
 
 

Delft University of Technology

Learning-based Reservation of Virtualized Network Resources

Monteil, Jean Baptiste; Iosifidis, George; Da Silva, Luiz

DOI
10.1109/TNSM.2022.3144774
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Network and Service Management

Citation (APA)
Monteil, J. B., Iosifidis, G., & Da Silva, L. (2022). Learning-based Reservation of Virtualized Network
Resources. IEEE Transactions on Network and Service Management, 19(3), 2001 - 2016.
https://doi.org/10.1109/TNSM.2022.3144774

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNSM.2022.3144774
https://doi.org/10.1109/TNSM.2022.3144774


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022 2001

Learning-Based Reservation of
Virtualized Network Resources

Jean-Baptiste Monteil , George Iosifidis , Member, IEEE, and Luiz A. DaSilva , Fellow, IEEE

Abstract—Network slicing markets have the potential to
increase significantly the utilization of virtualized network
resources and facilitate the low-cost deployment of over-the-top
services. However, their success is conditioned on the service
providers (SPs) being able to bid effectively for the virtual-
ized resources. In this paper, we consider a hybrid advance-
reservation and spot slice market and study how the SPs should
reserve resources to maximize their services’ performance while
not violating a time-average budget threshold. We consider this
problem in its general form where the SP demand and slice
prices are time-varying and revealed only after the reservations
are decided. We develop a learning-based framework, using the
theory of online convex optimization, that allows the SP to employ
a no-regret reservation policy, i.e., achieve the same performance
with an oracle that has full access to all future demand and prices.
We extend the framework to the scenario where the SP decides
dynamically its slice orchestration and hence needs to learn the
performance-maximizing resource composition; and we further
develop a mixed-time scale scheme that allows the SP to lever-
age spot-market information that is revealed between successive
reservations. The proposed learning framework is evaluated using
representative simulation scenarios that highlight its efficacy as
well as the impact of key system and algorithm parameters.

Index Terms—Online convex optimization, online learning,
regret analysis, network slicing, network virtualization.

I. INTRODUCTION

A. Motivation

THE INCREASING softwarization of mobile networks
coupled with the proliferation of over-the-top service

providers (SPs) which rely on network operators’ infrastruc-
ture (NOs), have spurred numerous studies for the design
of network virtualization markets, cf. [2], [3]. For instance,
researchers have proposed embedding algorithms for assisting
the NOs to accommodate heterogeneous slice requests [4], and
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devised pricing schemes aiming to maximize the operators’
revenue from selling slices to SPs [5]. These solutions are
expected to operate in near-real time and therefore enable
the fine-grained (re-)allocation of network resources. This is a
key step towards boosting the utilization efficiency of future
mobile networks. Nevertheless, an aspect that has received less
attention is how the SPs should request slices in these dynamic
markets.

Recent forward-looking slicing market models draw ideas
from the successful cloud computing marketplaces [6]–[9]
that offer both in-advance reservation and on-the-spot bid-
ding opportunities for computing and storage resources. Such
hybrid markets will allow the NOs to proactively schedule
their network operation using the information about the sub-
mitted advance reservations, but also to offer dynamically
resources that have just become available. And similarly, they
can enable the SPs to reserve resources with guarantees, but
also to lease additional (often cheaper) resources tailored to
the fast-changing demand of their users. However, this flex-
ibility comes at a cost, as it confounds the already daunting
slice-reservation task of the service providers.

Namely, each SP that participates in such a hybrid network
market needs to request resources without knowing accurately
the needs of its users; and to decide between (lower-cost)
advance reservation and (higher-cost) dynamic reservations.
Furthermore, the SP decisions are often made without access
to future slice prices that, naturally, depend on the NO’s
internal needs and on the requests submitted by other SPs. In
this complex and dynamic environment, the SP reservations
need to be carefully designed in order to avoid over/under-
reservation of the resources that can lead to network under-
utilization or induce prohibitively high servicing costs. Clearly,
inefficient slice reservation decisions can nullify the antici-
pated benefits of network virtualization and slicing.

Such dynamic environment paves the way to the design
of smart online solutions for the SP reservations. We pro-
pose online optimization algorithms so that the SP learns how
to proactively reserve resources in an online manner, adapt-
ing to the variations of the demand and of the pricing of
resources. Our proposal falls under the scope of online convex
optimization (OCO), which we detail in the sequel.

The focus of this paper is to tackle this problem by
studying optimal slice reservation from the perspective of
service providers. Our key aim is to design online reser-
vation policies which an SP can employ to maximize the
performance of its service while not exceeding the mone-
tary budget it has committed for this purpose. This is an
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important step towards unleashing the full potential of slicing
markets.

B. Methodology and Contributions

We consider a hybrid network virtualization (or, slicing)
market with advance-reservation and spot-bidding options,
where an SP can request resources from a network operator
in the beginning of each period and update its reservation at
each slot within every period. The NO is allowed to change
arbitrarily both its reservation and spot prices, which are made
available to the SP only after the bidding is decided. Hence, in
effect, the SP has to reserve slices without knowing the needs
of its users or the overall cost of its reservation, as indeed
happens often in practice. In this dynamic environment, the
SP aims to maximize a general utility function of the slice
resources, which reflects its service performance, while not
violating a time-average budget constraint.

We model the market operation as a learning problem
which allows the SP to implement a no-regret slice reserva-
tion policy. This means that, as time evolves, the SP achieves
performance equal to that of an ideal benchmark policy that
one could design only with hindsight, i.e., having access to all
future demand and cost values. Our framework builds on the
theory of online convex optimization (OCO) which was intro-
duced in the seminal paper of Zinkevich [10] and initiated a
new approach for the design of online learning algorithms,
cf. [11]. The key advantage of OCO-based algorithms is their
robustness with respect to the unknown problem parameters,
e.g., cost functions. Indeed, they offer worst-case performance
bounds that hold even if these parameters are selected strategi-
cally by an adversary. This makes them particularly attractive
for the problem at hand where the interacting decisions of the
service providers and the network operator are likely to create
a non-stationary and highly volatile market.

The more intricate OCO model is applied here where the
learning process involves both a network performance function
and a time-average budget constraint. To tackle this con-
strained learning problem, we leverage a primal-dual online
iteration [12]–[14] that achieves sublinear performance loss
(i.e., regret) and sublinear constraint violation (i.e., fit) with
respect to the optimal in hindsight decisions (benchmark). And
the SP can prioritize one over the other metric by tuning prop-
erly the respective learning rates. The framework is extended
to allow the SP to determine the composition of its slice, i.e.,
decide the exact amount of each resource (spectrum, backhaul
capacity, etc.) that comprise the requested slice, without know-
ing in advance the performance-optimal resource combination.
This is crucial when the qualitative features of user demand are
volatile or unknown. Finally, we propose a mixed time-scale
learning policy where the SP can exploit any price information
that is revealed by the NO during each period. This prac-
tical modification is crucial as it improves significantly the
performance of the reservation policy.

The contributions of this work can be therefore summarized
as follows.

• We introduce a general reservation model for virtual-
ized network resources and formulate this process as

a learning problem where a service provider learns to
optimally request slices while being oblivious to user
needs and network prices. To the best of our knowledge,
this is the first online learning model for budgeted slice
reservation.

• A new suite of online learning algorithms is proposed
for slice reservations, that ensures sample-path
asymptotically-optimal performance while respect-
ing budget constraints. The algorithms are general
enough to tackle scenarios where the SP learns the
optimal slice composition or exploits additional pricing
information.

• We analyze the impact of key system parameters on the
learning performance, and discuss the implications for the
design of such network virtualization markets.

• A battery of numerical tests is employed, using station-
ary and non-stationary parameter patterns, to assess the
performance of the proposed algorithms. The results ver-
ify their robustness and efficacy and reveal the impact of
the different system parameters.

Paper Organization: The reminder of the paper is orga-
nized as follows. Section II reviews the related works and
OCO background. Section III presents the system model and
problem formulation. The first online learning solution (OLR)
is presented in Section IV, while Sections V and VI introduce
two practical extensions, namely the slice orchestration (OLR-
SO) and the mixed time scale reservation models (OLR-MTS).
Section VII verifies the efficacy of the proposed policies in a
series of numerical tests and Section VIII concludes the study.
All the proofs are placed in the Appendix.

II. BACKGROUND AND RELATED WORK

A. Reservation of Virtualized Resources

The paper [15] studied the problem of allocating network
and computing resources to a set of slices in order to maximize
a system-wide utility function, namely to enforce fair resource
allocation across slices. In [16] the authors proposed a static
optimization framework for embedding VNF chains (inter-
preted as slices) in a shared network. Their key contribution
is the formulated problem which accounts for reliability, delay
and other slice requirements. Albeit detailed and rigorous,
this analysis considers the various system parameters and
requests to be known. Similarly, [17] studied the impact of
slice overbooking; [18] employed predictive capacity alloca-
tion for improving the slice composition; and [19] focused
on dynamic slicing via reinforcement learning. Unlike these
works, we make no assumptions regarding the availability or
the statistical properties of the prices and user needs.

Fewer works consider the problem from the SP point of
view. In [20] and [21], the authors study a hybrid reserva-
tion and spot market where the SP reservations are decided
by solving a stochastic problem. This, however, presumes a
stationary environment, an assumption that is likely to fail
when multiple SPs bid strategically and the NO adapts the
prices accordingly. Our previous work [22] employed demand
and price predictions (via neural networks) to assist the SP
reservations; while [23] focused on slice reconfiguration costs.
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In [24], the authors consider a reservation model, where a cus-
tomer at each slot requests different types of cloud resources
aiming to minimize a fixed and known cost function while
satisfying a time-average unknown demand constraint. This
model, however, is not suitable for the considered hybrid mar-
kets where the prices are volatile and hence the cost functions
change dynamically.

