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Design of an Image-Based Visual Servoing System for Autonomous Quadcopter
Interception

Abstract
Unmanned aerial vehicles (UAVs), particularly quadcopters, are

increasingly employed in diverse applications due to their manoeu-

vrability and affordability. However, their susceptibility to GPS

jamming and the need for skilled operators limit their operational

resilience. This paper presents a new design of an Image-Based

Visual Servoing (IBVS) control system for autonomous quadcopter

interception, utilizing only a monocular camera and an Inertial

Measurement Unit (IMU). The system features a Multi-Axis PID

Controller with acceleration limiting and a virtual plane projection

method to decouple pitch and vertical motions, thereby enhanc-

ing interception accuracy and maintaining target visibility within

the drone’s field of view (FOV). Furthermore, a perception module

is designed to run Yolo-v8n and CSRT in parallel, followed by a

Kalman filter, to deliver an accurate and robust representation of

the target within the image, operating at 18 frames per second in

Simulation-in-the-Loop (SITL) environments. Comprehensive SITL

experiments and comparative analyses against recent IBVS algo-

rithms demonstrate that the proposed proposed system achieves a

19% reduction in circular error probable (CEP) for static targets and

superior performance in diverse scenarios involving moving tar-

gets. These findings validate the effectiveness of the proposed IBVS

approach, offering a reliable and scalable solution for autonomous

UAV interception in GPS-denied environments with potential ap-

plications in security, surveillance, and conflict zones.

Index Terms - Quadcopters, Interception, Autonomous Navigation,
Vision-Based Control, Image-Based Visual Servoing, Perception

I Introduction
A Context
The proliferation of unmanned aerial vehicles (UAVs), particularly

quadcopters, has transformed industries ranging from logistics to

defence due to their vertical takeoff and landing (VTOL) capabilities,

high manoeuvrability, and relatively low cost [1]. However, these

benefits also introduce risks, as unauthorized drones increasingly

intrude into restricted airspaces such as airports, military zones,

and critical infrastructure [2]. These threats range from negligent

amateur operators to deliberate incursions with malicious intent.

Existing countermeasures, including electronic jamming systems

and kinetic solutions like lasers or turrets, face significant limita-

tions, including collateral damage, regulatory restrictions, and high

costs [3].

In this context, quadcopters have emerged as a promising plat-

form for interception due to their unique ability to match the speed

and agility of rogue drones. Unlike stationary or ground-based sys-

tems, interceptor drones can operate within the same aerial domain

as their targets, offering longer range and greater precision while

minimizing unintended disruptions to lawful air traffic. Further-

more, their deployment is cost-effective compared to traditional

military-grade systems [3], presenting the potential to serve as a

scalable solution for securing sensitive airspaces [4].

Autonomy is critical for the effectiveness of quadcopter-based

interception systems. Reliance on skilled operators limits scalability

and response times. Furthermore, the radio signals emitted during

manual operation makes these systems detectable and susceptible

to targeting [5]. Autonomous systems alleviate this constraint and

enhance resilience to electronic warfare, particularly GPS jamming,

which remains a prevalent threat [6]. However, achieving auton-

omy must balance functionality with cost constraints. Advanced

sensors, such as LiDAR or radar, significantly increase system costs,

eroding the economic viability of small UAVs. Thus, developing

interception solutions that operate with minimal sensor setups,

specifically a monocular camera and an inertial measurement unit

(IMU), is essential for maintaining affordability and operational

efficiency [7].

B Image-Based Visual Servoing for Interception
Vision-based quadcopter interception systems face significant chal-

lenges in precise interception of non-cooperative flight targets.

During interception, the observable field of view (FOV) is suscep-

tible to the attitude of the quadcopter, making it challenging to

maintain the 2D visibility required for IBVS. Interception accuracy

is further affected by target manoeuvres, image processing delay,

quadcopter dynamics delay, and guidance strategy. Traditional in-

terception methods often rely on the assumption that both the

target and pursuing drone’s states are known or can be accurately

predicted within controlled environments [8]. However, in real-

world scenarios, targets may be passive, uncooperative, or actively

adversarial, exhibiting unpredictable trajectories and unknown ge-

ometries. Moreover, external sensory data can be unreliable or

unavailable in dynamic and often contested settings.

