculate the next integer in the sequence,
only two options are available: double the most recent value in the sequence (square) or
add 1 (multiply). Therefore binary exponentiation is also known as the square-and-multiply
algorithm. For example, calculation of x11 can be written as the following addition chain:

1 2 4 5 10 11

From this sequence follows that x11 can be decomposed as x(x(x2)2)2. This sequence consists
of 5 multiplications and is an optimal solution, as follows from Fig. 2.1. However, due
to the restriction of only using multiply and square operations, finding an optimal chain
almost never occurs. Using binary exponentiation to calculate x8190 gives a chain of 23
multiplications, which is more than the solution from the previous section.

Although not being optimal, the algorithm runs in polynomial time and does not require
traversing multiple paths of a tree structure. These two properties make it an excellent
strategy for practical implementations. The formal algorithm is shown in Algorithm 1. The
bits in exponent e are indexed from right to left, starting at position zero. For example,
when taking an exponent of one byte e = 000011012, the function MSB(e) will return 3.

Algorithm 1 Left-to-right binary exponentiation
1: procedure BinExp(x, e) ▷ Calculate xe

2: r ← 1 ▷ Initialize result r with 1
3: i← MSB(e) ▷ Find the most significant bit
4: while i ≥ 0 do ▷ Loop until i is negative
5: r ← r · r ▷ Always square result r
6: if ni = 1 then ▷ If bit i in exponent e is set
7: r ← r · x ▷ Also multiply result r by x

8: i← i− 1

9: return r

8



In Algorithm 1, the first step is setting the result variable r = 1. Next, the most significant
bit in e is located and its value is stored in i. Starting at the MSB, for each bit position in
e, a square operation is applied to r. If the bit is asserted, squaring of r is followed by a
multiplication with x. The steps of the algorithm are shown in Table 2.3.

Bit number Bit value Operation Result r
3 1 square 1

multiply x
2 0 square x2

1 1 square (x2)2

multiply x(x2)2

0 1 square (x(x2)2)2

multiply x(x(x2)2)2

Table 2.3: Calculation of r = x11 using left-to-right binary exponentiation.

The cost of naive exponentiation is e multiplications for any exponent e. For binary expo-
nentiation, the minimum cost is given by ⌊log2 e⌋ multiplications [10], for when e is a power
of two. An upper bound on the number of multiplications is given by 2⌊log2 e⌋, for when e
is a power of two minus one and consists of ones only.

2.3.3 M-ary exponentiation

The binary exponentiation algorithm consumes one bit of the exponent in each iteration.
Instead of consuming only one bit, the algorithm could be adapted to use more bits at the
same time. A generalized version of the BinExp algorithm is called m-ary exponentiation,
where m is used to denote the radix, which is the number of digits used to represent numbers
in a positional numeral system. Thus Binary exponentiation is equal to 2-ary exponentiation.

Taking m = 2w for w > 1 gives interesting results, because raising x to the power of m
requires only w squarings. For a practical implementation, it is required to precompute
values x2, x3, ..., xm−1. The algorithm is related to Algorithm 1, but instead of squaring, it
computes rm and instead of multiplying with x only, it can also multiply with one of the
precomputed values, depending on the current radix-m digit of the exponent. The definition
of the MSB does exist only in radix two, therefore this needs to be replaced by the most
significant digit (MSD). The routine for m-ary exponentiation can be found in Algorithm 2.

When using m = 2w, the number of multiplications is at most 2w − 2 + (1 + 1/w)⌊log2 e⌋.
This upper bound can be broken down in: 2w−2 multiplies for the precomputation, ⌊log2 e⌋
squarings and at most ⌊log2 e⌋/w multiplies [10]. The lower bound is satisfied for an exponent
that is a power of two, only squares are needed for its computation. So by removing the
part for multiplications in the upper bound, the lower bound is formed: 2w − 2 + ⌊log2 e⌋.
Additional memory is needed to store the precomputed values, compared to BinExp.
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Algorithm 2 Left-to-right m-ary exponentiation
1: procedure m-aryExp(x, e,m) ▷ Calculate xe in radix m
2: r ← 1 ▷ Initialize result r with 1
3: i← MSD(e) ▷ Find the most significant digit
4: ⟨x2, x3, ..., xm−1⟩ ▷ Precompute some powers of x
5: while i ≥ 0 do ▷ Loop until i is negative
6: r ← rm ▷ Always raise result r by its radix
7: if ei ̸= 0 then ▷ If digit i in exponent e is not zero
8: r ← r · xei ▷ Multiply r by a precomputed value
9: i← i− 1

10: return r

In Algorithm 2, note that the conditional statement on line 7 can be removed. Substitution
of ei = 0 on line 8 then results in r ← r · xei = r · x0 = r, so the value of r is not changed.
The conditional statement is used to emphasize that a multiplication by one can be avoided.

Having an upper bound defined for 2w-ary exponentiation is useful, but is not clear which
values of w are a good choice for a given value of e. In the case of 4096-bit RSA, exponent e
contains 4096 bits and therefore ⌊log2 e⌋ = 4096. Substitution of this value in the previously
defined upper and lower bound equations results in Fig. 2.2.
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Figure 2.2: Number of multiplications in 2w-ary exponentiation for ⌊log2 e⌋ = 4096.
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From Fig. 2.2 it can be derived that w = 7 seems to be the optimal choice for the least number
of multiplications. The average number of multiplications can be computed by taking the
upper bound and subtracting the probability of finding a window containing only zeros [11].
For exponent e the average number of multiplications is therefore given by:

2w − 2 + ⌊log2 e⌋+
⌊log2 e⌋

w
(1− 2−w) (2.7)

Eq. (2.7) gets closer to the upper bound for a larger windows size as the probability of
finding a window of consecutive zeros is smaller. An overview of the maximum, average and
minimum of these numbers for an exponent e of 4096 bits is given by Table 2.4. Non-integer
results were rounded to their closest integer value.

Window size w Minimum Average Maximum
4 4110 5070 5134
5 4126 4920 4946
6 4158 4830 4841
7 4222 4803 4808
8 4350 4860 4862
9 4606 5060 5062

Table 2.4: Expected number of multiplications for an exponent of 4096 bits.

The lowest upper bound and average number of multiplications are given by w = 7. Note
that Eq. (2.7) is not equal to equation 1 in [11]. The difference is that Eq. (2.7) is related to
Algorithm 2. In equation 1 from [11] an additional optimization step is introduced, namely
setting initial result r to the first applicable precomputed value instead of one. This saves
w squares and 1 multiplication, increasing the efficiency of the algorithm.

2.3.4 Sliding window exponentiation

The 2w-ary exponentiation method can be seen as selecting a w-bit window in the binary
representation of e, precomputing the powers in the window itself, followed by cycles of
squaring w times and one multiplication with a precomputed value. However, there is no
reason to force the windows to be next to each other. Adjacent zeros in the binary repre-
sentation of e do not result in additional multiplications (only squares) and may be skipped.
For example, take exponent e = 26235947428953663183191. Its binary representation is:

101100011100100000011101001010011101010000001011110000011111001100101010111

The optimal choice for the 2w-ary method for this 75-bit number is w = 3 and it consists
of 102 multiplications in total [10]. Note that this number also follows from computing its
upper bound and subtracting three multiplications for the windows containing only zeros.

11



Using the window method with a window size up to 4, the number of multiplications is only
93: 8 multiplies to compute the odd powers up to 15, 71 squarings and 14 multiplies for the
intermediate values. The selected windows are underlined with their decimal value below.

101100011100100000011101001010011101010000001011110000011111001100101010111
11 7 1 7 9 9 13 1 11 3 15 9 9 5 7

The addition chain used to precompute the odd multiples of x is as follows:

1 2 3 5 7 9 11 13 15

If the window contains one of the underlined values, a precomputed multiple of x is used to
multiply with. For an equal window size, sliding window exponentiation is faster than 2w-
ary exponentiation, as only odd multiples of x are precomputed. The algorithm for sliding
window exponentiation can be found in Algorithm 3, which is a modified version from [12].

Algorithm 3 Left-to-right sliding window exponentiation
1: procedure SlidingWindowExp(x, e, w) ▷ Calculate xe

2: r ← 1 ▷ Initialize result r with 1
3: i← MSB(e) ▷ Find the most significant bit
4: ⟨x3, x5, ..., x2w−1⟩ ▷ Precompute odd powers of x
5: while i ≥ 0 do ▷ Loop until i is negative
6: if ei = 0 then ▷ If bit i in exponent e is zero
7: r ← r2 ▷ Square result r
8: i← i− 1
9: else

10: s← max(i− w + 1, 0) ▷ Ensure position s is not negative
11: while es = 0 do ▷ Find largest possible window size
12: s← s+ 1 ▷ Decrease window position by 1
13: for 0 to i− s+ 1 do ▷ Calculate s− i+ 1 times the square of r
14: r ← r2

15: u← decimal(ei, ei−1, ..., es) ▷ Get i− s+ 1 bits from e starting at i
16: r ← r · xu ▷ Multiply r by a precomputed multiple of x
17: i← s− 1

18: return r

An improvement for exponent e = 26235947428953663183191 is suggested in [13]. This
method uses a larger window and creates an improved addition chain of the necessary inter-
mediate values. The example exponent e is decomposed as follows:

101100011100100000011101001010011101010000001011110000011111001100101010111
5689 993 117 47 499 343
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And with the following addition sequence, the precomputed values can be calculated:

1 2 4 8 10 11 18 36 47 55 91 109 117 226
343 434 489 499 933 1422 2844 5688 5689

This further reduces the required number of multiplications to 89: 62 squarings, 5 multi-
plications of intermediate values and 22 multiplications for the precomputation. There is a
trade-off between finding the optimal addition chain and the amount of computation time
it takes. When the exponent is not constant, it might not be worth the extra time.

2.4 Modulo operation

The modulo operation calculates the remainder after division of one number by another.
Given two positive numbers, dividend x and divisor n, x modulo n is the remainder of
Euclidean division of x by n. Computation of the remainder is written as “x mod n”. This
definition does not say anything about how the modulo operator can be used in hardware
or software. The next sections will discuss implementation strategies for modular reduction.

2.4.1 Reduction by division

As x mod n is equal to the remainder of x/n, integer division can be used to calculate
the modulo value. When division, multiplication and addition operators are available, the
remainder can be calculated by:

x mod n = x− (int(x/n) · n) (2.8)

An advantage is that in many hardware architectures and software platforms these operations
are supported. However, calculating it this way has poor performance, as division is a slow
operation compared to addition and multiplication. The reason is that division algorithms
have dependencies between loop iterations and therefore are not efficiently parallelized.

On many hardware platforms, computing x mod n is done at the same time when computing
the division of x by n [14][15]. This results in modular reduction being equally expensive as
division. However, this is only applicable when hardware division is available. For platforms
where hardware division is not available, other methods exist to compute the modulo value.

When modulo n is a constant, it is also possible to precompute the reciprocal 1/n and store
that in a lookup-table or register. Then the division of Eq. (2.8) can be replaced by a
multiplication, which should be faster than executing the division. Note that multiplication
by a precomputed reciprocal is an approximation, because 1/n could be an irrational number.
The minimum number of bits for 1/n required to ensure a correct result should be taken
into consideration.

13



2.4.2 Reduction by subtraction

Division can be implemented in logic using iterations of a shift, comparison and conditional
subtraction [16]. When the result is found, the remainder is also available, because it is a
number smaller than the last possible subtraction. The basic algorithm for division using
subtractions can be found in Algorithm 4.

Algorithm 4 Basic division algorithm that calculates the remainder
1: procedure CalcRemainder(x, n) ▷ Calculate the remainder of x/n
2: d← x ▷ Load dividend x into variable d
3: i← MSB(x)− MSB(n) ▷ Calculate number of iterations i
4: s← n << i ▷ Shift n to MSB position of x
5: while i ≥ 0 do ▷ Loop until iteration i is negative
6: if d ≥ s then ▷ If d is greater than or equal to s
7: d← d− s ▷ Subtract the divisor from the dividend
8: s← s >> 1 ▷ Shift the divisor right; divide by 2
9: i← i− 1

10: return d

For example, in Table 2.5 is shown how to find to find the remainder of x = 1023 divided
by n = 76 using Algorithm 4. Calculating the position of the MSB for both numbers gives
MSB(x) = 9 and MSB(n) = 6. From this follows the initial value of i = 3. Next, divisor n is
shifted left three times to get the initial value for s = 76 << 3 = 608. Now the reduction
loop can start and in each iteration it will subtract s from d if and only if d ≥ s. The result
is d = 35 in the last row of Table 2.5, as expected of computing “1023 mod 76”.

Iteration i Divisor s Dividend d
3 608 1023
2 304 415
1 152 111
0 76 111
-1 38 35

Table 2.5: Computing x mod n by iterative subtraction.

The advantage of this method is that it is easy to implement in hardware. However, carry
propagation of the subtractions scales linearly with the number of bits in x. So for reduction
of large values of x, this method is less suitable than those that will be discussed next.
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2.4.3 Reduction by lookup and addition

Another approach for modular reduction is described in [17] and variants are proposed in
[18], [19] and [20]. It works best for a fixed modulo value n so that the precomputed values
can be stored as constants in a Read-Only Memory (ROM) or Look-Up Table (LUT).

The idea is to split x into parts and use precomputations to reduce those parts instead of
the whole number at once. By summing the reduced parts, a new number is constructed
that is smaller than x but gives the same result after reduction to modulo n. Assuming n is
constant, the amount of storage needed for the lookup table is dependent on the partitioning
of x. Larger partitions result in faster computation, but require more storage.

For example, x = 592 and n = 23 are taken and used to compute x mod n. Converting x
to its binary representation gives x = 10010100002 = 29 + 26 + 24. Next, computation of
x mod n can be written as (29 + 26 + 24) mod n. By moving the modulo operator inside the
brackets, a summation of numbers related to original reduction appears. However, the result
of this summation could be larger than n, so a new modulo operator has to be appended.
The calculation steps for the example numbers are denoted in Eq. (2.9).

592 mod n = (29 + 26 + 24) mod n = (29 mod n+ 26 mod n+ 24 mod n) mod n (2.9)

The advantage of this method is not evident, as there are three new modulo operations
introduced in Eq. (2.9). However, for fixed n the powers of two reduced modulo n can be
precomputed and the last modulo reduction can be replaced by a few subtractions. The
maximum number of subtractions needed depends on the values of x and n and their size in
bits. This process is demonstrated in Eq. (2.10).

592 mod 23 = (6 + 18 + 16) mod 23 = 40 mod 23 = 17 (2.10)

Several optimizations can be made to this basic method of reduction by addition. Note that
a certain number of the lower bits in x cannot be reduced to modulo n, as they are already
smaller than n. So precomputing powers of two and summing those is not needed for the
lower bits of x. In the example, 24 mod 23 does not have to be computed as 16 < 23.

Another improvement would be to create a higher radix version by reducing multiple bits
of x in the same lookup. This requires larger precomputation tables, but increases the
performance of the circuit as less iterations are needed. For example, when processing 5 bits
per lookup (radix-32) the operation 592 mod 23 can be performed in two additions.

First, lookup table T is created for the values a · 25 mod 23 with 0 ≤ a < 32. The left shift
by five is needed to match the bit positions that will be reduced from x. Lookup table T is
created as follows:
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T[0] = (0 · 25) mod 23

T[1] = (1 · 25) mod 23

T[2] = (2 · 25) mod 23

...

T[29] = (29 · 25) mod 23

T[30] = (30 · 25) mod 23

T[31] = (31 · 25) mod 23

Now by using this table, x = 10010100002 can be reduced modulo 23 by splitting x into two
parts x = x1 · 25 + x0, looking up x1 from the table and adding the result to x0. Splitting x
into two parts results into x1 = 100102 and x0 = 100002. Looking up T[x1] = T[18] = 1 and
summation of the parts gives Eq. (2.11).

592 mod 23 = (T[18] + x0) mod 23 = (1 + 16) mod 23 = 17 (2.11)

As discussed earlier in this section, summation of the lookups from T and x0 might be
larger than n. When the result is larger than n, a small number of subtractions are needed
to get the expected result. How many subtractions are necessary depends on the number
of additions in the summation. For a practical implementation, the maximum number of
subtractions should be calculated to ensure the result is correct.