B. Slicing Markets

The design of markets for virtualized network resources
is a relatively new research area. The survey in [5] pro-
vides an overview of auction theory-based slicing solutions
and [25] proposed mechanisms for the NO to auction its sliced
resources. Unlike these works, we consider a dynamic pricing
scheme that is more practical as it does not require to run any
type of auction. Importantly, our model is based on already-
deployed and widely-used market models in cloud computing
ecosystems, e.g., see [7], [9].

Prior works that focus on such hybrid cloud market models
have studied spot pricing models and devised intelligent bid-
ding strategies for the buyers [26]–[30]. For instance, in [29]
the users place bids to reserve cloud resources for executing
certain long tasks, aiming to minimize their costs while ensur-
ing task completion over successive bidding periods. The main
idea is to employ a hidden Markov model for tracking the evo-
lution of spot prices; however, the analysis relies on the user
needs complying to certain statistical assumptions. Similarly,
in [30] an interesting bidding approach is considered where the
users try to infer the pricing strategy of the cloud provider and
bid accordingly in a spot market. Our work differs in that we
make no assumption for the spot pricing model of the operator,
and our reservation algorithm offers performance guarantees
for any possible pricing scheme and demand pattern. This is
crucial as in practice the operator might as well revise and
adapt its pricing policy in the presence of strategic bidders.

C. Background on Constrained OCO

The standard OCO problem [10] considers a series of
initially-unknown convex cost functions {ft (x )}t and a con-
vex compact set X , and asks to find the decisions {x t}t ∈ X
such that the total loss, or static regret:

Rs
T =

T∑

t=1

ft (x t )− ft (x
�),

grows sublinearly w.r.t. to the optimal-in-hindsight benchmark
x� = argminx∈X

∑T
t=1 ft (x ). This ensures the learning

algorithm performs on average as well as the benchmark. A
practical extension is to enrich X with a time-average budget
constraint

∑T
t=1 gt (x t ) ≤ 0, where gt (x t ) is a convex func-

tion, that needs also to grow sublinearly in order to achieve
zero average constraint violation (or, fit). This constrained
OCO problem is in fact impossible to tackle in the general
case where the benchmark is selected from the set:

Xmax
T =

{
x ∈ X :

T∑

t=1

gt (x ) ≤ 0

}
, (1)

TABLE I
KEY NOTATIONS

as proved in [31]. Hence, follow-up works considered simpler
settings where gt (x ) = g(x ), ∀t [13], [14]; constraints that
are only linearly-perturbed [32]; or less demanding bench-
marks that are selected from the restricted set XT = {x ∈
X : gt (x ) ≤ 0, ∀t}, see [33], [34].

A different line of research assesses the learning policy
using the dynamic regret metric where the set benchmark
is x�

t = argminx∈X ft (x ). This is a more demanding
benchmark than the static regret. Recent works showed
that it is possible to achieve both sublinear dynamic regret
and fit under certain assumptions on the variability of the
problem [35], [36]. Namely, it is required to have sublinear
accumulated variations of the dynamic benchmark sequence
{x�

t }t , which in turn imposes constraints on the slot-by-slot
variability of the cost and constraint functions. We consider
this more demanding learning objective here and character-
ize the conditions under which it is achievable. Our approach
is inspired by [12], that proposed a primal-dual algorithm
which runs on the Lagrangian relaxation of the constrained
OCO problem. We tailor this idea to account for our problem-
specific requirements and assumptions; and extend it to handle
jointly the reservation and the slice composition decisions,
both in the single and in the mixed time scale instances.

III. SYSTEM MODEL AND PROBLEM STATEMENT

Notation: We use bold typeface for vectors, a, and vector
transpose is denoted a�. A sequence of vectors is denoted
with braces, e.g., {a t}, and we use sub/superscripts to define
a sequence of certain length, e.g., {a t}Tt=1 is the sequence
a1,a2, . . . ,aT . Sets are denoted with calligraphic capital let-
ters, e.g., M. The projection onto the non-negative orthant is
denoted [·]+, and ‖·‖ is the �2 norm. The key notation symbols
are summarized in Table I below.

A. Network & Market Model

We consider a mixed time-scale model with long periods
that are divided into small slots. Namely, each period t includes
K slots and we study the system for t = 1, . . . ,T periods or,
equivalently, for k = 1, . . . ,KT slots.1 A network operator
(NO) sells virtualized resources to service providers (SPs),

1For example, each period can be one day comprising 24 one-hour slots;
or, an hour comprising 60 one-minute slots for more fine-grained models.
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Fig. 1. A Network Operator (NO) leases different types of resources, e.g.,
wireless capacity, storage capacity and edge computing capacity, to different
types of Service Providers (SPs) that offer over-the-top services to their users.

see Fig. 1, and we denote with H the set of m = |H| types
of resources that comprise each slice. For instance H may
include wireless spectrum, backhaul capacity, computing and
storage resources (m = 4). We introduce the bundling vec-
tor θ ∈ R

m which determines the amount of each resource
required to build a slice unit. If it is θ = (0.5, 0.8, 0.2, 0.1) in
the above example, a slice unit needs 0.5 units of spectrum,
0.8 units of link capacity, and so on. These values can be nor-
malized or expressed using the actual physical metrics. We
consider initially θ to be fixed, but we drop this assumption
in Section V.

The market operates using a hybrid model where reserva-
tions can be updated at the beginning of each period and the SP
can lease (additional) resources at the beginning of each slot
in a spot market. We denote with pt ∈ R+ the t-period reser-
vation price per slice unit, and with qk ∈ R+ the spot price
for slot k; both announced by the NO. Since θ is given, these
scalar prices suffice to model the slice cost. We also define
the vector of spot prices for period t as q t = (qk , k ∈ Kt )
where Kt = {(t−1)K+1, . . . , tK}. Clearly, prices pt and q t
vary with time and may change in an unpredictable fashion.
For instance, the NO might increase or decrease the prices
based on the requests it received in previous periods; or based
on the available spot resources which are affected by its own
needs. We make no assumptions about these quantities other
than being uniformly bounded. Moreover, we assume the NO
can impose upper limits on the slice size each SP can lease,
and we define the set of feasible reservations Γ = [0,D ]. Such
limitations arise due to capacity constraints or when the NO
reserves resources for its needs. Note there that if the slice has
minimum requirements because it accommodates semi-elastic
demand, we redefine the set of feasible reservations as [d, D],
where d amounts of resources are necessary to accommodate
the inelastic demand.

B. Reservation Decisions

We focus on one SP and study its slice reservation pol-
icy. This consists of the t-period reservation of xt ∈ R+ slice
units and the per-slot reservations yk ∈ R+ within t. Note
that the actual reserved resources are xtθ and yk θ respec-
tively, but we drop the bundling vector until Section V. At
the beginning of each period t the SP decides its t-period
reservation plan (xt ,y t ), where y t = (yk , k ∈ Kt ). The
SP’s goal is to maximize its service while not exceeding its

monetary budget B. The service performance is quantified
with a concave utility function increasing on the resources
and modulated by parameter ak ≥ 0 that captures the users’
needs in slot k. For example, ak might represent the total user
demand, their willingness to pay, and so on. We also define
a t = (ak , k ∈ Kt ). The concavity of the utility captures the
diminishing returns which arise naturally in such systems.2

Following the standard practice, we use a concave utility
function to model the benefit of the SP from using certain
amount of network resources: see [15], [37], [38] and refer-
ences therein. These papers provide the general form of α-fair
utility function, namely:

f (z ) =

{
z 1−α

1−α α �= 1

log(z ) α = 1
(2)

In [39], the utility from allocating bandwidth x to a cer-
tain network flow f is modeled as af log(xf ), where af is
a problem (and flow)-specific parameter. We also refer to
other resource reservation papers that model the problem as
convex [16], [20], [24].

C. Problem Statement

Putting the above together, the ideal slice reservation policy
of the SP for the entire operation of the system is described
with the following convex program:

(P) : max
{xt ,y t}Tt=1

T∑

t=1

∑

k∈Kt

ak log(xt + yk + 1) (3)

s.t.

T∑

t=1

(
xtpt + y�

t q t

)
≤ BT , (4)

yk ∈ Γ, ∀k = 1, . . . ,KT , (5)

xt ∈ Γ, ∀t = 1, . . . ,T . (6)

Objective (3) is the total utility that the SP achieves with its
reservations, after a duration of T periods. Constraint (4) cap-
tures the total budget constraint of the SP; and (5), (6) confine
the decision variables to a compact convex set that collects
upper reservation bounds set by the NO. We assume that the
NO always provides the SP with the whole request xt or yk ,
as long as the latter belongs to Γ.

Henceforth, in order to streamline presentation we define
the vector functions related to each period t:

ft (xt ,y t ) = −
∑

k∈Kt

ak log(xt + yk + 1), (7)

gt (xt ,y t ) = xtpt + y�
t q t − B . (8)

and we will be also using vector z t = (xt ,y t ) ∈ Z � ΓK+1.
Note that when the SP does not reserve resources in a period
t, the objective is still well defined and we get ft (0, 0) = 0.

(P) is a convex optimization problem but the SP cannot
tackle it directly due to the following challenges.
• (Ch1): The user needs {ak}k are unknown, time-varying

and possibly generated by a non-stationary random process.

