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Abstract
In this thesis Bayesian Networks are used to predict European football matches between
the years 2008 and 2016. The goal of this research is to see how the structures learned by
different Bayesian Network learning algorithms influences the predictions. First the data is
explored and modified to be used for Bayesian Networks and secondly the theory is explained
using examples. Finally the theory is applied on the data and the structures are learned with
the help of a bootstrap method and the predictions are validated using 5-fold cross validation.
We can conclude that the networks learned by the algorithms and with the help of an expert
give a good representation of the underlying relationships, but are not very good in prediction
the end result.
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1
Introduction

Football is the most popular sport in the world. It is played by around 3 billion people world
wide, mainly in South-, Central America and Europe. The main tournament is the World
Cup which is played every four years in a different country. Besides that every continent
has its own Championship and almost all countries have their own football league as well.
Because there are so many people watching and playing this sport, a lot of money is involved
with predicting the match outcome. That is why in this report we would like to improve those
betting predictions with the help of Bayesian Networks.

Bayesian Networks give a graphical representation of a causality model. This is also our
first assumption as of course correlation does not always imply causation. Each node in the
graph represents a variable and each arc represents a causality relation. A second assump-
tion that has to be made, is that there are no latent variables, so no unobserved variables
that might influence the variables in the structure. As for the football game there are a lot of
variables to consider, which also makes it interesting to bet on, but on the other hand makes
it difficult to predict. The main advantage of Bayesian Networks is that they give a simple
graphical representation of a complex underlying probability distribution.

The data used for this research is obtained from the database website kaggle.com. This
data set contains around 25 000 European football matches between 2008 and 2016 and per
match attributes like the goals for the home and away team are given.

The question we want to answer is whether we can predict these matches with the help
of Bayesian Networks, and if we can how well did we do? The data set also contains betting
predictions of multiple betting companies, so we would also like to know if the predictions
made by the Bayesian Networks are better than those of the betting company.

In chapter 2 the data is closely analyzed and somemodifications aremade tomake the data
ready to use with Bayesian Networks. Next, in chapter 3 the theory of Bayesian Networks is
explained with the help of a simple example. We also consider in this chapter the algorithms
that are to be used to create our network structures. In the fourth chapter the algorithms
are applied to the data and validation methods are implemented to prove the validity of our
structures. Next predictions are being made and tested against the real data. Lastly some
modifications to the network are done to hopefully improve the prediction results.

1
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2
Football Data Analysis

In this section we will take a closer look at the data available. First the correlations are
computed for some of the variables. Thereafter the data is modified to include more correlated
variables. Lastly, we select the betting company which predicts matches the best.

We obtained the data from the database website kaggle.com. This website contains thou-
sands of data sets which can be used to perform analysis on. Our soccer database consists of
seven separate databases. We have to link a couple of these data sets to perform our analysis
on. The most important data set for us is the one with all the match results. This set contains
around 25 000 matches from multiple countries in Europe. The games were played in the
period between 2008 and 2016. Each match has 115 attributes, such as date, home goals,
away goals and stage. Furthermore, the betting odds of nine different betting companies are
given. These odds are split in three columns. So we have separate columns for the odds for
a home win, an away win and a draw. An example is given in table 2.1. The betting works
as follows: if for this match you place a bet on a win for the away team, and it is a win for
the away team then you get 5 times your bet back, but if it was a draw or a win for the home
team you lose your bet.

Betting company B365H B365D B365A

Betting odd 1.73 3.40 5.00

Table 2.1: Betting odds for a random match

Besides a data set with match details there is also a set with player statistics. These
statistics are obtained from sofifa.com, which gets the statistics from the FIFA football
game. From these player statistics we will only use the player’s overall rating. These overall
ratings are determined by the game publisher EA. Some details about how they determine
these ratings can be found here1. As can be seen in the interview these ratings can be a bit
arbitrary but it’s the best statistic we’ve got for the players.
The last data set we will use consists of team statistics. These statistics are again obtained
from sofifa.com. From this data set we will only use the build up play speed, because it
describes the rating of the team the best as possible, independent of which players start the
game. The play speed can be divided into three classes, slow, balanced and fast. While this
play speed is mainly used in the computer game to determine how fast your team has to
move forward to start an attack, it can also be determined by looking at what the teams are
doing inside the field. So for example if a team is very defensive it will have a low build up
play speed, while if a team always tries to move the ball to the front as fast as possible, it will
have a high build up play speed.
Each team, player, country, league and match gets a number assigned which is used as an
1https://global.espn.com/football/blog/espn%2Dfc%2Dunited/68/post/2959703/fifa%D17%2Dplayer%
2Dratings%2Dsystem%2Dblends%2Dadvanced%2Dstats%2Dand%2Dsubjective%2Dscouting
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identification number. With the other available data sets we can convert these numbers into
the name that number represents. So for example the team number 8593 represents Ajax
and 8634 represents FC Barcelona. Similarly the number 30981 represents the world famous
player Lionel Messi. With these ID numbers it is very easy to figure out what rating belongs
to which player because in both data sets this number is given and it can also be used to
figure out which players start at the beginning of the match.

2.1. Data modification
The first thing we do is compute the result of the match, this means that we need to determine
which team won the game. To do that we have to establish first which teams scored the most
goals. If the home team won we give the match a label “2”, if it was a draw we give the match
label “1” and if it the away team won, we give it label “0”. Besides this we calculate what
the goal difference is. To make use of Bayesian Networks we need variables which describe a
cause and effect relationship. To model this wemake use of the correlation between variables.
This is determined with the Pearson Correlation, given by equation 2.1, for random variables
𝑋 and 𝑌 with expectation 𝜇ፗ and 𝜇ፘ and variance 𝜎ፗ and 𝜎ፘ respectively.

𝜌ፗ,ፘ =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎ፗ𝜎ፘ

= 𝔼[(𝑋 − 𝜇ፗ)(𝑌 − 𝜇ፘ)]
𝜎ፗ𝜎ፘ

(2.1)

If we compute this correlation for some variables in the set we get the correlation plot in
figure 2.1. The stage of a match represents the round of the national championship and
the day number is the day of the week, given by number 1 for Monday and number 7 for
Sunday. If the circles are dark blue, the variables are strongly correlated and if the circles
are dark red the variables are strongly negatively correlated. However as we can see, most
of the matrix is white, which implies that these variables are very weakly correlated with
one another. There are a few things that stand out though, firstly the match_api_id is very
strongly correlated with the year, this means we can make a linear function between these
two variables. This makes sense because every match gets a unique id number and this
increases with the years. Secondly home_team_goal is slightly correlated with the betting
prediction, which will be useful to predict the goals with the betting prediction.

Figure 2.1: Correlation plot for some variables
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Due to the fact that most of the correlation matrix is white, we will have to create some
new columns with more relevant data. For each of these columns we will make a histogram
and the corresponding fitted normal distribution, as we want to see if our assumption holds
that the data follows a normal distribution. The first thing we will look at is the player rating.
However, the ratings are only determined once every year so we will have to assume that
these ratings stay constant until there is a new update. Now we look up which players are
starting in the match and what their current rating is. Next we take the average of the players
to get the mean overall rating. For a visualization of the ratings we make a histogram plot.
This plot can be seen in figure 2.2.

Figure 2.2: Histogram with the mean team ratings and the respective normal distribution

For the team’s play speed we again have a rating once every year so we make the same
assumption as with the player’s rating. The distribution of the speeds can be seen in figure
2.3.

Figure 2.3: Histogram with the play speed for the teams per match

Besides statistics of both teams, which are constant during the year, it will be relevant to
have more recent data. Consequently the recent results of both teams are useful. We take
again our data set with the matches and sort it by date. Then for each team we look back to
the last five matches to see what percentage of those matches they have won. We also want
to know the recent history against the other team, so for this we look back to the last two
matches that have been played against the other team. We take two because if we assume
every team plays against each other home and away in one year, then the two most recent
matches will be one away and one home game. Again we plot the histograms which are given
in figure 2.4 and 2.5 respectively. What stands out is that we have a few matches where the
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history of one of the teams is between 20% and 40%, 40% and 60%, 60% and 80% or 80%
and 100%. These peculiar percentage gaps are there due to the fact that in the beginning the
teams have not played five matches yet. So say a team has played three matches and won
one then this will give the 33%. For the history against the same team there are only three
possibilities: a team has won both of the matches against the other team, a team has won
one of the matches or the team has lost or tied both of the matches against the other team.

Figure 2.4: Histogram with the percentage of wins in the last 5 matches

Figure 2.5: Histogram with the percentage of wins against the other team in the last two matches

2.1.1. Best betting company
To analyze which betting company predicts matches the best, we first need to convert the
predicting odds to probabilities. Then we can take the highest percentage as a predicting
result for the match. So for example for one of the matches and one of the bookkeepers we
have the odds and probabilities as in table 2.2

Betting company B365H B365D B365A

Betting odd 1.73 3.40 5.00
Probability 0.58 0.29 0.2

Percentage (%) 58 29 20

Table 2.2: Betting odds and probabilities for a random match

What is remarkable is that the probabilities do not add to one. This is because the betting
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companies add an “over-round” 2 to their odd so that it will be less profitable for the person
who wants to bet on the match. With these percentages we can compute the most likely
outcome of the match. However, a curious result arose, all betting companies predicted
around 53% of matches correctly. We can also clearly see this in the correlation plot, given in
figure 2.6: on the one hand all betting companies are strongly correlated with each other, but
on the other hand there is only a slight correlation with the real end result. This is illustrated
by the small circular fractions. See appendix A for an explanation of the abbreviations.

Figure 2.6: Correlation Plot for the betting companies

We will only use one of these betting companies to simplify the calculations. We choose
to use BetVictor (VC)3 because it has a slightly higher percentage than the other companies.