In hardware, there are two approaches to making an implementation of this method. The
first method is the tree-based solution, which has a large area footprint in terms of logic
gates, but is also fast. It works by using multiple tables, so that all parts of x (except
x0) can be reduced in one lookup executed in parallel. Next, all these results are summed
together with x0 using one large multi-operand adder tree.

Now based on the number of additions, the maximum value of the summation can be calcu-
lated. Using this upper bound, the number of subtractions is determined and a circuit can
be appended for the final reduction step. For large values of x compared to n, the number of
subtractions might still be significant. Instead, a second pass of lookup tables and additions
can be used to reduce the value within a small distance of n.

One pass of using lookup tables and summation is referred to as one stage. Each stage
results into a number y smaller than the previous stage, such that y mod n is still congruent
to x mod n. The final stage is always a few conditional subtractions, how many depends on
where modulo n is located between the closest powers of two. Values of modulo n close to
the upper power of two are preferred as that results into one conditional subtraction only.

The second approach for a hardware implementation is by making an iterative solution.
Each iteration one lookup and addition is performed, reducing the amount of hardware

16



needed. However, the performance is less than the tree-based solution, because the lookups
are executed sequentially instead of in parallel. For a design that focuses on low area usage
it still is a good option.

2.4.4 Reduction by shift, lookup and addition

A further improved version of the previous method is proposed in [21]. Instead of making a
lookup table for each of the bits in x larger than the MSB of n, this method uses one lookup
table only. The number of entries in the lookup table depends on the available storage, but
the minimum number is one entry. To make up for the missing constants, the summation
register shifts left once in each iteration. If shifting result into an overflow, the carry bit
is dropped and the precalculated constant in the lookup table is added to the summation
register. This process is repeated until it does not overflow anymore.

Continuing on from the example in the previous section, taking x = 592 and n = 23 and
calculating x mod n is performed as follows. Since x contains ten bits and n has five bits, x
is split into two segments x1 = 100102 and x0 = 100002. The summation register is defined
as S. The lookup table consists of one entry related to n: T[1] = 25 mod n = 9 = 010012.

initialize S = x1 = 100102
iteration 0 S = S << 1 = (1)001002

S = 001002 + T[1] = 011012
iteration 1 S = S << 1 = 110102
iteration 2 S = S << 1 = (1)101002

S = 101002 + T[1] = 111012
iteration 3 S = S << 1 = (1)110102

S = 110102 + T[1] = (1)000112
S = 000112 + T[1] = 011002

iteration 4 S = S << 1 = 110002
add x0 S = 110002 + x0 = (1)010002

S = 010002 + T[1] = 100012

This example shows that the method proposed in [21] works, as 592 mod 23 = 17 = 100012.
Note that in the example no final conditional subtraction was needed to get the correct
result. However, for other values of x this subtraction might be needed. The algorithm
reduces until S is less than six bits, so at the start of each iteration the maximum value of
S is 31. For modulus n = 23 and segments of five bits, at most one conditional subtraction
from S is needed to get a result less than n. This does not change when using more segments.

Instead of processing one bit at a time, multiple bits can be processed in parallel. This
results into a higher radix implementation of the algorithm. The advantage is that less
additions and shifts are needed to complete the computation. However, a larger lookup
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table is required as it is made up of more entries. For example, reducing an input operand
modulo n = 23 in radix-4 results into the following lookup table.

T[0] = (0 · 25) mod 23 = 000002

T[1] = (1 · 25) mod 23 = 010012

T[2] = (2 · 25) mod 23 = 100102

T[3] = (3 · 25) mod 23 = 001002

And the computation of x mod n = 592 mod 23 = 100012 using this table is shown below.

initialize S = x1 = 100102
iteration 0,1 S = S << 2 = (10)010002

S = 010002 + T[2] = 110102
iteration 2,3 S = S << 2 = (11)010002

S = 010002 + T[3] = 011002
iteration 4 S = S << 1 = 110002

add x0 S = 110002 + x0 = (1)010002
S = 010002 + T[1] = 100012

Note that in each iteration the summation register S is shifted left by two positions, except
for the last iteration. Iteration four is different, because the n has a length of five bits.
Five is not a multiple of two, so the summation register shifts left one bit to get into the
correct position for loading a new segment. Different configurations can be designed using
the following parameters: size of x, size of n and the number of bits processed per iteration.

2.5 Montgomery multiplication

In 1985 Peter L. Montgomery proposed what currently is known as Montgomery multiplica-
tion [22]. It is a method for performing fast repeated modular multiplication. The following
sections will discuss the algorithm itself and how it can be applied to numbers in RNS.

2.5.1 Modular multiplication

Modular multiplication is the operation of calculating a · b mod n with a, b, n ∈ N0. Division
is a relatively expensive operation for processors and so is modular reduction. Montgomery
multiplication improves the computation speed by replacing n with another number r. When
r is a power of two, division can be replaced by shifting and calculation of the remainder is
simplified to applying a bit mask. The catch is however, that before being able to replace n
by r, numbers a and b need to be converted to Montgomery form (n-residue representation).
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The result of Montgomery multiplication for a · b mod n using radix r is defined as

MontMult(a, b, n) = a · b · r−1 mod n (2.12)

where a, b and n are integers and r−1 is the multiplicative modular inverse of r with respect
to n. For the choice of r some restrictions apply, not all possible integers are allowed. Two
requirements are: r needs to be larger than n and r and n are coprime. These constraints
ensure that the multiplicative modular inverse of n with respect to r exists. Converting a
and b to their Montgomery forms ā and b̄ is done using Eq. (2.13).

ā = MontMult(a, r2 mod n, n) and b̄ = MontMult(b, r2 mod n, n) (2.13)

The reverse conversion is performed using MontMult with one of the operands set to one.
Reverting ā and b̄ back to standard representation can be done by using Eq. (2.14).

a = MontMult(ā, 1, n) and b = MontMult(b̄, 1, n) (2.14)

Montgomery multiplication requires an extra integer n′ such that r · r−1 − n · n′ = 1, which
is a consequence of Bézout’s identity. Reducing both sides of the equation modulo r gives

n′ = −n−1 mod r =
∣∣−n−1

∣∣
r

(2.15)

The MontMult algorithm for multiplication of two variables in n-residue representation is
given by Algorithm 5. Performing modular multiplication using this algorithm is only pos-
sible if the operands are converted to Montgomery form. After the calculation the operands
need to be converted back to normal representation. Due to these pre- and post-calculation
steps, Montgomery multiplication is not faster than regular modular multiplication. How-
ever, repeated usage of MontMult can result into a significant increase in speed.

Algorithm 5 Montgomery multiplication algorithm with reduction based on REDC [22]
Input: r > n, GCD(n, r) = 1, n′ = −n−1 mod r
Output: a · b · r−1 mod n

1: procedure MontMult(a, b, n)
2: t← a · b
3: q ← t · n′ mod r
4: u← (t+ q · n)/r
5: if u ≥ n then
6: u← u− n

7: return u

19



For example, let us calculate 7 · 13 mod 23 using Montgomery multiplication with r = 32.
The first step is to calculate n′ using Eq. (2.15).

n′ = −n−1 mod r = −23−1 mod 32 = 9−1 mod 32 = 25

Next, operands a and b are converted to their n-residue representation using Eq. (2.13).

ā = MontMult(a,
∣∣r2∣∣

n
, n) = MontMult(7, 12, 23) = 17

b̄ = MontMult(b,
∣∣r2∣∣

n
, n) = MontMult(13, 12, 23) = 2

Multiplication of ā and b̄ using Algorithm 5 gives answer c̄.

c̄ = MontMult(ā, b̄, n) = MontMult(17, 2, 23) = 14

Eq. (2.14) is used to convert c̄ from Montgomery domain to default representation.

c = MontMult(c̄, 1, n) = MontMult(14, 1, 23) = 22

The solution of 7 · 13 mod 23 = 22 is equal to c, which shows that the example calculation is
correct. Note that for a system using a constant value for modulo n and radix r, the values
for n′ and “r2 mod n” can be precomputed and stored into a lookup table.

2.5.2 Exponentiation

Exponentiation is basically repeated multiplication, which also holds for exponentiation in
n-residue form. All methods from Section 2.3 can be used for Montgomery exponentiation.

Algorithm 6 Montgomery exponentiation is a combination of Algorithms 1 and 5.
1: procedure MontExp(m, e, n) ▷ Calculate me mod n
2: i← MSB(e) ▷ Find the MSB position
3: x̄← MontMult(1, |r2|n , n) ▷ Initialize result x̄ with 1
4: m̄← MontMult(m, |r2|n , n) ▷ Convert m to n-residue form
5: while i ≥ 0 do
6: x̄← MontMult(x̄, x̄, n) ▷ Always square result x̄
7: if ei = 1 then ▷ If bit i in exponent e is set
8: x̄← MontMult(m̄, x̄, n) ▷ Also multiply result x̄ by m̄

9: i← i− 1

10: x← MontMult(x̄, 1, n) ▷ Convert x̄ out of n-residue form
11: return x
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The real advantage of Montgomery multiplication can be observed during modular exponen-
tiation, as the cost of reduction is smaller than using standard division. Conversion to and
from n-residue representation is done before and after exponentiation only. Using binary
exponentiation combined with Montgomery multiplication results in Algorithm 6.

2.5.3 RNS modular reduction

Montgomery multiplication solves the problem of expensive division and reduction. But for
large numbers having over a thousand bits, carry propagation becomes the bottleneck of
the computational speed. RNS can be used to split large numbers into multiple smaller
parts, reducing the impact of carry propagation. Posch et al. [23] show that Montgomery
multiplication can be adapted to work with numbers in the RNS domain. Their approach
enables Montgomery multiplication of large numbers.

Given the RNS base B with range M , Algorithm 5 requires some modifications before usage
with RNS numbers is possible. The residue number system easily handles addition, subtrac-
tion and multiplication, but division, reduction and comparison are difficult. In weighted
binary number systems, Montgomery multiplication uses a power of two as choice for radix
r. For the RNS version it is better to choose r = M , as this makes reduction modulo r a
costless operation. Division is also possible, because u← (t+vn)/r is an exact division that
can be computed by multiplying with the multiplicative inverse M−1 when r = M .

However, base B represents numbers in the range [0,M) only, so the value for M and thus for
M−1 does not exist. The problem is solved by introducing a second RNS base B̃ with range
M̃ and representing M−1 in that domain instead. All moduli in B̃ should be pairwise prime
with the moduli in B. Calculation of ABN ′ mod M is done in base B, but the result should
be available in B̃. Conversion of a number from one RNS base to another is called a base
extension, denoted by the function bex. There are different algorithms capable of performing
a base extension and these will be discussed in Section 2.6. Adaption of Algorithm 5 for
usage with RNS numbers results into the pseudocode shown in Algorithm 7.

Algorithm 7 General approach for performing RNS Montgomery multiplication
1: procedure RnsMontMult(A,B,N) ▷ Calculate ABM−1 mod N
2: Q← ABN ′ mod M ▷ Compute in RNS base B
3: Q̂← bex(Q) ▷ Base extension B → B̃
4: R̂← (AB + Q̂N)|M−1|M̃ ▷ Compute in RNS base B̃
5: R← bex(R̂) ▷ Base extension B̃ → B
6: return R

The range of R is [0, 2N), but repeated usage of the algorithm will remove multiples of N .
This offset needs to be removed only in the last iteration, using a conditional subtraction.
Also, the base extension methods suggested here provides an exact result R. Usage of bex
algorithms that give an approximated result for R will have a different output range.

21



2.6 RNS base extension

Base extension is the process of converting one RNS representation to another. An easy
implementation of this method would be to convert the RNS number of base B to binary
representation and then convert that number to RNS base B̃. However, faster methods have
been proposed without the need of converting to binary form. This section will discuss some
of these methods.

2.6.1 Shenoy base extension

The Shenoy base extension is proposed in [24] and summarized by [25]. It is based on using
the CRT to perform a base extension, in contrast to mixed radix conversion algorithms like
the Szabo-Tanaka method [26]. The latter one will not be elaborated on, because it requires
more computations than newer methods.

We consider X = {x1, x2, ..., xk} in RNS base B = {m1, ...,mk} with X ∈ [0,M). The goal
is to convert X to RNS base B̃ = {mk+1, ...,m2k} with residues {xk+1, ..., x2k} and range M̃ .
All moduli in B̃ should be pairwise prime to M ensuring the multiplicative inverses exist.
Recall the CRT formula from Eq. (2.3), which can be rewritten for X as in Eq. (2.16).

k∑
i=1

∣∣xi|M−1
i |mi

∣∣
mi

Mi = X + αM (2.16)

Where Mi = M/mi and 0 ≤ α < k. Now a redundant modulus mr is introduced with
properties mr ≥ k and GCD(mr,M) = 1. Moving X to the left side of the equation, reducing
both sides modulo mr and multiplying by the inverse of M with respect to mr gives

α = |α|mr =

∣∣∣∣∣|M−1|mr

(
k∑

i=1

∣∣∣∣∣xi|M−1
i |mi

∣∣
mi

Mi

∣∣∣
mr

− |X|mr

)∣∣∣∣∣
mr

(2.17)

The value of α is equal to |α|mr , because mr was chosen to be larger than or equal to k.
Eq. (2.17) allows us to compute α, given that value of residue |X|mr is known. Now it is
possible to compute the residues xj of RNS base B̃ for j = k + 1...2k.

xj = |X|mj
=

∣∣∣∣∣
k∑

i=1

∣∣∣∣∣xi|M−1
i |mi

∣∣
mi

Mi

∣∣∣
mj

− |αM |mj

∣∣∣∣∣
mj

(2.18)

Note that the constants |M−1
i |mi

, |Mi|mr , |M−1|mr , |M |mj
and |Mi|mj

can be precomputed,
as their values only depend on the moduli choices for B, B̃ and redundant modulus mr.
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For clarification, the theory is illustrated with an example. The following is given:

X = {x1, x2, x3} = {2, 5, 10}, B = {m1,m2,m3} = {5, 7, 13}, M = 455.

Here X represents the residues of the number 257 in RNS base B with range M . Also given
is redundant modulus of mr = 4 with residue |X|mr = 1. The goal is to transform X into
RNS base B̃ = {m4,m5,m6} = {3, 11, 17} without converting to binary representation.

The first step is to precompute the required constants for the calculation.

|M−1
1 |m1 = |(455/5)−1|5 = |91−1|5 = 1

|M−1
2 |m2 = |(455/7)−1|7 = |65−1|7 = 4

|M−1
3 |m3 = |(455/13)−1|13 = |35−1|13 = 3

|M1|m4 = |455/5|3 = |91|3 = 1

|M2|m4 = |455/7|3 = |65|3 = 2

|M3|m4 = |455/13|3 = |35|3 = 2

|M1|m5 = |455/5|11 = |91|11 = 3

|M2|m5 = |455/7|11 = |65|11 = 10

|M3|m5 = |455/13|11 = |35|11 = 2

|M1|m6 = |455/5|17 = |91|17 = 6

|M2|m6 = |455/7|17 = |65|17 = 14

|M3|m6 = |455/13|17 = |35|17 = 1

|M1|mr = |455/5|4 = |91|4 = 3

|M2|mr = |455/7|4 = |65|4 = 1

|M3|mr = |455/13|4 = |35|4 = 3

|M |m4 = |455|3 = 2

|M |m5 = |455|11 = 4

|M |m6 = |455|17 = 13

|M−1|mr = |455−1|4 = 3
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The value of α can now be computed using Eq. (2.17).

α =

∣∣∣∣∣|M−1|mr

(
k∑

i=1

∣∣∣∣∣xi|M−1
i |mi

∣∣
mi

Mi

∣∣∣
mr

− |X|mr

)∣∣∣∣∣
mr

=

∣∣∣∣3(∣∣∣M1

∣∣x1|M−1
1 |m1

∣∣
m1

+M2

∣∣x2|M−1
2 |m2

∣∣
m2

+M3

∣∣x3|M−1
3 |m3

∣∣
m3

∣∣∣
mr

− 1

)∣∣∣∣
mr

=
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4
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)∣∣∣∣
4

=
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∣∣∣
4
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)∣∣∣∣
4

= 1

(2.19)

Next, substitution of α = 1 in Eq. (2.18) allows to calculate xj for B̃ using

xj =
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(2.20)

Substitution of j = 4, 5, 6 gives the new residues

x4 =

∣∣∣∣∣∣∣1|2 · 1|5 + 2|5 · 4|7 + 2|10 · 3|13
∣∣∣
3
− 2

∣∣∣∣
3

=

∣∣∣∣∣∣∣2 + 12 + 8
∣∣∣
3
− 2

∣∣∣∣
3

= 2

x5 =

∣∣∣∣∣∣∣3|2 · 1|5 + 10|5 · 4|7 + 2|10 · 3|13
∣∣∣
11
− 4

∣∣∣∣
11

=

∣∣∣∣∣∣∣6 + 60 + 8
∣∣∣
11
− 4

∣∣∣∣
11

= 4

x6 =

∣∣∣∣∣∣∣6|2 · 1|5 + 14|5 · 4|7 + 1|10 · 3|13
∣∣∣
17
− 13

∣∣∣∣
17

=

∣∣∣∣∣∣∣12 + 84 + 4
∣∣∣
17
− 13
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17

= 2

(2.21)

So the residues for X in RNS base B̃ are X = {2, 4, 2}.

