

Delft University of Technology

ARAPLBS
Robust and efficient elasticity-based optimization of Weights and Skeleton Joints for
Linear Blend Skinning with Parameterized Bones
Thiery, J.M.; Eisemann, E.

DOI
10.1111/cgf.13161
Publication date
2018
Document Version
Final published version
Published in
Computer Graphics Forum (online)

Citation (APA)
Thiery, J. M., & Eisemann, E. (2018). ARAPLBS: Robust and efficient elasticity-based optimization of
Weights and Skeleton Joints for Linear Blend Skinning with Parameterized Bones. Computer Graphics
Forum (online), 37(1), 32-44. https://doi.org/10.1111/cgf.13161

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/cgf.13161
https://doi.org/10.1111/cgf.13161

DOI: 10.1111/cgf.13161 COMPUTER GRAPHICS forum
Volume 37 (2018), number 1 pp. 32–44

ARAPLBS: Robust and Efficient Elasticity-Based Optimization
of Weights and Skeleton Joints for Linear Blend Skinning

with Parametrized Bones

J.-M. Thiery1,2 and E. Eisemann1

1Deflt University of Technology, The Netherlands
jean-marc.thiery@telecom-paristech.fr, e.eisemann@tudelft.nl

2LTCI, Telecom-ParisTech, Université Paris-Saclay, Paris, France

Abstract
We present a fast, robust and high-quality technique to skin a mesh with reference to a skeleton. We consider the space of
possible skeleton deformations (based on skeletal constraints, or skeletal animations), and compute skinning weights based on
an optimization scheme to obtain as-rigid-as-possible (ARAP) corresponding mesh deformations. We support stretchable-and-
twistable bones (STBs) and spines by generalizing the ARAP deformations to stretchable deformers. In addition, our approach
can optimize joint placements. If wanted, a user can guide and interact with the results, which is facilitated by an interactive
feedback, reached via an efficient sparsification scheme. We demonstrate our technique on challenging inputs (STBs and spines,
triangle and tetrahedral meshes featuring missing elements, boundaries, self-intersections or wire edges).

Keywords: deformations, animation systems, geometric modelling

ACM CCS: I.3.5 [Computer Graphics]: Computational Geometry and Object Modelling—Curve, surface, solid and object
representations

1. Introduction

Linear Blend Skinning (LBS) is a standard technique for skeleton-
based animation and is used extensively in video games, movies,
simulations and virtual-reality systems . It is popular because artists
use skeletons to animate characters and because of its efficiency:
it only requires blending bone transformations using pre-computed
skinning weights.

Looking at typical meshes and skeletons produced by artists
(Figure 1, left), it is clear that automatic weight computation is
challenging: (i) Models can consist of disconnected parts, which
might not be manifold, or orientable. (ii) The skeletal topology
might differ from the mesh topology (skeletons are conceived to
facilitate animating, not to follow geometric constraints). (iii) The
skeleton can be complex.

Typically, skinning weights should fulfil some properties (e.g.
sum to 1). Approaches based on (k-)harmonic or general partial
differential equations (PDEs) ensure these on the mesh or on an
embedding, while enforcing smoothness. Although smooth weights
are necessary, they do not ensure high-quality deformations.

Our approach produces weights to optimize deformation qual-
ity. Building upon as-rigid-as-possible (ARAP) transformations to
benefit from their properties (angle, edge length preservation), we
construct a set of representative skeleton deformations, exemplars,
sampled from the space of admissible transformations, and opti-
mize the skinning weights jointly to achieve corresponding ARAP
transformations. We can further specialize our weights for skeleton
animations by adding them to our exemplars.

Our approach is general and robust. Although compatible with
volumetric meshes, it does not rely on volumetric structures (which
are sometimes impossible to generate with existing tools) for the
weight computation on surface meshes. Our method handles chal-
lenging inputs, e.g. containing self-intersections, open boundaries,
disconnected parts or wire-edges. It is even compatible with com-
plex bones, e.g.stretchable-and-twistable bones (STBs) [JS11] and
spines. Our solution can also optimize the skeleton joints with re-
spect to the mesh for an optimal deformation quality, which can be
a tedious task when performed manually.

Our method was conceived with efficiency and user-friendliness
in mind, and we introduce a weight sparsification scheme, which

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

32

J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization 33

Figure 1: We use standard skeleton definitions (left); composed of
vertices (joints and extremities) and oriented segments (bones, or
parent relations). For example, F is parent of {Ci}.

results in a performance increase by several orders of magnitude.
Hereby, the artist can adapt weights to influence the result during
the optimization and obtains interactive feedback.

Our main technical contributions are:

� an efficient, robust, high-quality LBS definition based on a sam-
pling of feasible skeleton deformations;

� a joint-placement algorithm to optimize the skeleton;
� a generalization of ARAP deformations for stretchable inputs:

as-rigid-as-desired deformations.

1.1. Related work

Several supporting structures can be used to deform a shape. Here,
we focus on the most related work on LBS weights optimization,
and refer the reader to the excellent surveys [BS08, NS13, JDKL14]
for further information.

Smoothness-based Baran and Popovic’ [BP07] produce so-called
Heat Bones Weights (HBs) by solving an analogy to a volumet-
ric heat-diffusion equation of the bones’ basis functions. Here,
the Voronoi cells of the bones act as the diffusion structure.
Jacobson et al. [JBPS11] instead use a tetrahedrization to solve
for a biharmonic diffusion of the bones’ influence with positive
and bounded variables, producing Bounded Biharmonic Weights
(BBWs). In an improvement [JWS12], they prevent local maxima
in the solution. Finally, Dionne and de Lasa [DdL13] create a ro-
bust voxelization to skin poorly-meshed surfaces. While offering
ways to drive the diffusion, volumetric solutions are generally more
costly, due to the higher number of discrete elements, and currently
difficult to obtain for many real-life meshes.

Elasticity-based Kavan and Sorkine [KS12] were the first to com-
bine the concepts of ARAP and LBS/DQS deformations. Their
contribution is a joint-based deformer, which has two parameters
influencing the mesh vertices: the amount of twist and the amount
of swing that is applied by this deformer in the local basis at-
tached to the child bone. These two parameters per deformer are
optimized by minimizing the ARAP energy for representative de-
formations of the deformer, and all deformers are optimized one
after the other. After that, all deformations of individual deform-
ers are blended, using pre-computed BBWs, which act as skinning
weights. They argue that all complex deformations are essentially

located around the joints, and since these complex deformations
are handled by the twist and swing deformer individually, they can
keep the BBWs, blending the various deformations, untouched. In
contrast, our contribution is not a specific new deformer but an
optimization of the blending (i.e. the skinning weights) of the de-
formers in order to obtain ARAP mesh deformations. As them,
we can avoid the candy-wrapper effect. We achieve this by sup-
porting specialized deformers such as STBs and spines, which is
made feasible even for highly stretchable controls by introducing
as-rigid-as-desired transformations, which extend ARAP ones nat-
urally. Our choice is motivated by the desire to encourage artistic
flexibility, as each bone type can be specified individually. Fur-
thermore, we rely on standard bone definitions to facilitate the
integration into existing frameworks. In addition, our experience
is that the required BBWs are difficult to obtain for many chal-
lenging input models. Our strategy provides adequate results where
existing methods failed, which we illustrate with real-life models
(blendswap.com).