Figure 2.7: Histograms for the betting predictions

2http://www.bettingmarket.com/overround.htm
3https://www.betvictor.com/

http://www.bettingmarket.com/overround.htm
https://www.betvictor.com/
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2.2. Recap

With all these new variables we can create a new data set. When we first plotted a cor-
relation plot, most variables were not correlated, so from that set we will only consider
away_team_goal, home_team_goal, label and the betting company, which will be VC. Be-
sides that we will consider the variables we just discussed and made a histogram of. Plotting
the Pearson Correlation for these 14 variables results in figure 2.8. Immediately we see
that the play speeds do not correlate with any of the other variables so we will not consider
those in any further analysis. Besides that we can see one big red dot between VC_Win and
VC_Defeat (actually two but the matrix is symmetric), this makes sense because when VC
predicts a higher chance for a win, it has to have a lower chance for a defeat. The other circles
that stand out are those between home_goals and label, which has a positive correlation and
away_goals and label, which has a negative correlation. Again, this makes complete sense
because if there are more home goals, it is likely that the home team won and if there are
more away goals it is likely to be a defeat for the home team. Of course it can also be a tie with
a lot of goals, or a win for one of the teams with just one goal difference, so this correlation
is not very strong. The last thing that really stands out is that VC_Win and VC_Defeat are
correlated with every other variable. This leads to the conclusion that this betting company
takes into account what the current statistics for the teams are. We are now left with 19580
matches. Using the data set with all the countries, a table can be constructed which shows
the matches per country, which is given in table 2.3

Figure 2.8: Correlation Plot

Country Number of matches

Belgium 1196
England 2962
France 2861

Germany 2373
Italy 2723

Netherlands 2029
Portugal 1193
Scotland 1539

Spain 2704
Total 19580

Table 2.3: Number of matches per country

Lastly we can also make histogram plots for the goals during the matches and the match
result. These are given in figure 2.9 and 2.10. As we can see in the second plot, there are a
lot more wins then there are losses or draws. Expressing this in percentages gives 46% wins,
29% losses and 25% draws. So if we would bet on a win we have a 46% chance of winning
the bet. For the goals we see that there a lot of matches with either zero goals for the home
team or zero goals for the away team and only a few matches with more than four goals for
either team.
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Figure 2.9: Goals distribution

Figure 2.10: Result distribution



3
Bayesian Networks

In this chapter the theoretical background of Bayesian Networks is presented. The amount
of studies done with Bayesian Networks has increased rapidly in the last decade, but it is all
based on a couple of important definitions. In the first section the necessary probabilistic
information is presented. In the second section we repeat some definitions coming from graph
theory. Next we present the possible Bayesian Networks and in section 4 we see how we can
learn these networks with the help of different algorithms. In the last section we briefly cover
how the parameters of the network are fitted onto the graphical structure.

3.1. Probability theory
Before we can define a Bayesian Network, we will first need to introduce some concepts of
probability theory. These definitions are adapted from Neapolitan (2004) [3]. The first one is
independence and secondly independence for multiple variables, conditional independence:

Definition 3.1.1 Two events 𝐴 and 𝐵 are independent if one of the following holds:

1. 𝑃(𝐴|𝐵) = 𝑃(𝐴) and 𝑃(𝐴) ≠ 0, 𝑃(𝐵) ≠ 0
2. 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

Definition 3.1.2 Two events 𝐴 and 𝐵 are conditionally independent given 𝐶, denoted by
𝐼(𝐴, 𝐵|𝐶), if 𝑃(𝐶) ≠ 0 and one of the following holds:

1. 𝑃(𝐴|𝐵 ∩ 𝐶) = 𝑃(𝐴|𝐶) and 𝑃(𝐴|𝐶) ≠ 0, 𝑃(𝐵|𝐶) ≠ 0
2. 𝑃(𝐴, 𝐵|𝐶) = 𝑃(𝐴|𝐶)𝑃(𝐵|𝐶)

So for example if we roll two die, one blue and one red, then the two throws are independent
of one another. But if you are then told that the throw with a blue die is not a six and the red
one is not a one, then you can’t gain any knowledge of the red die by looking at the blue one.
In this case the throws are conditionally independent given the information. If, however, I
tell you that the sum of both die is odd, and you see that the blue die is a 3, then with my
information you have more knowledge of the throw of the red die. So now the two throws are
not conditionally independent given the information. Next we also need the most important
theorem for conditional probabilities, namely Bayes’ Theorem:

Theorem 3.1.1 (Bayes) Given two events 𝐴 and 𝐵 such that 𝑃(𝐴) ≠ 0 and 𝑃(𝐵) ≠ 0, we have

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) (3.1)

which can also be extended with the law of total probability: when given events 𝐴። such that
𝑃(𝐴።) ≠ 0 ∀𝑖 then for all 1 ≤ 𝑖 ≤ 𝑛:

𝑃(𝐴።|𝐵) =
𝑃(𝐵|𝐴።)𝑃(𝐴።)

𝑃(𝐵|𝐴ኻ)𝑃(𝐴ኻ) + … + 𝑃(𝐵|𝐴፧)𝑃(𝐴፧)
(3.2)

9
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Let’s now turn to random variables. To compute the joint probability for random variables
𝑋ኻ, … , 𝑋፧ we know, by the chain rule (Proposition 2.1 [1]), that:

𝑃(𝑋ኻ, 𝑋ኼ, … , 𝑋፧) = 𝑃(𝑋ኻ)𝑃(𝑋ኼ|𝑋ኻ)𝑃(𝑋ኽ|𝑋ኼ, 𝑋ኻ)…𝑃(𝑋፧|𝑋ኻ, … , 𝑋፧ዅኻ) (3.3)

However to compute this joint distribution involves computations for every conditional prob-
ability. This is one of the main strengths of Bayesian Networks, namely to represent this
distribution in a much simpler way. But before we can represent our probability distribution
we will first have to explore some definitions and theorems from graph theory.

3.2. Graph theory
A Bayesian Network is defined by a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 the
set of edges of the graph. We will only consider the edges to be directed, however it is also
possible that these edges are undirected. If we look at our network we don’t want any cycles
to occur, so it should not be possible to start in one vertex and by following the arrows end
up in the same vertex again. This means that our graph has to be a directed acyclic graph
(DAG). Some other important definitions, again from Neapolitan (2004) [3]:

Definition 3.2.1 Given a DAG 𝐺 = (𝑉, 𝐸) and nodes 𝑋, 𝑌 in V

• 𝑌 is called a parent of 𝑋 if there is an edge from 𝑌 to 𝑋
• 𝑌 is called a descendent of 𝑋 and 𝑋 is called an ancestor of 𝑌 if there is a path (a set of
edges connecting two nodes) from 𝑋 to 𝑌

• 𝑌 is called a non-descendent of 𝑋 if 𝑌 is not a descendent of 𝑋
So, let’s look at an example, taken from Koller and Friedman (2009) [2]. If we assume that a
patient can have two diseases, Flu or Hay fever, then both these diseases have one plausible
common cause, the season of the year. Both these diseases also have one common effect, a
Congestion in the nostrils. Lastly we assume Flu causes Fever. The graphical representation
of this model is given in 3.1. We can see that Season is a parent of Hay fever, but also that
Season is an ancestor of Fever. Lastly we can also see that Congestion is a non-descendent
of Fever.

Season

Flu Hay fever

Fever Congestion

Figure 3.1: Easy example

As we can see in the graph, if we take three nodes, there are three possible combinations
to connect these three nodes, which can be seen in figure 3.2.

A B C
(a) Serial connection

A B C
(b) Convergent connection

A B C
(c) Divergent connection

Figure 3.2: Different connections with 3 vertices

Now that we know what these connections look like we can define how connectiveness in
a graph corresponds with conditional independence. However, a graph also encodes more
conditional independence statements, which are generally characterized by the concept of
d-separation:

Definition 3.2.2 [5] If 𝐴, 𝐵 and 𝐶 are three disjoint subsets of nodes in a DAG 𝐺, then 𝐵 is said
to d-separate 𝐴 from 𝐶 if along every path between a node in 𝐴 and a node in 𝐶 there is a node
𝑣 satisfying one of the following two conditions:
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• 𝑣 has converging arcs (i.e. there are two arcs pointing to 𝑣 from the adjacent nodes in the
path) and neither 𝑣 nor any of its descendants (i.e. the nodes that can be reached from 𝑣)
are in 𝐵

• 𝑣 is in 𝐵 and does not have converging arcs

So again in the same example about sickness, we can see that Flu d-separates Fever from
Congestion, but also that Flu d-separates Season from Fever. Which are exactly when we
have a serial connection or a divergent connection! However Congestion does not d-separate
Flu from Hay fever, so we don’t have d-separation with a convergent connection. That’s why
this connection has a separate name, a v-structure, but only if there is no direct connec-
tion between Flu and Hay fever. Looking at the example again we can also determine that
Congestion and Season are d-separated by {Flu, Hay fever}.

If we consider the graph where all directed edges are turned into undirected edges we
are left with the skeleton of the graph. Two DAG’s defined over the same set of variables
are equivalent if they have the same skeleton and the same underlying v-structure.[4] An
equivalent DAG for the example in figure 3.1 is given by figure 3.3b.

Season

Flu Hay fever

Fever Congestion

(a) Skeleton of the DAG

Season

Flu Hay fever

Fever Congestion

(b) An equivalent DAG

Figure 3.3

With all these definitions we can define the most important property of Bayesian Networks:
the Markov condition

Definition 3.2.3 Suppose we have a joint probability distribution 𝑃 of the random variables
in some set V and a DAG 𝐺 = (𝑉, 𝐸). We say that (𝐺, 𝑃) satisfies the Markov condition if for
each variable 𝑋 ∈ 𝑉, {𝑋} is conditionally independent of the set of all its nondescendents given
the set of all its parents. If we let 𝑃𝐴ፗ the set with the parents of 𝑋 and 𝑁𝐷ፗ the set with the
nondescendents of 𝑋 then we can write 𝐼({𝑋}, 𝑃𝐴ፗ|𝑁𝐷ፗ).
If we use the Markov condition for our joint distribution it will look like

𝑃(𝑋ኻ, … , 𝑋፧) =
፧

∏
።዆ኻ

𝑃(𝑋።|𝑃𝐴ፗᑚ) (3.4)

which saves a lot of time to compute the conditional probabilities.