2.6.2 Bajard base extension

The Bajard base extension [25, 27, 28] is also based on the CRT from Eq. (2.3), but allows
an offset α in the resulting residue of RNS base B̃. For an exact result, this offset needs to be
removed. However, when doing repeated Montgomery multiplication this is not necessary,
given that the intermediate results are smaller than the range of B̃.

Suppose the Bajard algorithm is used as first base extension in the generic RNS Montgomery
multiplication algorithm discussed in Section 2.5.3. The first base extension is used to
transform Q from B to B̃. Allowing an offset in the result, gives a value Q̂ related to Q.
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Q̂ =
n∑

i=1

∣∣qi|Mi|−1
mi

∣∣
mi

Mi = Q+ αM (2.22)

In RNS Montgomery multiplication variable R is calculated by R = (T +QN)M−1. Let R̂
denote the same formula, but now allow the extra offset from Eq. (2.22) to propagate here
as well. This results in Eq. (2.23).

R̂ = (T + Q̂N)M−1 = (T +QN + αMN)M−1 = (T +QN)M−1 + αN (2.23)

It can be observed that the offset translates from a multiple of M to a multiple of N . Because
of this translation, the relation R̂ ≡ R ≡ ABM−1 mod N still holds. The Bajard base
extension cannot be used as the second base extension in RNS Montgomery multiplication,
because the introduced offset is a multiple of M̃ and does not have a relation with N .

Residues resulting from the Bajard base extension are calculated similar to the Shenoy
method, but the correction factor α is omitted. The residues can be calculated by computing

qj =

∣∣∣∣∣
n∑

i=1

∣∣qi|Mi|−1
mi

∣∣
mi

Mi

∣∣∣∣∣
mj

for i = 1...k and j = k + 1...2k (2.24)

Note that the sum in the equation hints towards the use of an accumulator register in
hardware. An implementation could start by initializing a register t = 0, adding a factor of
σi|Mi|mj

and reducing it to modulo mj each iteration. See Algorithm 8 for a summary of
the Bajard base extension used to convert Q from B to B̃.

Algorithm 8 Bajard base extension (based on algorithm 2 from [27])
1: procedure BajardBex(q1, ..., qi)
2: σi = qi|M−1

i |mi
mod mi ▷ In parallel for i = 1...k

3: t0 = 0 ▷ Initialize accumulator to zero
4: for i = 1...k do ▷ Accumulate values in t and reduce
5: ti = (ti−1 + σi|Mi|mj

) mod mj ▷ In parallel for j = k + 1...2k and j = r

6: q̂j = tk ▷ In parallel for j = k + 1...2k, r

RNS Montgomery multiplication with the Bajard base extension first and the Shenoy base
extension second is an interesting combination. The Bajard base extension can be used to
generate the extra modulus mr required for the Shenoy base extension. Repeated use of
Montgomery multiplication with equal modulus N, reduces the offset of αN introduced by
the Bajard extension. When using this algorithm for exponentiation, care should be taken
that in the final step these extra multiples of N are removed.
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2.6.3 Diophantine base extension

An alternative to a combination of the Bajard and Shenoy base extension is the Diophantine
base extension [29]. This base extension is built on solving a linear Diophantine equation,
which is a polynomial equation containing two unknowns and has integer solutions.

For a non-negative integer X < M represented in RNS, having dynamic range M =
∏k

i=1 mi,
k prime moduli {m1,m2, ...,mk} and residues {x1, x2, ..., xk}, it can be determined that

k∑
i=1

(
xi
mk+1

mi

∣∣(Mimk+1)
−1
∣∣
mi

)
= a+

X

M
(2.25)

where a is a non-negative integer and X
M

is the leftover fraction in the range [0, 1). Because
a is an integer, its value is found by truncating both sides of Eq. (2.25), resulting in

a =

⌊
k∑

i=1

(
xi
mk+1

mi

∣∣(Mimk+1)
−1
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mi

)⌋
=

⌊
k∑

i=1

xiCi

⌋
(2.26)

In this equation, the constants Ci =
mk+1

mi
|(Mimk+1)

−1|mi
are precalculated and stored as

fixed-point radix-2 numbers into a lookup table. However, because the fixed-point represen-
tation has a finite precision, Eq. (2.26) should be modified to

â =

⌊
k∑

i=1

xi

⌊
Ci · 2b

⌋
2−b

⌋
(2.27)

where b ∈ N0 is the number of fractional bits in the vector for the constants. It can be said
that â is an estimator of a. However, Eq. (2.27) requires a certain precision for the constants
in order to give an equal result as a. The error introduced with the truncation scales with
residues xi as well. Performing truncation after an infinite number of fractional bits does
not truncate anything, therefore it holds that

lim
b→∞

â = lim
b→∞

⌊
k∑

i=1

xi

⌊
Ci · 2b

⌋
2−b

⌋
=

⌊
k∑

i=1

xiCi

⌋
= a (2.28)

Eq. (2.28) shows that â approaches a for b→∞. For b = 0, Eq. (2.27) simplifies to

â
∣∣∣
b=0

=

⌊
k∑

i=1

xi⌊Ci⌋

⌋
(2.29)

It should be obvious that Eq. (2.29) is smaller than or equal to a, because of the extra
truncation inside the sum. Combining this with Eq. (2.28) creates an upper bound on â
which is equal to â ≤ a. This means that â approaches a from below for larger values of b.
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In order to perform a correct base extension a and â must give an equal result. This can
be achieved by taking enough fractional bits b, but what is the minimum number of bits
required? Unfortunately, both equations contain the truncation operator and that makes
finding a solution using algebra impossible. Instead, an iterative approach is used.

First, all constants Ci are computed using a very high precision setting. These values are
used to determine the expected value for a using X = 1. Next, the constants are truncated
to zero fractional bits (b = 0) and a is computed again, now denoted by â. When a and â are
equal, the minimum number of fractional bits b is found. If those are different, the number
of fractional bits is increased by one and the process is repeated.

For example, let us take an RNS base B with moduli mi = {7, 13, 19, 29}. The goal is to
perform a base extension of X = 1 to modulo mk+1 = 8, the expected result is |X|mk+1

= 1.
High-precision calculation of the constants Ci gives the results in Eq. (2.30).

C1 = 8/7 · 4 = 4.571428571428571428571428571428571428571428571428..

C2 = 8/13 · 2 = 1.230769230769230769230769230769230769230769230769..

C3 = 8/19 · 13 = 5.473684210526315789473684210526315789473684210526..

C4 = 8/29 · 28 = 7.724137931034482758620689655172413793103448275862..

(2.30)

Given X = 1, all four residues are xi = 1 and calculation of a is a summation of all Ci.

a =

⌊
4∑

i=1

xiCi

⌋
= ⌊C1 + C2 + C3 + C4⌋ = ⌊19.0000199437586..⌋ = 19 (2.31)

Next, an implementation of the Diophantine base-extension is made in C++ with the GNU
Multiple Precision Arithmetic Library (GMP). The program first computes the constants Ci

using a very high precision to calculate the ground truth of a. Then the minimum number
of fractional bits b required for â to correctly perform the base extension is determined. The
version numbers of software used to create the program are given in Table 2.6.

Software Type Version License
GCC Compiler 7.3.0 Modified GPLv3
GMP Library 6.1.2 LGPLv3 and GPLv2

Table 2.6: Version numbers of the software used to compile the program.

Using an iterative approach for increasing the number of fractional bits b in the constants Ci,
the results shown in Table 2.7 are obtained. It shows that to perform correct base extensions
for X = 1 from RNS base B to mk+1 = 8, a minimum of 16 fractional bits is required.
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b x1C1 x2C2 x3C3 x4C4 Sum
0 4 1 5 7 17
1 4.5 1 5 7.5 18.0
2 4.5 1 5.25 7.5 18.25
3 4.5 1.125 5.375 7.625 18.625
4 4.5625 1.1875 5.4375 7.6875 18.8750
5 4.5625 1.21875 5.46875 7.71875 18.96875
6 4.5625 1.21875 5.46875 7.71875 18.96875
7 4.5703125 1.2265625 5.46875 7.71875 18.9843750
8 4.5703125 1.23046875 5.47265625 7.72265625 18.99609375
9 4.5703125 1.23046875 5.47265625 7.72265625 18.99609375
10 4.5712890625 1.23046875 5.4736328125 7.7236328125 18.9990234375
11 4.5712890625 1.23046875 5.4736328125 7.72412109375 18.99951171875
12 4.5712890625 1.230712890625 5.4736328125 7.72412109375 18.999755859375
13 4.5714111328125 1.230712890625 5.4736328125 7.72412109375 18.9998779296875
14 4.5714111328125 1.230712890625 5.4736328125 7.72412109375 18.9998779296875
15 4.5714111328125 1.230743408203125 5.473663330078125 7.72412109375 18.999938964843750
16 4.5714263916015625 1.2307586669921875 5.4736785888671875 7.7241363525390625 19.0000000000000000

Table 2.7: Each iteration step the number of fractional bits b is increased until â = 19 is reached.

Table 2.7 only shows the results for the conversion of X = 1 from RNS base B to modulo
8. However, dynamic range M = 7 · 13 · 19 · 29 = 50141, so there are more possible values
of X that need to be computed to find the actual minimum number of fractional bits. The
program is modified so that it is able to find the required number of fractional bits for all
possible values of X. An overview of the results is given by Fig. 2.3a and a more detailed
close-up of the range 0 ≤ X ≤ 64 is shown by Fig. 2.3b.
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Figure 2.3: Overview of running the C++ program for a base extension from B = {7, 13, 19, 29} to modulo 8.
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Fig. 2.3a shows that using 16 fractional bits is sufficient for all values of X. In the histogram
there exist no numbers that require 6, 9 or 14 fractional bits. This makes sense, as from
Table 2.7 it follows that increasing the number of bits to these numbers results in equal
values for Ci. Looking at the outline of Fig. 2.3b, it seems that for larger values of X less
fractional bits are needed to ensure a correct base extension.

In the previous example, the required number of fractional bits b for all X is equal to the
number of bits required for converting X = 1. From Fig. 2.3b it follows that the largest
requirements for b are needed for extending the smallest values of X to the new modulus.
It would make sense to assume that computing b for X = 1 also gives enough fractional bits
ensuring an error-free base extension for all values of X, but that has never been proven.

Usability of the Diophantine base extension for implementation of 4096-bit RSA depends on
the number of bits required for the values of Ci. If these are too large, it will slow down
the computation instead of giving better performance. The example RNS bases to perform
benchmarks on are taken from [29] and shown in Table 2.8 for further analysis.

4 moduli 5 moduli 6 moduli
Base B Base B′ Base B Base B′ Base B Base B′

2512 − 210 − 1 2512 − 222 − 1 2512 − 210 − 1 2512 − 28 + 1 2512 − 210 − 1 2512 − 25 − 1
2512 − 219 − 1 2512 − 222 + 1 2512 − 219 − 1 2512 − 216 − 1 2512 − 216 − 1 2512 − 217 − 1
2512 − 228 − 1 2512 − 223 − 1 2512 − 220 − 1 2512 − 217 − 1 2512 − 219 − 1 2512 − 218 + 1

2512 − 1 2512 2512 − 228 − 1 2512 − 217 + 1 2512 − 220 − 1 2512 − 225 − 1
2512 2512 − 222 − 1 2512 − 228 − 1 2512 − 226 − 1

2512 2512 − 1

Table 2.8: Three sets of moduli in table 5.1 from [29] revised with values of table 1 from [30].

The moduli sets from Table 2.8 are used as input for the C++ program that calculates the
minimum number of fractional bits. However, as the dynamic range M is a number of more
than 2000 bits, the required number of bits cannot be computed for all possible values of X.
So based on the assumption that computation of X = 1 gives an indication of how many bits
are required, that value is used instead. These results are shown in Table 2.9. In short, the
number of fractional bits is too large for an implementation based on fixed-point constants.

Moduli set Base extension Fractional bits
4 moduli B → B′ 2050
4 moduli B′ → B 2051
5 moduli B → B′ 2563
5 moduli B′ → B 2561
6 moduli B → B′ 3074
6 moduli B′ → B 3073

Table 2.9: Minimum number of fractional bits b to perform an error-free base extension of X = 1.
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3 Design considerations

This section will discuss the design choices made for the implementation of the cryptographic
processor. The goal of the design is to create a high-performance implementation of RSA
encryption and decryption, but also to perform optimizations for reducing the area usage on
the FPGA. The overall result will be a balanced design having good performance.

3.1 Multiplication hardware

Section 2.5 discusses RNS Montgomery multiplication and Section 2.6 is about RNS base
extensions. For the implementation, these topics have to be merged into one algorithm
which can be used for one round of RNS Montgomery multiplication. Combining the generic
Montgomery multiplication algorithm with the Bajard and Shenoy base extensions results
in Algorithm 9. The algorithm is derived by merging algorithms 1, 2 and 3 from [27].

Algorithm 9 RNS Montgomery Multiplication using Bajard and Shenoy base extensions
Input: Two RNS bases B = {m1, ...,mk}, B̃ = {mk+1, ...,m2k} with range M =

∏k
i=1 mi,

M̃ =
∏k

j=1 mk+j. Redundant modulus mr ≥ k with GCD(M, M̃,mr) = 1. Multiplicands
A = {a1, ..., a2k, ar}, B = {b1, ..., b2k, br} and modulo N = {n1, ..., n2k, nr} in {B, B̃,mr}.

Output: R̂ = ABM−1 mod N = R + (2 + α)N with α < k.

1: procedure RnsMontMult(A,B,N)
2: qi = aibi|−n−1

i |mi
▷ In parallel for i = 1...k

3: σi = qi|M−1
i |mi

mod mi ▷ In parallel for i = 1...k
4: t = 0 ▷ Initialize accumulator to zero
5: for i = 1...k do ▷ Accumulate in t and reduce
6: t = (t+ σi|Mi|mj

) mod mj ▷ In parallel for j = k + 1...2k, r

7: r̂j = (ajbj + tnj)|M−1|mj
mod mj ▷ In parallel for j = k + 1...2k, r

8: ξj = r̂j|M−1
j
˜ |mj

mod mj ▷ In parallel for j = k + 1...2k
9: t = 0 ▷ Set accumulator to zero

10: for j = 1...k do ▷ Accumulate in t and reduce
11: t = (t+ ξk+j|M̃ j|mr) mod mr

12: β = |M−1˜ |mr(t− |r̂|mr) mod mr ▷ Calculate correction factor β
13: t = 0 ▷ Set accumulator to zero
14: for j = 1...k do ▷ Accumulate in t and reduce
15: t = (t+ ξk+j|M̃ j|mi

) mod mi ▷ In parallel for i = 1...k

16: r̂i = (t− |βM̃ |mi
) mod mi ▷ In parallel for i = 1...k

17: return R̂ ▷ Return residues {B, B̃}
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Exponentiation essentially is repeated multiplication, so to accelerate RSA encryption and
decryption the multiplication algorithm should be implemented in hardware. Analysis of
Algorithm 9 gives some hints useful for mapping the calculations to a FPGA platform.

It should be noted that most of the statements are computed in parallel for one of the moduli
mi with i = {1, ..., k} or mj with j = {k+1, ..., 2k}. Usage of RNS in hardware suggests the
design of k independent cores equal to the number of moduli in the RNS base. Each of the
RNS cores is then responsible for one residue and all its arithmetic operations are followed
by reduction with a modulo constant mi. After performing the base extension B → B̃, the
core is still responsible for one residue, but now has to reduce modulo mj. So by enabling
each core to perform arithmetic operations followed by reduction, using either mi or mj,
allows execution of Algorithm 9.