Example-based methods approximate a mesh sequence via LBS
[dATTHP08, KSO10, LD12]. Some, e.g.[LD14], output an automat-
ically created skeleton as well. Instead of skeleton deformations, one
could try generating mesh poses to obtain LBS weights using such
techniques. However, generating mesh poses capturing all degrees
of freedom is challenging and seems feasible for watertight models
only.

1.2. Technical background

Skeleton Topology and Constraints A skeleton (Figure 1) is com-
posed of (skeletal) vertices and segments, which can be bones (af-
fecting the mesh), or virtual segments (used to define parent–child
relations only). A vertex linked to several segments is called a joint.
Bones can have restrictions like maximal angles or imposed rotation
axes.

LBS with parametrized bones [MTLT*88, LCF00] transforms a
vertex i as

f : vi �→
∑

j∈B(i)

wij (Rj (vi) · vi + Tj (vi)), (1)

where Rj (vi) is the rotation and Tj (vi) the translation applied
by bone j on vertex i (these are constant for rigid bones –
(Rj (vi), Tj (vi)) = (Rj , Tj)∀i, but depend on vi otherwise), B(i) is
the set of bones influencing i and wij the weight of bone j over i.
We will refer to {B(i)} as the bone influence maps and to {wij } as
the weight maps.

Typically, skinning weights should verify:

1. Affinity:
∑

j wij = 1; reproduces rigid transformations.
2. Positivity: wij ≥ 0; prevents unnatural behaviour.
3. Sparsity: only ‘few’ wij > 0; leads to ‘simpler’ controls and a

faster rendering process (ill-defined).
4. Locality: bones should have ‘small’ influence zones; improves

control over editing operations (ill-defined).

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

34 J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization

Figure 2: (Left) Approximation. (Right) Continuous setting.

Spines STBs [JS11] are a popular example of parametrized bones.
Our approach is compatible with these, as well as a generalization,
spines, described here. A spine s is a skeletal segment [e0, e1] sub-
divided into infinitely small bones undergoing the same transforma-
tion (Figure 2). The name reflects its suitability to represent spines in
models. Fixing e0, its transformation combines a stretch σs, affecting
its length, and a rotation around an axis as, such that the accumu-
lated rotation from e0 to e1 amounts to θs. Similar to other bones,
a spine s also has a rigid transformation applied to e0, the spine’s
base transformation (Rs, ts). In consequence, spines have five pa-
rameters: (Rs, ts, σs, θs, as), and STBs are twist-restricted spines (i.e.
as = −−→e0e1/‖−−→e0e1‖ in their case).

A point p with parameter up ∈ [0, 1] (describing ‘which small
bone’ p is attached to) is transformed by a spine as

p �→ Rs Rloc(up) · p + Rs·tloc(up)+ ts , with (2)

Rloc(u) := Rot(as, uθs), and (3)

tloc(u) := (Id− Rloc(u)) · e0 + σ s.(sin(uθ s)/θs

− u cos(uθ s))(Id− as · as
T) · −−→e0e1

+ σ s.(u sin(uθ s)

+ (cos(uθ s)− 1)/θ s)as ×−−→e0e1

+ u.(σs − 1)Rloc(u) · −−→e0e1. (4)

Given a spine s with vertices e0, e1, one needs to define
the above parametrization us : V �→ [0, 1] on the mesh vertices
V . It is possible to use complex (or artistically driven) defini-
tions [JS11], but by default, we use a linear parametrization:
us(vi) = max(0, min(1,−→e0vi

T · −−→e0e1/||−−→e0e1||2)).

If a system only supports rigid bones, s can be con-
verted into a set of them: s is cut into n bones of equal
length with joints ν0· · ·νn, and for
each νj its corresponding u-parameter
uj is set as j/n. We define a unity
partition as piecewise-linear functions
{πj : [0, 1] �→ [0, 1]}, where πj (ck) = δk

j , with cj = (uj + uj+1)/2,
and impose π0(0) = πn(1) = 1 (the inset shows the case for three
bones). The weight of a mesh vertex vi (with weight wis with respect
to the spine) with respect to bone k is defined as wisπk(us(vi)).

Note that Forstmann et al. [FOKGM07] introduce a spline-based
deformer, which could perhaps be used in place of our spine de-
former. However, we are not aware of the existence of closed-form
expressions describing both its deformation and its derivatives, as
we require in our work.

ARAP transformations An ARAP transformation [SA07] f min-
imizes the energy:

E(f,R):=
∑
i∈V

�i

=:Ei (f,R(i)), the rigidity of vertex i assuming R(i)︷ ︸︸ ︷∑
k∈V1(i)

λik‖f (vk)−f (vi)︸ ︷︷ ︸
=:ēik

−R(i)·(vk−vi)︸ ︷︷ ︸
=:eik

‖2 (5)

where V1(i) is the one ring neighbourhood of i, R(i) a 3× 3-matrix
associated with i, �i is a(n input) vertex weight and λik a(n input)
weight for the (directed) edge eik from vertex i to k to account for
the local discretization of the mesh.

2. Overview

Input to our method is a polygonal mesh and a skeleton (with pos-
sible deformation restrictions). The output are skinning weights,
which employed with LBS (Equation (1)) minimize the ARAP en-
ergy (Equation (5)) over a set of skeleton deformations. Figure 3
illustrates the main steps of our algorithm.

During initialization, we produce a rough weight estimate based
on the rest pose. These are then sparsified concurrently to localize
influence and improve performance. The user can provide manual
indications if wanted. Finally, we determine a set of skeleton de-
formations (exemplars) by sampling feasible poses (or/and using
provided skeleton animations).

Figure 3: (System overview) Given a 3D mesh and skeleton, we output skinning weights. We produce skeleton exemplars respecting existing
constraints such as angles range, and use frames of provided skeleton animations if desired. The weights are optimized such that the
corresponding mesh deformations are ARAP. Optionally, the skeleton’s joints can be optimized similarly.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization 35

The weight-optimization stage defines skinning weights, which
result in ARAP transformations for the exemplars, by minimizing
a quadratic energy. The solution is found iteratively by optimiz-
ing transformation matrices and weights alternatingly. During each
iteration, we add constraints to enforce weight positivity. Upon con-
vergence, the optimal weights have been determined.

The joint optimization is optional, and used to refine the input
skeleton’s joint positions using a similar strategy.

Since weights (respectively, joints) impact the joint (respectively,
weight) solver’s setup, switching between joint and weight opti-
mizations requires a matrix refactorization. However, successive
iterations of the same solver can be performed without.

3. System Initialization

3.1. Weight initialization

For triangle meshes, we initialize our weights using a variant of
HBs [BP07], which were chosen for robustness. The weight vector
wHB
•j := (w0j , . . . , wN−1j)T for bone j is found by solving:

−	 · wHB
•j +H · wHB

•j = H · χ•j , (6)

	 denoting the Laplacian matrix, and χ•j the indicative function of
the Voronoi cell of bone j . H is a diagonal matrix, where Hii =
‖vi − p(i)‖−2, if the segment between vi and its closest point on the
skeleton p(i) does not intersect the mesh (tested with a Kd-tree),
otherwise Hii = 0.

We introduce several modifications, to make {wHB
•j } a good en-

try point for our algorithm. (i) We add support for virtual segments.
Figure 4(a) shows a partitioning using only skeleton bones. The zone
of influence of the parent bone does not reflect the user’s intent. We
obtain a more natural transition by making the virtual segments
part of the parent bone, thus extending their Voronoi cells (see
Figure 4b). (ii) The linear system (Equation (6)) can be non-
invertible for challenging input. In this case, we simply set Hii =
‖vi − p(i)‖−2. These weights can be of poor quality (see Figure 4c),
but will be optimized immediately (see Figure 4d).