These challenges have driven interest in Image-Based Visual

Servoing (IBVS), a technique that leverages visual data directly

within the drone’s control system. Unlike conventional methods

that require precise state estimation in Cartesian coordinates, IBVS

operates in image space, utilizing the error between current and

desired image features to generate control commands [9]. Practi-

cally, this means that image coordinates from object detections are

used as inputs for the interception control algorithm, producing

motor commands that guide the drone toward the target. The ap-

proach reduces dependence on precise state estimation, enhancing

robustness to calibration errors. It also improves computational

efficiency, which is crucial for real-time operation on low-cost,

resource-constrained platforms [10], [11]. IBVS’s reliance on mini-

mal sensory input makes it especially suitable for low-cost drones

with limited onboard resources, thereby its principle is used for the

design of the interception system of this thesis.
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C Design Objective
The design objective of this thesis is formulated as follows:

Design Objective

To develop a low-cost IBVS control system to enable a

quadcopter to intercept a target using only a monocular

camera and an IMU.

This objective drives the development of an interception system

capable of achieving high-speed, accurate interception while main-

taining computational efficiency on resource-constrained hardware.

The system must perform under various conditions, including dy-

namic target trajectories and challenging field-of-view (FOV) con-

straints, to validate its practical viability.

D Design Requirements
To achieve the design objective, the following requirements are

defined along three dimensions:

(1) Task: The system must intercept adversary drones with

non-zero hitting velocity. It assumes the target is already

in the FOV. Search strategies or take-down methods, such

as grippers or net guns, are beyond the scope of this thesis.

(2) Hardware: The quadcopter platform must be a small, light-

weight drone with an X-shaped rotor configuration. Sen-

sors include a rigidly mounted forward-facing monocular

camera and an IMU. A companion computer must handle

onboard computations for autonomy.

(3) Performance: The quadcopter must achieve a target in-

terception success rate of at least 90% in controlled exper-

iments. The system must operate with a frame rate of at

least 20 fps and maintain a control latency below 50 ms to

enable stable, agile flight. It should consistently intercept

targets moving along curved trajectories at speeds of up

to 10 m/s in various environmental conditions, including

limited lighting and moderate wind disturbances (up to 5

m/s).

These requirements set clear boundaries for the design while

emphasizing the need for simplicity and cost-effectiveness, ensuring

the solution remains practical for real-world applications.

E Contributions and Approach
This thesis makes the following contributions:

(1) Control System: Development of a multi-axis PID con-

trol system incorporating acceleration limiting to ensure

smooth and agile interception performance.

(2) Virtual Plane Mechanism: Introduction of a virtual plane

mechanism to decouple pitch and vertical motion, enhanc-

ing field-of-view maintenance and improving control sta-

bility during high-speed maneuvers.

(3) Perception Module: Implementation of a perception mod-

ule that combines lightweight object detection, tracking,

and state estimation using a Kalman filter for reliable visual

feedback under real-time constraints.

The contributions of this thesis were validated through a series

of structured experiments designed to test and refine the proposed

system. Firstly, a benchmark comparison was conducted to evaluate

the performance of the system against existing methods in both

static and dynamic interception scenarios. These tests analyzed

metrics such as interception accuracy, response time, and system

stability, showcasing the improvements achieved by the proposed

approach. Next, an ablation study specifically examined the impact

of the virtual plane mechanism. By comparing interception sce-

narios with and without the virtual plane, the study quantified its

effectiveness in enhancing control stability and maintaining the tar-

get within the field of view during high-speed manoeuvres. Finally,

the system was fully integrated into a real quadcopter platform, and

preliminary flight tests were conducted. Although comprehensive

testing of the IBVS algorithm was not completed within the scope

of this thesis, first steps in bridging the sim-to-real gap were done,

preparing the setup for extensive real-world test flights in future

research.

By integrating these contributions and systematically validating

them through rigorous experiments, this thesis demonstrates the

feasibility of low-cost, camera-based interception systems that do

not rely on GPS or other external aids. The findings advance the

applicability of IBVS for autonomous quadcopters operating in con-

tested or resource-constrained environments.

F Report Structure
The thesis is structured as follows: section 2 provides an overview

of related work, examining alternative visual servo algorithms

and their respective considerations. Section 3 presents the prob-
lem statement, defining the specific challenges and objectives

that guided the development of the IBVS system. Section 4 outlines

the methodology and design decisions made during the system’s

development. Section 5 describes the system architecture, speci-
fying the hardware and software configurations employed. Section

6 presents the results from benchmark comparison, ablation study

and real-world flight tests. Finally, Section 8 concludes the thesis

with a conclusion of key findings and their implications for future

research.

II Related Work
This section provides an overview of visual servoing methods em-

ployed in quadcopter interception tasks, categorized into three

primary approaches identified in the literature: localization-based,

learning-based, and image-based methods. Image-based methods

are further subdivided into model-based andmodel-free approaches.