Also interesting is that the base extension algorithms require a lot of multiply-accumulate
(MAC) operations. These are found in the for loops on lines 6, 11 and 15. Modern FPGAs
contain Digital Signal Processing (DSP) blocks that are able to perform MAC operations at
high frequencies. Creating a design that focuses on usage of the available DSP blocks should
increase the performance significantly. By using the accumulator register inside the DSP
block to store the intermediate values t, the reduction can be postponed until accumulation
has completed. Downside of this approach is that the size of the accumulate register now
places an upper bound on the bit width of the moduli.

For the computation of redundant residue |r|mr an extra core can be added that only is
active between the two base extensions. The Bajard base extension produces the redundant
residue and the Shenoy base extension consumes it. Correction constant β is produced by
the redundant RNS core and should be broadcasted to all other RNS cores as they need it
to complete the last step of the algorithm. Assigning the redundant residue to its own core,
also helps to increase the amount of parallelism. The loops on lines 11 and 15 of Algorithm 9
are now computed in parallel as they each use different moduli constants.

3.2 Datapath dimensions

Each RNS core is a simple processor that can perform addition, subtraction and multipli-
cation. But how many cores are needed to perform 4096-bit RSA encryption depends on
the number of moduli in the RNS base. As each RNS core is responsible for one modulus,
the main datapaths can be equally sized as the size of that modulus in bits. The mapping
on DSP blocks is important for the performance and these blocks have fixed operand sizes.
One Xilinx DSP48E2 block can perform a multiplication with two 17-bit unsigned numbers
[31]. Using a datapath containing a multiple of seventeen bits is preferred, so the DSP block
multiplier ports are completely utilized.

Usage of RNS cores with a 17-bit wide datapath requires a minimum of ⌈4096/17⌉ = 241
cores in the system. Algorithm 9 shows that there are a lot of multiplications to perform.
Performing a base extension means iterating over the number of cores in the system, values
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σi and ξj are needed at all cores once per Montgomery multiplication. Reducing the number
of cores could result in a faster base extension, however resource usage per core will increase.

Increasing the datapath width to 34-bit will require a minimum of ⌈4096/34⌉ = 121 cores.
As the DSP blocks have operands of 17-bit each, now four of these blocks are needed to
perform one multiplication. The number of cores is halved, but the number of DSP blocks
needed per core is four times as high. So for a design utilizing 34-bit datapaths 121 · 4 = 484
DSP blocks are needed. Whether that is a significant amount depends on the available
FPGA platform. This number can be reduced by reusing one multiplier to perform the
multiplication in four parts. However, that would result in a multiplication taking multiple
clock cycles to complete. As multiplication is used very often, this is not a good trade-off.

Further increasing the datapath to 51 bits would require a design with ⌈4096/51⌉ = 81 cores.
A multiplication of two 51-bit operands using 17-bit multipliers requires (51/17)2 = 9 DSP
blocks. Which results in a total multiplier usage of 81 · 9 = 729 DSP blocks. Increasing
the datapath width any more would need so many DSP blocks that it is not feasible. In
short, there are three datapaths widths that are feasible for further analysis and they are
summarized in Table 3.1. Note that the estimated resource usage for the redundant core
processing the residue |r̂|mr is not included here.

Datapath width (bits) Minimum cores Total DSP blocks
17 241 241
34 121 484
51 81 729

Table 3.1: Overview of feasible datapath widths for a RNS core.

3.3 RNS moduli selection

An important choice is the selection of moduli mi and mj for RNS bases B and B̃. 4096-bit
RSA encryption means that the plain-text message, modulus and exponent have a size of
up to 4096 bits. The RNS representation should be able to fit a number of at least an equal
size. So the product of the moduli mi giving range M should have at least a value of 24096.

The maximum number of RNS cores is limited by how many primes are available for bases B
and B̃. To prevent creating unbalanced logic, the selected prime number for moduli mi and
mj should contain an equal number of bits as the datapath of the RNS core. The number of
primes less then or equal to a number x is given by the prime counting function π(x). Note
that the number 2x has a width of x + 1 bits, so to set an upper bound 2x − 1 is needed.
The number of primes between two powers of two therefore is given by Eq. (3.1).

ρavailable = π(2x+1 − 1)− π(2x) (3.1)
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where x is the number of bits in the RNS moduli as well as the datapath of the RNS cores.
Now this can be compared to the number of primes needed to create RNS bases B and B̃ for
4096-bit RSA. In the previous paragraph, it was stated that M should be at least 4096 bits.
However, in Algorithm 9 intermediate results need a representation with a larger number of
bits. Also important is that the algorithm will be used for exponentiation, so result value R̂
will be used as inputs A or B in following iterations. The range of M is bounded by

(k + 2)2N < M (3.2)

where k is the number of moduli in base B and N is the maximum value of the RSA modulus
[27]. As N has a maximum size of 4096 bits, Eq. (3.2) shows that the boundary condition
can be satisfied by adding ⌈log2((k + 2)2⌉ bits to M . The number of moduli k can be
calculated by dividing the size of modulus N by the number of bits per modulo x, which
gives k = ⌈4096/x⌉. Each RNS core processes two moduli and that doubles the number of
primes needed, so the constraint on the minimum number of primes is now given by

ρrequired = 2⌈(4096 + ⌈log2((⌈4096/x⌉+ 2)2)⌉)/x⌉ (3.3)

A comparison of Eqs. (3.1) and (3.3) for different datapath widths x results in Fig. 3.1. The
figure shows that the smallest possible datapath width is equal to 13 bits. For example if
the datapath width would be 12 bits, there exist not enough primes of 12 bits to construct
two RNS bases large enough to perform 4096-bit RSA encryption.

Figure 3.1: Available and required number of primes for 4096-bit RSA.
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The previous section discussed three possible datapath widths: 17, 34 and 51 bits, which are
multiples of the Xilinx DSP block input operands. All these options are larger than 13 bits,
so they can be used to design a RSA processor based on RNS Montgomery multiplication.
Each of these three options poses a trade-off in area usage and number of cycles to complete
the computation. A small datapath results in a lot of RNS cores, so additional execution
time is spent on performing base extensions. Using a wide datapath adds more overhead
in the computations that are not the base extension, because the carry propagation path
becomes longer. Therefore the choice is made to create an implementation using moduli of
34 bits, as this should give a good trade-off between both situations.

Previous research suggests using a small set of optimal RNS bases [30]. However, this only
gives RNS bases consisting of at most six primes, which would require large datapaths for
4096 bits encryption. Another option is using pseudo Meresenne primes, which are close to a
power of two and make reduction easy to implement in logic. Still the same problem arises,
that not enough of these primes exist to create an implementation of ⌈4096/34⌉ = 121 cores.

From Eq. (3.1) it follows that for x = 34 there are ρ = 717267168 primes available. Taking the
largest primes from this list should make is easier to satisfy the bound in M from Eq. (3.2).
As the prime numbers chosen are close to each other and have equal bit widths, both RNS
bases can be considered balanced. The sets of 34 bits prime numbers for B and B̃ used for
implementation can be found in Appendices A.1 and A.2. Reduction by a prime number
is an expensive operation. To reduce the impact, lazy reduction of the DSP accumulator is
performed. This means that reduction is started after completion of the accumulation phase.
As long as the DSP accumulation register is wide enough to support the required number of
iterations during the base extension, it will be possible.

3.4 RNS processor core

Analysis of Algorithm 9 shows that each RNS core should be able to perform: addition,
subtraction and multiplication. Of those operations the result should be reduced using one
of two moduli, one from RNS base B and one from RNS base B̃. So an additional input bit
is needed to select which reduction should be applied. Reduction of the multiplication result
needs more computations, because the result is larger than that of addition or subtraction.

It is assumed that the operands on which arithmetic is performed, are already within the
bounds of the selected moduli set. So reduction for addition and subtraction is just one
compare and corrective subtraction or addition. For the reduction of the multiplication
result an extra block of logic is needed. Design of this block is inspired by the theory
discussed in Section 2.4. The operand size for this block is determined by the size of the
accumulation register in the multiplication stage. One multiplication result contains twice
the number of bits as the 34-bit operands and thus has a width of 68 bits. For k = 121
cores, one base extension loop executes an equal number of multiply-accumulate operations.
So the size of the accumulation register should be at least ⌈log2(121)⌉+ 68 = 75 bits.
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Each core should be able to use precalculated constants as they are needed to perform the
base extension. Also some storage is needed to save intermediate results while performing
the Montgomery multiplication algorithm. The solution is to use a large register file with a
read-only part to store the constants. For example, this could be implemented using Block
Random Access Memory (BRAM) logic found in Xilinx FGPAs [32].

Not all operations found in Algorithm 9 can be executed in parallel on multiple RNS cores.
During the base extension methods, the values for σi and ξi are needed on every RNS core.
Most of the processing time is consumed in the loops for the base extension, so it seems
that this could cause performance issues. However, inspired by the architecture from [33],
a solution is found. Although all σi and ξj are needed at every core, they are not needed
in exactly the same sequence. The solution is to connect the RNS cores in a circle, so each
core has one neighbor to send data to and one neighbor to consume data from.

Redu
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Core

Core
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CoreCore

CoreCore

Core

Core

Core

Core

Figure 3.2: Each RNS core is connected to a neighbor in clockwise direction.

By sending these values from one neighbor to the other, nobody has to wait for data and
computation of t can be done in parallel for both base extensions. The redundant core also
needs σi and ξi for the computation of correction factor β. By adding the redundant core
as leaf connection, it can now grab these values from the ring. The value for β can than
be calculated in parallel while all other cores are busy doing their computation of t. The
connections between the RNS cores and the redundant core are shown in Fig. 3.2.
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For example, suppose we have a RNS processor with four cores. Efficient use of the ring
structure is done by scheduling the RNS Montgomery multiplication as shown in Table 3.2.

# Core 1 Core 2 Core 3 Core 4 Redundant core
1 c = |a1b1|m1 c = |a2b2|m2 c = |a3b3|m3 |a4b4|m4

2 q1 = |c|−n−1
1 |m1|m1 q2 = |c|−n−1

2 |m2 |m2 q3 = |c|−n−1
3 |m3|m3 q4 = |c|−n−1

4 |m4|m4

3 σ1 = |q1|M−1
1 |m1|m1 σ2 = |q2|M−1

2 |m2|m2 σ3 = |q3|M−1
3 |m3|m3 σ4 = |q4|M−1

4 |m4|m4

4 t = 0 t = 0 t = 0 t = 0 t = 0
5 t = t+ σ1|M1|m5 t = t+ σ2|M2|m6 t = t+ σ3|M3|m7 t = t+ σ4|M4|m8 t = t+ σ1|M1|mr

6 t = t+ σ2|M2|m5 t = t+ σ3|M3|m6 t = t+ σ4|M4|m7 t = t+ σ1|M1|m8 t = t+ σ2|M2|mr

7 t = t+ σ3|M3|m5 t = t+ σ4|M4|m6 t = t+ σ1|M1|m7 t = t+ σ2|M2|m8 t = t+ σ3|M3|mr

8 t = t+ σ4|M4|m5 t = t+ σ1|M1|m6 t = t+ σ2|M2|m7 t = t+ σ3|M3|m8 t = t+ σ4|M4|mr

9 q̂5 = |t|m5 q̂6 = |t|m6 q̂7 = |t|m7 q̂8 = |t|m8 q̂r = |t|mr

10 d = |a5b5|m5 d = |a6b6|m6 d = |a7b7|m7 d = |a8b8|m8 d = |arbr|mr

11 e = |q̂5n5|m5 e = |q̂6n6|m6 e = |q̂7n7|m7 e = |q̂8n8|m8 e = |q̂rnr|mr

12 f = |d+ e|m5 f = |d+ e|m6 f = |d+ e|m7 f = |d+ e|m8 f = |d+ e|mr

13 r̂5 = |f |M−1|m5 |m5 r̂6 = |f |M−1|m6|m6 r̂7 = |f |M−1|m7|m7 r̂8 = |f |M−1|m8|m8 r̂r = |f |M−1|mr |mr

14 ξ5 = |r̂5|M−1
5
˜ |m5 |m5 ξ6 = |r̂6|M−1

6
˜ |m6|m6 ξ7 = |r̂7|M−1

7
˜ |m7|m7 ξ8 = |r̂8|M−1

8
˜ |m8|m8

15 t = 0 t = 0 t = 0 t = 0 t = 0

16 t = t+ ξ5|M̃ 5|m1 t = t+ ξ6|M̃ 6|m2 t = t+ ξ7|M̃ 7|m3 t = t+ ξ8|M̃ 8|m4 t = t+ ξ5|M̃ 5|mr

17 t = t+ ξ6|M̃ 6|m1 t = t+ ξ7|M̃ 7|m2 t = t+ ξ8|M̃ 8|m3 t = t+ ξ5|M̃ 5|m4 t = t+ ξ6|M̃ 6|mr

18 t = t+ ξ7|M̃ 7|m1 t = t+ ξ8|M̃ 8|m2 t = t+ ξ5|M̃ 5|m3 t = t+ ξ6|M̃ 6|m4 t = t+ ξ7|M̃ 7|mr

19 t = t+ ξ8|M̃ 8|m1 t = t+ ξ5|M̃ 5|m2 t = t+ ξ6|M̃ 6|m3 t = t+ ξ7|M̃ 7|m4 t = t+ ξ8|M̃ 8|mr

20 g = |t|m1 g = |t|m2 g = |t|m3 g = |t|m4 g = |t|mr

21 h = |g − r̂r|mr

22 β = |h|M−1˜ |mr |mr

23 h = |β|M̃ |m1|m1 h = |β|M̃ |m2|m2 h = |β|M̃ |m3|m3 h = |β|M̃ |m4 |m4

24 r̂1 = |g − h|m1 r̂2 = |g − h|m2 r̂3 = |g − h|m3 r̂4 = |g − h|m4

Table 3.2: Scheduling of RNS Montgomery multiplication on four RNS cores.

Each RNS core is equipped with an additional register called the propagate register. It is
not located in the register file, but used as input register to buffer data from its neighbor RNS
core. A multiplexer is used to connect either one port of the register file or the propagate
register to the multiplier. The propagate register is used only during the base extension
process to propagate the values for σi and ξj. An additional multiplexer is used to select
which source is connected to next neighbor: an output port from the register file or the
propagate register. It is now possible to pipeline the multiply-accumulate operation.

Table 3.2 shows that near the end of the algorithm the RNS cores are waiting on the calcu-
lation of β. To speed up this computation, redundant modulus mr can be a power of two
which makes reduction equal to dropping bits. For k = 121 cores, a redundant modulus of
mr = 128 is chosen to satisfy the boundary condition mr ≥ k in Algorithm 9.
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3.5 Memory requirements

Each RNS core has its own register file, as it needs to work independently of the other cores.
The number of registers required to perform RNS Montgomery multiplication depends on:

1. The number of temporary variables in the working set
2. The number of precomputed constants used in Algorithm 9
3. The number of precalculated multiples of x for exponentiation

The number of temporary variables is found by mapping the variables used in Table 3.2 to
registers. How many precomputed constants are needed depends mostly on the number of
cores, as for each iteration in the base extensions an extra constant is needed. Extra registers
available for exponentiation depend on which of the algorithms is chosen from Section 2.3.
Mapping of the variables to registers can be done without use of a compiler, as the number
of variables is relatively low. To improve readability, |−n−1

1 |m1 is denoted by n′
1. Looking

back at the example from Table 3.2, the variables used in the first RNS core are:

a1, b1, n
′
1, a5, b5, n5, c, q1, σ1, q̂5, d, e, f, r̂5, ξ5, g, β, h, r̂1

where a1, b1, n
′
1, a5, b5 and n5 are input operands for the Montgomery multiplication. The

result is stored in r̂5 and r̂1, which should be kept until execution finishes. The remaining
variables are used as temporary storage and can be overwritten after usage. Note that
residues n′

1 and n5 are derived from N and are reused in multiple rounds of the Montgomery
multiplication. So those are assigned to their own registers and do not need scheduling. Also
b1 and b5 are kept persistent, as those could be used to store precomputed multiples and
should not be modified. The lifetime of the non-persistent variables is shown in Table 3.3.