3.2. Bone-influence reduction

We sparsify the bone influence maps prior to the optimization, while
most other approaches enforce sparsity by adding the lp (with p ≤ 1)
norm of the variables (e.g. [NVT*14]) to the energy. Our choice has

(a) (b)
(c) (d)

Figure 4: Bone Voronoi cells (a) and our modified cells (b). Dif-
fusing cell indicators can result in poor initial weights (c), but our
algorithm immediately improves upon those (d).

Figure 5: Professional modelling solutions (e.g.Blender, Maya) of-
fer restrictions on the skeleton. These constraints are respected by
our exemplars and, thus, by our weights.

two major advantages: (i) The linear system becomes small and
sparse, leading to interactive rates, and (ii) constraints can be added
during optimization with immediate feedback; an artist can use this
information to control sparsity and locality.

In our approach, the bone influence map B(i) of a vertex i is
initially set to all bone indices. We prune bones from {B(i)}, while
ensuring the following two sparsification properties: (P1): from
the perspective of bone j , w•j should have its topology preserved
(i.e.no extremum is artificially introduced) to make edits consistent;
(P2): from the perspective of vertex i, the set of bones in B(i)
should stay fully connected, which is meaningful for the ARAP
optimization.

In practice, we process all weights {wij } by increasing value, and
remove j from B(i) if: (i) at least M bones still influence i, (ii)∑

k wik stays larger than a threshold t , (iii) wij is smaller than a por-
tion of the largest weight (wij < α maxk(wik)), and (iv) no local min-
imum is introduced (for any adjacent vertex k for which j ∈ B(k),
wij ≤ wkj). In all examples, we used (M, t, α) := (1, 0.95, 0.05).
Note that the third condition states that the bones’ importance is
relative.

After this pruning, we establish property (P2). We convert the
skeleton to a graph, noted SG, by collapsing all virtual segments.
Then, for each vertex i, we find the minimal spanning tree in each
component of SG covering B(i).

3.3. Exemplars creation

To define an exemplar (a deformation of the skeleton), we start
with a local random admissible rotation matrix rj for each bone
j , hence, respecting existing constraints (Figure 5).To avoid ex-
treme deformations, for which it is unreasonable to optimize for
ARAP deformations, we introduce default constraints. Typically,
the roll axis (orthogonal to the bone) is picked randomly and
the roll value taken in [−60◦, 60◦]. The twist value is picked in
[−10◦, 10◦]. For a spine s, we define its base transformation (rs)
similarly, while the rotation axis (as) is chosen randomly with a
rotation angle (θs) in [−60◦, 60◦]. For a virtual segment j , we set rj

to Id.

Next, the local are converted to global transformations by travers-
ing the skeleton and accumulating transformations, while ensuring
its connectivity. If the skeleton consists of several components, those
can be treated in any order. The set of all bone transformations con-
stitutes the exemplar.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

36 J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization

4. Skinning Weight and Joint Optimization

In order to optimize the weights, we express the ARAP energy in
terms of weights, by inserting Equation (1) into (5), while enforcing
affinity of the weights. It leads to a quadratic energy, whose mini-
mization results in weights that lead to mesh deformations that best
approximate an ARAP behaviour. We follow traditional ARAP op-
timization strategies, and alternate between the matrix-optimization
(referred to as local step, since {R(i)} are optimized independently)
and the optimization of the weights (referred to as the global step,
since they are jointly optimized). At each iteration of the optimiza-
tion process, we inject additional weight constraints to steer the
weight derivation. We also show how to express the ARAP en-
ergy in terms of skeleton joint positions, in order to optimize their
location similarly.

4.1. R(i) refinement (local step)

To derive R(i) for each vertex and each exemplar, we need to
consider Equation (5) and optimize for

R(i) = arg min
R∈T adm

Ei(f, R),

where T adm is a set of admissible transformations. In the traditional
ARAP case, T adm := SO(3) (rotations in R

3), for which the solution
is obtained by projecting covi :=∑

k∈V1(i) λikēik ·eik
T onto SO(3)

using singular value decomposition (SVD, see [SA07] for details).

As-rigid-as-desired deformations When the bones’ length is pre-
served, aiming for ARAP is natural. However, spines and STBs
contain stretch, and optimizing for rotations in this case makes no
sense. Here, we present a generalization of ARAP optimizations for
stretchable inputs.

We constrain the singular value σk (with associated vector ϑk ,
i.e.covi = UV T and ϑk is the kth column of V), based on an
analysis of the stretch induced by the bones in the exemplar. Intu-
itively, if the bones influencing vi are stretched, vi’s neighbourhood
should be as well, by an amount contained within the range of
the stretch values of the bones. Given a bone j ∈ B(i) with de-
formation Jacobian J (see Section A for formulas) at point vi , we
compute α

j

k := ‖J · ϑk‖, the stretch induced by bone j in direc-
tion ϑk . We then take σk :=∑

j∈B(i) wijα
j

k , thus blending the stretch
values induced by the various bones by the weights {wij }. Finally,
R(i) = Udiag(σ1, σ2, σ3)V T. If all bones are rigid, this construction
becomes the traditional solution (i.e.their Jacobians are rotations,
therefore α

j

k = 1∀j , and σk = 1).

Our definition follows a mathematically sound intuition, but also
proved more efficient than optimizing for rotations, for similarities,
for arbitrary matrices, or simply bounding the singular values by the
stretch of the bones. Figure 6 illustrates an optimization with highly
stretched–bone exemplars.

4.2. Skinning weight optimization (global step)

We now show how to optimize the weights to decrease the ARAP
energy. Let B(i) =: {b0

i , b
1
i , · · · , bNi−1

i } be the bones influencing

Figure 6: Stretchable bones. Notice weight map differences for the
arm (stretchable σ ∈ [0.5, 4.0]) and hand (std. bone).

vertex i. Let w be the vector concatenating the weights {wij }, ordered
by increasing indices i and j , while ignoring the first weight of each
vertex (which is redundant, as wib0

i
:= 1−∑Ni−1

j=1 w
ib

j
i

due to the

affinity condition):

w := (w0b1
0
, · · · , w

0b
N0−1
0

, w1b1
1
, · · · , w

1b
N1−1
1

, · · ·)T. (7)

We first consider a single exemplar ex (for readability, we avoid
indexing the various quantities by ex). Noting φ

j

i := R
b
j
i
(vi) · vi +

T
b
j
i
(vi) the transformation of vertex i by its j th influencing bone,

allows us to write:

v̄i =
Ni−1∑
j=0

w
ib

j
i
φ

j

i =
Ni−1∑
j=1

w
ib

j
i

(
φ

j

i − φ0
i

)
+ φ0

i =: �i · w+ φ0
i .

Note that matrix �i ∈ R
3,|w| is sparse and only contains entries

organized in a block for vertex i. We deduce a similar expression
for a transformed edge ēik = �ik · w+ φik , where �ik := �k −�i

and φik := (φ0
k − φ0

i). This expression is inserted into the ARAP
energy (Equation (5)) to obtain an expression in terms of weights,
leading (for an exemplar ex) to

Eex(w,R) = wT · A(ex) · w− 2B(ex)T · w+ const, with

A(ex) :=
∑
i∈V

�i

∑
k∈V1(i)

λik�ik
T ·�ik

B(ex) :=
∑
i∈V

�i

∑
k∈V1(i)

λik�ik
T · (R(i) · eik − φik).