2E.g., the data rate is a logarithmic function of the spectrum; the additional
revenue of the SPs from more slice resources are typically diminishing, etc.
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• (Ch2): The spot {qk}k and reservation prices {pt}t are
unknown, time-varying and unpredictable as they depend on
the NO pricing strategy and possibly on other SPs’ demand.
• (Ch3): Finally, parameters {qk , ak}k are revealed after

the slice reservation at the respective slot k has been decided.
Due to (Ch1-2) (P) cannot be solved at t = 1 since the

evolution of the system parameters for the next T periods
is unknown. Furthermore, it cannot be tackled with standard
online optimization techniques as the function parameters are
revealed after the reservation decisions are made in each period
t (Ch3). This renders imperative the design of an online learn-
ing algorithm that adapts to system and market dynamics,
offering guarantees for achieving a satisfactory performance.

D. Benchmark Policy

The efficacy of a learning policy is mainly characterized
by the benchmark to which we compare its performance; and
by the convergence (or, learning rate) at which the policy’s
performance converges to this benchmark’s performance. As it
was proved in [31], constrained OCO problems like (P) cannot
learn efficiently to perform as benchmarks from set Xmax

T (1).
In light of this result, we settle for a weaker benchmark for
our learning algorithm, where the benchmark is selected such
that it satisfies each t-period constraint separately.3

In detail, if the SP knew at the beginning of each period t,
the price pt , the demand a t and the spot prices q t , it could
find the optimal t-period decision z �

t = (x�t ,y
�
t ) by solving:

(Pt ) : min
{z t}∈ΓK+1

ft (z t ) s.t. gt (z t ) ≤ 0. (9)

Given that in practice this information is unavailable, our
goal is to design an algorithm that finds the t-period reser-
vation (xt ,y t ) in each period t, such that we achieve a good
enough performance with respect to z �

t . Formally, we define
the dynamic regret and constraint fit metrics:

RT =
T∑

t=1

(ft (z t )− ft (z
�
t )), VT =

[
T∑

t=1

gt (z t )

]

+

,

which quantify respectively how well our policy {xt ,y t} fairs
against {x�t ,y�

t } and how much the constraints are violated
on average. Note that we project the constraints onto R+ as
we are interested to bound the excessive budget consumption.

Following the terminology in online learning, we state that
our reservation algorithm achieves no-regret if both quantities
grow sublinearly, i.e.,

lim
T→∞

RT

T
= 0, lim

T→∞
VT

T
= 0, ∀ {ft}Tt=1. (10)

It is important to stress that this learning objective is more
challenging than the respective static regret benchmark where
we compare against policy (x�,y�) which is designed with
hindsight but remains fixed across time. In other words it holds
Rs
T ≤ RT and by achieving RT = o(T ) we ensure the

same for Rs
T . We refer the interested reader to [12], [32] for

a detailed discussion about benchmarks.

3In other words, a benchmark in x� ∈ Xmax
T offers more degrees of

freedom, hence potentially higher objective values that the learning policy
cannot achieve without violating the constraints.

Fig. 2. Online learning model and sequence of actions in the system.

Algorithm OLR: Online Learning for Reservation

Initialize:
λ1 = 0, x0 ∈ Γ,y0 ∈ ΓK , ν = μ = O(T−1/3)

1 for t = 1, . . . ,T do
2 Observe the t-period price pt
3 Decide (xt ,y t ) by solving (13)
4 Observe a t and calculate ft (xt ,y t )
5 Observe q t and calculate gt (xt ,y t )
6 Decide λt+1 by solving (14)

IV. ONLINE RESERVATION POLICY

A. Online Learning for Reservations (OLR)

We proceed with the design of the online learning algorithm
that implements the SP reservation policy. In detail, we define
the Lagrangian:

L̃t (z , λ) = ft (z ) + λgt (z ) (11)

where λ ∈ R+ is the Lagrange multiplier associated with con-
straint (8). It is easy to see that, for all t and λ ∈ R+, L̃t is
convex over z, as it is the sum of a convex function ft and an
affine function gt . Similarly, L̃t is affine hence concave over λ.
Therefore, we opt for a saddle-point methodology where we
minimize the Lagrangian over z and then maximize it over λ.
Instead of the online Lagrangian in (11), we optimize the mod-
ified Lagrangian with a linearized objective and a Euclidean
regularizer with non-negative parameter ν:

Lt (z , λ) = ∇ft (z t )
�(z − z t ) + λgt (z ) +

‖z−z t‖2
2ν , (12)

where note that in the first-order approximation of ft (z ) we
omit the term ft (z t ) as it does not depend on either z or λ.

We can now describe our learning policy – please refer to
Algorithm OLR and Fig. 2. At the beginning of each period
t, the NO reveals the current reservation price pt (step 2).
Then, the SP decides its reservation policy z t = (xt ,y t ) by
performing a primal update as follows (step 3):

z t = arg min
z∈Z

Lt−1(z , λt ). (13)

As explained above, the SP makes this decision while it does
not have access to ft or gt , as is also evident from the time
index of the Lagrangian in (13). After z t is fixed, the demand
and prices are revealed (steps 4-5) and the SP measures the
performance ft (z t ) and cost gt (z t ). At the end of the period,
the SP has access to the current Lagrangian (12), and can
update its dual variable by executing the dual gradient ascent
with positive step-size μ:

λt+1 = [λt + μ∇λLt (z t , λ)]+ (14)

These are the dual variables (or, shadow prices for (4)) that
will assist the SP to select the new reservation bid. It is worth
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stressing that OLR is also applicable for markets where the
advance-reservation prices pt are revealed after step 3; this
will become clear in the sequel.

B. Performance Analysis

We start with the necessary model assumptions.
Assumption 1: The NO prices are uniformly bounded, i.e.,

pt ∈ [0, p], ∀t and qk ∈ [0, q ], ∀k , where p, q < ∞.
Assumption 2: The utility parameters are uniformly

bounded, i.e., ak ∈ [0, a], ∀k where a < ∞.
Assumption 3: The set Z = ΓK+1 has bounded diameter,

i.e., E � D
√
K + 1.

Moreover, we need to characterize the variability of the
problem, i.e., how fast the constraints and the dynamic
benchmark can change among successive periods. First, we
define:

Uz =

T∑

t=1

∥∥z �
t − z �

t−1

∥∥, Ug =

T∑

t=1

max
z∈Z

[gt (z )− gt−1(z )]+,

which measure this property for each problem realization. We
define as well:

Ũg = max
t

max
z∈Z

[gt (z )− gt−1(z )]+

We see from (8) that Ũg ≤ D(p +Kq). However, in practice
we expect Ũg to be smaller as it is not reasonable for the NO
(i.e., practical or acceptable from a regulatory perspective) to
vary so drastically its pricing strategy in successive periods.
As it will become clear below, Ũg determines whether the SP
can learn an efficient reservation policy.

Finally, we assume that all problem instances (Pt ), ∀t admit
a Slater vector, i.e., there is a vector z̃ ∈ Z such that:

gt (z̃ ) ≤ −ε, ∀t , with ε > 0. (15)

The Slater constraint qualification is sufficient for strong
duality [40], and is required for devising the algorithm’s
performance bounds. Moreover, it is related to the problem
variability and specifically the following condition is required.

Assumption 4: The slack constant ε in the Slater condi-
tion (15) is such that it holds ε > Ũg .

The next Lemma characterizes the performance of OLR.
Lemma 1: Under Assumptions 1-4, Algorithm OLR

achieves the following regret and constraint violation bounds
w.r.t. the dynamic benchmark policy {x�t ,y�

t }Tt=1:

RT ≤ EUz

ν
+

νTG2

2
+

(T + 1)μM 2

2
+

E2

2ν
+Ug λ̃

VT ≤ M +
(2EG/μ) + (E2/2νμ) + (M 2/2)

ε− Ũg

,

where: M � max{D(p +Kq)− B ,B},
G � a

√
K (K + 1)

λ̃ � μM +
2EG + (E2/2ν) + (μM 2/2)

ε− Ũg

.

C. Discussion

Complexity Analsyis OLR: We stress there that the compu-
tational cost and memory requirements of the OLR algorithm
are fairly low. At each period t, we need to solve the two
sub-problems (13) and (14). The constraint function gt (z )
being linear, the computational complexity of (13) is low and
a closed form solution can be derived via the First Order
Condition, as in (16) and (17). At each period t, we need
to store the vectors a t−1, y t−1, q t−1 of length K and the
scalars xt−1, pt and λt . Therefore, memory requirements are
of 3K +3 = O(K ). The solution to (16) runs in K operations
(sum over Kt−1) and the solution to (17) runs in 1 operation,
for each k ∈ Kt . Therefore, the running time for (13) is of
2K = O(K ). Equation (14) only needs K + 1 operations to
compute gt (z t ), hence runs in O(K ).

It is important at this point to discuss the practical implica-
tions of this theoretical result for the problem at hand. First,
note that a key ingredient of Algorithm OLR are the step sizes
(or, learning rates) ν and μ. From [12, Corollary 1], if these
rates are selected such that:

ν = μ = max

{√
Uz

T
,

√
Ug

T

}
,

then we obtain the following growth rate for the regret:

RT = O
(
max

{√
UzT ,

√
UgT

})
.

In order to asymptotically zeroize the average regret we need
RT = o(T ), and this condition is satisfied if max{Uz ,Ug} =
o(T ), i.e., when the maximum variability of the bench-
mark and constraints across successive slots remains sublinear.
When this condition cannot be verified in advance, one can
select ν = μ = T−1/3 to enforce:

RT = O
(
max

{
T

1
3Ug ,T

1
3Uz ,T

2
3

})
, VT = O

(
T

2
3

)
.

Furthermore, the SP can adapt the steps ν and μ to the
specific scenario and its priorities, namely the relative impor-
tance of achieving high performance or fast compliance with
the average budget constraint. For instance, a “negative fit -
high regret” situation means that the SP under-reserves and
this can be rectified by tuning the steps.