Cycle Lifetime of variables Total
0 a1 a5 2
1 a5 c 2
2 a5 q1 2
3 a5 σ1 2
9 a5 q̂5 2
10 q̂5 d 2
11 d e 2
12 f 1
13 r̂5 1
14 r̂5 ξ5 2
20 r̂5 g 2
22 r̂5 g β 3
23 r̂5 g h 3
24 r̂5 r̂1 2

Table 3.3: Register usage for RNS Montgomery multiplication on the first core.
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Note that register t was not included in the list, because that register will not be located in
the register file. Instead, it is placed in the DSP blocks to enable performing the multiply-
accumulate operation in 1 cycle. This is important, as that operation makes up for a large
part of the total execution time of the algorithm. Also the values for σi and ξj from the other
cores are not included as they will be available from the propagate register. Scheduling the
operations from Table 3.3 using seven registers results in Table 3.4.

Register binding
Register 1 Register 2 Register 3

a1 a5
c a5
q1 a5
σ1 a5
q̂5 a5
q̂5 d
e d
f

r̂5
ξ5 r̂5
g r̂5
g r̂5 β
g r̂5 h
r̂1 r̂5

Table 3.4: Register binding for RNS Montgomery multiplication on the first core.

All operations involving the RNS Montgomery multiplication can be scheduled using three
registers only. Also two additional registers are needed for storage of n′

1 and n5. Storage of
b1 and b5 will be considered according to the choice of the exponentiation algorithm. The
precalculated constants needed for the first RNS core in the example from Table 3.2 are:

|M−1
1 |m1 , |M1|m5 , |M2|m5 , |M3|m5 , |M4|m5 , |M−1|m5 ,

|M−1
5
˜ |m5 , |M̃ 5|m1 , |M̃ 6|m1 , |M̃ 7|m1 , |M̃ 8|m1 , |M̃ |m1

These constants are unique for each RNS core. The number of constants depends mostly on
the number of cores in the system, as both base extension algorithms need an extra constant
for each extra core. For the remaining part of algorithm there are four constants needed,
which is independent from the number of cores. So for a system with k = 121 cores, there
should be storage for 2k + 4 = 246 constants per core. The redundant core requires two
constants less than a RNS core. Multiplication by k and addition of the required number of
constants for the redundant core gives a total number of constants needed equal to 2k2+6k+2.
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Analysis of Section 2.3 shows that the methods for performing exponentiation have different
memory requirements. For computation of xe using binary exponentiation, it is necessary to
store a copy of x to use in the algorithm. After conversion of x to RNS bases B and B̃, this
value can be stored in residue registers bi with i ∈ {1, ..., 2k, r}. But for usage of 2w-ary and
sliding window exponentiation more storage is needed, which depends on the window size.

Sliding window exponentiation has half the memory requirements of 2w-ary exponentiation,
because only odd powers of x are stored in the first case. From Algorithm 2 follows that for
a window size w, there need to be 2w−1 precomputed multiples of x. Also, the discussion in
Section 2.3.3 gives an optimal window size of w = 7 for 4096-bit RSA encryption. So there
are 27− 1 = 127 precomputed multiples of x that need to be stored in the RNS cores. These
values need to be available in both RNS bases, so each precomputed constant results in two
residues. This doubles the number of registers needed in the RNS core to 2 · 127 = 254.

Source Number of registers
|−n−1

1 |m1 1
|nk+1|mk+1

1
Temporary variables 3
Montgomery constants 246
27-ary exponentiation 254
Total 505

Table 3.5: Memory requirements for 4096-bit RSA encryption on the first RNS core.

A summary of the register requirements for one RNS core is given in Table 3.5. Rounding up
to a power of two results into a memory block with 512 entries of 34 bits. Using an address
line of nine bits wide should enable access to all needed locations in memory. To support
execution of two-port operands, the register file should have two read ports. Also one write
port is needed for storing the result of the operation. So using three address lines of nine
bits wide each should be enough to run RNS Montgomery exponentiation on the RNS cores.

3.6 RNS core instructions

The calculations in Table 3.2 can be transformed into a basic set of arithmetic operations
with one output and two input operands. A combination of an arithmetic operation with read
and write registers forms an instruction. Each of the RNS cores accepts a 31-bit instruction
consisting of an operation code (opcode), one write address and two read addresses. As
discussed in the previous section, using address lines of nine bits each should be sufficient.

30 27 26 18 17 9 8 0

opcode wr_addr rd_addr1 rd_addr2
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Using an opcode of four bits is sufficient to encode all operations needed to perform RNS
Montgomery multiplication. Most operations perform arithmetic and reduce the result in
either RNS base B or B̃. Other instructions are used for writing data to the register file
or performing partial single-cycle computations. An overview of the opcodes and a short
description of the operations they perform can be found in Table 3.6.

Instruction Opcode Description Reduction
addu_m0 0000 Addition of two unsigned numbers B
addu_m1 0001 Addition of two unsigned numbers B̃
subu_m0 0010 Subtraction of two unsigned numbers B
subu_m1 0011 Subtraction of two unsigned numbers B̃
mult_m0 0100 Multiplication of two unsigned numbers B
mult_m1 0101 Multiplication of two unsigned numbers B̃
mult_read_m0 0110 Get the multiplication result B
mult_read_m1 0111 Get the multiplication result B̃
modu_read 1000 Get result from the last reduction process -
prop_read 1001 Get the value from propagate register -
bcas_read 1010 Get the value from broadcast bus -
no_operation 1011 Perform no operation; idle -
multiply 1100 Multiplication of two unsigned numbers -
mult_accum_p 1101 MAC an unsigned and the propagate register -
modu_bcas_m0 1110 Do partial reduction on broadcast bus B
modu_bcas_m1 1111 Do partial reduction on broadcast bus B̃

Table 3.6: Available RNS core instructions and their opcodes.

The first six instructions addu_m, subu_m and mult_m perform addition, subtraction and
multiplication of two operands respectively. The result is reduced based on the moduli set
chosen (m0 or m1) and written to the register located at wr_addr. Each of these instructions
takes multiple cycles to complete and does not use any form of pipelining.

The five read instructions are used to read data from intermediate registers in the RNS core
and write them to the register file. All read instructions ignore the rd_addr1 and rd_addr2
fields, as nothing is read from the register file. The two mult_read instructions also perform
reduction using one of the two RNS bases and are used to transfer data from the multiplier.

Instructions no_operation, multiply and mult_accum_p are executed in one cycle. The
no_operation is mostly used internally as it is inserted when none of the other operations is
scheduled. It is also useful for halting the RNS cores when the redundant core is busy doing
the computation and broadcast of correction factor β. The multiply and mult_accum_p
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instructions are provided to accelerate the base extension loop and are fully pipelined. Where
multiply uses two registers as input operands, is mult_accum_p connected to one register
and the propagate register. The latter also accumulates values instead of overwriting them
in multiplication result register t.

Finally, the two modu_bcas_m instructions are used to convert 4096-bit binary numbers to
RNS representation. Using a form of iterative reduction the operand is streamed in chunks
of 16 bits and reduced sequentially from MSB to LSB. When reduction completes, the
instruction modu_read is used to move the result to the register file.

3.7 Exponent calculation

The design of the RNS cores is used to perform Montgomery multiplication. However,
repeated use of that algorithm is needed to get exponentiation. So additional hardware is
needed to process the RSA exponent e and control the RNS cores. Algorithms 1 to 3 show
that for each bit in e a square is always performed. Depending on which bits are set in the
current window this could be followed by a multiplication with a precomputed value.

For computation of xe mod n by repeatedly calculating ab mod n, this means that operand
a is the working variable with initial value x. Operand b then either is equal to a (for
squaring) or a precomputed multiple of x. Choosing which value is used for b in hardware
means implementing branching. This feature was deliberately kept out of the RNS cores to
reduce complexity and area usage. So processing of exponent e has to be done using some
logic outside of the RNS core complex.

In practice the RSA processor design will be used as a peripheral, so it can work together
with the Central Processing Unit (CPU) of the main system. General purpose CPUs always
contain some form of branching, so the decision making required for performing exponenti-
ation can be moved to the CPU. Now the RSA processor does not need information about
the exponent, it just needs to know which registers should be used for the multiplication.

Assuming that a general purpose CPU is slower than the system of optimized RNS cores, the
instructions used to execute Algorithm 9 are embedded into a read-only memory program.
Using an extra circuit to replace certain registers from this program with others, makes it
possible to switch the values for operand b. Usage of an embedded program results in a
much higher frequency of the system, as instructions can be generated at the same speed as
the RNS cores operate on. The slower CPU has time to carefully inspect exponent e and
decides which multiplication has to be done in the next step, while the RSA processor is
busy performing one round of Montgomery multiplication.

The block that is responsible for generating the instructions needed to perform RNS Mont-
gomery multiplication is called MontMult Program. An overview of the architecture is given
in Fig. 3.3. It shows the main building blocks of the system and the connection between the
CPU and RNS cores. Also the location of the multiplication program is shown.
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Figure 3.3: The RSA processor is connected as peripheral to a CPU.

As a peripheral, the RSA processor has become quite generic. It might be possible that other
encryption algorithms are also able to use this architecture. Finding those algorithms is out
of the scope of this thesis, but it is something that can be done in future research. The RNS
cores have their own instruction set, but an additional pseudo-instruction set is created for
usage of the MontMult Program block. This layer of instructions has the following goals:

1. Perform one round of RNS Montgomery multiplication with specified registers
2. Bypass the program and execute an instruction directly on the RNS cores
3. Bypass the program and execute an instruction directly on the redundant core
4. Load an immediate value to a specified register location on all RNS cores

These four goals can be encoded using two bits and can be called from the CPU. The
bus protocol used for communication between the processor and the RSA peripheral will be
AXI4-Lite, which is commonly used in FPGA designs. To support usage with 32-bit processor
architectures, the data lines of the bus will have a width of 32 bits. The instruction width
used for the four features is also set to 32 bits, to ensure it fits in one data packet.

For one round of Montgomery multiplication (1), there are six registers needed as inputs.
One pair of registers is needed for the operands a, b and n to represent these values in RNS
base B and B̃. However, 32 − 2 = 30 bits divided by six gives a maximum of five bits per
register address. As the registers are used for accessing the precomputed multiples of x for
the exponentiation, they should be able to use at least 256 memory locations. That would
require eight bits per register address and does not fit six times into the available vector.

The solution is to set a constant location offset between the two registers in a pair. This
allows to double the number of address bits per register, as they only are specified for the
registers in RNS base B. Location of the values for B̃ are computed by adding a constant
value to the address. Another optimization is to assign the registers for a to a fixed location.
When performing exponentiation, there always are two registers that hold the intermediate
values. This prevents the need of copying the values for a to a location that won’t be
overwritten after execution of one Montgomery multiplication.
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Using two bits 00 to denote feature (1), the format for RNS Montgomery multiplication is:

31 30 29 16 15 8 7 0

00 reserved b n

Instruction format for mont_mult.

Features (2) and (3) are actually a wrapper for the instruction format defined in Section 3.6.
However, that instruction format contains 31 bits while here only 30 bits are available. This
can be solved by hardwiring the MSB from the second read address line to zero. Now the
instruction format contains one bit less and therefore fits into 30 bits. Using bit values
01 and 10 to select between the RNS cores and the redundant core, the two encapsulated
pseudo-instructions are:

31 30 29 26 25 17 16 8 7 0

01 opcode wr_addr rd_addr1 rd_addr2

Instruction format for core_instr.

31 30 29 26 25 17 16 8 7 0

10 opcode wr_addr rd_addr1 rd_addr2

Instruction format for redu_instr.

Lastly, feature (4) requires its own instruction format to allow setting immediate values in
the RNS cores. The redundant core is included when executing this instruction, as the result
can always be zeroed by invoking an extra call to redu_instr if needed. From the 30 bits
available, nine bits are used for the write address line. The remaining bits are used to set
the immediate value and the format is:

31 30 29 21 20 0

11 wr_addr immediate value

Instruction format for load_imme.

During execution of the RSA encryption/decryption, the mont_mult instruction is used to
perform Montgomery multiplications, instructions core_instr and redu_instr are used to
copy precomputed values to the correct memory locations and load_imme is used to write
values of one to certain registers. Writing values of one to registers is needed for initialization
and to convert the residues from Montgomery form back to standard representation.
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3.8 RSA encryption/decryption

This section gives an overview of how one RSA operation is performed. The bullet point
icons show whether the statement is processed by the processor, RSA peripheral or both.

• Executed by the processor.

⋆ Executed by the RSA peripheral.

■ Control flow generated by processor, instruction executed by RSA peripheral.

One RSA operation, encryption or decryption of message/cipher X, is executed by as follows:

• Compute two 2048-bit random primes p and q.

• Compute RSA parameters modulus N and decryption key d from p and q.

• Precompute N ′ = |−N−1|M using EGCD.

• Precompute conversion factor C = M2 mod N .

• Write X, N , N ′ and C to the RSA peripheral.

• Decide on exponentiation method (sliding window or 2w-ary) and window size w.

■ Convert X to the Montgomery domain by multiplying with C.

■ Precompute multiples of X for the chosen window size w.

■ Initialize working registers 1 and 2 to a value of one on all cores.

■ Convert working registers 1 and 2 to the Montgomery domain by multiplying with C.

• Iterate over the exponent/decryption key and generate mont_mult instructions.

■ Initialize two used registers to a value of one on all cores.

■ Convert working registers 1 and 2 to standard representation by multiplying with one.

■ Signal the RSA peripheral that it should start its computation.

⋆ The RSA peripheral converts the RSA parameters to RNS and initialize the cores.

⋆ The RSA peripheral processes all instructions from the instruction FIFO.

• Wait until the RSA peripheral finishes its operations.

• Transfer the RNS residues of the result back to the CPU.

• Convert the residues from RNS to binary using CRT with precomputed weights.

• Result R̂ has range 0 ≤ R̂ < (k + 2)N , so perform one final reduction by modulo N .
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4 Implementation overview

This section will discuss the implementation of the design in logic using a top-down approach.
The top-level entity is the RSA peripheral, which consists of the RNS processor, RSA con-
troller, RSA loader, instruction generator, residue reader and some storage elements. Next,
we will inspect the RNS cores, redundant core and ring structure that connects them. And
finally, the implementation of an individual RNS core will be explained.

4.1 RSA peripheral

The top-level entity of the implementation is the RSA peripheral. Its detailed structure
is shown in Fig. 4.1. The peripheral provides an interface between the processor and the
RNS cores. The processor is expected to run at a different speed than the RSA peripheral.
Data transfers between clock domains can be tricky, so the clock domain transition is placed
at the storage elements. This simplifies synchronization, as FPGAs contain primitives for
FIFOs and BRAMs that support read and write ports in unrelated clock domains. Timing
constraints for these primitives are inserted automatically by the synthesis tools.
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Figure 4.1: Overview of the RSA accelerator AXI4-Lite peripheral.

The RSA controller is a Finite-State Machine (FSM) that controls the sequence in which the
RSA loader, instruction generator and residue reader are enabled. It also contains status
registers to provide information about the state of the RSA peripheral. Fig. 4.1 shows three
selectable 94-bit data streams to the RNS cores, which are a concatenation of the 32-bit
broadcast line and two 31-bit instruction streams. Depending on the state of the RSA
controller, it selects one of these streams to be processed by the system of RNS cores.
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4.1.1 RSA loader

The implementation of the RSA loader is shown in Fig. 4.2. Note that the BRAM is also
shown in Fig. 4.1, but in the design it is considered to be part of the RSA loader. The goal
of the RSA loader is to initialize the registers of the RNS cores with the proper values before
Montgomery multiplication can start. It is also used for the conversion of 4096-bit numbers
to the residue number system. The BRAM holds the initialization values and is used as
clock domain crossing between the AXI4-Lite bus and the RSA peripheral.
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Figure 4.2: Overview of the RSA loader component.

There are four precomputed values needed by the RNS cores before starting the multiplica-
tions. For calculation of xe mod n, values x and n are needed in the RNS cores. Exponent e
is not needed in the RSA peripheral, as it is processed by the CPU. The other two precom-
putations are derived from n, because it does not change during one RSA encryption round.
From Algorithm 9 follows that n is only needed in B̃ and n′ = |−n−1|M can be precomputed
in B. The latter is larger than 4096 bits, because of its relation to range M . The last initial-
ization variable follows from conversion to Montgomery n-residue representation, for which
“M2 mod n” is needed. An overview of the initialization values is given in Table 4.1.