Multiple Exemplars For a reasonable deformation behaviour, we
typically use a few tens to hundreds of exemplars. Fortunately, the
size and sparsity pattern of A (and the time for minimizing E(w,R))
are independent of the number of exemplars. The ARAP energy in
weight space is then

E(w,R) := wT · A · w− 2BT · w+ const (8)

with A :=∑
ex A(ex) and B :=∑

ex B(ex). The optimal weights
under the affinity constraint are thus given by

w∗ = arg min
w

E(w,R) = A† · B. (9)

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization 37

4.3. Skinning weight constraints

We introduce additional constraints to steer the optimization and
improve quality. These weight constraints are defined in form of a
supplementary error term added to E(w,R):

E(w,R)← E(w,R)+
∑

(i,j,ŵij)∈Constraints

ci |wij − ŵij |2,

where ŵij is a value, which is softly enforced on weight wij and
ci a scaling factor to control its impact. In all our examples, we
used ci := 100.BBD2.�(i).#{ex}, where BBD is the bounding box
diagonal (to make value ranges compatible), the vertex weight �(i)
(to account for vertex density), and the number of exemplars #{ex}
(to account for the pose sampling). Adding/removing these con-
straints after the factorization of A is efficiently done using low-
rank Cholesky-factorization updates [DH09]. In our experiments,
the observed performance overhead was negligeable.

Attach Constraints are set prior to the factorization and used to
maintain a strong attachment for vertices with a maximal initial
weight estimate. Hereby, we ensure that especially extremities of a
skeleton are not ignored. In practice, we set ŵij = 1 if (i) wij is a
strict local maximum at i (because a single attachment is sufficient),
(ii) wij > 0.5 (because only strong influences should be considered)
and (iii) j is visible from i (similar to [BP07]). Note that, when op-
timizing for a volume mesh with a skeleton located inside the shape,
we only constrain the vertices on the bones themselves (similarly
to [JBPS11]), which is compatible with the constraints previously
listed for the surface case.

Neumann Constraints are set prior to the factorization, and ensure
that weights fade out smoothly where their influence disappears. We
set ŵij = 0 if a neighbour k of i is not influenced by bone j (thus
enforcing a null gradient of w•j on edge (i, k)).

Positivity Constraints are used to enforce weight positivity. In
practice, we add after each iteration a constraint with ŵij = 0, if
a weight wij is negative (we test if wij < −10−3) and is a local
minimum. Hereby, we reduce negative weights drastically, while
introducing constraints sparsely.

Mixed-Weight Constraints are optional and, if wanted by the user,
used to bound areas of the mesh to following other strategies than
ARAP by setting ŵij accordingly.

4.4. Joint optimization

Artists tend to produce skeletons reflecting the desired degrees of
freedom to best serve their animation needs, but fine-tuning the
skeleton location is challenging. Consider a skeletal chain inside a
cylinder (e.g.the arm of a character), here, the bones should lie close
to the medial axis to minimize stretch. Similarly, joints would be
best placed at the centres of the intended articulations. This section
presents an automatic optimization of the skeletal joint positioning,
which in turn leads to better skinning results as well.

It is important to note that exemplars are defined for the skeleton.
Hence, when changing skeletal joints, an adaptation of the exemplars
is needed. In Section 3.3, we constructed exemplars while ensuring

that the skeleton stays connected at the joints. In this section, we
will see that the previous sequential construction can be expressed
in terms of a linear dependency, linking the joint positions and
the bone translations (Section 4.4.1). In consequence, we can plug
the resulting joint positions in the ARAP energy. The obtained
expression allows us to optimize for the joint displacements {δJk}
minimizing the ARAP energy (Section 4.4.2).

4.4.1. Algebraic exemplar construction

First, we express bone translations in terms of joint displacements,
while maintaining the other parameters (e.g.rotations) of the exem-
plar. We first investigate a pair of rigid bones (i, j) connected by
a joint k displaced by δJk , before addressing different components
of the skeleton. Applying either one of their transformations on the
joint should yield the same result to preserve connectivity. It reads

Rex
i · (Jk +δJk)+ (

T ex
i + δT ex

i

) = Rex
j · (Jk +δJk)+ (

T ex
j + δT ex

j

)
.

Observing that the skeleton transformations {Rex
i , T ex

i } and
{Rex

j , T ex
j } in ex were constructed similarly, (Rex

i · Jk + T ex
i = Rex

j ·
Jk + T ex

j) (Section 3.3), we obtain the following joint constraint,
which we note JointConst(i, j, k)ex:

δT ex
j − δT ex

i =
(
Rex

i − Rex
j

) · δJk. (10)

If spines are used, this construction is slightly more involved. For a
spine s with extremities (e0, e1) and parameters (Rs, ts, σs, θs, as), the
deformation of e0 will be ē0 = Rs · e0 + ts (like previously) but the
deformation of e1 will be ē1 = RsRot(as, θs) · e1 + RsA(1) · e0 +
RsB(1) · e1 + ts (by rewriting Equation (1.2) as tloc(u) =: A(u) ·
e0 + B(u) · e1). In short, the fact that ē1 depends both on e0 and
on e1 changes the right side of JointConst(i, j, k)ex in case bone
i (or j) is a spine and joint k is its positive extremity (i.e.e1).
JointConst(i, j, k)ex then contains not only products of matrices
by δJk , but also products of matrices by δJk′ , joint k′ being the
negative extremity of the spine (i.e.e0).

Joint constraints are insufficient to express {δT ex
j } in terms of

{δJk}: applying a constant displacement to a connected component
would still preserve all joint constraints. We thus introduce auxiliary
variables δCex

c , one for each connected component c, which reflect
an average component displacement. The resulting component con-
straints, noted CompConst(c)ex, are given by

∑
i∈Component(c)

δT ex
i /#Component(c) = δCex

c . (11)

Using joint and component constraints, we can define a lin-
ear relation to express the change of the skeletal-segment trans-
lations {δT ex

j } for a set of joint displacements {δJk} and average
component displacements {δCex

c }. To setup the equation system,
we process each connected component c of the skeleton succes-
sively. We then process each joint k in c successively as well.
Let {s0, . . . , sn} be k’s adjacent skeletal segments, we then add
a constraint JointConst(s0, si , k)ex for all i > 0 (Equation (10)).
Once all joint constraints of c are collected, we add the component

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

38 J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization

Figure 7: Algebraic construction of the exemplars. All elements are
3×3-matrices (i.e.a scalar x represents x.I3.)

constraint CompConst(c)ex (Equation (11)) and proceed with the
next connected component. Finally, the resulting set of equations
can be rewritten as

δTex =: M−1 · (Mex
J , Mex

C

) ·
[

δJ
δC

]
, (12)

where δJ := (δJ0 · · · δJn−1)T and δC := (δCex
0 · · · δCex

m−1)T are the
concatenations of the displacement variables for the n joints and
m connected components. Figure 7 illustrates the construction of
(M, Mex

J , Mex
C) on a toy example.

Multiple Exemplars For each exemplar, one auxiliary variable is
added for each connected component, while the joint displacements
are shared and globally defined. In consequence, each exemplar
enlarges Mex

C . Figure 7 (bottom) illustrates the extended form of
Mex

C and the corresponding displacement vector, which is similarly
extended to hold the average component displacements over all
exemplars.