It it also interesting to note that, for the specific performance
and cost functions, we can obtain a closed form solution for
the advance reservation decisions in each period, that reveal
the intuition of this mechanism. Namely, we can use the First
Order Condition for (13) and write:

xt =
∑

k∈Kt−1

νak
1 + xt−1 + yk

− ptλtν + xt−1, (16)

while ensuring that xt ∈ [0,D ]. The following important
remarks stem from the above expression:

• A big ratio of demand over reservations in period t − 1
favors a large reservation at period t;

• A large constraint violation in period t − 1 favors a small
reservation at period t;

• A large value of μ accentuates the effect of the violation
if it is non-negative (more conservative reservations);

• A large value of ν favorites a large distance |xt − xt−1|.
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Fig. 3. Impact of the committed budget, B, on the value of parameter M
that affects the bounds of RT and VT .

• Conversely, a small ν reduces the distance |xt − xt−1|.
Similarly, we can obtain an analytical expression for the

intra-period reservations:

yk =
νak−K

1 + xt−1 + yk−K
− qk−Kλtν + yk−K , k ∈ Kt ,

(17)

with yk ∈ [0,D ], that allows us to understand how the learning
rates, resource prices and reservations in the previous respec-
tive slots (index k − K) affect the reservations at slot k. These
remarks provide the SP with guidelines on how to adapt the
step sizes ν and μ to its preferable criterion (performance or
cost) but also to the specific market conditions.

Regarding the latter, it is crucial to observe that both
the regret and constraint violation depend on the variabil-
ity of NO’s pricing. When the operator changes abruptly the
prices among successive periods, i.e., in a superlinear fash-
ion Ug = O(Tβ) with β > 1, it is challenging for the SP
to learn an optimal reservation strategy. The same holds for
the needs of SP. For instance, if parameters {a t} change so
drastically that Uz grows superlinearly, then RT /T might not
converge. Observe also that the period length (number of slots
K) affects directly both RT and VT . This is rather expected
as the SP makes bidding decisions only at the beginning of
each period. Hence, for larger K values the bidding depends
on more unknown information – or, equivalently, the SP needs
to learn more information. Furthermore, we can see that the
relation of maximum prices, p and q, to the per-period budget
B, affect through parameter M the bounds. These observations
reveal the key market factors that shape the learning capability
of the SP, and pave the road for possible regulatory interven-
tions, or mutually-agreed guidelines among the SP and NO so
as to increase the market efficiency.

Finally, we note that the SP can choose its budget so as
to minimize parameter M, which will consequently shrink the
upper bounds on the regret and fit. In Fig. 3, we plot the
function M = f (B) = max{D(p+ Kq)−B ,B} and observe
that the minimum M = D(p + Kq)/2 is attained at B =
D(p + Kq)/2. We verify the effect of B on the performance
of OLR in the numerical examples presented in Section VII.

V. SLICE ORCHESTRATION AND RESERVATION POLICY

We consider next the case the SP decides the slice com-
position, i.e., the amount of each different type of resource,
where the benefit from each resource can be time-varying and
unknown. Consider, e.g., an SP that is unaware of the optimal

computation, storage and bandwidth mix, as this depends on
the type of user requests. We extend OLR to account for these
decisions and discuss the new performance bounds.

A. Online Learning Reservations for Slice Orchestration

In this scenario, the SP makes multi-dimensional reserva-
tions using x t ,yk ∈ Γ1× . . .×Γm , where m is the number of
resources comprising the slice. With a slight abuse of notation
we define yk = (ykj , j = 1, . . . ,m), and y t = (yk , k ∈ Kt ),
where y t ∈ R

mK . The benefit from each reservation x t is
quantified by the scalar θ�t x t (respectively, θ�t yk ), where
the elements of θ t ∈ R

m measure the contribution of
each resource on performance. And, we allow this vector to
change with time and be unknown when the reservations are
decided. Similarly, the NO can charge a different (advance
or spot) price for each type of resource, hence we define
pt = (ptj , j = 1, . . . ,m) and qk = (qkj , j = 1, . . . ,m).

We first introduce the new slice-composition and reservation
objective and cost functions:

f θt (x t ,y t ) = −
∑

k∈Kt

ak log(θ
�
t x t + θ�t yk + 1), (18)

gθt (x t ,y t ) = x�
t pt +

∑

k∈Kt

y�
k qk − B , (19)

and use the following modified Lagrange function:

Lθ
t (z , λ) = ∇f θt (z t )

�(z − z t ) + λgθt (z ) +
‖z − z t‖2

2ν
,

(20)

to update the primal and dual variables:

z t = arg min
z∈Zθ

Lθ
t−1(z , λt ), (21)

λt+1 =
[
λt + μ∇λL

θ
t (z t , λ)

]

+
. (22)

Note that the prices are now vectors in R
m , and the SP deci-

sion space is expanded to Zθ = (Γ1 × . . . × Γm )K+1, with
Γi = [0,Di ], i ≤ m .

The learning policy is implemented by running Algorithm
OLR-SO. At the beginning of each period t, the NO reveals the
current reservation price vector pt ∈ R

m (step 2). Then, the
SP decides its reservation policy z t = (x t ,y t ) ∈ Zθ by solv-
ing (21). Subsequently, the demand a t ∈ R

K , the contribution
vector θ t ∈ R

m and the spot prices qk ∈ R
m are revealed

(steps 4-5), and the SP measures the performance f θt (z t ) and
cost gθt (z t ). At the end of the period the SP gains access to
the new Lagrangian (20) and updates its dual variable (22).

B. Performance Analysis

The performance of Algorithm OLR-SO is conditioned
upon the following minimal assumptions that complement, or
update, Assumptions 1-4 that we stated for OLR in Section IV.

Assumption 5: The NO prices are uniformly bounded pt ∈∏m
i=1 [0, pi ], ∀t and qk ∈ ∏m

i=1 [0, qi ], ∀k . Without loss of
generality, we write pt ∈ [0, p]m , ∀t and qk ∈ [0, q ]m , ∀k ,
where p = maxi{pi}, q = maxi{qi}.
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Algorithm OLR-SO: OLR for Slice Orchestration

Initialize:
λ1 = 0,x 0 ∈∏m

i=1 Γi ,y0 ∈ (
∏m

i=1 Γi )
K , ν = μ =

O(T−1/3)
1 for t = 1, . . . ,T do
2 Observe the t-period price pt
3 Decide (x t ,y t ) by solving (21)
4 Observe a t , θ t and calculate f θt (x t ,y t ) with (18)
5 Observe q t and calculate gθt (x t ,y t ) with (19)
6 Decide λt+1 by solving (22)

Assumption 6: The contribution parameters are uniformly
bounded θ t ∈

∏m
i=1 [0, θi ], ∀t . Without loss of generality, we

can write θ t ∈ [0, θ]m , ∀t , where θ = maxi{θi}.
Assumption 7: The set Zθ = (Γ1 × . . . × Γm )K+1 has

bounded diameter F =
√
K + 1

√
D2
1 + . . .+D2

m .
The variability of this new problem can be defined using

the following metrics:

U θ
z =

T∑

t=1

∥∥z �
t − z �

t−1

∥∥, U θ
g =

T∑

t=1

max
z∈Zθ

[gθt (z )− gθt−1(z )]+,

and we also define:

Ũ θ
g = max

t
max
z∈Zθ

[
gθt (z )− gθt−1(z )

]

+
.

We see from (19) that it holds Ũ θ
g ≤ (p +Kq)

∑m
i=1Di .

We assume that the new problem:
(
P
θ
t

)
: min
z t∈Zθ

f θt (z t ) s.t. gθt (z t ) ≤ 0. (23)

admits a Slater vector z̃ ∈ Zθ where:

gt (z̃ ) ≤ −ε, ∀t , (24)

for some ε > 0, and which, as previously, is related to the
problem’s variability through the following condition.

Assumption 8: The slack constant ε in the Slater condi-
tion (24) is such that it holds ε > Ũ θ

g .
The performance of OLR-SO is characterized next.
Lemma 2: Under Assumptions 5-8, Algorithm OLR-SO

achieves the following regret and constraint violation bounds
w.r.t. the dynamic benchmark policy {x�

t ,y
�
t }Tt=1:

RT ≤ FU θ
z

ν
+

νTG2
θ

2
+

(T + 1)μM 2
θ

2
+

F 2

2ν
+ U θ

g λ̃θ

VT ≤ Mθ +
(2FGθ/μ) +

(
F 2/2νμ

)
+
(
M 2

θ /2
)

ε− Ũ θ
g

,

where: Mθ � max

{
(p +Kq)

m∑

i=1

Di − B ,B

}
,

Gθ � aθ
√
mK (K + 1),

λ̃θ � μMθ +
2FGθ +

(
F 2/2ν

)
+
(
μM 2

θ /2
)

ε− Ũ θ
g

.

C. Discussion

Complexity Analysis OLR-SO: Here we discuss the
complexity of the OLR-SO algorithm. Deriving the new
Lagrangian (20) with regard to z is more challenging. The
required running time to compute (21) is of 4Km2 +m(K +
1) + m(K + 1) = O(Km2). The dominating term 4Km2

comes from the expression of the gradient ∇f θt (z t ), that the
reader can find in Appendix B. The solution of (22) is much
simpler, necessitating m(K + 1) = O(Km) time to compute
gθt (z t ). As we need to store the vectors a t−1, θ t−1, x t−1,
yk , k ∈ Kt−1, λt , pt−1 and qk , k ∈ Kt−1, the memory
requirements are of K+m+m+Km+1+m+Km = O(mK ).
As the OLR-SO algorithm increases complexity, it still lies in
polynomial time.