If we take for example the graph in figure 3.1, we can see that Fever is conditionally inde-
pendent of Congestion given Flu. The joint probability distribution for this graph will thus
be

𝑃(𝑆, 𝐻, 𝐶, 𝐹𝑙, 𝐹𝑒) = 𝑃(𝑆)𝑃(𝐹𝑙|𝑆)𝑃(𝐻|𝐹𝑙, 𝑆)𝑃(𝐶|𝐻, 𝐹𝑙, 𝑆)𝑃(𝐹𝑒|𝐶, 𝐻, 𝐹𝑙, 𝑆) (3.5)
= 𝑃(𝑆)𝑃(𝐹𝑙|𝑆)𝑃(𝐻|𝑆)𝑃(𝐶|𝐹𝑙, 𝐻)𝑃(𝐹𝑒|𝐹𝑙) (3.6)

We have now seen that we can factorize our joint distribution in a much simpler way, which
involves a lot less computation for the conditional probabilities. This fact is also exploited
by the algorithms that we will see in a later section, which we will then use to learn the
structure of the Bayesian Networks. Before we can do this, we will look at what type of
Bayesian Networks are available.



12 3. Bayesian Networks

3.3. Types of Bayesian Networks
There are three types of Bayesian Networks. The simplest form is the discrete Network, where
all nodes have a discrete probability distribution, which is given by a conditional probability
table. Most discrete networks are modelled with a binary variable, so something is either yes
or no. If we let all our nodes in the previous example be binary, we can write a conditional
probability table for Fever as in table 3.1.

Flu
Yes No

Fever Yes 0.6 0.2
No 0.4 0.8

Table 3.1: Conditional probability table for Fever

Besides discrete networks there are also continuous Bayesian networks. To use a con-
tinuous network there is one important assumption to be made, namely that every variable
is normally distributed and that the joint probability distribution is multivariate normal. We
make this assumption because it makes the computations a lot easier and although most
of the time the data does not satisfy this assumption, the generated network can still give a
good approximation. The normal distribution for one variable is given by:

𝑓(𝑥|𝜇, 𝜎ኼ) = 1
√2𝜋𝜎ኼ

𝑒ዅ
(ᑩᎽᒑ)Ꮄ
ᎴᒗᎴ (3.7)

where 𝜇 is the mean of the distribution and 𝜎ኼ the variance. As we saw in figures 2.2 till 2.10
not all of our variables are normally distributed.

Lastly there are also hybrid networks. These exists of discrete and continuous nodes. The
problem is that these hybrid networks are very complex and the algorithms that exist to solve
these kind of problems have a lot of limitations.
Bayesian Networks are graph structures with for every node a probability distribution. How-
ever, as we can see in table 3.2 there are a lot of possible DAG’s for the 12 variables that
we have. These cannot be constructed by hand, so we will have to look at different learning
algorithms.

Nodes Number of DAGs
1 1
2 3
3 25
4 543
5 29281
⋮ ⋮
10 4.2 ⋅ 10ኻዂ
11 3.2 ⋅ 10ኼኼ
12 5.2 ⋅ 10ኼዀ

Table 3.2: Number of possible graphs generated for given amount of nodes [1]

3.4. Structure Learning
To create a Bayesian Network from a data set we will have to make use of algorithms. All
these algorithms make use of two steps: structure learning and parameter estimation. For
structure learning the algorithms can be divided into three categories: constraint- and score
based learning and and a combination of the two, the hybrid algorithms. We can also combine
these algorithms with the knowledge of experts. These experts know some relations between
the variables.
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3.4.1. Constraint based learning algorithms
Constraint based algorithms learn the network by making use of conditional independence
statements. With these statements the algorithm can learn the skeleton of the network and
the next step is to identify the v-structures in the network. The main structure of these
algorithms is given by:[1]

Algorithm 1 The structure of a Bayesian network can be learned from conditional independence state-
ments of the form, “𝐴 independent of 𝐵 given 𝐶” (denoted by 𝐼(𝐴, 𝐵, 𝐶)):
function LearnStructure(𝑆)

Find the skeleton of the Bayesian network:
The link 𝐴 − 𝐵 is part of the skeleton if and only if ¬𝐼(𝐴, 𝐵, 𝑋) for all 𝑋 not containing 𝐴 or 𝐵.
Direct the links:
if 𝐴, 𝐵, 𝐶 such that 𝐴 − 𝐶 and 𝐵 − 𝐶, but not 𝐴 − 𝐵 then introduce the v-structure 𝐴 → 𝐶 ← 𝐵 if

there exists an X (possibly empty) such that 𝐼(𝐴, 𝐵, 𝑋) and 𝐶 ∈ 𝑋.
else if 𝐴 → 𝐶 − 𝐵 (and no link between A and B) then direct 𝐶 → 𝐵
else if 𝐴 → 𝐵 introduces a directed cycle in the graph then do 𝐴 → 𝐵
else choose an undirected link and give it an arbitrary direction
end if

end function

To test the conditional independence statement, we make use of statistical independence
tests such as the t-test or the Mutual Information. The t-test 𝑡(𝑋, 𝑌|𝑍) is given by

𝑡(𝑋, 𝑌|Z) = 𝜌ፗፘ|ዤ√
𝑛 − |Z| − 2
1 − 𝜌ኼፗፘ|ዤ

(3.8)

where 𝑋 and 𝑌 are random variables, |Z| a set of random variables and 𝜌ፗፘ|ዤ the partial
correlation coefficients. The Conditional Mutual Information is given by:

𝐼(𝑋, 𝑌|𝑍) = ∑
፳∈𝒵

∑
፲∈𝒴

∑
፱∈𝒳

𝑝ፗ,ፘ,ፙ(𝑥, 𝑦, 𝑧) log (
𝑝ፙ(𝑧)𝑝ፗ,ፘ,ፙ(𝑥, 𝑦, 𝑧)
𝑝ፗ,ፙ(𝑥, 𝑧) 𝑝ፘ,ፙ(𝑦, 𝑧)

) (3.9)

where 𝑝ፗ,ፘ,ፙ(𝑥, 𝑦, 𝑧) is the joint probability mass function of 𝑋, 𝑌 and 𝑍 and 𝑝ፗ(𝑥) and 𝑝ፘ(𝑦) are
the respective marginal probability mass functions.
Some well used constraint based algorithms are Grow-Shrink (gs) and Fast- and Inter Incre-
mental Association (Fast-IAMB and Inter-IAMB). We will also use these three in our further
analysis. As we saw before, for twelve variable there are 5.2 ⋅ 10ኼዀ possible structures. To
reduce this amount, the algorithms first look at what the Markov blanket of a node is. The
Markov blanket consists of the parents, children and parents of the children of the node.
The consequence of this step is that we have to do a lot less conditional independence tests,
which in turn leads to a decrease in computation time.

3.4.2. Score based learning algorithms
Score based algorithms work quite simple, they give each network a certain score and the
one with the highest score is returned. This means that a couple of networks are selected
by the algorithms and each of them is assigned a score, which is actually a goodness of fit
statistic measuring how well the DAG corresponds to the dependence within the data. The
algorithms that we will use, Hill-Climbing (hc) and Tabu, will start with an empty graph, so
just the nodes, and add, delete or reverse an arc until the score is optimized. The score that
we will use is BIC (Bayesian Information Criterion) given by [1]:

𝐵𝐼𝐶(𝑆|𝒟) = 𝑙𝑜𝑔ኼ𝑃(𝒟|�̂�ፒ , 𝑆) −
𝑠𝑖𝑧𝑒(𝑆)
2 𝑙𝑜𝑔ኼ(𝑁) (3.10)

where 𝑠𝑖𝑧𝑒(𝑆) is the number of independent parameters in 𝑆, 𝒟 the database, �̂� an estimate
of the maximum likelihood parameter and 𝑁 the number of data points per variable. The
number of independent parameter for one node is equal to two plus the number of parents
of the node. So for example 𝑠𝑖𝑧𝑒(𝑆) for the network in figure 3.1 is equal to 13.
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3.4.3. Hybrid learning algorithms
Hybrid learning algorithms combine the strengths of both the previous algorithms. Conse-
quently, these algorithms consist of two steps: first the amount of possible structures is
restricted with the help of independence test and the second step is to maximize the score
function restricted on this set of structures. We will use the Max-Min Hill-Climbing (MMHC)
algorithm, which is a combination of the constraint based Max-Min Parents and Children
and the score based Hill-Climbing algorithm.

3.4.4. Experts
Besides using algorithms to construct our network, we can also consult experts in the field.
So a doctor for example will know what kind of symptoms belong to a certain disease and
what causes this disease. We can also combine the expert knowledge with our algorithms to
discover new relationships that the doctor might not know about, but which arise from a data
set with patients. This might be useful to discover new diseases or other symptoms belonging
to the same disease that the doctor does not know about. These experts can also point out
variables which are not considered in the model but which could influence the predictions.

3.5. Parameter fitting
Now that we know what our structure looks like, we can fit the parameters onto the different
variables. This fitting is greatly simplified because we can decompose the global distribution
into the local distributions by making use of the Markov Condition, as seen in definition
3.2.3. The parameter estimation is done by making use of maximum likelihood estimation
(mle). This method uses the likelihood of a Bayesian Network 𝑀(𝑆, 𝜃), where 𝑆 is a structure
and 𝜃 the parameters, given the data 𝐷, computed by[1]:

𝐿(𝑀|𝐷) =∏
፝∈ፃ

𝑃(𝑑|𝑀(𝑆, 𝜃)) (3.11)

where 𝑃(𝑑|𝑀) is the likelihood of 𝑀 given 𝑑. The goal is to maximize this function, so find 𝜃
such that 𝐿(𝑀|𝐷) is maximal. If we have a discrete data set this means that we will have a
conditional probability table for each of the nodes and if we use a continuous approximation
of the data we will have the regression coefficient for each variable against its parents.
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The Bayesian Network Football

Structure
Now that we have seen what our data looks like and what Bayesian Networks are, we can
combine these two together. We have seen that there are multiple algorithms to determine
the structure of our Bayesian Network. The most intuitive thing to do, is just apply some of
these algorithms on the whole data set and see what these structures look like. We will do
this first for the constraint based algorithms, which results in figure 4.1 and 4.2. The red
lines indicate that the direction of the arc is different then the one in the base model, which
here is the Grow-Shrink one, while the blue lines represent lines that are present in the first
model, but not in this model. We can clearly see that the networks learned by the constraint
based algorithms look quite similar. They have a lot of black lines which means that the
arc is present and has the same direction. Secondly, we can also observe that the network
learned by the Grow-Shrink algorithm is exactly identical to the one learned by fast IAMB,
but also that that the IAMB and the inter IAMB network are identical.