The goal is to explain the trade-offs in using the methods in differ-

ent settings and why in this paper the IBVS model-free method was

adopted. The categories and their pipelines are illustrated in Fig. 1.
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Figure 1: Different types of Visual Servoing algorithms and their pipeline

This figure shows the different types of visual servoing methods for quadcopter interception and how they are categorized. The general pipeline is
visualized below each method. This pipeline is the same for model-based IBVS and model-free IBVS hence their pipelines are visualized in the

same block.

A Localization-Based Methods
Localization-based methods, also referred to as Position-Based Vi-

sual Servoing (PBVS), concentrate on determining the target’s po-

sition and orientation within Cartesian space utilizing visual infor-

mation. By accurately estimating the target’s three-dimensional

position, PBVS facilitates the calculation of precise interception

trajectories, which is critical for the successful interception by

quadcopters [9]. For instance, in [12], a nonlinear Model Predictive

Controller is implemented to intercept a target drone based on

PBVS. This controller computes optimal control actions by consid-

ering both current and future trajectory points within its prediction

horizon, as well as the UAV’s constraints, to guide it towards the

target. Another PBVS approach for quadcopter interception pre-

sented by [13] involves the design of an attitude rate loop controller,

which aims to align the line-of-sight vector with the UAV’s velocity

vector to achieve effective target locking and interception. In [14],

the target positions are estimated in three dimensions, and the tar-

get’s trajectory is approximated using a Bernoulli lemniscate, from

which an interception point on a straight segment of the target’s

path is selected. Additionally, [15] implements a double closed-loop

PID controller that utilizes the three-dimensional estimated states

of the target to track ground or aerial targets.

In summary, a primary advantage of PBVS is its capability to pre-

dict the trajectory and compute interception points. Nevertheless,

the effectiveness of PBVS depends on accurate depth estimation and

reliable camera calibration. Moreover, all the aforementioned meth-

ods incorporate additional sensors such as radar or depth/stereo

cameras.

B Learning-Based Methods
Learning-based approaches involve utilizing neural networks to

predict control commands directly from visual inputs, bypassing

traditional perception and control modules [16]. Techniques such

as reinforcement learning and supervised learning have demon-

strated robustness against sensor noise and adaptability in diverse

environments [17]. For instance, drones equipped with neural net-

works trained to autonomously follow trajectories can adapt to

dynamic changes in real-time, providing exceptional flexibility for

interception tasks [18].

Despite their potential, the practical challenges of real-world

implementation are substantial. Learning-based methods require

extensive training data, which is time-consuming and could be lim-

ited to their trained scenarios [19]. Additionally, learning-based ap-

proaches face notable limitations beyond computational demands,

specifically the sim-to-real gap and lack of generalizability [20]. The

sim-to-real gap refers to the difficulty in applying models trained in

simulated environments directly to real-world scenarios, as simula-

tions often fail to capture all the nuances of real-world dynamics.

Furthermore, the generalizability of these models remains a chal-

lenge, as they typically require vast datasets that encompass diverse

conditions to perform reliably across varying environments [21].

Due to these constraints, while promising, learning-based meth-

ods lack practicality for real-time, low-cost interception applica-

tions, where adaptability and robustness are paramount.

C Image-Based Visual Servoing
In contrast to PBVS, Image-Based Visual Servoing (IBVS) leverages

visual data directly within the drone’s control system, utilizing

the error between current and desired image features to generate

control commands [9]. IBVS methods are preferred in this paper

due to PBVS’s susceptibility to calibration errors and its reliance on

highly accurate perception modules, which can be challenging to

maintain in dynamic and resource-constrained environments. IBVS

can be further categorized based on whether the control strategy

incorporates the dynamical model of the quadcopter. Approaches

that integrate the dynamical model are referred to as model-based,

while those that do not are classified as model-free.
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2.3.1 Model-Based IBVS Model-based IBVS methods explicitly in-

corporate the quadcopter’s dynamic model and image-plane kine-

matics into the control design, enabling predictive and agile re-

sponses to target motion. Such approaches typically generate low-

level commands (e.g., thrust and angular rates) by leveraging known

system dynamics. For instance, Liu et al. [22] present a framework

ensuring stability via Lyapunov-based analysis. Yang et al. [23]

employ separate controllers for different axes, improving accuracy

by directly accounting for motion dynamics in the control loop.