The multi-dimensional problem has a higher variability on
the constraints (U θ

g ≥ Ug ) and on the dynamic benchmark
sequence (U θ

z ≥ Uz ). This represents an intuitive result
since we deal: with larger reservations; vectors for the pric-
ing scheme instead of scalars; and new unknown contribution
parameter θ t . In fact, we can quantify the effect of resource
types m on the variability for the special – but important– case
the prices {pt}t , {qk}k are i.i.d. with uniform distribution in
[0, p] and [0, q], respectively.

Lemma 3: For sufficiently large value of T, it holds:

Ug =
TD(p +Kq)

6
, U θ

g =
T (
∑m

i=1Di )(p +Kq)

6
.

This result reveals that as we consider scenarios with larger
m, i.e., more resource types comprising the slice, the respective
variability parameter that affects the regret bounds increase
proportionally to the diameter of Zθ, i.e., depend both on the
value of m and the respective upper bounds Di , i ≤ m .

Finally, it is interesting to note that parameters pt and θ t
can be revealed before or after the reservation z t , as the
bounds in Lemma 2 hold whether the SP knows them or not.
There, we notice that the contribution parameter θ t has more
influence in the Lagrangian than the price pt . Indeed, θ t is
present in the K + 1 scalar products derived from the gra-
dient term, while pt is present in only one scalar product:
p�
t x . Therefore, the SP would rather know in advance the

contributions of each resource to its utility than the on-demand
price pt .

VI. MIXED TIME SCALE RESERVATION POLICY

Our second extension is a mixed time scale (MTS) reser-
vation model, where the SP can update the slot reservations
y t of each period t, based on the demand a t and spot prices
q t it observes during that period. We first present the baseline
scenario and then extend MTS for the slice composition case.

A. Online Learning for Mixed Time Scale Reservations

The first thing to note is that functions fk and gk for this
slot-decision instance, are now:

fk (yk ) = −ak log(xt + yk + 1), gk (yk ) = ykqk − Bt ,

where xt is treated as a parameter as it has been fixed in the
beginning of t, and we have defined Bt = (B − xtpt )/K .
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Algorithm OLR-MTS: OLR for Mixed Time Scale

Initialize:
λ1 = 0, x0 ∈ Γ,y0 ∈ ΓK , ν = μ = O(T−1/3), ν̂ =
ν, μ̂ = μ

1 for t = 1, . . . ,T do
2 Observe the t-period price pt
3 Decide (xt ,y t ) by solving (13)
4 Calculate Bt = (B − xtpt )/K
5 for k = 1, . . . ,K do
6 Decide yk by solving (26) and replace k-th

element of vector y t by yk
7 Observe ak , qk
8 Decide λk+1 by solving (27)

9 Observe a t and calculate ft (xt ,y t )
10 Observe q t and calculate gt (xt ,y t )

Also, the t-slot Lagrangian is:

Lk

(
y , λ̂
)
= ∇fk (yk )(y − yk ) + λ̂gk (y) +

(y − yk )
2

2ν̂
(25)

where λ̂ ∈ R+ is the new dual variable.
The learning policy is summarized in Algorithm OLR-MTS.

At the beginning of period t, the NO reveals the reservation
price pt ∈ [0, p] (step 2). Then, the SP decides its reservation
policy z t = (xt ,y t ) by solving (13) (step 3), where Z =
ΓK+1. After xt is fixed, the SP updates the slot decisions
yk , ∀k ∈ Kt (step 6), by executing:

yk = argmin
y∈Γ

Lk−1

(
y , λ̂k

)
. (26)

Then the demand ak and the price qk are revealed (step 7).
At the end of the slot, the SP has access to the current
Lagrangian (25) and can update its dual variable (step 8) by
executing:

λ̂k+1 =
[
λ̂k + μ̂∇λLk

(
yk , λ̂

)]

+
. (27)

At the end of the period, the SP has observed all the demand
a t and price q t parameters, and therefore can calculate the
values ft (xt ,y t ) and gt (xt ,y t ) (steps 9 and 10). Parameters
ν̂ and μ̂ are the steps for the intra-period decisions, and we
set them to ν̂ = ν and μ̂ = μ.

B. Online Learning for MTS With Slice Orchestration

Here, we combine the slice orchestration and the mixed
time scale reservation models, where the SP can update the
slot reservations yk ’s of the period t, based on the demand
ak ’s and spot prices qk ’s it observes during that period. The
functions f θk and gθk for this slot-decision instance, are:

f θk (yk ) = −ak log
(
x�
t θ t + y�

k θ t + 1
)
,

gθk (yk ) = y�
k qk − Bt , (28)

where, again, x t is a parameter and we define Bt = (B −
x�
t pt )/K . The t-slot Lagrangian is:

Lθ
k

(
y , λ̂

)
= ∇f θk (yk )

�(y − yk ) + λ̂gθk (y) +
||y − yk ||2

2ν̂
(29)

Algorithm OLR-MTS-SO: OLR-MTS for Slice
Orchestration

Initialize:
λ1 = 0,x 0 ∈∏m

i=1 Γi ,y0 ∈ (
∏m

i=1 Γi )
K , ν = μ =

O(T−1/3), ν̂ = ν, μ̂ = μ
1 for t = 1, . . . ,T do
2 Observe the t-period price pt
3 Decide (x t ,y t ) by solving (21)
4 Calculate Bt = (B − x�

t pt )/K
5 for k = 1, . . . ,K do
6 Decide yk by solving (30) and replace k-th

element of vector y t by yk
7 Observe ak , qk
8 Decide λk+1 by solving (31)

9 Observe {ak}k∈Kt
, θ t and calculate f θt (x t ,y t )

10 Observe {qk}k∈Kt
and calculate gθt (x t ,y t )

Then, the SP updates its reservation yk for each slot k, and
its dual variable after observing ak and qk , by executing:

yk = arg min
y∈∏m

i=1 Γi

Lθ
k−1

(
y , λ̂k

)
, (30)

λ̂k+1 =
[
λ̂k + μ̂∇λL

θ
k

(
yk , λ̂

)]

+
. (31)

At the end of the period, the SP has observed all demand
{ak}k∈Kt

and prices {qk}k∈Kt
parameters and the contri-

bution vector θ t , and hence can calculate f θt (x t ,y t ) and
gθt (x t ,y t ). Parameters ν̂ and μ̂ are the steps for the intra-
period decisions, and we use ν̂ = ν and μ̂ = μ.

C. Discussion

Complexity Analysis OLR-MTS, OLR-MTS-SO: We discuss
now the complexity of the two mixed-time-scale algorithms.
When compared to the OLR algorithm, the OLR-MTS needs
2K + 1 more operations to compute the K updates (26)
and (27), and to calculate Bt . Therefore, the running time is
still of O(K ). The memory requirements stay at O(K ), as the
OLR-MTS needs to store 4(K − 1) new variables. Similarly,
the running time and memory requirements are the same for
the OLR-SO and the OLR-MTS-SO algorithms, as the latter
needs 2Km2+K more operations and 2(K − 1)m + 2(K − 1)
more storage.

We start by giving an analytical expression for the intra-
period reservation decision. Recall that (17) provided that
expression for the single-time scale model. Here, we can write
instead:

yk =
ν̂ak−1

1 + xt−1 + yk−1
− qk−1λ̂k ν̂ + yk−1. (32)

We observe that in this case the k-slot decision relies on the
previous time-slot (ak−1, qk−1), while the respective deci-
sion in (17) utilizes information from the previous period
(ak−K , qk−K ). We expect that the gap between the past value
we use and the current value |ak−1 − ak | is smaller than
|ak−K−ak |. This will allow the SP to take more accurate deci-
sions in practice, when using these mixed time-scale updates.
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On the other hand, the single time scale approach induces
smaller computation load, as we can update the decoupled
variables in a parallel fashion. This is not the case for the MTS
approach, where we need to follow a specific update order,
i.e., xt , y(t−1)K+1, y(t−1)K+2, . . . , y(t−1)K+K . This, in turn,
might affect the policy implementation for large problem
instance and/or when the time-slots are very small.

VII. NUMERICAL EVALUATION

We present a set of numerical tests that verify the learning
efficacy of the proposed algorithms and highlight the impact
of key system parameters on their performance.

A. Simulation Setup

Scenario: We consider a network operator that offers slices
that extend from the last hop wireless link to core comput-
ing servers. Thus, the SP can reserve: yk1 ∈ [0,D1] radio
resources at the base stations (BSs); yk2 ∈ [0,D2] link capac-
ity that connects the BSs to the servers; and yk3 ∈ [0,D3]
processing capacity at the servers (i.e., m = 3). All variables
are expressed in terms of the flow volume (Mbps) that the
slice serves. The SP needs to serve a time-varying demand
ak ∈ [0, 1] that models the normalized slice utilization – this
can be calculated as the number of active users over the maxi-
mum number of users allowed in one slice so as to respect the
SP’s SLA. The achieved slice performance depends on reser-
vation vectors x t = (xt1, xt2, xt3) and yk = (yk1, yk2, yk3)
and is given by (18).

Traces: The random demand and cost parameters are cre-
ated based on two cases. In the stationary Case 1, the demand
ak is uniformly distributed on [0, a] and the prices pt and
qk uniformly distributed on [0, p] · (K/cf ) and [0, q], respec-
tively. Here the advance-reservation price pt is determined as
a discount of the spot price qk , which is tuned via parameter
cf > 0. In the non-stationary Case 2, we set:

ak = A0 sin(2πk/K0) + U [A0, a],

qk = Q0 sin(2πk/K0) + U [Q0, q ],

pt = (P0 sin(2πt/K0) + U [P0, p])
K

cf
,

where U is the added uniform noise, e.g., U [A0, a] follows a
uniform distribution on the set [A0, a]. K0 is the period of the
sine waves, A0, Q0, P0 are the amplitude of the sine waves.
Such design of the traces enforce ak ∈ [0,A0 + a], qk ∈
[0,Q0 + q ] and pt ∈ [0,P0 + p]. This is a more challenging
scenario for the SP which demonstrates the main advantage
of the proposed learning-based reservation algorithms that can
adapt to such non-stationary conditions.