Figure 4.1: Networks learned by the Grow-Shrink and Fast IAMB algorithms for the full data set

15
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Figure 4.2: Networks learned by the IAMB and Inter IAMB algorithms for the full data set

If we compare the score and hybrid methods, however, we can see that they are almost
completely different from the structures learned by the constraint based algorithms, as can
be seen in figure 4.3 and 4.4. On the other hand, both score based structures are almost
identical, with only two different arcs, as indicated by the red and blue lines in the tabu
structure.

With just these seven networks there are already a few things that stand out. For one,
we see that the betting nodes VC_Win, VC_Draw and VC_Defeat take up a central position in
all of the networks. This could mean that they play an important role in predicting our label
or the home and away goals. Secondly the structures learned by the score based algorithms
contain a lot more arcs than the ones learned by the constraint based algorithms. This can
be explained by the fact that the constrained based algorithms first look at the skeleton of
the graph, which is determined by the conditional independence of two nodes given another
one. The score based algorithms on the other hand, add an arc each time to optimize their
score, so it will just continue adding arcs if it increases it’s score. Lastly, we can also see
that there are undirected edges in the structures learned by the constraint based algorithms.
This is something we would like to avoid, because otherwise it would not be possible to learn
the parameters of the variables connected by these edges.

This gives us an idea of what the structures will look like, but we want to know what the
influence will be if we change our data a little bit. This can be tested by making use of a
bootstrap method.
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Figure 4.3: Comparison between the two score based algorithms

Figure 4.4: Comparison between MMHC and GrowShrink with relation to HillClimbing
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4.1. Bootstrap
The bootstrap method is a statistical test based on random sampling with replacements.
What this means, is that if we have a vase with 5 coloured balls, then we randomly pick 5 of
those balls but each time we put the ball back. So say, for example, that we have a yellow
(y), a red (r), a blue (b), a green (g) and a white (w) ball. Then bootstrapping this data could
result in the following set: y-w-y-r-w. For our purposes, the structure is then learned on this
set. This was only one step, but we can repeat this process to get multiple structures and we
can check which of the arcs in the structure occurs most of the time. Repeating this process
50 times for our data set, and only taking the arcs which occur more than 70% of the time,
results in figure 4.5a for the Grow-Shrink algorithm and figure 4.5b for the Hill-Climbing
algorithm. The first thing that stands out is that the Grow-Shrink network has again far less
arcs than the Hill-Climbing network, which again can be explained by the fact that the links
that are present in the Hill-Climbing network and not in the Grow-Shrink structure, have
a low conditional independence as tested by equation 3.8. Secondly, we also see that some
arcs are less thick than others. This is due to the fact that they occur less often with respect
to the others. So for example the link from HistoryAwayTeam to mean_rating_away occurs
only 80% of the time, while the other arcs occur almost 100% of the time.

(a) Strength plot for the Grow-Shrink (b) Strength Plot for the Hill-Climbing

Figure 4.5: Strength plots for Grow-Shrink and Hill-Climbing, based on a bootstrap method

However, our goal was to do predictions but by using all of our data to learn a structure,
we do not have any data left to test our structure on and to see how well our predictions
were.

4.1.1. Predicting
To validate if the model that we use fits the data set, we first have to divide the data into
two parts, one training set (usually 80%) and one test set (usually 20%). For the training
set we have to sample (so pick randomly) 80% of the data and the test set is the other 20%.
We also want to remove the variable label from both these data sets because if we have our
home and away goals we can use those to deduce the label. With these modified data sets
we can again apply the bootstrap method as in the previous section, repeating the process
of sampling with replacement 50 times and only taking the arcs which occur more than 70%
of the time.

The first thing we notice is that the graphs generated by the constraint based algorithms
and the score based algorithms are again completely different. For Grow-Shrink, Fast IAMB
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and Inter IAMB there are a lot of arcs pointing towards VC_Win, which in turn has an arc
towards home_goals, while Hill-Climbing and Tabu just have a lot of arcs pointing in every
direction. The graph generated by MMHC is just a bit in the middle, which we expect because
it is a combination of the two. The plots for both Grow-Shrink and Hill-Climbing are below
and the others can be found in appendix B.1.

(a) Strength Plot for the Grow-Shrink (b) Strength Plot for the Hill Climbing

Figure 4.6: Strength plots for Grow-Shrink and Hill-Climbing based on ዂኺ% of the data and a bootstrap method

Now that we know what our graph looks like, we can also fit the parameters belonging to
each variable. So for example for the variable VC_Defeat in the Grow-Shrink structure we
get the following table:

Parameters of node VC_Defeat (Gaussian distribution)
VC_Defeat | LossesAgainstTeam
Coefficients:
(Intercept) LossesAgainstTeam
25.098513 0.161494
Standard deviation of the residuals: 15.38499

Table 4.1: Parameter for node mean rating away in the Grow-Shrink model

But what does this actually mean? It says that VC_Defeat is normally distributed with
mean 25.10 + 0.16 ⋅ LossesAgainstTeam and standard deviation 15.38, or compactly written:
𝑉𝐶𝐷|𝐿𝐴𝑇 = 𝑙𝑎𝑡 ∼ 𝑁(25.10 + 0.16𝑙𝑎𝑡, 15.38ኼ). So we can make a linear model for VC_Defeat
which depends only on LossesAgainstTeam.

Next we can use the learned structure and it’s corresponding parameters to do some
predictions. This is done by using the function predict in the package bnlearn1. The function
averages likelihood weighting simulations by using the evidence given in the test data set.
For each match in the test set this is done by computing the conditional distribution given
all the other nodes and calculating the expected value.

Because of our assumption that the variable follows a normal, so continuous distribution,
the resulting predicted values will be real numbers, so most likely not integers. However, it is
of course not possible to have 1.4563563 goals, so we will have to round the numbers. Lastly
we want to compute how well our predictions are. Therefore, we calculate the Mean Square
1bnlearn.com
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Error between the prediction and the real variables. The Mean Square Error is given by:

𝑀𝑆𝐸 = 1
𝑛

፧

∑
።዆ኻ
(𝑌። − �̂�።)ኼ (4.1)

where 𝑛 is the number of predictions, so 20% of 19580, 𝑌። are the real values and �̂�። are the
predicted values. The errors are given in the following table:

HC GS FIAMB IIAMB Tabu MMHC

MSE HomeGoals 1.471 1.473 1.480 1.477 1.474 1.466
MSE AwayGoals 1.153 1.152 1.152 1.153 1.155 1.153

Table 4.2: Mean Square Error for the different algorithms

As we can see the errors are all relatively small and close to one and other, but the error for
the away goals is smaller than for the home goals. This can be explained by the fact that the
away goals have a smaller variance than the home goals and will thus be in a smaller region
around the mean. The relatively small error for both variables is due to the fact that we have
a test set of around 4000matches, while there is only a small difference between the observed
and predicted goals. With the predicted home and away goals we can also determine what
the end result of the match was and thus how well it compared to the real end result. We
compute this by just comparing which team scored the most, so not the exact outcome of
the match.

HC GS FIAMB IIAMB Tabu MMHC

% correct 52.58 51.81 51.53 52.37 52.27 51.81

Table 4.3: Percentage of matches predicted correctly for the different algorithms

Again we see that all algorithms are quite close to one another with their predictions. And
also that all percentages are a bit lower than the percentage of our betting company, which
was 53%.

By now we haven’t consulted any experts, so all arcs are learned by the algorithm. How-
ever we could for example state that there should not be an arc between home_goals and
away_goals. Lastly, we do have to mention that running our bootstrap method on different
80% samples of the data gave different significantly different structures. We can compensate
for this and validate our model by using K-fold cross validation.
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4.2. K-fold Cross Validation
For our bootstrap method we randomly sampled 80% of the data, but why 80% and not 60 or
75? And although we sample randomly, we have a fixed test set to perform our predictions
on. If we decrease the size of our training set, the learned model will be less accurate. To
combat this ambiguity we make use of K-fold cross validation. K can be any integer within
the amount of matches available, but we choose to use 5 to have a connection with the 80%
as picked in the bootstrap method. The idea is that the data set is split up into 5 folds. The
network is then learned on 4 of the 5 folds and tested on the remaining fold, as visualized in
figure 4.7.

Figure 4.7: Visualization of 5-fold cross validation [6]

Due to the structure of this method, it is only possible to predict one variable, so we will
remove both the variables home_goals and away_goals, and only predict the end result of
the match, so the label. The error is again computed by the mean square error, as given
in equation 4.1. This method can again be repeated multiple times to get a more accurate
result.

This is the way it should work for most data sets, however the structure learned by the
constraint based algorithms results in an error because there are undirected arcs around
the node we want to predict, as we also saw in our first network. We will come back to this
when we use our expert knowledge. However, for score and hybrid based algorithms it does
work. So we repeat this 5-fold cross validation 50 times and per time compute the percentage
that was predicted correctly. We can put the prediction percentages in a table and the mean
square errors in a box plot. These are in table 4.4 and figure 4.8 respectively. Besides the
minimum, maximum, mean and median, the table also states the first and third quantile.
The first quantile splits off the lowest 25% of the data, while the third quantile splits off the
highest 25% of the data. As we can see, the results are not that promising. The networks
only predict around 37% of the matches correctly. However, we can also see that the mean
square error is quite small for the three different algorithms and even smaller than the mean
square error of the bootstrap method. This is due to the fact that the difference for the label
can be maximally 2, while the difference for the goals could theoretically be 10, which give an
enormous increase when squaring it. It can also be observed that the predictions made with
our bootstrap method are a lot higher than those with the cross validation. This is probably
due to the fact that we have more information, namely both goals, instead of just one number
for the end result. To improve we will have to make use of an expert who tells us which arcs
will be in the network.
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Min 1st Quantile Median Mean 3rd Quantile Max.