Value Size (bits) RNS Base
x 4096 B and B̃
n 4096 B
M2 mod n 4096 B and B̃
n′ = |−n−1|M 4114 B̃

Table 4.1: Initialization values for the RSA peripheral.
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From Table 4.1, it follows that the initialization values have a memory requirement of at
least 513 storage entries of 32 bits. Conversion from binary to RNS is done by the reduc-
tion circuit available in each RNS core. By streaming the initialization values from the
BRAM to the RNS cores over the 32-bit broadcast line and invoking modu_bcas_m0 or
modu_bcas_m1 instructions, the large precomputed values are sequentially reduced to 34-bit
numbers. However, as the reduction circuit can only reduce using one modulo value, two
iterations are needed for values that need to be available in base B as well as in base B̃. So
by iterating twice over values x and “M2 mod n”, a total number of six binary numbers is
converted to RNS in the initialization phase of one RSA operation.

4.1.2 Instruction generator

The instruction generator is used to consume instructions from the CPU and generates new
instructions such that the RNS cores execute Algorithm 9. Its implementation is shown in
Fig. 4.3. Note that the instruction FIFO on the left side is the same as the FIFO depicted in
Fig. 4.1. The instruction stream needed to perform one Montgomery multiplication is stored
into a read-only memory (ROM), which allows for fast execution. The FSM uses a program
counter that keeps track of which instruction should be executed next.
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Figure 4.3: Overview of the instruction generator for RNS Montgomery Multiplication.

However, storing a compiled version of Algorithm 9 in ROM introduces a new problem.
Operands b and n of the mont_mult instruction contain different register addresses depending
on processing of the RSA exponent by the CPU. As those register addresses are stored
statically in the ROM, it means their value cannot be changed. A solution is found by
introducing the Register Replacement stage that replaces specific registers during runtime.
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Recall the four instruction formats defined in Section 3.7. The instruction FIFO contains
instructions using one of these formats, which can be distinguished by inspection of two
MSBs. Instruction decoding of this format is done by the FSM and it selects another state
based on the instruction. For Montgomery multiplication, 16 bits in the instruction are
output from the FSM to the Offset Addition. This stage decodes the input vector into
four address lines of nine bits each, according to the format of the mont_mult instruction.
Once the actual registers are known, they can be replaced in the program code. The RNS
Montgomery Multiplication program code can be found in Appendix A.3.

The other instructions that can be processed by this component are core_instr, redu_instr
and load_imme. These three instructions can be mapped directly to the instruction format
used by the RNS cores. So those instructions are processed by the FSM, using the bypass
paths for the broadcast and instruction lines. The bypass paths are delayed using three
register stages, to match the delay introduced by the MontMult Program block.

4.1.3 Residue reader

The goal of the residue reader is to transport the residues from the RNS cores back to the
main processor of the system. This is done after the RSA encryption/decryption step has
completed. An overview of its implementation is given in Fig. 4.4.
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Figure 4.4: The RSA reader is used to transfer RNS residues to the AXI4-Lite bus.

The FSM is responsible for generating instructions that let the RNS cores propagate their
residues around the ring structure to their neighbors. RNS core zero has its propagate
register connected to a neighbor, but also to the RNS residue port of the residue reader
component. After a certain number of cycles, depending on how deep the instruction pipeline
is, the requested residues appear at the RNS residue input. By timing this exact moment
with generation of the FIFO write flag, the residues can be stored in the output FIFO.

Fig. 4.4 shows that the residue reader FIFO has an output port of 34 bits wide. However,
this cannot be connected to the AXI4-Lite bus directly, as its size was previously determined
to be 32 bits. By assigning the lower 32 bits from the residue to one AXI address and the
upper 2 bits to a seconds address this is solved. Introducing an extra flag register read,

48



which is high for one cycle only when asserting it, the next value will be made available. The
downside of this approach is that for reading one residue, two reads and one write are needed
from the host CPU. However, this is not a problem as this process has to be completed once
per residue at the end of a modular exponentiation operation only.

4.1.4 Memory mapping

Connection of the RSA peripheral to the AXI4-Lite bus follows the addressing scheme given
in Table 4.2. These addresses are needed to give the CPU access to the registers of the
peripheral. Registers message, montgomr, modulus and mininvn1 are located in the BRAM
from the RSA loader component. The AXI4-Lite bus uses a data width of 32 bits per
transfer, larger regions can be written to by incrementing the address in steps of four bytes.

Address Size (bits) Register name Description
0x0000 4096 message RSA message or cipher
0x0200 4096 montgomr Initialization constant C = M2 mod N

0x0400 4096 modulus RSA modulus N

0x0600 4128 mininvn1 RSA minus inverted modulus N ′ = |−N−1|M
0x1000 1 start Assert to start RSA encrypt/decrypt
0x1004 1 finish Asserts when RSA operation is finished
0x1008 32 instruction Montgomery instruction stream
0x100C 32 residue_low 32 lower bits of last residue
0x1010 2 residue_high 2 upper bits of last residue
0x1014 32 residue_count Residues available for reading
0x1018 1 residue_next Get next residue and purge the last

Table 4.2: AXI4-Lite bus interface of the RSA peripheral.

Next, the start and finish registers are connected to the RSA controller. These are flags
used to start the encryption or decryption process and to signal back when it has finished.
The instruction register is write-only for the CPU and connected to the FIFO from the
MontMult Program block. It can be filled with instructions of the format from Section 3.7.

Finally, the registers residue_low, residue_high, residue_count and residue_next are
located in the residue reader component. As the AXI4-Lite bus is used for data transfers of
32 bits, the residue values of 34 bits are split up and assigned using two register addresses.
The lower part of the residue can be read from residue_low and the upper two MSBs of
the residue are available from residue_high. Also, the numbers of residues stored in the
output FIFO can be found in the residue_count register.
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4.2 RNS processor

The RNS processor is located on the right side of Fig. 4.1 and its implementation overview
is given by Fig. 4.5. It contains the ring of RNS cores, one redundant core, two instruction
decoders and one stream synchronization component called join. The purpose of join is
to provide synchronization between the RNS cores and the redundant core, when they are
executing two different instructions that do not take an equal number of clock cycles. This
results in two instruction streams behaving as one and that reduces the overall complexity.
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Figure 4.5: Overview of the RNS processor with two instruction decoders.

The decoder stage is an abstraction level for the timings associated with the instruction
that is executed. It contains definitions about when enable signals for arithmetic blocks or
registers inside the RNS core need to be enabled. All RNS cores in the ring execute the same
instruction, therefore one decoder is enough to control the whole ring. The redundant core
needs to execute different instructions than the RNS cores, so it has its own decoder stage.

4.2.1 Instruction decoder

The decoder consumes the instruction stream and generates the control signals needed for
the RNS cores to perform arithmetic functions. It is implemented using a finite-state ma-
chine with a different state for each of the sixteen possible opcodes. Recall the instruction
format defined in Section 3.6. Based on the opcode field, the number of computation cy-
cles associated with that opcode is loaded into a counter. Each clock cycle this counter
is decremented until it reaches zero and the next instruction can be processed. A circuit
of combinatorial logic determines which control signals should be raised, based on the cur-
rent state and counter value. These control signals consist of clock enables and multiplexer
selection bits. An overview of the signals can be found in Table 4.3.
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Signal name Bits Description
add_nsub 1 Select addition or subtraction
read_enable 1 Enable reading from register file
mult_enable 1 Enable multiplier operation
accum_enable 1 Enable multiply-accumulate operation
adder_enable 1 Start adder operation
write_enable 1 Enable writing to the register file
modulo_enable 1 Start modulo reduction
next_select 1 Select register connected to next core
mult_select 1 Select multiplier operand
modulo_select 1 Select RNS base to perform reduction in
reduce_select 1 Select modulo reduction operand
write_select 2 Select what is written to the register file

Table 4.3: Controls signals generated by the decoder stage.

Combination of the signals in Table 4.3 results into a 13-bit control vector. The signal vector
from the decoder to the RNS cores in Fig. 4.5 contains 72 bits and the control vector is a
part of it. The other 59 bits are the 32-bit broadcast signal and three 9-bit address lines
for the register file. Fig. 4.6 gives an overview of all signals connected to the decoder.
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Figure 4.6: Schematic view of the inputs and outputs from the decoder FSM.

Routing a 72-bit bus to 121 cores poses a design challenge, as all signals need to arrive at all
RNS cores within the same clock cycle. To ease placement of these paths, several register
stages are inserted to enable long travel distances across the FPGA chip. This gives more
degrees of freedom for the placement and routing of the RNS cores. In the design of the
RSA peripheral, three clock cycles are needed for transporting the 72-bit signal to a core.

Not all control signals from Table 4.3 are relevant for all types of instructions. Each instruc-
tions has its own timings at which certain signals are set or reset. An overview of how the
control signals are mapped to an instruction can be found in Appendix A.4.
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4.3 RNS core

The RNS core is required to perform at least the following functions: addition, subtraction,
multiplication and reduction. These operations are mapped to hardware and combined with
a register file for storage of the variables and precomputed constants. The schematic overview
of the RNS core is given in Fig. 4.7. Multiplexers are used to select which value is written
to the register file, is propagated to the next RNS core or is input to the reduction stage.
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Figure 4.7: Implementation overview of one RNS core.

Each of the arithmetic functional blocks also has an enable input port. This is not shown in
the schematic, as only datapaths are visible and not the control signals. The register file has
one write port and two read ports, so that instructions with a maximum of three operands
can be processed. As the RNS cores are connected to each other in a ring, each core has
two neighbors. Each core has its next_core output connected to another core’s prev_core
input. The propagate register ensures that the number of logic elements in the ring is kept
low and allows to run on higher frequencies. This path is used for transporting the values
that are shared between the cores for performing the RNS base extensions.

The multiplexer between the multiply-accumulate and the modulo reduce blocks is used to
select which value is reduced: the result of the multiplier or the loop-back path from the
reduction unit combined with the broadcast_in signal. The latter is used for conversion of
a large binary number split in chunks to the RNS residue needed for that core.
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4.3.1 Register file

The register file is used for storing precomputed
constants and working variables. When using a
FPGA from the Xilinx Ultrascale series, the reg-
ister file is mapped to one RAMB36E primitive. An
overview of the inputs and outputs from the reg-
ister file is given in Fig. 4.8. Note that the clock
input is not drawn.
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Figure 4.8: Input and outputs of the register file.

The register file has an addressable depth of 512
entries containing 34 bits each. Most locations are
reserved for storing precomputed values, which is
shown in the lower half of Table 4.4. The upper
half of the memory is used for storing multiples of
the input x in the computation of xe mod n. Re-
maining locations are reserved for execution of the
Montgomery multiplication algorithm.

Which multiples of x are stored in the register file,
depends on the exponentiation algorithm chosen.
Table 4.4 shows the assignments for use with 2w-
ary exponentiation. For sliding window exponen-
tiation, even powers of x are not stored so either
the amount of memory locations is halved or the
window size w can be increased by 1 bit.

Location Description
0 Hardwired to zero
1 Temp register t0
2 x1

3 (x1)
2

... ...
127 (x1)

126

128 (x1)
127

129 |−n−1
1 |m1

130 |M2 mod N |m1

131 Free
132 Free
133 Temp register t2
134 Temp register t1
135 x122

136 (x122)
2

... ...
260 (x122)

126

261 (x122)
127

262 n122

263 |M2 mod N |m122

264 Free
265 Free
266 |M−1

1 |m1

267 |M1|m122

268 |M2|m122

... ...
386 |M120|m122

387 |M121|m122

388 |M−1
122
˜ |m122

389 |M̃ 122|m1

390 |M̃ 123|m1

... ...
508 |M̃ 241|m1

509 |M̃ 242|m1

510 |M̃ |m1

511 |M−1|m122

Table 4.4: Register binding of the
first RNS core for 121 cores in total.
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4.3.2 Modular addition

Modular addition and modular subtraction are performed by the Modulo Addition module.
Its schematic overview is given in Fig. 4.9. The mod_sel signal is used to select which of the
two modulo values is used for performing the reduction. Each RNS core is associated with
two residues, so modular reduction is performed with two possible values as the modulo.
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Figure 4.9: Implementation overview of the modular addition/subtraction unit.

Input operands operand1 and operand2 are connected to the register file. Values written
to the register are always reduced by the currently selected modulo, so the input operands
are already reduced. This means that for modulo n, addition of two values gives a results
smaller than 2n. To ensure this result is smaller than n a trial subtraction is performed.
If the trial subtraction gives a negative result, it was not needed and the result from the
addition is selected as the output value. Otherwise, the trial subtraction was needed and
that result is selected by the multiplexer. To determine if the value is negative, the sign bit
is used and connected to the select line of the multiplexer.

The subtraction circuit works similarly. First step is a signed subtraction of the inputs. Based
on the sign bit of that result, addition is performed to ensure a positive value. Finally, a
multiplexer selects the result that was requested based on the add_nsub signal. The inputs
and outputs of Fig. 4.9 are registered to ensure timing is met. Two cycles are needed for
propagation over the critical path, which is configured using a multi-cycle-path constraint.
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4.3.3 Multiply-accumulate

In order to perform multiplication four Xilinx DSP48E2 blocks are utilized. Manual instanti-
ation of these blocks allows to also function as multiply-accumulate stage. Multiplication of
two 34-bit unsigned values A and B is done by splitting these values into parts of 17 bits and
then multiplying these parts with each other. This is needed, as the maximum symmetric
input operand size for multiplication with one DSP block is 17 bits. Fig. 4.10 shows the
schematic overview of how the DSP blocks in the 34-bit multiplier are connected.
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Figure 4.10: Implementation overview of the multiplication unit.

Each DSP block uses two register stages to perform the multiplication and one register stage
for summation of the partial products and cascade input. Carry propagation from the right
to left takes four cycles and for this the cascade outputs of the DSP blocks are used to save
routing resources. These cascade inputs are shift right 17 bits where appropriate. The total
propagation time for performing one multiplication of two 34-bit operands is seven cycles.

The setup of Fig. 4.10 also enables for a multiply-accumulate function, as parts of the DSP
blocks can be reconfigured during runtime. An extra input signal enable_accum is added
to allow accumulation of the results. Assertion of this signal disconnects the cascade inputs
and reconnects the DSP block output register to its internal addition chain. Now new
multiplication results are added to the current output of the DSP block and the multiply-
accumulate functionality is enabled. Carry propagation is reactivated automatically again
after no new multiplications are input for two cycles.

Output port C of the multiplier is larger than twice the size of the operands to allow for
writing the accumulated value. The multiply-accumulate operation is only used during the
two base extension phases of the algorithm. As the RNS processor ring contains k = 121
cores, the maximum number of consecutive accumulate operations also is equal to 121. The
maximum output size therefore is ⌈68 · log2(121)⌉ = 75 bits, as discussed in Section 3.4.
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4.3.4 Modular reduction

The theory from Sections 2.4.3 and 2.4.4 provides two approaches for designing a circuit that
performs modular reduction. A 75-bit input operand needs to be reduced by one of the two
possible moduli from the RNS base and that results into one 34-bit output. The first design
is a combinatorial circuit that uses lookup tables and an addition tree for summation of the
partial reduced values. Implementation of tree-based reduction is shown in Fig. 4.11.
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Figure 4.11: Implementation overview of the tree reduction unit.
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According to the theory from Section 2.4.3, the input operand is split into multiple segments.
The segment size should not be too large, as that results in very big lookup tables. But it
should not be too small either, because that increases the critical path delay because of the
additional adders needed. A good trade-off is given by a segment size of six bits, which
results into the requirement of ⌈(75− 34)/6⌉ = 7 lookup tables and eight adders.

To make the critical path shorter, the addition chain can be converted into an addition
tree. The need of using eight adders is optimal as it is a power of two and that maps nicely
to a binary tree. Disadvantage of this method is that it increases the required amount of
hardware resources. How the addition chain is replaced by a tree is shown in Fig. 4.12.
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Figure 4.12: Addition tree implementation that shortens the carry propagation path.

The circuit in Fig. 4.12 is called the first reduction stage, as that reduces the input operand
from 75 bits down to 37 bits. But the goal is a reduction to 34 bits, so a second reduction
stage is needed. Fig. 4.11 also shows the second stage, which is just a look-up table containing
16 entires of 34 bits. Note that the mod_sel is also input as MSB in the address line of the
lookup tables, which is used to select between two possible modulo values. The second
reduction stage reduces an input of 37 bits down to 35 bits, as that is the result of one
addition with two 34-bit values.