4.4.2. Skeletal-joint optimization (global step)

We now express the ARAP energy term as a function of the joint
displacements. We first observe that δTex leads to an offset δv̄ex

i for
the LBS of a vertex i (Equation (1)):

δv̄ex
i =

∑
j∈B(i)

wij δT
ex
j (vi).

For rigid bones, the change of the translation applied to vertex i by
bone j (i.e.δT ex

j (vi)) is simply δT ex
j , and one can use Equation (12)

to express δT ex
j (vi) in terms of (δJ, δC)T.

For a spine s with extremities (e0, e1) and parameters
(Rs, ts, σs, θs, as), more care is needed. Looking at the induced trans-
formation (Equation (1.2)), the change of the translation applied to
vertex i by s (δT ex

s (vi)) is not simply δts, because tloc(u) depends on
e0 and e1 as well. As before, we rewrite tloc(u) =: A(u) · e0 + B(u)·

e1, leading to δT ex
s (vi) = RsA(u(vi)) · δe0 + RsB(u(vi)) · δe1 + δts.

Using Equation (12) to express δts in terms of (δJ, δC)T, δT ex
j (vi)

can be expressed in terms of (δJ, δC)T for spines and STBs as well.

Consequently, we can also compute the effect on an edge ēex
ik and

obtain again an offset δēex
ik , which is given by

δēex
ik =

∑
j∈B(k)

wkj δT
ex
j (vk)−

∑
j∈B(i)

wij δT
ex
j (vi) =: δ�ex

(i,k) ·
[

δJ
δC

]
,

where δ�ex
(i,k) is a horizontal vector of block matrices. Combining

this result with Equation (5) yields

E

([
δJ
δC

]
,R

)
=

∑
ex

∑
i∈V

�i

∑
k∈V1(i)

λik||δēex
ik−

(
R(i)ex· eik − ēex

ik

) ||2.

This last equation expresses the ARAP energy in terms of (δJ, δC)T.
Because it is not always positive definite, we regularize it and min-
imize: E((δJ, δC)T,R)+ ‖EJ · (δJ, δC)T‖2, where EJ is a block-
diagonal matrix penalizing large offsets. The quadric to minimize
is finally

EJ :=
[

δJ
δC

]T

· AJ ·
[

δJ
δC

]
− 2BJ

T ·
[

δJ
δC

]
+ const, with

AJ :=
∑

ex

∑
i∈V

�i

∑
k∈V1(i)

λikδ�
ex
(i,k)

T · δ�ex
(i,k) + EJ T · EJ

BJ :=
∑

ex

∑
i∈V

�i

∑
k∈V1(i)

λikδ�
ex
(i,k)

T · (R(i)ex · eik − ēex
ik

)
.

In our implementation, we penalize tangential joint displacement
more severely than others (noting {bk ∈ R

3} the 3D bones ad-
jacent to the joint, we set the corresponding block matrix to
ε1Id+ ε2

∑
bk·bk

T/|bk|). ε1 can be defined per joint as a joint-
material scalar function ε1 : J �→ R

+ (e.g.to avoid specific joints
displacements). After each iteration, each exemplar ex is updated
using Equation (12), as well as {R(i)ex}. AJ is factorized once and
several iterations can be performed without updating it, until weights
are changed.

5. Algorithmic Details

Vertex and Edge ARAP Weights While �i and λik are often
defined via cotangent weights [PP93], it can lead to artefacts, as
negative values can occur for obtuse triangles. We use barycentric
cell-area weights instead, which are positive.

Positivity While we penalize negativity (Section 4.3), we do not
ensure positivity. However, negative
weights are mostly naturally avoided. The
inset illustrates this point; without positiv-
ity constraints, negative weights (in blue)
occur when using eight exemplars but are
drastically diminished when using 32.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization 39

Local maxima Some previous works (e.g. [JWS12]) detect and
suppress non-global extrema. In our solution, small local extrema
can be observed, but a one-step Laplacian filtering (including
normalization) after each opti-
mization iteration is sufficient to
avoid most. However, attach con-
straints can lead to artefacts (inset,
orange) in challenging configura-
tions (here, a large bone animates Dog’s nose). A fully automatic
solution is to add a harmonic (null Laplacian) term (inset, blue) to
E:

E(w,R)← E(w,R)+ δ	
∑
i,j

ci |	i(w•j)|2, (13)

δ	 balancing both terms. Taking the traditional cotangent formula
discretizing the Laplacian operator, and expressing w•j in terms of w
(Equation (7)), we formulate 	i(w•j) as 	i(w•j) =: A	

ij · w+ b	
ij .

The updates to the quadratic and linear parts of E, corresponding to
Equation (13), are

A← A+ δ	
∑
i,j

ciA
	
ij

T· A	
ij , B← B+ δ	

∑
i,j

cib
	
ij A

	
ij

T
.

Note that this solution comes at a price: A is less sparse (≈5×
in our experiments) and more costly to factorize (≈10×), and each
optimization of w∗ (Equation (9)) is (≈10×) slower than before.
Unless otherwise noted, we did not use this step.

Vertex-Clustering Acceleration For each exemplar and iteration,
updating {R(i)} requires computing numerous costly 3× 3-matrix
SVDs . As noted in [JBK*12], the transformations (and thus {R(i)})
should ultimately be smooth. Consequently, the step can be accel-
erated by clustering.

To avoid clustering effects in the output, we compute
several clusterings and associate each ex-
emplar with a random one (we use 10 clus-
terings on the positions, with 1000–5000
clusters). To obtain uniform clusterings
despite anisotropy in the input mesh, we
propose a variant of k-means++ [AV07],
and select vertex vi as nth seed sn with
relative probability �id

2(vi, {sj }j<n). The
inset shows three uniform clusterings of various sizes.

For each exemplar, the covariance of a cluster cl is computed
as

∑
i∈cl

�i

∑
k∈V1(i)

λikēik ·eik
T =: U · · V T (SVD), and the stretch σk in

direction ϑk is set to

σk :=
∑
i∈cl

∑
j∈B(i)

�iwij‖Jij ·ϑk‖/
∑
i∈cl

∑
j∈B(i)

�iwij ,

(Jij being the Jacobian of bone j at point vi in the exemplar).
Finally, we set R(cl) = U·diag(σ1, σ2, σ3)·V T, and each vertex i in
the cluster cl is associated with this matrix: R(i) = R(cl), ∀i ∈ cl.

6. Skinning Tools

User interaction should be an integral part of skinning to allow for
subjective decisions. We introduce brushing tools to easily indicate
additional constraints interactively if wanted.

The bone-influence brush increases/decreases a bone j ’s influ-
ence prior to the factorization by adding/removing j to/from {B(i)}.
Hereby, its locality is easily adjusted.

The wire-edge brush links disconnected vertices prior to the
initialization and can be used
to link disconnected components,
which are common in artist-
designed 3D models. We add wire
edges i → j connecting vertices
i and j with the following ARAP
weight: λij:=

∑
k∈V1(i) λik ∗min(1/2, |V ′1(i)|/|V1(i)|)/|V ′1(i)|, where

V1(i) is the set of original vertices adjacent to i and V ′1(i) is the set of
vertices newly connected through wire-edges. The idea is to estab-
lish a soft connection between i and j , i.e. a portion of the weights
adjacent to i is attributed to the new edges. To prioritize the origi-
nal connectivity, their sum is bound to half the sum of the original
weights.