Tabu 37.46 37.64 37.68 37.68 37.73 37.88
HC 37.37 37.67 37.72 37.72 37.77 37.94

MMHC 36.72 37.04 37.15 37.14 37.28 37.49

Table 4.4: Percentage of matches predicted correctly for score and hybrid based algorithms

Figure 4.8: Mean square errors for 50 runs with score and hybrid based algorithms

4.3. Combining bootstrap graph with cross validation
We can also combine our bootstrap method with the cross validation by instead of learning
the structure on a part of the data, using the bootstrap method to learn a structure and then
learn the parameters on each fold. Implementing this method by doing a bootstrap 50 times
and 10 5-fold validations, instead of 50 for the sake of computing time, gives the predictions
for the label in table 4.5 and the mean square errors in figure 4.9. As we can clearly see the
box plot looks more like a line plot due to the fact that the error difference is relatively big
between the constraint and score based algorithms. Similarly the predictions by the score
based algorithms are a lot better than those by the constraint based algorithms. The box
plots for the score based algorithms are comparable to those in figure 4.8. Unfortunately,
the predictions are worse than those with a standard cross validation. Lastly we also note that
the prediction for the fast and inter IAMB methods are exactly the same. This is probably due
to the fact that these algorithms are based on the same algorithm and will thus give similar
structures and corresponding parameters.

Min 1st Quantile Median Mean 3rd Quantile Max.

Tabu 36.70 36.76 36.78 36.80 36.83 36.92
HC 36.53 36.71 36.74 36.75 36.81 36.91

MMHC 36.58 36.66 36.73 36.73 36.79 36.89
GS 30.88 30.98 31.08 31.03 31.10 31.12

FIAMB 28.87 28.87 28.87 28.87 28.87 28.87
IIAMB 28.87 28.87 28.87 28.87 28.87 28.87

Table 4.5: Percentage of matches predicted correctly for score and hybrid based algorithms
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Figure 4.9: Mean square errors for 10 runs

4.4. Expert knowledge
We have seen in the bootstrap method that the goals are mostly influenced by the betting
companies. But what if we let all arcs point towards the home and away goals and no arc
between those? This will let the goals be dependent on all other variables, and while it will
only be a small influence it could increase the predictions. Secondly, we can see what the
influence will be if we remove the betting predictions from our data. The resulting structure
then only contains the history of both teams and their current rating.

4.4.1. Bootstrap
The first thing we will do to improve our predictions is to let every variable influence the
goals and then letting the fitting decide with what weight each variable influences the goals.
Using the same procedure as before: doing 50 runs and taking an edge if it occurs more
than 70% of the time. The results are really promising. If we look at table 4.6 we can see
that the amount of matches predicted correctly is higher than the ones we predicted without
any fixed arrows and also higher than the predictions made by the betting company. What
also stands out is that the prediction percentages for all algorithms are close to one another,
they are all within the range (54.3, 54.8). This implies that we have found a structure which
gives consistent predictions for all algorithms. However, we have forced a lot of arrows from
the start so the algorithms don’t make a big difference in the structures. When plotting the
learned structures for the Grow-Shrink and the Hill-Climbing model in figure 4.10 and 4.11,
we see again that the Hill-Climbing network contains a lot more arcs. The red arrows in the
structures indicate the arrows that we forced to exist. In appendix B.2 the graphs for the
other algorithms can be found.

HC GS FIAMB IIAMB Tabu MMHC

MSE HomeGoals 1.476 1.478 1.475 1.474 1.476 1.477
MSE AwayGoals 1.153 1.153 1.155 1.154 1.154 1.153

% correct 54.72 54.60 54.52 54.49 54.34 54.60

Table 4.6: Prediction results with all variables directed to the goals
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Figure 4.10: Strength Plot for GrowShrink with fixed arcs

Figure 4.11: Strength Plot for Hill Climbing with fixed arcs

Next we will remove the betting nodes. We saw that they are always quite in the centre of
the network so they will probably have a lot of influence. This is also the case when we do
our predictions, they are lower than both the original network and the previous network. We
can also see in figure 4.12a that the goals are not the end nodes of the network, which means
that they also influence the history which is quite strange and of course does not occur in
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the real world as the history of the team is computed before the match is played. In appendix
B.3 the networks for the other algorithms can be found.

HC GS FIAMB IIAMB Tabu MMHC

MSE HomeGoals 1.489 1.494 1.475 1.499 1.491 1.496
MSE AwayGoals 1.189 1.204 1.155 1.210 1.189 1.189

% correct 49.77 50.41 50.46 50.87 49.51 51.2

Table 4.7: Prediction results by removing the betting nodes from the structure

(a) Strength Plot for Grow-Shrink (b) Strength Plot for Hill Climbing

Figure 4.12: Strength plots for GS and HC without the betting nodes

4.4.2. K-fold cross validation
For the cross validation we can apply the same restrictions to the arcs as we did with the
bootstrap method. So firstly we direct all the arc towards label, unfortunately the constraint
based algorithms still give the error of undirected arcs so we will not be able to use those.
Hence we do again a 5-fold cross validation and repeat this method 50 times to get the best
result. The correctly predicted percentages are in table 4.8 and the box plot for the mean
square error is in figure 4.13. A few remarks can be made. Firstly, the median error, which
is the black dot in the box, of the 50 runs is lower for all algorithms than it was without
the forced arcs, though the difference is really small. On the contrary, the percentage of the
predictions predicted correctly is a little bit lower than it was before, but again this difference
is really small. This implies that forcing the arcs towards the label has a negligible effect on
the predictions.

Min 1st Quantile Median Mean 3rd Quantile Max.

Tabu 37.55 37.69 37.74 37.74 37.79 37.93
HC 37.58 37.68 37.78 37.78 37.87 37.98

MMHC 37.59 37.72 37.79 37.79 37.85 37.97

Table 4.8: Percentage of matches predicted correctly for score and hybrid based algorithms and all variables having an arc
directed towards label
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Figure 4.13: Mean square errors for 50 runs with score and hybrid based algorithms and all variables having an arc directed
towards label

Next we remove again the betting nodes from the data set. Immediately we see a difference
occurring, because the mean square error is bigger than it was in previous variations, as can
be see in figure 4.14. Nowwe have amean square error of 0.6167, while the previous variations
were around 0.601. Again, this difference doesn’t look that big but we have to remember that
we have a big data set and a small difference between the real and observed value. As with the
bootstrap method, by removing the betting nodes we have slightly decreased our predictions
performance by now only predicting 35% correctly which previously was 37%. This was also
something we observed by looking at the structures and the position of the betting nodes.

Min 1st Quantile Median Mean 3rd Quantile Max.

Tabu 34.87 35.08 35.11 35.12 35.17 35.28
HC 34.91 35.05 35.11 35.11 35.17 35.30

MMHC 34.96 35.08 35.18 35.16 35.22 35.34

Table 4.9: Percentage of matches predicted correctly for score and hybrid based algorithms without the betting nodes
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Figure 4.14: Mean square errors for 50 runs for the score and hybrid based algorithms without the betting nodes

4.4.3. Combining bootstrap graph with cross validation
As we saw in both methods, if we direct all arcs to the nodes we want to know we get the
best results. So combining again the bootstrap structure and the cross validation gives the
results in table 4.10 and figure 4.15. A peculiar thing stands out, the errors and predictions
are very close to one another. There is almost no difference between the score and constraint
based algorithms, though on average the medians for the constraint based algorithms are a
bit lower. This could, however, be due to the fact that we only did ten runs to decrease the
computation time.

Min 1st Quantile Median Mean 3rd Quantile Max.

Tabu 37.62 37.71 37.78 37.78 37.85 37.92
HC 37.65 37.76 37.79 37.78 37.81 37.87

MMHC 37.51 37.68 37.76 37.75 37.80 37.98
GS 37.57 37.73 37.75 37.76 37.82 37.99

FIAMB 37.57 37.74 37.77 37.77 37.83 37.89
IIAMB 37.59 37.74 37.80 37.81 37.91 37.95

Table 4.10: Percentage of matches predicted correctly for score and hybrid based algorithms
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Figure 4.15: Mean square errors for 10 runs for all algorithms with arcs forced towards label



5
Conclusion

In the beginning of this thesis the question was asked whether is was possible to predict
football matches with the help of Bayesian Networks and how well this predictions would
be. Secondly we also asked ourselves if it was possible to make better predictions than the
predictions made by our betting company. To answer these questions we first analyzed the
data at hand and modified it in such a way that the variables involved could be used to
explain causal relationships in our Bayesian Network.

Unfortunately the answers to the questions posed are not satisfactory as the predictions
were often far of the real results. For the first bootstrap method we predicted around 52%
correctly which is nowhere close to perfection. However, we saw in our analysis of the data
that if we always predict a home win, then we would predict 46% correctly. The cross vali-
dation predicted worse than the predictions resulting from the bootstrap method, with only
around 37% predicted correctly. This prediction percentage could be explained by the fact
that for the cross validation we were predicting only the end result while with the bootstrap
method we were predicting the goals of the match. By forcing our structure to contain only
arcs towards the nodes we wanted to predict, we did improve our predictions for the bootstrap
method. Instead of 52% we now predicted 54.5% correctly. This small increase is maybe due
to the fact that some dependencies which were not captured in the first iteration, did have
an influence in the end result. Lastly by removing the betting nodes the prediction scores
even decreased, probably for the reason that these are important predictors as already seen
in the first iteration of the full network. With the cross validation neither of these changes
significantly altered the prediction results and the associated errors.

In conclusion we can say that the variables used in these structures are not sufficient
enough to make good predictions. To make better predictions it might be wise to include
more variables, like more information about the players starting the match or the weather
during the day, but this will also significantly increase the computation time needed to learn
these structures and its validation methods. We also have to note that the variables involved
don’t follow the assumptions that were used to model with continuous Bayesian Networks.
Although the networks should still be able to make a good approximation when we are not
adhering to these assumptions, this might have an influence in the predictions. Lastly,
football is a game with a lot of variables involved and it is hard to capture those in a causal
model.