Finally, after the second stage, a trial subtraction is used for the reduction of bit 35. This
step cannot be done using a lookup table and addition, as this addition could again result
into a 35-bit value. Also, the result can be smaller than 35 bits, but larger than the modulo
of 34 bits we are reducing to. In this case a lookup cannot be done, as there is no overflow
bit. An extra check is included in the simulation model to ensure one subtraction of the
modulo from the 35-bit value results into a modulo n reduced result.

57



Following the method discussed in Section 2.4.4 results into the second design for a reduction
circuit, but now it is an iterative solution. Instead of using lookup tables for all bits above
bit 34, only one table is used and the partial reduced result is shifted to the left. An FSM
with sixteen states is used to keep track of where in the reduction process the circuit is,
which value should be loaded into the adder and how many bits the sum register should be
shifted. The schematic overview of the iterative reduction circuit is shown in Fig. 4.13.
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Figure 4.13: Implementation overview of the iterative reduction unit.

The block “Reduce by trial subtraction” is responsible for reduction of 35-bit value from the
sum register to the 34-bit final result. Its performs a signed subtraction with the selected
34-bit modulo m and checks if the result has its sign bit set. When the sign bit is set, it
means that the subtraction was not needed and the value prior to subtraction is propagated
to the output. If the sign bit is not set, the subtracted value is propagated to the output.
However, subtraction of m from sum number does not ensure that the result is smaller than
m. In order to find out whether this is true, an upper bound on sum should be known.

The value written to the sum register is the result of the addition of a 34-bit number and a
value from the lookup table. So the maximum value stored in sum is equal to 234 − 1 plus
the maximum value stored in the lookup table. From Section 2.4.4 follows that this lookup
table contains precomputed values generated by the equation T[i,m] = i · 234 mod m.
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The ROM shown in Fig. 4.13 uses five bits from the shifters output, so the table contains
32 entries for each modulo value and 0 ≤ i ≤ 31. Next, a list of moduli is compiled from
Appendices A.1 and A.2 and that enables computation of max(T). Using a Python script
with the list of the moduli, the value for max(T) = 161603 was found by calculating:

max(i · 234 mod m) for 0 ≤ i ≤ 31 and m ∈ (B, B̃)

In order to reduce the 35-bit value of sum to a 34-bit number smaller than m using one
subtraction, the sum register should contain a value smaller than 2m. The maximum value
stored in the sum register is equal to max(sum) = max(T) + 234 − 1 = 17180030786. From
the list of moduli follows that the smallest value is min(m) = min(B, B̃) = 17179863971. As
equation max(sum) < 2 · min(m) holds, it proves that for all possible m also is given that
max(sum) < 2m. This property proves that the sum register can be reduced modulo m using
one subtraction only, after execution of a table lookup.

The FSM of the iterative reduction circuit is responsible for its operation. An overview of
the possible states is given in Table 4.5. The state machine is executed sequentially, which
means that the table is traversed from top to bottom. Each state is executed in one cycle,
except for the s_idle state, which is used to wait for the reduction enable signal from the
instruction decoder. After power-up the state machine also starts in the s_idle state.

State Multiplexer Shift Description
s_idle ROM lookup 0 Wait for enable signal, then sample inputs
s_step0 (74 downto 68) 0 Add bits 74..68 from the operand
s_step1 ROM lookup 4 Reduce bits 74..70
s_step2 ROM lookup 3 Reduce bits 70..67
s_step3 (67 downto 34) 0 Add bits 67..34 from the operand
s_step4 ROM lookup 4 Reduce bits 67..63
s_step5 ROM lookup 4 Reduce bits 63..59
s_step6 ROM lookup 4 Reduce bits 59..55
s_step7 ROM lookup 4 Reduce bits 55..51
s_step8 ROM lookup 4 Reduce bits 51..47
s_step9 ROM lookup 4 Reduce bits 47..43
s_step10 ROM lookup 4 Reduce bits 43..39
s_step11 ROM lookup 4 Reduce bits 39..35
s_step12 ROM lookup 2 Reduce bits 35..33
s_step13 ROM lookup 0 Extra reduction step to ensure sum < 234

s_step14 (33 downto 0) 0 Add bits 67..34 from the operand

Table 4.5: FSM states of the iterative reduction circuit.
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5 Benchmark results

The design described in Sections 3 and 4 is synthesized using Xilinx Vivado 2018.2 with
a clock frequency of 400 MHz. Interfacing with the design is done using an already exist-
ing UART component with an AXI4-Lite master output port. This allows for performing
benchmarks with the RSA peripheral without needing a dedicated processor in the FPGA.
As a development platform the HTG-K816 board from HiTech Global is used. It contains
the XCKU035 FPGA from Xilinx with speed grade -2. The board is shown in Fig. 5.1.

Figure 5.1: The HTG-K816 prototyping board from HiTech Global.

5.1 Area usage

Two designs are synthesized: one using the iterative reduction circuit from Fig. 4.13 and the
other using the tree reduction circuit from Fig. 4.11. The reason two designs are used for
an implementation is that an interesting trade-off between performance and area usage is
expected. Both designs are placed and routed without timing violations. Synthesis of the
design results in the area usage given by Table 5.1. In terms of LUTs, the tree design is
twice as large as the iter design. Whether this is acceptable depends on the maximum area
requirements and the target FPGA platform, but for the XCKU035 it is not an issue.

Design LUT FF BRAMs DSP
iter 41857 62459 132.5 485
tree 83484 57782 132.5 485

Table 5.1: Area usage for the designs using the tree or iterative reduction circuit.

60



5.2 Performance

Due to time constraints it was not possible to connect the RSA peripheral to an existing CPU
core, so the benchmarks reflect the computational time of the RSA peripheral only. This
is not equal to a complete RSA encryption/decryption. However, as most of the operations
are executed on the RSA peripheral it still provides a good performance estimate. Another
difficulty is that the duration of decryption depends on the value of the decryption key.
Besides the fact that this allows for side channel analysis possibly leaking the private key, it
makes obtaining a realistic benchmark not equal to performing only one RSA decryption.

So for the benchmark a script has been written that generates 100 random RSA private keys
and using those the decryption is performed. For each of those private keys, the number of
cycles that the RSA peripheral needs to complete its computation is measured. This is done
for sliding window and 2w-ary exponentiation using all possible window sizes. The average
number of cycles for all benchmarks is calculated and the results are shown in Fig. 5.2.
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Figure 5.2: Benchmark of modular exponentiation for 100 randomly generated 4096-bit decryption keys.

Using a 99%-confidence interval, the largest margin of error is less than 5000 cycles. Since the
margin of error is almost three orders of magnitude smaller the number of cycles, it means
that the computed averages are fairly accurate. Taking more samples into the average would
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not change the results significantly. The margin of error is the largest for a window size
of w = 1, which is equal to using binary exponentiation. That makes sense, as for larger
window sizes the probability of finding a window containing only zeros gets smaller. This
results into a smaller standard deviation in the number of cycles for larger window sizes.

To enable comparison with other designs, it is easier to use the amount of time instead of the
number of cycles. Taking the results from Fig. 5.2 and converting those into a time duration
value gives Table 5.2. The windows size for the exponentiation methods is limited by the
available memory space in the register file of the RNS cores.

Window size
w (bits)

Execution time (ms)
Sliding window tree Sliding window iter 2w-ary tree 2w-ary iter

1 6.68 8.90 6.68 8.90
2 5.94 7.92 6.12 8.16
3 5.57 7.43 5.76 7.68
4 5.36 7.14 5.52 7.35
5 5.22 6.96 5.35 7.14
6 5.13 6.84 5.26 7.01
7 5.09 6.78 5.23 6.97
8 5.10 6.80 - -

Table 5.2: Average duration of modular exponentiation for 100 random 4096-bit decryption keys.

Section 3.5 explains that the largest window possible size for 2w-ary exponentiation is w = 7.
This gives a maximum window size for sliding window exponentiation of w = 8, as that
requires half the number of precomputations. However, from Table 5.2 it follows that taking
a window this large is actually slower than using w = 7. This behavior has already been
predicted in Section 2.3.3, but it is good that the benchmark results confirm it.

Verification of the functional behavior is proven by running regression tests with the design
loaded into the FPGA. However, in the design phase the functionality of separate parts
was verified by simulation. To speed-up development, testbenches are written in Python
and executed using cocotb, which is a library that interfaces with the VHDL simulator.
This approach enables co-simulation of a software implementation and the VHDL design.
Simulation results give the execution time for a Montgomery Multiplication in RNS with
4096-bit operands, which is shown in Table 5.3.

Design Cycles Duration (µs)
iter 577 1.4425
tree 434 1.0850

Table 5.3: Execution of one Montgomery Multiplication in RNS on the RSA peripheral.
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5.3 Remarks

The time duration during the benchmark does not include some of the computations that
the CPU needs to perform. Including these tasks would give a better overview of the total
time needed to run one RSA decryption. The first two steps are only for the key generation
process and can be omitted if keys are available. The CPU tasks blocking the RSA peripheral
from starting are:

• Computation of two 2048-bit random primes p and q.

• Computation of modulus N and decryption key d.

• Computation of N ′ = |−N−1|M using EGCD.

• Computation of conversion factor C = M2 mod N .

• Transfer X, N , N ′ and C to the RSA peripheral over the AXI4-Lite bus.

Processing of the decryption key and generation of mont_mult instructions by the CPU can
be done in parallel with the RSA peripheral executing those mont_mult instructions. Also,
after the RSA peripheral finishes operation some final processing by the CPU is needed:

• Transfer the RNS residues of the result back to the CPU over the AXI4-Lite bus.

• Convert the residues from RNS to binary using CRT with precomputed weights.

• Result R̂ has range [0, kN) so one final reduction by modulo N is performed.

As the duration of one RSA decryption cannot be determined without the processor, com-
parisons with other designs focuses on execution of a single Montgomery Multiplication.
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5.4 Comparison

In existing literature it is difficult to find existing implementations of 4096-bit Montgomery
Multiplication. Most papers discuss the duration of one multiplication using 1024 bits
operands or less. But the proposed design scales better with larger operand sizes, so it
would be unfair to compare it with solutions processing less than 4096 bits. However, some
papers were found that discuss a 4096-bit operation. An overview is given in Table 5.4.

Design Platform Frequency (MHz) Cycles Duration (µs)
[34] Architecture 1 XC2V6000 116.4 4352 37.397
[35] Compact arch. Virtex-7 210.08 17507∗ 83.333∗

[36] Radix-8 Booth EP4SGX230 337.72 5465 16.18
[this work] iter XCKU035 400.0 577 1.4425
[this work] tree XCKU035 400.0 434 1.0850

Table 5.4: Comparison of Montgomery Multiplication using 4096-bit operands.

Comparison with other implementations is not always fair, because FPGA technology still
improves every year, which allows for higher frequencies and therefore improved performance.
It would be interesting so see the benchmarks results of the other implementations using the
same technology, but unfortunately that is not possible since the sources are not available.

Another paper discussing the implementation of 4096-bit Montgomery multiplication is [37].
However, in table 2 the duration for 4096 bits is not mentioned, so it cannot be included in
Table 5.4. If the number of multiplications is known the duration of a multiplication can be
computed from the results for exponentiation. But since many different FPGA platforms
and design frequencies are used, the results in tables 2, 3 and 4 cannot be compared with
each other. Additionally, sliding window exponentiation is used, but the window size is
not mentioned, which makes it impossible to compare the results from this paper to the
implementation discussed in this thesis.

∗Derived assuming 4096 iterations of two parallel Montgomery multiplications per exponentiation.
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6 Conclusion

Acceleration of modular exponentiation using a FPGA platform is a valid strategy for achiev-
ing increased performance on an embedded platform. The main goal of this thesis was to
design an accelerator that offers great performance, while still keeping the area usage rela-
tively low. Usage of RNS Montgomery multiplication combined with the Bajard and Shenoy
base extension algorithms are key building blocks for the design. Two designs are presented:
tree contains a tree-based reduction circuit and iter has an iterative reduction circuit. The
first design performs a Montgomery multiplication in 434 cycles and the second in 577 cycles.
However, the tree design requires twice as many LUTs in comparison the iter design.

If these extra area requirements are acceptable depends on whether the extra performance
is needed. From the results it follows that area usage is quite large, but considering that
the iter design contains 121 identical RNS cores, this means that each core uses less than
340 LUTs. A RNS core contains a 34-bit modular adder/subtracter and a modulo circuit
providing reduction from 75-bit to a 34-bit number. Combined with a number of multiplexers
that also consume LUTs, this result is still an achievement.

6.1 Future work

Although the proposed design works properly, there are still many ways to improve the
architecture. These improvements will increase the performance or reduce the area usage,
with the latter being the main disadvantage of the design. The following sections propose
some ideas for refining the design.

6.1.1 Benchmark complete RSA operation

The current design is able to perform a full exponentiation using multiple iterations of
Montgomery multiplication. However, the benchmarks only include the computational time
spend by the RSA peripheral. Part of the tasks required to perform one RSA encryption or
decryption are performed by a central processing unit that is expected to be available in the
system. To allow for comparison with other solutions for a RSA operation, a system should
be synthesized that includes the CPU. Once this system is available, new benchmark scores
can be measured that should give a better overview of the practical performance.

6.1.2 Update redundant core decoder

The instruction decoder used for the redundant core is currently equal to the decoder for
the RNS cores. This makes sense, as it should be able to execute the same instructions.
However, as the redundant core performs reduction by a power of two, it does not contain
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either the iterative or tree reduction circuit. Performing a right-shift operation is enough to
perform reduction. By introducing a decoder specifically for the redundant core, the cycles
where it is currently waiting for the reduction to finish could be removed.

6.1.3 Addition of second finish flag

The current design requires that the processor finishes processing the exponent or decryption
key before the RSA peripheral can start working. Although the start flag of the peripheral
can be raised before completing the generation of mont_mult instructions, there is a chance
that the FIFO containing the instructions for the RSA peripheral gets empty before the
processor finishes execution. When the FIFO is empty, the state machine in the peripheral
activates the Residue reader and stops processing mont_mult instructions. The processing
of the exponent is fast, but when the program is paused due to a context switch and the
RSA peripheral continues working, the FIFO could get empty. As a safety precaution, the
start flag is raised after processing the exponent.

By introducing an extra flag register in the RSA peripheral, the CPU could signal that it
is done writing mont_mult instructions. The Instruction generator now has to wait on
both the FIFO being empty and the processor finish flag to be set before signaling it is done
to the RSA controller. This way, even though the process on the CPU could be paused
anytime, the RSA peripheral will wait properly for new incoming instructions. Then the
start flag of the RSA peripheral can be raised right after writing the initialization constants,
increasing the total performance.

6.1.4 Introduce second redundant core

Recall the RNS processor overview from Fig. 3.2 and the scheduled example program for
Montgomery multiplication from Table 3.2. The system uses a redundant core ReduCore1
for two purposes: generation of intermediate result q̂r and calculation of correction factor β.
Both values are needed to properly execute Shenoy base extension. During computation and
transfer of β, all RNS cores are running idle as they require the correction factor before they
can can continue. This is also shown by the MontMult program from Table A.1 as there exist
a lot of no_operation instructions in the left column. Evidently, idle time is not useful.

Table 3.2 shows that during both base extensions, the redundant core accumulates the values
being passed around on the ring. Introducing a second redundant core ReduCore2 and
attaching that to the opposite side of the ring could speed up this process. Now both
redundant cores only have to accumulate half the number of values from the ring. Next,
ReduCore2 writes its accumulated result to the next_core output. By connecting this port
to the input of the register file in ReduCore1, the value can be transferred. Only one modular
addition of the received value and the accumulated value in ReduCore1 is needed to get result
q̂r. This can be done before the Bajard base extension completes on the RNS cores.
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The same process can be performed during the Shenoy base extension, to speed up the
calculation of g (line 20 of Table 3.2) on the redundant core. Introduction of a second
redundant core makes that the value for g is available in about ⌈k/2⌉ = 61 cycles for a
system with k = 121 cores. From this it follows that ReduCore1 now has 121−61 = 60 cycles
available for computation and broadcasting of β, which should be realistic as that currently
takes 43 cycles. Using an extra redundant core ReduCore2 will eliminate all no_operation
instructions performed by the RNS cores, although some extra area is needed for that. This
change is expected to save around 20 cycles per Montgomery multiplication.