Selection of the Parameter Values: We select by default ν =
μ = ν̂ = μ̂ = T−1/3 = 0.1, for T = 1000, as these are
recommended values for the learning rates in [12]. We take
D = 1 and a = p = q = 1 to deal with normalized reservations
(belonging to [0, D] = [0, 1]), and normalized traces for the
stationary case. We limit our period length to K = 3, in order
to fall under the scope of the sublinear regret (a high value of
K increases significantly the regret bound). We select cf = 3
and K0 = 5 by default, as these parameters do not affect the

TABLE II
SIMULATION PARAMETERS

Fig. 4. Evolution of RT /T and VT /T . Simulation parameters are set to
K = 3, cf = 3, D = 1. (4(a)): a = p = q = 1, B = 2, ν = μ = 0.1. (4(b)):
K0 = 5, A0 = P0 = Q0 = 0.5, a = p = q = 1.5, B = 4, ν = μ = 0.1.

theoretical bounds. For the non-stationary case, we aim to have
the same amplitude for the sine wave and the uniform noise.
By selecting A0 = P0 = Q0 = 0.5, we ensure the sine wave
has an amplitude of 1, from −0.5 to 0.5. The noise interval
for each trace is [0.5, 1.5], leading to the same amplitude of 1.
The value of B is always selected to be D(p + Kq)/2, as it
is the specific value that minimizes the theoretical bound in
Lemma 1.

B. Evaluation of OLR and OLR-MTS

OLR Convergence: First, we verify that RT and VT grow
sublinearly given that Ug = o(T ) and Uz = o(T ); see
Figs. 4(a) and 4(b). In Case 1, we set the different parame-
ters as shown in the respective caption, and select the optimal
budget to be B = D(p + Kq)/2 = 2. Under these condi-
tions, we observe in Fig. 4(a) the convergence of RT /T
and VT /T . In Case 2, we set the parameters as shown
in the respective caption, and select the optimal budget to
be B = D(p + P0 + K (q + Q0))/2 = 4}. We observe
again in Fig. 4(b) the convergence of RT /T and VT /T .
Note that for the evolution of the constraint violation we use
VT =

∑T
t=1 gt (z t ) instead of VT = [

∑T
t=1 gt (z t )]+, in

order to study how the budget consumption evolves over time,
even when it does not violate the respective bound.

Theory vs Practice: In Figs. 5(a) and 5(b), we compare the
convergence of the OLR solution to the convergence of the
theoretical bounds (regret and fit). We observe that the solution
always converges faster, as the theoretical bound represents the
worst-case scenario. For the regret convergence, we zoom in
the last 100 periods to point out that an horizon of T = 1000
might not be distant enough to observe the convergence to 0
of the theoretical bound. Indeed, we witness the slope of the
theoretical regret bound slowly shrinking towards 0.
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Fig. 5. Evolution of RT /T and VT /T . Simulation parameters are set to
K = 3, cf = 3, D = 1. (5(a)): a = p = q = 1, B = 2, ν = μ = 0.1. (5(b)):
K0 = 5, A0 = P0 = Q0 = 0.5, a = p = q = 1.5, B = 4, ν = μ = 0.1.

Fig. 6. Comparison of OLR and OLR-MTS. Simulation parameters are K = 3,
cf = 3, D = 1. (6(a)): a = p = q = 1, B = 2, ν = ν̂ = μ = μ̂ = 0.1.
(6(b)): K0 = 5, A0 = P0 = Q0 = 0.5, a = p = q = 1.5, B = 4,
ν = ν̂ = μ = μ̂ = 0.1.

Fig. 7. Impact of Learning Rates. Simulation parameters: K = 3, cf = 3,
D = 1. (7(a)): a = p = q = 1, B = 2. (7(b)): K0 = 5, A0 = P0 = Q0 =
0.5, a = p = q = 1.5, B = 4.

Comparison of OLR and OLR-MTS: In Figs. 6(a) and 6(b),
we observe that OLR-MTS exhibits in practice a faster regret
convergence than OLR. Namely, until T = 100, OLR-MTS
achieves smaller regret, which is particularly important for
problems that will run for small time horizons. Eventually,
both algorithms reach asymptotically a zero average regret
state. Indeed, we can see that both solutions show similar
convergence, with a slight advantage to the OLR-MTS that
gets thinner as T increases. Both solutions satisfy the budget
constraint, with a negative VT /T at T = 200 periods.

Influence of ν and μ: In Fig. 7, we observe the influence of
the learning rates on the convergence of RT /T and VT /T .
We set ν = 0.1 and use different values for μ, namely μ ∈
{0.1, 0.05, 0.01}. As predicted in our analysis, a lower value
of μ favorites over-reservation, hence the performance is better
and the budget consumption is higher. Therefore, the SP can
leverage these parameters, depending on whether it wishes to
prioritize performance or the budget consumption constraint.

K and D Sensitivity: In Figs. 8(a) and 8(b), as K increases,
the regret performance drops in a linear fashion. This is quite

Fig. 8. Simulation parameters are set to: 20 runs, T = 500, cf = 3, D = 1.
(8(a)): a = p = q = 1, B = (K + 1)/2, ν = μ = 0.1. (8(b)): K0 = 5,
A0 = P0 = Q0 = 0.5, a = p = q = 1.5, B = K + 1, ν = μ = 0.1.

Fig. 9. Simulation parameters are set to: 20 runs, T = 500, cf = 3,
K = 3. (9(a)): a = p = q = 1, B = 2D, ν = μ = 0.1. (9(b)): K0 = 5,
A0 = P0 = Q0 = 0.5, a = p = q = 1.5, B = 4D, ν = μ = 0.1.

reflective of the regret bound, where most terms are either
linear or quadratic with regard to K. To fairly compare the
performance of the OLR for different values of K, we need
to keep B = D(p + Kq)/2 at each point. The latter value of
B gives the minimum for parameter M, henceforth the regret
bound. This way we evaluate the performance of the OLR,
holding that the regret bound is at its minimum at each point K.
In Figs. 9(a) and 9(b), the regret performance worsens as D
increases. We note that the solution is more sensitive to this
parameter, as the performance is significantly worse for D = 9
than for K = 9 for instance. Again, we compare the OLR
performance against different values of D, under the same con-
dition that we use for each D a value of budget that minimizes
the regret bound, i.e., B = D(p + Kq)/2. With our specific
values, it leads in Case 1 to B = D(1 + 3 ∗ 1)/2 = 2D , and
in Case 2 to B = D(0.5+1.5+3 ∗ (0.5+1.5))/2 = 4D . We
recall that in Case 2, P0 + p, Q0 + q are the upper-bounds.

B Sensitivity: Here we need to make a preliminary analysis
on the impact of B on the optimal reservation policy. At every
period, the dynamic benchmark achieves the best performance
while respecting the budget constraint, i.e., reserving for a cost
less or equal to B. In practice, the only case it spends less than
B is when it over-provisions the slice, i.e., z �

t = [D , . . . ,D ]
and still we have D(pt + q(t−1)K+1+ . . .+ qtK ) < B . Thus,
the higher the allocated budget TB is, the more the SP will
over-provision and the bigger end-savings TB −∑T

t=1 ξt it
will achieve, where ξt = ptxt +

∑
k∈Kt

ykqk .
Although this first observation is rather intuitive, it offers

interesting insights. Let’s take Case 1 and assume we over-
provision the slices, i.e., z = [D ,D , . . . ,D ]. We denote the
probability to not violate the budget constraint B as:

P

{
Dpt +Dq(t−1)K+1 + . . .+DqtK ≤ B

}

defined for B ∈ [0,D(p + Kq)]. The latter function is the
cdf of the Irwin-Hall distribution [41] on [0, D(p + Kq)]. The
proof follows from noticing that the random variable pt +
q(t−1)K+1 + . . .+ qtK follows the Irwin-Hall distribution on
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Fig. 10. Simulation parameters are set to: 20 runs, T = 500, K = 3, cf = 3,
D = 1. (10(a)): a = p = q = 1. (10(b)): K0 = 5, A0 = P0 = Q0 = 0.5,
a = p = q = 1.5.

Fig. 11. Simulation parameters are set to: 20 runs, T = 500, cf = 3, D = 1,
K = 3. (11(a)): a = p = q = 1, ν = ν̂ = μ = μ̂ = 0.1. (11(b)): K0 = 5,
A0 = P0 = Q0 = 0.5, a = p = q = 1.5, ν = ν̂ = μ = μ̂ = 0.1.

[0, p + Kq)] (as a sum of independent uniform variables).
This property can be generalized to the sum of independent
variables following the same -symmetrical- distributions.

In Fig. 10, we count for T = 500 periods the number
of times the dynamic benchmark over-provisions the slice.
We run the simulation 20 times and take average values. We
observe the shape of the Irwin-Hall distribution in both cases,
although the theoretical result only stands for Case 1.

In Figs. 10(a) and 10(b), the variability Uz /T decreases
and becomes very low for:

B ∈
[
D(p +Kq)

2
,D(p +Kq)

]
= [2, 4]

in Case 1, and:

B ∈
[
D(p + P0 +K (q +Q0))

2
,D(p + P0 +K (q +Q0)

]

= [4, 8]

in Case 2. Obviously for B = 0, the benchmark cannot reserve
anything hence Uz = 0. It outlines that high B represents a
trivial case, leading to very easy to learn optimal policy that
consists of over-provisioning the slice. Therefore, in Fig. 11,
we focus on a more challenging set to show the performance
of our solutions: B ∈ ]0,D(p+Kq)/2] = ]0, 2] in Case 1 and
B ∈ ]0,D(p + P0 +K (q +Q0))/2] = ]0, 4] in Case 2.