29



A
Table betting companies

Abbreviation Better

B365 Bet365
BW Bet & Win
IW Interwetten
LB Ladbrokes
WH William Hill
SJ Stan James
VC VC Bet
GB Gamebookers
BS Blue Square
Avg Average over all betters

Table A.1: Table with betting company names

30



B
Additional Strength plots

B.1. Simple bootstrap

(a) Strength Plot for Fast IAMB (b) Strength Plot for Inter IAMB

31
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(a) Strength Plot for tabu (b) Strength Plot for MMHC
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B.2. Bootstrap with all arcs towards goals

(a) Strength Plot for Fast IAMB with arcs towards goals (b) Strength Plot for Inter IAMB with arcs towards goals

(a) Strength Plot for tabu with arcs towards goals (b) Strength Plot for MMHC with arcs towards goals
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B.3. Bootstrap without betting nodes

(a) Strength Plot for Fast IAMB without betting nodes (b) Strength Plot for Inter IAMB without betting nodes

(a) Strength Plot for tabu without betting nodes (b) Strength Plot for MMHC without betting nodes



C
Code

C.1. Python code
C.1.1. Functions

1 #adapted from:
https://www.kaggle.com/airback/match-outcome-prediction-in-football↪

2 import numpy as np
3 import pandas as pd
4 import sqlite3
5 from time import time
6 from collections import Counter
7

8 def get_match_label(match):
9 ''' Derives a label for a given match. '''

10 home_goals = match['home_team_goal']
11 away_goals = match['away_team_goal']
12 label = pd.DataFrame()
13 label.loc[0,'match_api_id'] = match['match_api_id']
14 if home_goals > away_goals:
15 label.loc[0,'label'] = 2
16 if home_goals == away_goals:
17 label.loc[0,'label'] = 1
18 if home_goals < away_goals:
19 label.loc[0,'label'] = 0
20 return label.loc[0]
21

22 def get_fifa_stats(match, player_stats):
23 ''' Aggregates fifa stats for a given match. '''
24 match_id = match.match_api_id
25 date = match['date']
26 players = ['home_player_1', 'home_player_2', 'home_player_3',

”home_player_4”, ”home_player_5”,↪

27 ”home_player_6”, ”home_player_7”, ”home_player_8”,
”home_player_9”, ”home_player_10”,↪

28 ”home_player_11”, ”away_player_1”, ”away_player_2”,
”away_player_3”, ”away_player_4”,↪

29 ”away_player_5”, ”away_player_6”, ”away_player_7”,
”away_player_8”, ”away_player_9”,↪

30 ”away_player_10”, ”away_player_11”]
31 player_stats_new = pd.DataFrame()
32 names = []

35
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33 for player in players:
34 player_id = match[player]
35 stats = player_stats[player_stats.player_api_id == player_id]
36 current_stats = stats[stats.date < date].sort_values(by = 'date',

ascending = False)[:1]↪

37 if np.isnan(player_id) == True:
38 overall_rating = pd.Series(0)
39 else:
40 current_stats.reset_index(inplace = True, drop = True)
41 overall_rating = pd.Series(current_stats.loc[0,

”overall_rating”])↪

42 name = ”{}_overall_rating”.format(player)
43 names.append(name)
44 player_stats_new = pd.concat([player_stats_new, overall_rating],

axis = 1)↪

45 player_stats_new.columns = names
46 player_stats_new['match_api_id'] = match_id
47 #retrieved from:

https://www.kaggle.com/yoyocm/how-predict-the-outcome-of-40-matches↪

48 player_stats_new['mean_rating_home'] =
player_stats_new[['home_player_1_overall_rating',
'home_player_2_overall_rating', 'home_player_3_overall_rating',
”home_player_4_overall_rating”, ”home_player_5_overall_rating”,

↪

↪

↪

49 ”home_player_6_overall_rating”, ”home_player_7_overall_rating”,
”home_player_8_overall_rating”, ”home_player_9_overall_rating”,
”home_player_10_overall_rating”,

↪

↪

50 ”home_player_11_overall_rating”]].mean(axis=1)
51 player_stats_new['mean_rating_away'] =

player_stats_new[['away_player_1_overall_rating',
'away_player_2_overall_rating', 'away_player_3_overall_rating',
”away_player_4_overall_rating”, ”away_player_5_overall_rating”,

↪

↪

↪

52 ”away_player_6_overall_rating”, ”away_player_7_overall_rating”,
”away_player_8_overall_rating”, ”away_player_9_overall_rating”,
”away_player_10_overall_rating”,

↪

↪

53 ”away_player_11_overall_rating”]].mean(axis=1)
54 player_stats_new.reset_index(inplace = True, drop = True)
55 return player_stats_new.loc[0]
56

57 def get_fifa_data(matches, player_stats, path = None, data_exists =
False):↪

58 ''' Gets fifa data for all matches. '''
59 #Check if fifa data already exists
60 if data_exists == True:
61 fifa_data = pd.read_pickle(path)
62 else:
63 #Apply get_fifa_stats for each match
64 fifa_data = matches.apply(lambda x :get_fifa_stats(x,

player_stats), axis = 1)↪

65 #Return fifa_data
66 return fifa_data
67

68 def get_overall_fifa_rankings(fifa, get_overall = False):
69 ''' Get overall fifa rankings from fifa data. '''
70 temp_data = fifa
71 if get_overall == True:
72 #Get overall stats
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73 data = temp_data.loc[:,(fifa.columns.str.contains('mean_rating'))]
74 data.loc[:,'match_api_id'] = temp_data.loc[:,'match_api_id']
75 else:
76 cols = fifa.loc[:,(fifa.columns.str.contains('date_stat'))]
77 temp_data = fifa.drop(cols.columns, axis = 1)
78 data = temp_data
79 return data
80

81 def get_team_stats(match, team_stats):
82 ''' Aggregates team stats for a given match. '''
83 match_id = match.match_api_id
84 date = match['date']
85 teams = [”home_team_api_id”, ”away_team_api_id”]
86 team_stats_new = pd.DataFrame()
87 names = []
88 for team in teams:
89 team_id = match[team]
90 stats = team_stats[team_stats.team_api_id == team_id]
91 current_stats = stats[stats.date < date].sort_values(by = 'date',

ascending = False)[:1]↪

92 if current_stats.empty:
93 current_stats = stats[stats.date > date].sort_values(by =

'date', ascending = False)[:1]↪

94 if current_stats.empty:
95 a = np.zeros(shape=(1,len(current_stats.columns)))
96 current_stats = pd.DataFrame(a,columns=current_stats.columns)
97 if np.isnan(team_id) == True:
98 buildUpPlaySpeed = pd.Series(0)
99 else:

100 current_stats.reset_index(inplace = True, drop = True)
101 buildUpPlaySpeed = pd.Series(current_stats.loc[0,

”buildUpPlaySpeed”])↪

102 name = ”{}_buildUpPlaySpeed”.format(team)
103 names.append(name)
104 team_stats_new = pd.concat([team_stats_new, buildUpPlaySpeed],

axis = 1)↪

105 team_stats_new.columns = names
106 team_stats_new['match_api_id'] = match_id
107 team_stats_new.reset_index(inplace = True, drop = True)
108 return team_stats_new.loc[0]
109

110 def get_team_data(matches, team_stats, path = None, data_exists = False):
111 ''' Gets team data for all matches. '''
112 if data_exists == True:
113 team_data = pd.read_pickle(path)
114 else:
115 team_data = matches.apply(lambda x :get_team_stats(x, team_stats),

axis = 1)↪

116 team_data.columns = [”home_team_buildUpPlaySpeed”,
”away_team_buildUpPlaySpeed”, ”match_api_id”]↪

117 return team_data
118

119 def get_overall_team_rankings(teamData, get_overall = False):
120 ''' Get overall team rankings from team data. '''
121 temp_data = teamData
122 if get_overall == True:
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123 data =
temp_data.loc[:,(teamData.columns.str.contains('buildUpPlaySpeed'))]↪

124 data.loc[:,'match_api_id'] = temp_data.loc[:,'match_api_id']
125 else:
126 cols =

teamData.loc[:,(teamData.columns.str.contains('date_stat'))]↪

127 temp_data = teamData.drop(cols.columns, axis = 1)
128 data = temp_data
129 data = data[data.home_team_buildUpPlaySpeed != 0]
130 data = data[data.away_team_buildUpPlaySpeed != 0]
131 return data
132

133 def get_last_matches(matches, date, team, x):
134 ''' Get the last x matches of a given team. '''
135 team_matches = matches[(matches['home_team_api_id'] == team) |

(matches['away_team_api_id'] == team)]↪

136 last_matches = team_matches[team_matches.date < date].sort_values(by =
'date', ascending = False).iloc[0:x,:]↪

137 return last_matches
138

139 def get_last_matches_against_eachother(matches, date, home_team,
away_team, x):↪

140 ''' Get the last x matches of two given teams. '''
141 home_matches = matches[(matches['home_team_api_id'] == home_team) &

(matches['away_team_api_id'] == away_team)]↪

142 away_matches = matches[(matches['home_team_api_id'] == away_team) &
(matches['away_team_api_id'] == home_team)]↪

143 total_matches = pd.concat([home_matches, away_matches])
144 try:
145 last_matches = total_matches[total_matches.date <

date].sort_values(by = 'date', ascending = False).iloc[0:x,:]↪

146 except:
147 last_matches = total_matches[total_matches.date <

date].sort_values(by = 'date', ascending =
False).iloc[0:total_matches.shape[0],:]

↪

↪

148 if(last_matches.shape[0] > x):
149 print(”Error in obtaining matches”)
150 return last_matches
151

152 def get_wins(matches, team):
153 ''' Get the number of wins of a specfic team from a set of matches.