Zhang et al. [11] propose gain-switching strategies to handle distur-

bances, ensuring rapid target tracking. More recent work by Yang

et al. [24] and [13] integrate a designed line-of-sight vector with the

UAV’s model for high-speed interception, achieving stable tracking

at velocities up to 10m/s. Although these methods offer strong

performance and formal stability guarantees, they demand tuning

low-level control, and potentially greater computational resources.

2.3.2 Model-Free IBVS In contrast, model-free IBVS methods ab-

stract away the drone’s internal dynamics, relying instead on pre-

existing flight controllers to achieve stability and translate image-

plane errors into high-level commands. These approaches often

use proportional or rule-based controllers. For example, Barisic et

al. [25] utilize nonlinear scaling of image errors to command yaw

and pitch adjustments, while Lee et al. [10] combine YOLO-based

detection with a Proportional scheme to maintain the target within

a predefined “forwarding zone.” Other works like Pestana et al. [26]

andWyder et al. [27] implement straightforward error-to-command

mappings and minimal onboard computations, enabling real-time

tracking without complex modelling. While these model-free ap-

proaches offer easier integration and lower computational demand,

their reliance on generic low-level controllers may limit respon-

siveness and robustness in aggressive or high-speed interception

scenarios.

The choice between model-based and model-free IBVS meth-

ods involves a trade-off between control precision and computa-

tional complexity. Model-based approaches provide precise control

and stability guarantees but require detailed system modeling and

higher computational resources, which may not be feasible for real-

time applications on resource-constrained platforms. On the other

hand, model-free methods offer simplicity, computational efficiency,

and adaptability, albeit with potential limitations in handling ag-

gressive manoeuvres. Given the requirements of low-cost, real-time

quadcopter interception tasks, where computational efficiency and

adaptability are paramount, this paper adopts a model-free IBVS

approach. This decision leverages the ease of implementation and

lower computational demands of model-free methods, making them

more suitable for the intended application context.

III Problem Statement
This thesis aims to develop an IBVS control algorithm for a quad-

copter drone, referred to as the pursuer, to intercept another quad-

copter, the target. The proposed algorithm uses monocular camera

input for target perception and is designed to handle a variety of ini-

tial positions and velocities. Additionally, it addresses the challenge

of intercepting targets following unknown and dynamic trajecto-

ries, a problem often referred to as pursuit-evasion [28]. Interception
is defined as the pursuer making physical contact with the target

at a non-zero impact velocity. The research assumes that the target

is already within the FOV of the camera of the pursuer, removing

the need for target search. Similarly, the physical means of capture,

such as nets or grippers, are beyond the scope of this work.

A Mathematical Problem Formulation
The problem can be mathematically expressed as follows. The pur-

suer must minimize two primary quantities:

(1) The Cartesian distance between the pursuer and the target

in the world frame, 𝑟 , defined as:

𝑟 =

√︃
(𝑥𝑡 − 𝑥𝑝 )2 + (𝑦𝑡 − 𝑦𝑝 )2 + (𝑧𝑡 − 𝑧𝑝 )2 (1)

where (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) and (𝑥𝑝 , 𝑦𝑝 , 𝑧𝑝 ) are the positions of the
target and pursuer, respectively.

(2) The image error, e, which represents the displacement of

the target from the image center in the image frame:

e =
[
𝑢

𝑣

]
(2)

where 𝑢 and 𝑣 denote the horizontal and vertical pixel co-

ordinates of the target relative to the image center.

Control Objective:Minimize 𝑟 while ensuring e remains within

the normalized range [−1, 1], thereby keeping the target within

the camera’s FOV, and achieve a non-zero rate of approach ¤𝑟 at
interception:

e ∈ [−1, 1], lim

𝑡→𝑇
𝑟 = 0, ¤𝑟 < 0, (3)

where 𝑇 is the time of interception, and ¤𝑟 is the time derivative of

𝑟 , given by:

¤𝑟 =
r · (v𝑡 − v𝑝 )

∥r∥ , (4)

with v𝑡 and v𝑝 representing the velocity vectors of the target and

pursuer, respectively.

B Constraints and Challenges
The interception must be achieved under the following constraints:

• Dynamic Constraints: The quadcopter is underactuated,

meaning its translational and rotational dynamics are tightly

coupled.

• Perception Constraints: The monocular camera provides a

2D projection of the 3D scene, introducing challenges in es-

timating the relative depth and motion of the target. Differ-

ent environmental conditions, including variable lighting,

background clutter, and the target’s unpredictable geome-

try, further complicate accurate perception

• Computational Constraints: The control algorithm must

be computationally efficient to run on limited onboard re-

sources.