6.1.5 Compute modular inverse in RNS

From Section 5.3 it follows that some operations for performing a full RSA operation are ex-
ecuted on the processor. Out of this list of operations, the one for which the most arithmetic
operations is likely needed is the computation of N ′ = |−N−1|M . In order to solve N ′, the
processor needs to perform modular inversion of two numbers a few bits larger than 4096
bits. One method of performing modular inversion is using the Extended Greatest Common
Denominator EGCD algorithm. Assuming that the processor runs at a lower frequency than
the RSA peripheral, this may even take longer than a 4096-bit modular exponentiation.

Therefore it would be good to move this computation to the peripheral, but some modi-
fications are required before it is able to perform modular inversion in RNS. An iterative
approach like using the ECGD does not map to the RSA peripheral, as it does not contain
instructions for performing division. Also, the RSA peripheral containing 121 cores with dif-
ferent moduli values, modular inversion using ECGD does not take an equal amount of cycles
per core. As all RNS cores are connected the same instruction line, so it is not possible to
let the cores execute different instructions.

Luckily there is a paper [38], which provides inspiration for a solution. Instead of using ECGD,
Fermat’s Little Theorem (FLT) could be used. FLT says that the modular inversion of a
with respect to p with p prime can be computed by calculating |ap−2|p. So instead of division,
we perform modular exponentiation and that exactly is what the RSA peripheral is made
for. Since all moduli in B are prime FLT can be used to compute the modular inversion with
respect to M . Conversion of −N to RNS base B gives resides |−ni|mi

. Substitution of these
residues in FLT gives a formula for the modular inversion that can be solved in parallel:

modinv(−ni,mi) = |−n−1
i |mi

= |−nmi−2
i |mi

for i ∈ {1, ..., k = 121} cores (6.1)

However, there is a problem with this method, because the values p = mi are different for
each core. Calculation of the exponent mi − 2, using binary exponentiation, would mean
that some cores should perform a multiplication in a certain cycle and others not, depending
on the value of their modulus mi. As all moduli in B minus two are values of 34 bits, the
maximum possible number of cycles is equal though. So a small modification to the RNS
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cores is proposed, which would allow the cancellation of the multiplication step in binary
exponentiation for when the current bit in the exponent is zero.

Each of the RNS cores is given a circular shift register containing the value mi − 2. A new
control signal mask_write_en is added to the set from Table 4.3 and connected to the clock
enable of the circular shift register. This signal is also combined with the write_enable of
the register file using combinatorial logic. When mask_write_en asserts, the write_enable
is routed through an and gate with the MSB of the shift register. It gives the ability to
cancel the write-back of an operation to the register, based on a bit from exponent mi − 2.

Next, an additional instruction is needed to flag multiplications with this new control signal.
Recall the instruction set in Table 3.6, from this set the instruction read_prop is never
used. By replacing this instruction with a regular multiplication that performs reduction
by mi, the new functionality can be enabled. This new instruction is called mult_m0_mask,
which performs exactly the same sequence as mult_m0, but has the mask_write_en flag
asserted. Now issuing a sequence of exactly 34 normal multiplications for squaring and 34
multiplications that can be canceled, results in the modular inversion of a register.

6.1.6 Reducing block RAM usage

From Table 5.1 it follows that the number of BRAMs used in the design is quite large. Most
BRAMs are used as register file for the RNS cores. The design contains k = 121 cores and
each of them uses one RAMB36E2 primitive. Each of these primitive contains 1024 entries for
storing data when using a word size of 34 bits [32]. However, from Section 3.5 follows that
the maximum number of storage locations used is 512. This means that only half of the
available memory is used and potentially the number of BRAMs can be halved.

However, the utilized synthesis tools only use a RAMB36E2 primitive instead of a RAMB18E2.
The reason is that the register files use two independent read ports of 34 bits width and that
is not supported by the RAMB18E2 primitive. A solution for reducing the memory footprint is
to replace the true dual port register with a single port one. Then a smaller BRAM primitive
can be used for each register file, halving the required number of memory blocks. Of course
this has impact on the performance, as many operations require two operands. But this can
also be implemented using an extra register stage to store the first memory lookup and then
reading the second operand in the next cycle.

From Appendix A.3, it follows that not all computations require two operands, many use
zero for read_addr1. This property can be taken advantage of by adding a reset signal to
the control set from Table 4.3, which allows the lookup register to reset to zero when the
address also equals zero. It makes it so that only instructions using two operands of which
the first has a non-zero address incur an extra memory lookup cycle. Mapping this to the
MontMult program shows that only for 12 instruction this extra cycle is needed. So the usage
can be improved by replacing the register file with a single port variant and adding 12 cycles
per Montgomery multiplication.
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6.1.7 8K and 16K bits modular exponentiation

The design represents the intermediate values for the Montgomery multiplication using small
RNS residues of 34 bits each. This approach makes it easy to scale up the design for usage
with 8192 or even 16384-bit operands. It would be interesting to see what the performance
of using those operands will be. The only limit is the amount of resources available on the
FPGA platform. Scaling up can be done by adding more cores and that will not influence
the frequency as those cores are only connected to their neighbors.

The number of cycles to perform one Montgomery multiplication using larger operands can
be estimated, as adding more cores only increases the duration of the two base extensions.
From Table 5.3 it follows that one Montgomery multiplication with the tree design takes
434 cycles. As the system contains k = 121 cores, there are 2·121 = 242 cycles needed for the
two base extensions. This leaves 434 − 242 = 192 cycles for the other computations, which
will not change as the number of cores increases. For 8192-bit exponentiation using 34-bit
moduli, a total of ⌈8192/34⌉ = 241 cores are needed. One Montgomery multiplication in this
system would then take 2·241+192 = 674 cycles. Correspondingly, 16384-bit exponentiation
will need 482 cores and a Montgomery multiplication takes 1156 cycles.

Next, Eq. (2.7) is used to find the optimal window size w = 8 and the expected average
number of multiplications. Using these values combined with the expected number of cycles
in one Montgomery multiplication, an estimation of the performance is given in Table 6.1.

Operand size Multiplications Total cycles Duration (ms)
8192 9466 6380084 15.95
16384 18678 21591768 53.98

Table 6.1: Estimated performance of RNS Montgomery exponentiation for 8K and 16K bits operands.

It should be noted that additional memory is needed for storing all the required precom-
puted constants used in the two base extensions. The optimal window size w = 8 is one
larger than for 4096-bit exponentiation, which doubles the memory requirement for these
precomputations. Although it is always an option to reduce the window size if the register
file cannot be made larger. In addition, the area usage will be a major problem, especially
when using the tree design.
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Acronyms

BRAM Block RAM
CPU Central Processing Unit
CRT Chinese Remainder Theorem
DSP Digital Signal Processing

EGCD Extended GCD
FPGA Field Programmable Gate Array

FSM Finite-State Machine
GCD Greatest Common Denominator
LSB Least Significant Bit
LUT Lookup Table

MAC Multiply-Accumulate
MM Montgomery Multiplication

MSB Most Significant Bit
MSD Most Significant Digit
RAM Random Access Memory
RNS Residue Number System

ROM Read-Only Memory
RSA Rivest Shamir Adleman
VPN Virtual Private Network
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Appendix

A Design parameters

A.1 RNS primes first base

For k = 121, the list of prime moduli mi = {m1, ...,mk} in B is given by
17179869107 17179869053 17179869019 17179868977 17179868903 17179868887 17179868873
17179868861 17179868833 17179868807 17179868759 17179868711 17179868681 17179868549
17179868521 17179868479 17179868437 17179868383 17179868357 17179868351 17179868317
17179868297 17179868249 17179868183 17179868087 17179867997 17179867937 17179867829
17179867807 17179867759 17179867721 17179867709 17179867571 17179867547 17179867493
17179867487 17179867423 17179867363 17179867333 17179867307 17179867301 17179867291
17179867219 17179867193 17179867141 17179867129 17179867057 17179866971 17179866931
17179866917 17179866883 17179866857 17179866833 17179866773 17179866727 17179866653
17179866569 17179866527 17179866421 17179866397 17179866359 17179866287 17179866241
17179866173 17179866163 17179866127 17179866071 17179866023 17179865993 17179865929
17179865887 17179865827 17179865819 17179865767 17179865753 17179865743 17179865701
17179865671 17179865609 17179865543 17179865503 17179865467 17179865453 17179865411
17179865401 17179865371 17179865317 17179865299 17179865257 17179865239 17179865119
17179865081 17179865063 17179865051 17179865029 17179864993 17179864979 17179864931
17179864841 17179864787 17179864763 17179864729 17179864717 17179864693 17179864609
17179864571 17179864529 17179864483 17179864447 17179864417 17179864379 17179864343
17179864327 17179864217 17179864211 17179864181 17179864147 17179864073 17179864043
17179864021 17179863971

The product of these moduli is range M =
∏k

j=1mi, which is given by
27377503024592940501810791217667313160033564808083247837747224295359531880235250061
81286003640993113496268702807278580245484913472570193701239931207739558631935155568
21211218111714656503311630079787301435753475957018586518480717295367357721781709032
09838040212212484716191951061604961883156272765053690086404111644830582188676028993
90148893078614671759599247798047505127794945448878163807095872730048441982728520875
79027393633522378691519007312725377951511403314747352208904232517542805187509269850
82817638580265850002381252587583805691315906333935164229801178588795296224184569153
72225319102817177116606085962230122388177965959700176478616021757567722658008270072
41153075856880675252073659233624372102587486676432610714760794305066382949414048870
80391120152611520484885216222547918472306769605178671202574475271558598637748898046
77265163479468169090638626678119742530653334085962136854832283009418335809400035088
53019153609642215657303497343155299792228312446899801637118860960649426403646795165
81884985254015225249550786408043840916115395532295754578943752434430184504668161469
25161720879009105139042994715168091220570379195502465005772101791939299264365958697
33845834203686379717782490228894995882540012394295541694200396804111471114091

For 4096-bit RSA encryption, range M should be able to contain numbers of

4096 + ⌈log2((k + 2)2)⌉ = 4096 + ⌈log2(15129)⌉ = 4096 + 14 = 4110 bits

Range M has a length of 4114 bits, so the required lower bound is satisfied.
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A.2 RNS primes second base

For k = 121, the list of prime moduli mj = {mk+1, ...,m2k} in B̃ is given by
17179869143 17179869071 17179869041 17179868999 17179868957 17179868899 17179868879
17179868869 17179868843 17179868809 17179868777 17179868729 17179868683 17179868597
17179868543 17179868513 17179868443 17179868429 17179868369 17179868353 17179868333
17179868309 17179868287 17179868243 17179868141 17179868081 17179867951 17179867909
17179867819 17179867781 17179867753 17179867717 17179867673 17179867567 17179867501
17179867489 17179867433 17179867421 17179867349 17179867321 17179867303 17179867297
17179867223 17179867217 17179867163 17179867139 17179867093 17179867049 17179866959
17179866923 17179866889 17179866881 17179866853 17179866787 17179866761 17179866667
17179866637 17179866553 17179866499 17179866401 17179866383 17179866323 17179866251
17179866217 17179866167 17179866157 17179866091 17179866049 17179866019 17179865977
17179865921 17179865849 17179865821 17179865777 17179865761 17179865749 17179865713
17179865693 17179865621 17179865581 17179865519 17179865477 17179865459 17179865431
17179865407 17179865399 17179865347 17179865309 17179865273 17179865251 17179865221
17179865093 17179865077 17179865057 17179865039 17179864997 17179864987 17179864951
17179864861 17179864837 17179864783 17179864759 17179864721 17179864703 17179864661
17179864579 17179864547 17179864517 17179864463 17179864439 17179864399 17179864349
17179864333 17179864279 17179864213 17179864183 17179864159 17179864123 17179864069
17179864033 17179863977

The product of these moduli is range M̃ =
∏k

j=1mk+j, which is given by
27377507512116423392208906289419363485245399529533780754564292275539014900553282904
44636049730437878728699867817912033015330721284296394915568234936205959531269995080
96089049055620262751890380065744372110376434660389206836690419391323130619875582322
72804191911425397174371565811324401369179601948902515809314940535367468029713518352
66710519142346565181938237529036440281513558769737675328196838358585827201624672488
87338327488155546357595010994543853977689855611324598307300420112322340764723217882
78003506287135933633902176262836101082267594108994488323845365427337754186183529611
86026885948538046804682730961362681293137671607042772194076159546905143964412342271
18624561805954954724309350856520544158999818239940461489220075073101332310959491753
92082334361538681756629921050792620395573575192381168664157955624642381820382934997
36006392568584809512591594766178051753810202437731460070722199941640407865611892974
86809584663559554451696684495915334365449694398485701966452429075175374042465562151
37860162611910704678747752530531277595705228882975061063928644153565689933622722250
37527080347441180837970496840239943399242498208447074787211445470067840856949637618
54469355621981456880270268414466676606347956347310724566012968606394298445211

For 4096-bit RSA encryption, range M̃ should be able to contain numbers of

4096 + ⌈log2(k + 2)⌉ = 4096 + ⌈log2(123)⌉ = 4096 + 7 = 4103 bits

Range M̃ has a length of 4114 bits, so the required lower bound is satisfied.
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A.3 MontMult program

The microcode located in the RSA peripheral, stored in read-only memory and used for per-
forming RNS Montgomery Multiplication on the RNS cores is shown in Table A.1. Registers
4, 5, 6 and 7 are replaced based on the values of b and n in the mont_mult instruction.

Core instruction wr rd1 rd2 Redu instruction wr rd1 rd2
mult_m0 1 1 4 no_operation 0 0 0
mult_m0 1 1 5 no_operation 0 0 0
mult_m0 1 1 266 no_operation 0 0 0
multiply 0 1 267 multiply 0 0 0
mult_accum_p 0 0 268 mult_accum_p 0 0 267
mult_accum_p 0 0 269 mult_accum_p 0 0 268
mult_accum_p 0 0 ... mult_accum_p 0 0 ...
mult_accum_p 0 0 386 mult_accum_p 0 0 385
mult_accum_p 0 0 387 mult_accum_p 0 0 386
no_operation 0 0 0 mult_accum_p 0 0 387
mult_read_m1 1 0 0 mult_read_m1 1 0 0
mult_m1 134 134 6 mult_m1 134 134 6
mult_m1 1 1 7 mult_m1 1 1 7
addu_m1 1 1 134 addu_m1 1 1 134
mult_m1 134 1 511 mult_m1 134 1 511
mult_m1 1 134 388 no_operation 0 0 0
multiply 0 1 389 multiply 0 0 0
mult_accum_p 0 0 390 mult_accum_p 0 0 389
mult_accum_p 0 0 391 mult_accum_p 0 0 390
mult_accum_p 0 0 ... mult_accum_p 0 0 ...
mult_accum_p 0 0 508 mult_accum_p 0 0 507
mult_accum_p 0 0 509 mult_accum_p 0 0 508
no_operation 0 0 0 mult_accum_p 0 0 509
mult_read_m0 1 0 0 mult_read_m0 1 0 0
no_operation 0 0 0 subu_m0 133 1 134
no_operation 0 0 0 mult_m0 133 133 510
no_operation 0 0 0 multiply 0 133 0
no_operation 0 0 0 no_operation 0 0 0
no_operation 0 0 0 no_operation 0 0 0
no_operation 0 0 0 no_operation 0 0 0
no_operation 0 0 0 no_operation 0 0 0
no_operation 0 0 0 no_operation 0 0 0
no_operation 0 0 0 no_operation 0 0 0
no_operation 0 0 0 no_operation 0 0 0
bcas_read 133 0 0 no_operation 0 0 0
mult_m0 133 133 510 no_operation 0 0 0
subu_m0 1 1 133 no_operation 0 0 0

Table A.1: RNS Montgomery multiplication program for k = 121 RNS cores.
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A.4 Instruction timing

clock
read_enable

add_nsub
modulo_select
adder_enable
write_enable
write_select 00

Figure A.1: Control signals for addu_m0.

clock
read_enable

add_nsub
modulo_select
adder_enable
write_enable
write_select 00

Figure A.2: Control signals for addu_m1.

clock
read_enable

add_nsub
modulo_select
adder_enable
write_enable
write_select 00

Figure A.3: Control signals for subu_m0.

clock
read_enable

add_nsub
modulo_select
adder_enable
write_enable
write_select 00

Figure A.4: Control signals for subu_m1.

clock
read_enable
mult_enable

accum_enable
mult_select

modulo_enable
modulo_select
reduce_select
write_enable
write_select 01

Figure A.5: Control signals for mult_m0.
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