'''↪

154 home_wins = int(matches.home_team_goal[(matches.home_team_api_id ==
team) & (matches.home_team_goal >
matches.away_team_goal)].count())

↪

↪

155 away_wins = int(matches.away_team_goal[(matches.away_team_api_id ==
team) & (matches.away_team_goal >
matches.home_team_goal)].count())

↪

↪

156 total_wins = home_wins + away_wins
157 g = matches.shape[0]
158 if g == 0:
159 percentage = 0
160 else:
161 percentage = total_wins * 100/ g
162 return percentage
163
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164 #from:
https://www.kaggle.com/hugomathien/squad-visualization-xy-coordinate↪

165 def get_setup(match):
166 home_players_api_id = list()
167 away_players_api_id = list()
168 home_players_x = list()
169 away_players_x = list()
170 home_players_y = list()
171 away_players_y = list()
172 for i in range(1,12):
173 home_players_api_id.append(match['home_player_%d' % i])
174 away_players_api_id.append(match['away_player_%d' % i])
175 home_players_x.append(match['home_player_X%d' % i])
176 away_players_x.append(match['away_player_X%d' % i])
177 home_players_y.append(match['home_player_Y%d' % i])
178 away_players_y.append(match['away_player_Y%d' % i])
179 players_api_id = [home_players_api_id,away_players_api_id]
180 players_api_id.append(home_players_api_id) # Home
181 players_api_id.append(away_players_api_id) # Away
182 home_players_x = [5 if x==1 else x for x in home_players_x]
183 away_players_x = [5 if x==1 else x for x in away_players_x]
184 players_y = [home_players_y,away_players_y]
185 formations = [None] * 2
186 for i in range(2):
187 formation_dict=Counter(players_y[i]);
188 sorted_keys = sorted(formation_dict)
189 formation = ''
190 for key in sorted_keys[1:-1]:
191 y = formation_dict[key]
192 formation += '%d-' % y
193 formation += '%d' % formation_dict[sorted_keys[-1]]
194 formations[i] = formation
195 return formations
196

197 def get_match_features(match, matches, x):
198 ''' Create match specific features for a given match. '''
199 date = match.date
200 home_team = match.home_team_api_id
201 away_team = match.away_team_api_id
202 #Get last x matches of home and away team
203 matches_home_team = get_last_matches(matches, date, home_team, 5)
204 matches_away_team = get_last_matches(matches, date, away_team, 5)
205 #Get last x matches of both teams against each other
206 last_matches_against = get_last_matches_against_eachother(matches,

date, home_team, away_team, 2)↪

207 #Create formation variable
208 formation = get_setup(match)
209 #Define result data frame
210 result = pd.DataFrame()
211 #Define ID features
212 result.loc[0, 'match_api_id'] = match.match_api_id
213 result.loc[0, 'league_id'] = match.league_id
214 result.loc[0, 'date'] = match.date
215 result.loc[0, 'stage'] = match.stage
216 #Create match features
217 result.loc[0, 'home_team'] = match.home_team_api_id
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218 result.loc[0, 'away_team'] = match.away_team_api_id
219 result.loc[0, 'home_goals'] = match.home_team_goal
220 result.loc[0, 'away_goals'] = match.away_team_goal
221 result.loc[0, 'games_won_home_team'] = get_wins(matches_home_team,

home_team)↪

222 result.loc[0, 'games_won_away_team'] = get_wins(matches_away_team,
away_team)↪

223 result.loc[0, 'games_against_won'] = get_wins(last_matches_against,
home_team)↪

224 result.loc[0, 'games_against_lost'] = get_wins(last_matches_against,
away_team)↪

225 result.loc[0, 'home_formation'] = formation[0]
226 result.loc[0, 'away_formation'] = formation[1]
227 return result.loc[0]
228

229 def convert_odds_to_prob(match_odds):
230 ''' Converts bookkeeper odds to probabilities. '''
231 match_id = match_odds.loc[:,'match_api_id']
232 bookkeeper = match_odds.loc[:,'bookkeeper']
233 win_odd = match_odds.loc[:,'Win']
234 draw_odd = match_odds.loc[:,'Draw']
235 loss_odd = match_odds.loc[:,'Defeat']
236 win_prob = 1 / win_odd
237 draw_prob = 1 / draw_odd
238 loss_prob = 1 / loss_odd
239 probs = pd.DataFrame()
240 probs.loc[:,'match_api_id'] = match_id
241 probs.loc[:,'bookkeeper'] = bookkeeper
242 probs.loc[:,'Win'] = win_prob
243 probs.loc[:,'Draw'] = draw_prob
244 probs.loc[:,'Defeat'] = loss_prob
245 return probs
246

247 def get_bookkeeper_data(matches, bookkeepers, horizontal = True):
248 ''' Aggregates bookkeeper data for all matches and bookkeepers. '''
249 bk_data = pd.DataFrame()
250 for bookkeeper in bookkeepers:
251 #Find columns containing data of bookkeeper
252 temp_data =

matches.loc[:,(matches.columns.str.contains(bookkeeper))]↪

253 temp_data.loc[:, 'bookkeeper'] = str(bookkeeper)
254 temp_data.loc[:, 'match_api_id'] = matches.loc[:, 'match_api_id']
255 #Rename odds columns and convert to numeric
256 cols = temp_data.columns.values
257 cols[:3] = ['Win','Draw','Defeat']
258 temp_data.columns = cols
259 temp_data.loc[:,'Win'] = pd.to_numeric(temp_data['Win'])
260 temp_data.loc[:,'Draw'] = pd.to_numeric(temp_data['Draw'])
261 temp_data.loc[:,'Defeat'] = pd.to_numeric(temp_data['Defeat'])
262 if(horizontal == True):
263 #Convert data to probs
264 temp_data = convert_odds_to_prob(temp_data)
265 temp_data.drop('match_api_id', axis = 1, inplace = True)
266 temp_data.drop('bookkeeper', axis = 1, inplace = True)
267 win_name = bookkeeper + ”_” + ”Win”
268 draw_name = bookkeeper + ”_” + ”Draw”
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269 defeat_name = bookkeeper + ”_” + ”Defeat”
270 temp_data.columns.values[:3] = [win_name, draw_name,

defeat_name]↪

271 #Aggregate data
272 bk_data = pd.concat([bk_data, temp_data], axis = 1)
273 else:
274 #Aggregate vertically
275 bk_data = bk_data.append(temp_data, ignore_index = True)
276 #If horizontal add match api id to data
277 if(horizontal == True):
278 temp_data.loc[:, 'match_api_id'] = matches.loc[:, 'match_api_id']
279 return bk_data
280

281 def get_bookkeeper_probs(matches, bookkeepers, horizontal = False):
282 ''' Get bookkeeper data and convert to probabilities for vertical

aggregation. '''↪

283 data = get_bookkeeper_data(matches, bookkeepers, horizontal = False)
284 probs = convert_odds_to_prob(data)
285 return probs
286

287 def create_feables(matches, fifa, teamData, bookkeepers, get_overall =
False, horizontal = True, x = 10, verbose = True):↪

288 ''' Create and aggregate features and labels for all matches. '''
289 fifa_stats = get_overall_fifa_rankings(fifa, get_overall)
290 team_stats = get_overall_team_rankings(teamData, get_overall)
291 match_stats = matches.apply(lambda x: get_match_features(x, matches,

10), axis = 1)↪

292 labels = matches.apply(get_match_label, axis = 1)
293 bk_data = get_bookkeeper_data(matches, bookkeepers, horizontal = True)
294 bk_data.loc[:,'match_api_id'] = matches.loc[:,'match_api_id']
295 features = pd.merge(match_stats, fifa_stats, on = 'match_api_id', how

= 'left')↪

296 features = pd.merge(features, team_stats, on = 'match_api_id', how =
'left')↪

297 features = pd.merge(features, bk_data, on = 'match_api_id', how =
'left')↪

298 feables = pd.merge(features, labels, on = 'match_api_id', how =
'left')↪

299 feables.dropna(inplace = True)
300 return feables

C.1.2. Importing

1 path = ”/.../TW3/BEP/”
2 database = path + 'database.sqlite'
3 conn = sqlite3.connect(database)
4 conn.row_factory = sqlite3.Row
5 cur = conn.cursor()
6

7 player_data = pd.read_sql(”SELECT * FROM Player;”, conn)
8 player_stats_data = pd.read_sql(”SELECT * FROM Player_Attributes;”, conn)
9 match_dataF = pd.read_sql(”SELECT * FROM Match;”, conn)

10 team_stats_data = pd.read_sql(”SELECT * FROM Team_Attributes;”, conn)
11

12 rows = [”country_id”, ”league_id”, ”season”, ”stage”, ”date”,
”match_api_id”, ”home_team_api_id”,↪



42 C. Code

13 ”away_team_api_id”, ”home_team_goal”, ”away_team_goal”,
”home_player_1”, ”home_player_2”,↪

14 ”home_player_3”, ”home_player_4”, ”home_player_5”,
”home_player_6”, ”home_player_7”,↪

15 ”home_player_8”, ”home_player_9”, ”home_player_10”,
”home_player_11”, ”away_player_1”,↪

16 ”away_player_2”, ”away_player_3”, ”away_player_4”,
”away_player_5”, ”away_player_6”,↪

17 ”away_player_7”, ”away_player_8”, ”away_player_9”,
”away_player_10”, ”away_player_11”,↪

18 ”home_player_X1”, ”home_player_X2”,
19 ”home_player_X3”, ”home_player_X4”, ”home_player_X5”,

”home_player_X6”, ”home_player_X7”,↪

20 ”home_player_X8”, ”home_player_X9”, ”home_player_X10”,
”home_player_X11”, ”away_player_X1”,↪

21 ”away_player_X2”, ”away_player_X3”, ”away_player_X4”,
”away_player_X5”, ”away_player_X6”,↪

22 ”away_player_X7”, ”away_player_X8”, ”away_player_X9”,
”away_player_X10”, ”away_player_X11”,↪

23 ”home_player_Y1”, ”home_player_Y2”,
24 ”home_player_Y3”, ”home_player_Y4”, ”home_player_Y5”,

”home_player_Y6”, ”home_player_Y7”,↪

25 ”home_player_Y8”, ”home_player_Y9”, ”home_player_Y10”,
”home_player_Y11”, ”away_player_Y1”,↪

26 ”away_player_Y2”, ”away_player_Y3”, ”away_player_Y4”,
”away_player_Y5”, ”away_player_Y6”,↪

27 ”away_player_Y7”, ”away_player_Y8”, ”away_player_Y9”,
”away_player_Y10”, ”away_player_Y11”,↪

28 ”VCH”, ”VCA”, ”VCD”]
29

30 match_dataF.dropna(subset = rows, inplace = True)
31 fifa_data = get_fifa_data(match_data, player_stats_data, data_exists =

False)↪

32 team_data = get_team_data(match_data, team_stats_data, data_exists =
False)↪

33

34 bk_cols_selected = ['VC']
35 feables = create_feables(match_data, fifa_data, team_data,

bk_cols_selected, get_overall = True)↪

36 inputs = feables.drop('match_api_id', axis = 1)
37 inputs = inputs.loc[:,~inputs.columns.str.endswith('_overall_rating')]
38 export_csv = inputs.to_csv (r'/.../TW3/Matches.csv', index = None,

header=True)↪

C.2. R code
C.2.1. Best better

1 setwd(dirname(parent.frame(2)$ofile))
2 library(”bnlearn”)
3 library(”RSQLite”)
4 library(”corrplot”)
5 library(”tidyverse”)
6 library(”data.table”)
7 library(”ggplot2”)
8 con <- dbConnect(SQLite(), dbname=”database.sqlite”)
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9 Match <- tbl_df(dbGetQuery(con,”SELECT * FROM Match JOIN Country on
Country.id = Match.country_id↪