In Fig. 11, we focus on the performance ratio, which is the
performance (given by (3)) of our solution (OLR or OLR-
MTS) over the performance of the benchmark, and on the
violation ratio, which represents the importance of the viola-
tion through its proportion of the total allocated budget BT.
We run the simulation 20 times and take average values. We
observe performance and violation ratios at T = 500 periods.

In Fig. 11(a), we observe that the solutions OLR and OLR-
MTS achieve their best performance for B = 2 = D(p +
Kq)/2. This is rather expected as B = 2 corresponds to the
lowest variability on the benchmark Uz /T . It is also the value
of B that minimizes the upper bound on the regret and fit, as
we previously discussed in Section IV. Surprisingly, however,
the solutions achieve a very good performance at B = 0.5 =
D(p+Kq)/8, while the variability Uz /T for this value is quite
high. The respective violation is 3.44% of the total allocated
budget, which is rather reasonable.

In Fig. 11(b), the solutions achieve their best performance
of 1.023 at B = 1 = D(p + P0 + K (q + Q0))/8. The
respective violation is 1.65% of the total allocated budget. This
performance is truly amazing as it even surpasses the 1.016
performance achieved at B = 4 = D(p+P0+K (q+Q0))/2.
For the latter B, the respective savings are 2.67% of the total
allocated budget, which is less than the savings attained by
the benchmark (9.19%).

Conclusively, we find out that two specific values of bud-
get B lead to the best performance in both cases. While
we expected the values B = D(p + Kq)/2 (Case 1) and
B = D(p + P0 + K (q + Q0))/2 (Case 2) to show good
performance, we are positively surprised to observe good
performance for the values B = D(p + Kq)/8 (Case 1) and
B = D(p + P0 + K (q + Q0))/8 (Case 2). We will confirm
in the slice orchestration case that these values of B are local
optima of the performance for the SP.

C. Evaluation of OLR-SO and OLR-MTS-SO

Traces: In the slice orchestration case the random demand
and cost parameters are created based on two cases. In
the stationary Case 1, the demand ak is uniformly dis-
tributed on [0, a] and the prices pt and qk are random
vectors of dimension m following the uniform distributions
(K/cf ) ∗ [U [0, p], . . . ,U [0, p]]� and [U [0, q ], . . . ,U [0, q ]]�,
respectively. We define the slice composition vector θ t as the
uniform random vector [U [0, θ], . . . ,U [0, θ]]� of dimension m.
Here the advance-reservation price vector pt is determined as
a discount of the spot price vector qk . In our setting, we reg-
ulate the importance of such discount through parameter cf .
In the non-stationary Case 2, we set:

ak = A0 sin(2πk/K0) + U [A0, a],

qk = Q0 sin(2πk/K0) + [U [Q0, q ], . . . ,U [Q0, q ]]
�,

pt =
(
P0 sin(2πt/K0) + [U [P0, p], . . . ,U [P0, p]]

�)K
cf

,

θ t = θ0 sin(2πt/K0) + [U [θ0, θ], . . . ,U [θ0, θ]]�

where, as before, parameters A0, Q0, P0, θ0 are the amplitudes
of the sine waves and U is the added uniform noise on [A0, a],
[Q0, q ], etc. The sine part of qk , pt and θ t is the offset that
we add to the components of the uniform random vector.

OLR-SO Convergence: First, we verify that RT and VT
grow sublinearly given that U θ

g = o(T ) and U θ
z = o(T );

see Figs. 12(a) and 12(b). In Case 1, we select the system
parameters shown in the respective caption, and for which the
optimal budget is B = (D1 + D2 + D3)(p + Kq)/2 = 4.
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Fig. 12. Evolution of RT /T and VT /T . Simulation parameters are set to
K = 3, cf = 3, D = [0.5, 1, 0.5], m = 3. (12(a)): a = p = q = θ = 1,
B = 4, ν = μ = 0.1. (12(b)): K0 = 5, A0 = P0 = Q0 = θ0 = 0.5,
a = p = q = θ = 1.5, B = 8, ν = μ = 0.1.

Fig. 13. Evolution of RT /T and VT /T . Simulation parameters are set to
K = 3, cf = 3, D = [0.5, 1, 0.5], m = 3. (13(a)): a = p = q = θ = 1,
B = 4, ν = μ = 0.1. (13(b)): K0 = 5, A0 = P0 = Q0 = θ0 = 0.5,
a = p = q = θ = 1.5, B = 8, ν = μ = 0.1.

Fig. 14. Evolution of RT /T and VT /T . Simulation parameters are set to
K = 3, cf = 3, D = [0.5, 1, 0.5], m = 3 (14(a)): a = p = q = θ = 1,
B = 4, ν = ν̂ = μ = μ̂ = 0.1. (14(b)): K0 = 5, A0 = P0 = Q0 = θ0 =
0.5, a = p = q = θ = 1.5, B = 8, ν = ν̂ = μ = μ̂ = 0.1.

We can observe in Fig. 12(a) the convergence of both RT /T
and VT /T . In Case 2, we set B = (D1 + D2 + D3)(p +
P0 + K (q + Q0))/2 = 8}, Under these settings, we observe
in Fig. 12(b) the convergence of RT /T and VT /T .

Theory vs Practice: In Figs. 13(a) and 13(b), we plot the
convergence of both the theoretical bound and the actual
solution OLR-SO (regret and fit). Again, the solution con-
verges faster than its worst-case scenario. Also, zooming in
the last 100 periods show that the theoretical regret bound is
slowly decaying towards 0.

Comparison of OLR-SO and OLR-MTS-SO: In Figs. 14(a)
and 14(b), we observe that the OLR-MTS-SO converges faster
than the OLR-SO. This result is similar to the one of the
previous subsection. We observe that until T = 100, the OLR-
MTS-SO solution has better convergence for both RT /T and
VT /T . Then, the two solutions show similar convergence,
with a small advantage to the OLR-MTS-SO that vanishes as
T increases.

Fig. 15. Evolution of RT /T and VT /T . Simulation parameters are set to
K = 3, cf = 3, D = [0.5, 1, 0.5], m = 3. (15(a)): a = p = q = θ = 1,
B = 4. (15(b)): K0 = 5, A0 = P0 = Q0 = θ0 = 0.5, a = p = q = θ =
1.5, B = 8.

Fig. 16. Simulation parameters are set to: 20 runs, T = 500, cf = 3,
D = [0.5, 1, 0.5], m = 3. (16(a)): a = p = q = θ = 1, B = K + 1,
ν == μ = 0.1. (16(b)): K0 = 5, A0 = P0 = Q0 = θ0 = 0.5, a = p =
q = θ = 1.5, B = 2(K + 1), ν == μ = 0.1.

Fig. 17. Simulation parameters are set to: 20 runs, T = 500, cf = 3, K = 3,
m = 3. (17(a)): a = p = q = θ = 1, B = 2(

∑
i Di ), ν = μ = 0.1.

(17(b)): K0 = 5, A0 = P0 = Q0 = θ0 = 0.5, a = p = q = θ = 1.5,
B = 4(

∑
i Di ), ν = μ = 0.1.

Influence of ν and μ: In Fig. 15, we observe the influence of
the learning rates on the convergence of RT /T and VT /T .
We proceed to keep ν = 0.1 constant and to give the values
{0.1, 0.05, 0.01} to μ. As predicted in our analysis, a lower
value of μ favorites over-reservation, therefore leads to better
performance and higher budget consumption. We derive the
same remark as previously, which is the SP can leverage these
learning rates, depending on what it wishes to prioritize: either
performance or budget.

K and D Sensitivity: In Figs. 16(a) and 16(b), we observe
that the performance worsens faster against K than in the OLR
case. This is not surprising, as each slot comprises m decisions,
in lieu of only 1 in the OLR case. Once again, we compare the
regret for different values of K choosing a budget value of B =
(
∑

i Di )(p + Kq)/2 which is equal to K + 1 in Case 1 and
to 2(K + 1) in Case 2. In Figs. 17(a) and 17(b), D is a vector
of dimension m = 3. We increment each item of the vector by
0.5 from [0.5, 1, 0.5] to [4.5, 5, 4.5]. The x-axis on the graphs
represent the sum of the items, starting from 2 to 14. Again,
we choose the value B = (

∑
i Di )(p+Kq)/2, that minimizes

the regret bound in Lemma 2. Under our value settings, it leads

Authorized licensed use limited to: TU Delft Library. Downloaded on October 25,2022 at 07:16:48 UTC from IEEE Xplore.  Restrictions apply. 



2014 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 18. Simulation parameters are set to: 20 runs, T = 500, K = 3, cf = 3,
m = 3, D = [0.5, 1, 0.5]. (18(a)): a = p = q = θ = 1. (18(b)): K0 = 5,
A0 = P0 = Q0 = θ0 = 0.5, a = p = q = θ = 1.5.

Fig. 19. Simulation parameters are set to: 20 runs, T = 500, cf = 3,
D = [0.5, 1, 0.5], m = 3, K = 3. (19(a)): a = p = q = θ = 1, ν =
ν̂ = μ = μ̂ = 0.1. (19(b)): K0 = 5, A0 = P0 = Q0 = θ0 = 0.5,
a = p = q = θ = 1.5, ν = ν̂ = μ = μ̂ = 0.1.

to B = 2(
∑

i Di ) in Case 1 and B = 4(
∑

i Di ) in Case 2.
We observe a rise of the regret, which is slower than in the
OLR case, if we relate

∑
i Di to D.