Note that HBs [BP07] do not support wire-edges. We construct
the weight vector wHBM

•j for bone j by solving for

[−	+H

DWE

]
· wHBM
•j =

[
H · χ•j

0

]
,

DWE being a matrix for which each line corresponds to a wire-
edge linking two vertices k and l, with dkl in kth column and
−dkl in lth column, thus adding d2

kl(wkj − wlj)2 in the energy
(softly enforcing the weights of the two vertices to be similar).
We used dkl = 105. exp(−||vk − vl ||2/BBD2) for all results. Since
these weights can be negative, we set wij = max(wHB

ij , wHBM
ij) and

finally normalize them as a post-process (wij ← wij /
∑

k wik) to
initialize our weights. This strategy proved more robust than trying
to introduce the wire-edges in the discretization of the Laplacian.

The weight-constraint brush can be used during the optimization
to enforce weight values (Section 4.3, mixed-weight constraints).
Note that brushes enforcing weight derivatives locally can also be
created by constraining a linear combination of weights instead
of weight values (e.g.a ‘null Laplacian’ brush, see Equation (13)).
We demonstrate such user interaction on Dog in the accompanying
video (Supporting Information).

7. Results and Discussion

We implemented our work in C++, using Cholmod to efficiently
solve linear systems. All results are produced with a laptop system
(Intel Core2 Duo, 2.5 GHz, 4 GB of memory).

Models To illustrate practicality, we use models produced by real
artists and provided via blendswap.com. They exhibit disconnected
components, tiny features, non-manifold structures, boundaries and
elongated triangles, self-intersections and complex topology. The

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

40 J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization

Figure 8: Results produced in Blender. The use of our weights (green) is compared to HBs (blue) on the same input (rest pose mesh/skeleton,
deformed skeleton). Dog, Suzie, Egg, George, Dino, Mosquito and Lemur are courtesy of blendswap.com.

used skeletons are complex; partially disconnected, with various
bones types, potential deformation constraints, and scales (i.e.from
main limbs to fingers for Lemur and George).

The main results of our approach are illustrated in Figure 8
and compared to HBs [BP07], the only other technique among
the ones we tried, which could give results on all examples. Our
weights were computed automatically, with two exceptions: For
Dog, we illustrate that artistic choices remain possible, by ap-
plying the weight-constraint brush on the tip of the nose to en-
force a large influence of 1, resulting in an apparent local stretch.
For Suzie, some attach constraints were manually removed dur-
ing the session because the teeth of the upper jaw were at-
tached to the bone of the lower jaw. These interactions took about
15 s each.

Timings Our solution is fast enough for interactive work sessions
(see video), even though we optimize jointly all bone weight maps
and use 80 exemplars in our setup. We report timings in Table 1.
For all models, except Mosquito, (with ≈5K–40K vertices), the
pre-processing takes ≈0.4–20 s, while an iteration takes ≈0.2–
1.6 s. The joint-optimization cost depends on the skeleton topol-
ogy and took ≈5–10 s to factorize the linear system and 1–4 s
per iteration. Presented results use 10 to 40 iterations. These tim-
ings could only be obtained thanks to our sparsification scheme,

Table 1: Weights computation timings (ref. Figure 8), using 80 exemplars.
#V: vertices. #B: bones. INIT.: Initialization in s. #U/V: (average) nb of
unknowns per vertex. IT.: (average) iteration in s. INT.: Performed interaction
in s.

Model (#V) #B Init. #U/v It. Int.

Dog (11K) 29 7.6 4.1 0.7 ≈15
Suzie (32K) 32 5.6 1.6 0.8 ≈15
Egg (6K) 7 0.36 0.8 0.14 no
George (14K) 36 4.1 2.7 0.52 no
Dino (7K) 25 1.2 1.6 0.23 no
Mosquito (27K) 15 51.7 5.8 2 no
Mosquito (27K) 15 6.5 0.9 0.5 ≈60
Ogre (26K) 16 4.4 1.7 0.78 no
Lemur (43K) 53 19.6 2.43 1.55 no

which decreases the number of variables drastically. For example,
on the Lemur, with 43K vertices, 53 bones and 80 exemplars, our
sparsification led to 2.43 unknowns per vertex on average, and as
a result each iteration took 1.55 s. On the contrary, not using the
sparsification led to failure after 45 min (26 min to fill the linear
system and 19 to factorize it) with a CHOLMOD error ‘problem
too large’ (and it would have been even worse, had we used a

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization 41

Figure 9: Profile of the ARAP energy. We illustrate the impact of the
brushes on Dog and Suzie. The bottom row shows the convergence
of the ARAP energy when optimizing weights and joint positions on
Hand (25 iterations in total).

volumetric structure, as the number of variables would have been
increased).

The peculiar geometry of Mosquito led to poor input weights,
poorly sparsified influence maps and large computation times (51.7 s
for the initialization, 2 s per iteration). We report in Table 1 an
additional session where we further removed bones from far-away
regions using the bone-influence brush, which resulted in better
timings and visually undistinguishable results. In our opinion, it
reflects that such easy interactions should be offered to an artist.

Figure 9 illustrates the convergence of the ARAP energy on sev-
eral examples. As written earlier, we removed a few attach con-
straints on Suzie (first interaction on the red plot). For the session
in Figure 9, we also chose to enforce a zero value on the nose with
respect to the jaw bone. While this results in a slight increase of the
energy (see red plot), artistic choices should ultimately prevail and
be made possible.

Volumetric structures have been used to obtain shape-aware
weights [JBPS11], and to replace favourably poorly shaped input
surface meshes [DdL13]. Computing volumetric structures allows
us to consider objects as volumes instead of simple shells [CPSS10],
and results obtained using a volumetric weight optimization are
typically better than the ones obtained by performing a surfacic
optimization directly on the input meshes. Our solution is compat-
ible with volumetric structures, but we purposely avoided relying
on them, as we could not obtain volumetrizations of most of the
input surface meshes shown in Figure 8 with existing tools and
techniques. In addition, it allows us to present our results based on
the setup usually used by modelers and CG artists.

One fundamental issue when volumetrizing surfaces is, that only
surfaces that are 2-boundaries of Euclidean 3D volumes can be used
as input. Consider the Dog: The teeth were modelled independently
of the mouth. Because some intersect with the mouth and the tongue,
any watertight constrained Delaunay triangulation (CDT) sews the
mouth shut and renders the animation impossible. Please note that
this problem does not relate to volumetrizing poorly shaped surfaces,
and that solutions like [JKSH13] still rely on a CDT. This problem
occurs as well for [DdL13]: while the voxelization allows them
to bind together disconnected colocated elements, it prevents them

from separating colocated elements, which are intended to be sepa-
rated. Sacht et al. [SJP*13] tackled this problem, by unwrapping the
input surface (using iterative smoothing) before the CDT. However,
this approach is not sure to succeed and disconnected components
are smoothed independently: intersections between separate parts
are not always resolved and the parts might not be correctly placed
with respect to each other.

Another fundamental issue is that artists may choose to place the
kinetics skeleton outside the mesh. In Figure 15, a volumetrization
of the surface would contain merely half the bones of the kinetics
skeleton (see also Mosquito in Figure 8). Note that volumetrizing
the entire space would falsely connect the legs to the spine bone due
to their proximity.