10 JOIN League on League.id = Match.league_id”))
11 Match3 <- subset(Match, select

=-c(goal,shoton,shotoff,foulcommit,card,cross, corner,possession))↪

12 setnames(Match3, old = c('name','name..120'), new = c(”Country”,”League”))
13 Match3$Label <- NA
14 Match3[Match3$home_team_goal >Match3$away_team_goal,”Label”] <- 2
15 Match3[Match3$home_team_goal < Match3$away_team_goal,”Label”] <- 1
16 Match3[Match3$home_team_goal == Match3$away_team_goal,”Label”] <- 0
17

18 Match4 <- subset(Match3, select = c(78:107, 113))
19 Match4 <- subset(Match4, select = -c(PSH, PSD, PSA)) #Removed Pinnacle

website because of many NaN's↪

20 Match5<- na.omit(Match4)
21

22 Match5$AvgW <- NA
23 Match5$AvgW <- apply(Match5[,seq(1,27, by = 3)], 1, FUN = mean)
24 Match5$AvgD <- NA
25 Match5$AvgD <- apply(Match5[,seq(2,27, by = 3)], 1, FUN = mean)
26 Match5$AvgL <- NA
27 Match5$AvgL <- apply(Match5[,seq(3,27, by = 3)], 1, FUN = mean)
28

29 #
30 Match5$B365 <- NA
31 Match5$B365 <- apply(Match5[,c(1:3)], 1, FUN = min)
32 Match5[Match5$B365 == Match5$B365H,”B365”] <- 2
33 Match5[Match5$B365 == Match5$B365A,”B365”] <- 1
34 Match5[Match5$B365 == Match5$B365D,”B365”] <- 0
35 Match5$B3P <- NA
36 Match5[Match5$B365 == Match5$Label, ”B3P”] <- 1
37 B3P <- sum(Match5$B3P %in% 1)/nrow(Match5)
38 #Repeat this for all betting companies
39

40 Match5$AvgP <- NA
41 Match5[Match5$Avg == Match5$Label, ”AvgP”] <- 1
42 AvgP <- sum(Match5$AvgP %in% 1)/nrow(Match5)

C.2.2. Functions
1 bootfunc <- function(y, data){
2 boot <- boot.strength(data, R = 50, algorithm = y, algorithm.args =

list(whitelist = wl1), cluster = cl)↪

3 avg.boot <- averaged.network(boot, threshold = 0.7)
4 if (!all(is.na(undirected.arcs(avg.boot)))) {
5 avg.boot <- cextend(avg.boot)
6 }
7 fitted <- bn.fit(avg.boot, data, cluster = cl)
8 bootlist <- list(”avg” = avg.boot, ”b” = boot, ”f” = fitted)
9 return(bootlist)

10 }
11 bncv <- function(data, alg, l){
12 lossarg <- list(target = ”label”)
13 cv <- bn.cv(data = data, bn = alg, k = 5, runs = 10, loss = l, loss.args

= lossarg, cluster = cl)↪

14 return(cv)
15 }
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C.2.3. Main
1 setwd(dirname(parent.frame(2)$ofile))
2 library(”bnlearn”)
3 library(”RSQLite”)
4 library(”corrplot”)
5 library(”tidyverse”)
6 library(”data.table”)
7 library(”ggplot2”)
8 library(”gRain”)
9 library(”rbmn”)

10 library(”parallel”)
11 library(Metrics)
12 library(ggplot2)
13

14 no_cores <- detectCores() - 1
15 cl <- makeCluster(no_cores)
16

17 matchdata<-read.csv(”Matches2.csv”, header = TRUE, sep = ',' )
18 Match <- matchdata
19 Match <- subset(Match, select = -c(home_formation, away_formation,

home_team, away_team))↪

20 setnames(Match, old = c('games_against_won', 'games_won_home_team',
'away_team_buildUpPlaySpeed',↪

21 'home_team_buildUpPlaySpeed',
'games_won_away_team', 'games_against_lost'),↪

22 new = c('WinsAgainstTeam', 'HistoryHomeTeam', 'ATPlaySpeed',
'HTPlaySpeed', 'HistoryAwayTeam', 'LossesAgainstTeam'))↪

23

24 Match$VC <- NA
25 Match$VC <- apply(Match[,c(”VC_Win”, ”VC_Draw”, ”VC_Defeat”)], 1, FUN =

max)↪

26 Match[Match$VC == Match$VC_Win,”VC”] <- 2
27 Match[Match$VC == Match$VC_Draw,”VC”] <- 1
28 Match[Match$VC == Match$VC_Defeat,”VC”] <- 0
29

30 Match$VCP <- NA
31 Match[Match$VC == Match$label, ”VCP”] <- 1
32 VCP <- sum(Match$VCP %in% 1)/nrow(Match)
33 Match$VC_Win <- Match$VC_Win*100
34 Match$VC_Draw <- Match$VC_Draw*100
35 Match$VC_Defeat <- Match$VC_Defeat*100
36 Match <- subset(Match, select = -c(VC, VCP, HTPlaySpeed, ATPlaySpeed))
37 Match <- subset(Match, select = -c(date, day, league_id, day_number, year,

stage))↪

38 Network <- lapply(Match, as.numeric)
39 n <- length(Network[[1]])
40 Network <- structure(Network, row.names = c(NA, -n), class = ”data.frame”)
41 Network2 <- subset(Network, select = -c(label))
42

43 training <- Network2 %>% sample_frac(.8)
44 test <- setdiff(Network2, training)
45

46 fullNetwork.hc <-hc(Network)
47 graphviz.plot(fullNetwork.hc, shape = ”ellipse”, main = ”hc”)
48 fullNetwork.iamb <- iamb(Network)
49 fullNetwork.tabu <- tabu(Network)
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50 fullNetwork.gs <- gs(Network)
51 fullNetwork.inter.iamb <- inter.iamb(Network)
52 fullNetwork.fast.iamb <- fast.iamb(Network)
53 fullNetwork.mmhc <- mmhc(Network)
54 par(mfrow = c(1,2))
55 graphviz.compare(fullNetwork.gs, fullNetwork.fast.iamb, fullNetwork.iamb,

fullNetwork.inter.iamb, shape = ”ellipse”, main = c(”GS”, ”FIAMB”,
”IAMB”, ”IIAMB”))

↪

↪

56 par(mfrow=c(1,1))
57 rho <- cor(Network)
58 corrplot(rho, method = ”circle”, order = ”hclust”)
59

60 wl1 <- matrix(c(names(Network)[c(3:11)], rep(”label”, 9)), ncol = 2)
61 bl2 <- data.frame(from = c(”home_goals”, ”away_goals”), to =

c(”away_goals”, ”home_goals”))↪

62 wl2 <- matrix(c(names(Network)[c(3:8)], rep(”home_goals”, 6)), ncol = 2)
63 wl3 <- matrix(c(names(Network)[c(3:8)], rep(”away_goals”, 6)), ncol = 2)
64 wlf <- rbind(wl2, wl3)
65

66 ###Bootstrap
67 algs = c(”hc”, ”gs”, ”fast.iamb”, ”inter.iamb”, ”tabu”, ”mmhc”)
68 par(mfrow=c(1,1))
69 for (alg in algs){
70 bf <- bootfunc(alg, training)
71 predresH <- predict(bf$f, c(”home_goals”), test, method = ”bayes-lw”)
72 predresA <- predict(bf$f, c(”away_goals”), test, method = ”bayes-lw”)
73 testresults <- data.frame(predresH, test$home_goals, predresA,

test$away_goals)↪

74 colnames(testresults)<-c(”PredictedHomeGoals”, ”Home_goals”,
”PredictedAwayGoals”, ”Away_goals”)↪

75 testresults$PredictedLabel <- NA
76 testresults[testresults$PredictedHomeGoals >

testresults$PredictedAwayGoals,”PredictedLabel”] <- 2↪

77 testresults[testresults$PredictedHomeGoals ==
testresults$PredictedAwayGoals,”PredictedLabel”] <- 1↪

78 testresults[testresults$PredictedHomeGoals <
testresults$PredictedAwayGoals,”PredictedLabel”] <- 0↪

79

80 testresults$RealLabel <- NA
81 testresults[testresults$Home_goals > testresults$Away_goals,

”RealLabel”] <- 2↪

82 testresults[testresults$Home_goals == testresults$Away_goals,
”RealLabel”] <- 1↪

83 testresults[testresults$Home_goals < testresults$Away_goals,
”RealLabel”] <- 0↪

84

85 sp <- paste(”StrengthPlot_”, alg, ”.jpeg”, sep=””)
86 jpeg(sp)
87 strength.plot(bf$avg, bf$b, shape = ”ellipse”, main = alg)
88 dev.off()
89 }
90

91 ##BNCV
92 algs = c(”hc”, ”tabu”, ”mmhc”)
93 Network3 <- subset(Network, select = -c(home_goals, away_goals))
94 for (alg in algs){
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95 bf <- bootfunc(alg, Network3)
96 vals <- bncv(Network3, bf$avg, ”mse-lw”)
97 err = numeric(10)
98 for (i in 1:10) {
99 tt = table(round(unlist(sapply(vals[[i]], '[[',

”predicted”))),unlist(sapply(vals[[i]], '[[', ”observed”)))↪

100 err[i] = sum(diag(tt)) / sum(tt) * 100
101 }
102 print(alg)
103 print(summary(err))
104 }
105 plot(bncv_mmhc, bncv_tabu, bncv_hc, bncv_gs, bncv_fast.iamb,

bncv_inter.iamb, xlab = c(”MMHC”, ”Tabu”, ”HC”, ”GS”, ”FIAMB”,
”IIAMB”), connect = FALSE)

↪

↪

106 plot(bncv_mmhc, bncv_tabu, bncv_hc, xlab = c(”MMHC”, ”Tabu”, ”HC”))
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