B Sensitivity: In this subsection, we confirm for the slice
orchestration case our previous analysis on the parameter B.
For Case 1, after analyzing the variability U θ

z /T in Fig. 18(a),
we focus on the performance and violation ratios for B ∈
]0, 4]. In Fig. 19(a), we observe two values of B, namely B =
(D1 + D2 + D3)(p + Kq)/2 = 4 and B = (D1 + D2 +
D3)(p + Kq)/8 = 1, that lead to the best performance of
our solutions. For Case 2, we observe in Fig. 19(b) that B =
(D1 + D2 + D3)(p + P0 + K (q + Q0))/2 = 8 and B =
(D1 +D2 +D3)(p + P0 +K (q +Q0))/8 = 2 show the best
results in terms of performance. We look only at the interval
B ∈ ]0, 8], as for higher values of B, the variability U θ

z /T is
very low (see Fig. 18(b)) and the latter case is not challenging
for the SP.

We conclude that a wealthy SP has more interest to
choose a high value of B (for instance ](

∑
i Di )(p +

Kq)/2, (
∑

i Di )(p + Kq)]), as this decreases the variabil-
ity of the dynamic benchmark sequence. The easy to learn
optimal solution consists of over-provisioning the slice in
most periods. For B = (

∑
i Di )(p + Kq), the over-

provisioning strategy is the optimal solution. On the other
hand, a modest SP can still choose wisely its parameter B,
for instance B = (

∑
i Di )(p + Kq)/2 or B = (

∑
i Di )(p +

Kq)/8. This represents a riskier scenario, as if the diverse
bounds of the system model (D, p, q, etc.) are not known
precisely, a small error in their estimation can lead the SP
to miss the peak of performance observed at those precise
values.

VIII. CONCLUSION

The deployment of markets for virtualized network
resources is becoming increasingly important and is expected
to be among the key building blocks of future mobile
networks. A prerequisite for their effective operation, how-
ever, is the ability of the service providers, the clients of these
markets, to reserve resources in a way that maximizes their
services’ performance without exceeding the anticipated oper-
ating expenditures. In the new era of flexible market rules and
volatile network conditions and user requirements, this reser-
vation becomes an intricate problem that calls for new solution
techniques.

Our approach is inspired by the celebrated online convex
optimization paradigm, which is a bare bones optimization
model with minimal assumptions regarding the involved cost
functions. Hence, the designed algorithms enable the SP to
learn how to reserve resources optimally, with guarantees that
do not depend on the statistical properties of the involved
random parameters. Namely, our policies are robust to arbi-
trary changes of the resource prices, oblivious to lack of
this information when the reservations are made, and achieve
optimal slice orchestration even when the SP needs are time-
varying. These elements build a practical and general slicing
framework with performance and budget guarantees.

APPENDIX A
PROOF OF LEMMA 1

Our starting point is [12, Ths. 1 and 2]. First, we will prove
that:

‖∇ft (z t )‖ ≤ G � a
√
K (K + 1), ∀xt , yk ∈ Γ, k ∈ Kt .

Indeed, we can calculate the gradient vector:

∇ft (z t ) =

⎡

⎢⎢⎢⎢⎢⎣

− ∑
k∈Kt

ak
1+xt+yk

− a(t−1)K+1

1+xt+y(t−1)K+1

...
− atK

1+xt+ytK

⎤

⎥⎥⎥⎥⎥⎦

where ∇ft (z t ) ∈ R
K+1. We can observe that the reservation

variables appear only in the denominator of the gradient com-
ponents, hence its norm is maximized when these variables
are set equal to zero. Hence, we can write for the �2 norm:

‖∇ft (z t )‖2 ≤ ‖∇ft (0)‖2 =

⎛

⎝
∑

k∈Kt

ak
1

⎞

⎠
2

+
a2(t−1)K+1

1

+ . . .+
a2tK
1

≤
⎛

⎝
∑

k∈Kt

a

⎞

⎠
2

+ a2 + · · ·+ a2

= K 2a2 +Ka2 = a2K (K + 1)

which gives us the expression of the upper-bound G.
Second, for all t , k ∈ Kt and xt , yk ∈ Γ:

0 ≤ ptxt +
∑

k∈Kt

qkyk ≤ pD +KqD

⇒ −B ≤ gt (xt ,y t ) ≤ D(p +Kq)− B
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⇒ |gt (xt ,y t )| ≤ max{D(p +Kq)− B ,B}.
Finally, the �2 diameter E of Z = [0,D ]K+1 is:

∀x ,y ∈ Z, d(x ,y) ≤
√
D2 +D2 + · · ·+D2 (33)

= D
√
K + 1 (34)

Replacing these bounds in [12, Th. 1] we obtain the bounds
of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

Similarly, we first prove an upper bound on the gradient
of the objective function, namely we will show that ∀t , k ∈
Kt ,x t ,yk ∈ Γ1 × . . .× Γm , it holds:

∥∥∥∇f θt (z t )
∥∥∥ ≤ Gθ � aθ

√
mK (K + 1).

The gradient vector is:

∇f θt (z t ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

− ∑
k∈Kt

ak θ t
1+θ�t x t+θ�t yk

− a(t−1)K+1θ t

1+θ�t x t+θ�t y(t−1)K+1

...

− atK θ t
1+θ�t x t+θ�t y tK

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and we maximize the norm by setting z t = 0 and using the
maximum possible parameter values, namely θ t = [θ, . . . , θ]�
and ∀k , ak = a . Then, we can write:

∥∥∥∇f θt (z t )
∥∥∥
2
≤

∥∥∥∇f θt (0)
∥∥∥
2
=

m∑
i=1

⎛
⎝ ∑

k∈Kt

ak
1

⎞
⎠

2

θ2i

+

m∑
i=1

(
a(t−1)K+1

)2

1
θ2i + · · ·+

m∑
i=1

(atK )2

1
θ2i

≤ m

⎛
⎝ ∑

k∈Kt

a

⎞
⎠

2

θ2 +ma2θ2 + . . .ma2θ2

≤ mK 2a2θ2 +Kma2θ2 = (aθ)2mK (K + 1)

which gives us the expression of the bound Gθ.
Second, for all t , k ∈ Kt and x t ,yk ∈ Γ1 × · · · × Γm :

0 ≤ p�
t x t +

∑
k∈Kt

q�
k yk

≤ pD1 + · · ·+ pDm +K (qD1 + · · ·+ qDm )

⇒ −B ≤ gθt (x t , {yk}) ≤ (D1 + . . .+Dm )(p +Kq)− B

⇒
∣∣∣gθt (x t , {yk})

∣∣∣ ≤ max{(D1 + . . .+Dm )(p +Kq)− B ,B}

Finally, the diameter F of Z = [0,Di ]
K+1×m

i=1 is:

∀x ,y ∈ Z, d(x ,y) ≤
√(

D2
1 + · · ·+D2

m

)
(K + 1) (35)

=
√

D2
1 + · · ·+D2

m

√
K + 1 (36)

And plugging these terms in [12, Th. 1] we obtain Lemma 2.

APPENDIX C
PROOF OF LEMMA 3

We denote z = [z0, z1, . . . , zK ]� and Ug =
∑T

t=1U
t
g ,

then:

U t
g = max

z∈Z
∣∣[gt (z )− gt−1(z )]+

∣∣

= max
z∈Z

∣∣∣∣∣∣

[
(pt − pt−1)z0 +

K∑
k=1

(
q(t−1)K+k − q(t−2)K+k

)
zk

]

+

∣∣∣∣∣∣

= max
z∈Z

∣∣∣∣∣∣

[
Y0z0 +

K∑
k=1

Yk zk

]

+

∣∣∣∣∣∣
(37)

where we have introduced the random variables Y0 = pt −
pt−1 and Yk = q(t−1)K+k − q(t−2)K+k . As pt and pt−1

follow the same uniform distribution on [0, p], the random
variable Y0 = follows a triangular distribution on [−p, p],
centered on 0. We observe the same for Yk , k ≥ 1, that follow
the triangular distribution on [−q, q], centered on 0.

The rule to determine the maximum wrt z is very simple: if
the realization of Yi is negative, then we select zi = 0, other-
wise we select zi = D . This is because the operator [.]+ nullify
any negative total before we take the absolute value. Thus, we
define the random variable Xi = Yi zi . If Yi ≤ 0, then zi = 0,
hence Xi = 0. Otherwise, zi = D , then Xi = yiD , hence
Xi ∈ ]0, rD ], where r = p, q. Therefore, P[Xi = 0] = 1/2
and Xi |]0,rD ] follows a triangular distribution with mode 0.

E[Xi ] = (1/2)0 + (1/2)E
[
Xi |]0,rD ]

]
=

1

2

rD

3
(38)

Thus, E[X0] = pD/6 and ∀k ≥ 1,E[Xk ] = qD/6. Hence:

E
[
U t
g

]
= E

⎡

⎣X0 +
∑

k≥1

Xk

⎤

⎦ =

⎛

⎝pD/6 +
∑

k≥1

qD/6

⎞

⎠

= D(p +Kq)/6 (39)

With the weak law of large numbers, we finish the proof:

Ug

T
=

U 1
g + · · ·+ UT

g

T
(40)

converges to the expected value of U t
g : Ug/T → D(p +

Kq)/6 as T → ∞. Thus, for sufficiently large T, we get:

Ug = TD(p +Kq)/6.

We denote z = [z10 , . . . , z
m
0 , z11 , . . . , z

m
1 , . . . , z1K , . . . , zmK ].

The proof follows the exact same steps: we select z ji = 0
or Dj , based on the rule to determine the maximum. This
leads to:

E

[
U θ,t
g

]
= (D1 + · · ·+Dm)(p +Kq)/6 (41)

and finally to U θ
g = T (D1 + · · ·+Dm )(p +Kq)/6.
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