Comparison with BBWs For most meshes, we could obtain a
valid tetrahedrization only after manually tuning the surface and/or
the tetrahedrization. However, these changes required modifying
the input mesh structure (causing issues for, e.g.textures) or the
skeleton’s geometry (which should only be driven by the artist’s
intentions, not avoidance of issues). For Feline, we could only obtain
BBWs after refining the tetrahedra in the wings, resulting in 140 min
of computation (using the original implementation [JP*14]), while
we delivered weights of similar quality in 1 min (see Figure 8).

Our method works on volumes as shown in Figure 10, where
BBWs were used for the initialization. BBWs robustness issues
are illustrated by the lost influence of the index fingertip. Tiny
features led to small tetrahedra causing numerical issues, even after
ensuring the skeleton’s local containment within the mesh. These
difficulties are more likely to arise for models with thin structures,
requiring a careful design of the used tetrahedral mesh. Using weight
constraints (Section 6), the missing influence was recovered after a
few iterations of our algorithm. Note that our solution applied to the
surface led to high-quality skinning in less than 1 min (see Figure 8).

Similarly, the extreme aspect ratios of the triangles in Egg pre-
vented the solver from succeeding directly. We were able to de-
rive BBWs for Egg after manual tuning of the mesh (fixing self-
intersections) and the tetrahedrization, but the BBWs performed
similarly to [BP07] (where only smoothness not deformation qual-
ity is considered). This is also the conclusion reached by [KS12]
and [JDKL14].

Comparison with Kavan and Sorkine As indicated, this method
is related to ours, but there are several important differences, the

Figure 10: Comparison with bounded biharmonic weights.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

42 J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization

(a) (b) (c)

Figure 11: (a) Deformer of [KS12] with BBWs (image courtesy
of [KS12]). (b, c) Various bone types with our weights.

main one being that we optimize different variables: They optimize
for their joint-based deformers, and then blend the transformations
induced by the various deformers using input BBWs, whereas we
take as input common bone-based deformers and introduce a blend-
ing scheme that favours ARAP deformations. Simple on-the-fly user
interactions, such as the ones we demonstrate and the integration
of existing skeleton animations in the optimization process, are not
possible for their approach. They rely on volumetric structures and
BBWs, which can be difficult to obtain from surface meshes. Their
deformer is optimized to avoid the candy-wrapper artefact under
twist and the bulging effect under rotation. We support spines and
STBs that avoid these artefacts as well, and we make it possible to
define each bone type individually, including highly stretched bones,
to offer increased artistic freedom. Figure 11 depicts visual differ-
ences between our weights and deformers (two kinds: twistable and
rigid) and theirs on a simple example. While differences exist, both
results are arguably of similar quality.

Disconnected skeletons We support disconnected skeletons
(Figure 12). Here, the skeleton constraints are not enough to cre-
ate plausible exemplars, which are key to steering our optimization.
By alternating between weight and connected-component optimiza-
tions (see Section 4.4), we recover the lost constraints and map the
initially generated exemplars to a set of useful ones, which drive
our optimization process. To keep the example simple, joints were
fixed.

Joint Optimization We assist users in placing joints in locations,
which naturally resemble articulations, even when mesh and skele-
ton topologies do not match (Figure 13, left, Hand). Our optimiza-
tion does not rely on a special type of weight: it can be used in
conjunction with other definitions. Differences in displacements
between shoulders, neck, knees and elbows on Ogre (Figure 13,
middle) illustrate the difficulty of placing the joints in non-trivial
areas such as shoulders. Note that even though symmetry is not

Figure 12: Disconnected skeleton. Notice the torso’s map.

Figure 13: Joint optimization on several examples.

enforced in our system, the optimized skeleton tends to become
symmetric naturally (see legs of Dog as well as fingers of the Hand
in Figure 13), and place the joints near plausible articulations in
order to minimize stretch over the deformation exemplars.

Spines Our solution is fully compatible with parametrized bones
(Section 1.2) and can produce weights, which typically cannot be
obtained without knowledge of user intent. To model a spine, an
artist would typically use many bones and paint weights exhibiting
a banding pattern. While small bones might mimic vertebras, large
rotations result in a high stretch and implausible transformations—
regardless of the weight definition. As a result, automatically pro-
duced weights are suboptimal, and the influence of many bones is
lost (Figure 14, left). Using a spine deformer (Figure 14, right), our
approach delivers high-quality weights. The spine can be converted
into many bones in a postprocess (Section 1.2) and leads to the
expected banding pattern automatically. Note that the torso’s upper-
bone weights blend naturally with the ones of arms and neck. To
the best of our knowledge, no other automatic technique produces
similar results, in particular because no optimization procedure has
been proposed for the specific case of parametrized bones such as
spines.

Limitations Our approach has limitations. We believe the major
being the definition of the initial attach constraints. In Figure 15,

Figure 14: (Left) 16 small bones; (Right)A spine used for the torso
and converted back to 16 bones.

Figure 15: Failure cases. Closeup from adapted view.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization 43

the geometric complexity led to several local maxima in the input
maps, and thus to undesired attach constraints. Figure 15(A) shows
the use of an undesired constraint. Since nearby vertices are glued
together, a strong distortion occurs when manipulating the skeleton.
Fortunately, with our system’s feedback, a user can easily and swiftly
detect and correct such issues. Removing the constraint improves
the weights after two or three iterations. In principle, it should be
feasible to detect and edit such constraints after each iteration, to be
even more independent of the initial weights.

Similarly, difficult configurations can make the initialization of
the bone influence maps {B(i)} suboptimal. Figure 15(B) shows
an example; as the bone crosses the input mesh at a vertex vi ,
its weight is initialized to one, while the bone, which should have
been attached, was removed from B(i) (closeup). Nonetheless, these
cases are easy to detect and rare: they arise only if no existing
solution could correctly initialize the weights. This operation is also
simply inevitable, if one desires to obtain interactive rates. These,
in turn, make it possible to control locality and sparsity, and to edit
weights during optimization. This last feature very important and
critical for industrial productions.

Our joint-placement strategy has also limitations. While deforma-
tion quality should drive the optimization, it can prove insufficient.
Figure 15(C) shows a failure case. Our method will not move the
joint to the middle of the leg because the model is disconnected and
no stretch can be observed when rotating the joint.

Finally, as mentioned, using many small bones in the middle of
a thick surface (Figure 14, left), instead of using a spine deformer,
leads to suboptimal weights.

8. Conclusion

We presented a practical, robust, fast, high-quality skinning solu-
tion, which is general and handles many complicated cases that are
difficult (or impossible) to treat with existing solutions. We showed
that sampling the space of admissible deformations of a skeleton re-
sults in meaningful weights, i.e.which minimize an ARAP energy.
Furthermore, motion constraints (often available and easy to define),
or even existing skeleton animations, are naturally integrated. We
extended support to stretchable inputs such as STBs, or spines. We
have also shown how to optimize joint positions. The results illus-
trate that our approach achieves good solutions automatically for
various cases and introduced skinning tools to resolve ambiguous
situations. Our fast solution makes it possible to apply such user
input during the optimization with interactive feedback.

In the future, we plan to investigate a continuous formulation to
avoid exemplar sampling. To increase performance further, a GPU
implementation is promising, as well as a solver, optimizing weights
and joint positions simultaneously without refactorizations.

Acknowledgements

We thank the authors of [JBPS11] for sharing their code [JP*14]
and Daniele Panozzo for his support in compiling the library, as
well as Ladislav Kavan & Olga Sorkine for providing results of their
technique [KS12] and helpful discussion. We also thank Noura Faraj

for producing the various tetrahedral meshes used in this work, the
artists of Blendswap, Keenan Crane and Alec Jacobson for sharing
their meshes, as well as AimAtShapes for providing the watertight
models (Armadillo, Feline, Hand).

Appendix: Deformation Jacobian of Spines

For a spine with transformation given by Equation (1.2), its Jacobian
at point p with parameter up is

Jp = Rs ·
[
Rloc(up)+ (

R′loc(up)·p + t ′loc(up)
)·−→�u

T
(p)

]
. (A.1)

In Equation (A.1), −→�u(p) is needed. Our work uses a linear
parametrization, which is is not differentiable at u = 0 and 1. More-
over, such parametrizations are generally defined on the mesh only
(e.g.hand-painted, or resulting from a diffusion on the mesh), and
their gradients do not have a closed-form expression. We thus esti-
mate the gradient−→�ui at vertex i (while keeping it aligned with the
bone) as

−→�ui := arg min
g|g×−−→e0e1=�0

∑
k∈V1(i)

λik||gT ·eik − (u(vk)−u(vi))||2.

Noting as[×] the 3×3-matrix such that as[×] · v = as × v, ∀v ∈ R
3,

the derivatives of Rloc(u) and tloc(u) are given by

R′loc(u) = θs cos(uθs)as[×] + θs sin(uθs)(as · as
T − Id)

t ′loc(u) = −R′loc(u) · e0 + σs.(cos(uθs)

+ uθs sin(uθs))(Id− as · as
T) · −−→e0e1

+ σs.(uθs cos(uθs)− sin(uθs))as ×−−→e0e1

+ (σs − 1)Rloc(u) · −−→e0e1 + u.(σs − 1)R′loc(u) · −−→e0e1.

References

[AV07] ARTHUR D., VASSILVITSKII S.: k-Means++: The advantages
of careful seeding. In Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (New Orleans,
Louisiana, USA, 2007), pp. 1027–1035.

[BP07] BARAN I., POPOVIĆ J.: Automatic rigging and animation of 3D
characters. ACM Transactions on Graphics 26 (2007), 72:1–72:8.

[BS08] BOTSCH M., SORKINE O.: On linear variational surface defor-
mation methods. IEEE Transactions on Visualization and Com-
puter Graphics 14, 1 (2008), 213–230.

[CPSS10] CHAO I., PINKALL U., SANAN P., SCHRÖDER P.: A simple
geometric model for elastic deformations. ACM Transactions on
Graphics 29, 4 (2010), 38:1–38:6.

[dATTHP08] DE AGUIAR E., THEOBALT C., THRUN S., H.-P. S.: Auto-
matic conversion of mesh animations into skeleton-based anima-
tions. Computer Graphics Forum 27 (2008), 389–397.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

44 J.-M. Thiery & E. Eisemann / Robust and Efficient Weight and Joint Optimization

[DdL13] DIONNE O., DE LASA M.: Geodesic voxel binding for pro-
duction character meshes. In SCA ’13: Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (Anaheim, California, USA, 2013).

[DH09] DAVIS T. A., HAGER W. W.: Dynamic supernodes in sparse
Cholesky update/downdate and triangular solves. ACM Transac-
tions on Mathematical Software 35, 4 (2009), 27:1–27:23.

[FOKGM07] FORSTMANN S., OHYA J., KROHN-GRIMBERGHE A., MC-
DOUGALL R.: Deformation styles for spline-based skeletal an-
imation. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (San
Diego, California, USA, 2007).

[JBK*12] JACOBSON A., BARAN I., KAVAN L., POPOVIĆ J., SORKINE O.:
Fast automatic skinning transformations. ACM Transactions on
Graphics 31, 4 (Proceedings of SIGGRAPH, 2012), 77:1–77:10.

[JBPS11] JACOBSON A., BARAN I., POPOVIC J., SORKINE O.: Bounded
biharmonic weights for real-time deformation. ACM Transac-
tions on Graphics 30, 4 (2011), 78:1–78:8.

[JDKL14] JACOBSON A., DENG Z., KAVAN L., LEWIS J.: Skinning:
Real-time shape deformation. In ACM SIGGRAPH 2014 Courses
(2014).

[JKSH13] JACOBSON A., KAVAN L., SORKINE-HORNUNG O.: Robust
inside-outside segmentation using generalized winding numbers.
ACM Transactions on Graphics 32, 4 (2013), 33:1–33:12.

[JP*14] JACOBSON A., PANOZZO D., et al.: libigl: A simple C++
geometry processing library, 2014. https://doi.org/10.1007/978-
94-007-5446-1 3.

[JS11] JACOBSON A., SORKINE O.: Stretchable and twistable bones for
skeletal shape deformation. ACM Transactions on Graphics 30,
6 (2011), 165:1–165:8.

[JWS12] JACOBSON A., WEINKAUF T., SORKINE O.: Smooth shape-
aware functions with controlled extrema. Computer Graphics
Forum 31 (2012), 1577–1586.

[KS12] KAVAN L., SORKINE O.: Elasticity-inspired deformers for
character articulation. ACM Transactions on Graphics 31, 6
(2012), 196:1–196:8.

[KSO10] KAVAN L., SLOAN P.-P., O’SULLIVAN C.: Fast and efficient
skinning of animated meshes. Computer Graphics Forum 29
(2010), 327–336.

[LCF00] LEWIS J. P., CORDNER M., FONG N.: Pose space deformation:
A unified approach to shape interpolation and skeleton-driven

deformation. In Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques (New Orleans,
Louisiana, USA, 2000), pp. 165–172.

[LD12] LE B. H., DENG Z.: Smooth skinning decomposition with
rigid bones. ACM Transactions on Graphics 31, 6 (2012),
199:1–199:10.

[LD14] LE B. H., DENG Z.: Robust and accurate skeletal rigging from
mesh sequences. ACM Transactions on Graphics 33, 4 (2014),
84:1–84:10.

[MTLT*88] MAGNENAT-THALMANN N., LAPERRIRE R., THALMANN D.:
Joint-dependent local deformations for hand animation and ob-
ject grasping. In Proceedings on Graphics Interface ’88 (Edmon-
ton, Alberta, Canada, 1988).

[NS13] NIETO J. R., SUSÍN A.: Cage Based Deformations: A Survey.
Springer Netherlands, 2013. http://doi.org/10.1007/978-94-007-
5446-1_3.

[NVT*14] NEUMANN T., VARANASI K., THEOBALT C., MAGNOR M.,
WACKER M.: Compressed manifold modes for mesh processing.
Computer Graphics Forum 33 (2014), 35–44.

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal sur-
faces and their conjugates. Experimental Mathematics 2 (1993),
15–36.

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface mod-
eling. In Proceedings of Symposium on Geometry Processing
(Barcelona, Spain, 2007), vol. 4, pp. 109–116.

[SJP*13] SACHT L., JACOBSON A., PANOZZO D., SCHÜLLER

C., SORKINE-HORNUNG O.: Consistent volumetric discretiza-
tions inside self-intersecting surfaces. Computer Graph-
ics Forum 32, 5 (2013), 147–156. (Proceedings of EU-
ROGRAPHICS/ACM SIGGRAPH Symposium on Geometry
Processing).

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Video S1

Figure 1: Left: Approximation. Right: Continuous setting.

Figure 2: Conversion of spines to many-bones. Left: deformations
using a spine for the torso. Right: Converting the spine to 16 bones
and their weight maps.

c© 2017 The Authors
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