IV Methodology
A Modeling
4.1.1 Quadcopter Model The quadrotor’s dynamics and camera

model establish the foundation for the IBVS controller. The quadro-

tor dynamics describe how inputs influence movement, while the
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camera model relates motion to the target’s image position. These

models are essential to understanding how the drone and camera

interact in pursuit scenarios.

Figure 2: Quadcopter model

The quadcopter, shown in Fig. 2, has four fixed-pitch rotors that

generate lift and torque through speed variations. Two rotor pairs,

rotating in opposite directions, counteract the torque of each other

to stabilize the system. Each motor produces an upward thrust

(𝐹 ) and a torque (𝜏), contributing to control over three principal

axes: roll (𝜙), pitch (𝜃 ), and yaw (𝜓 ). These dynamics yield coupled

equations of motion with four control inputs but six degrees of

freedom, creating inherent challenges in precise control.

The translational dynamics of the quadcopter are given by:

©­«
¥𝑥
¥𝑦
¥𝑧
ª®¬ =

1

𝑚

4∑︁
𝑖=1

𝐹𝑖𝑅𝐵𝐼n𝑧 − 𝑔n𝑧 , (5)

where𝑚 is the mass, 𝑔 the gravitational constant, n𝑧 the unit

vector in the inertial frame, and 𝑅𝐵𝐼 the transformation matrix from

body to inertial frame.

Rotational dynamics describe the response of the quadcopter to

control inputs:

𝜙 =
𝑙 (𝐹2 − 𝐹4)

𝐽𝑥
,

𝜃 =
𝑙 (𝐹1 − 𝐹3)

𝐽𝑦
,

¤𝜓 =
(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4)

𝐽𝑧
,

(6)

where 𝐽𝑥 , 𝐽𝑦, and 𝐽𝑧 are the moments of inertia, and 𝑙 is the

distance from the rotors to the centre of mass of the quadcopter.

To simplify these equations, we define the control inputs as

follows:

𝑢1 =
𝐹1 + 𝐹2 + 𝐹3 + 𝐹4

𝑚
, 𝑢2 =

(𝐹2 − 𝐹4)
𝐽𝑥

,

𝑢3 =
(𝐹1 − 𝐹3)

𝐽𝑦
, 𝑢4 =

(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4)
𝐽𝑧

. (7)

Rewriting the equations of motion in terms of these inputs:

¥𝑥 = 𝑢1 (cos𝜙 sin𝜃 cos𝜓 + sin𝜙 sin𝜓 ),
¥𝑦 = 𝑢1 (cos𝜙 sin𝜃 sin𝜓 − sin𝜙 cos𝜓 ),
¥𝑧 = 𝑢1 (cos𝜙 cos𝜃 )
¤𝜙 = 𝑢2𝑙, (8)

¤𝜃 = 𝑢3𝑙,

¤𝜓 = 𝑢4 .

These equations demonstrate the coupled dynamics. The inputs

to control roll, pitch, yaw, and thrust affect both the translational

and rotational behaviour of the drone. This coupling requires care-

fully coordinated control strategies to achieve smooth and stable

flight while pursuing a dynamic target.

4.1.2 Image Kinematics The camera model maps the 3D motion

of the quadcopter into 2D image coordinates, enabling IBVS to

guide the quadcopter’s movement. This relationship allows for

the conversion of physical quadcopter dynamics into image-plane

adjustments to minimize the error signal 𝑒 (𝑡) in the IBVS feedback

loop.

Figure 3: Pinhole Camera Model

Using the pinhole camera model (Fig. 3), a point P =
©­«
𝑥𝑐
𝑦𝑐
𝑧𝑐

ª®¬ in the

camera frame is projected onto the 2D image plane as:

e =
(
𝑢

𝑣

)
=

(
𝑓 𝑥𝑐
𝑧𝑐
𝑓 𝑦𝑐
𝑧𝑐

)
(9)

where 𝑓 is the focal length of the camera. This projection provides

the image coordinates e, crucial for guiding the quadcopter toward

a target within the image frame.

To understand how the velocity of the camera influences image

motion, we define the spatial velocity vector in the body frame ¤rB
as:

¤rB =
(
𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 , 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧

)𝑇
(10)
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To connect the velocity of the quadcopter to changes in image

coordinates ¤e, we use the Jacobian J𝑝 :

J𝑝 =
©­«
𝑓
𝑧𝑐

0 − 𝑢
𝑧𝑐

−𝑢𝑣
𝑓

𝑓 2+𝑢2

𝑓
−𝑣

0
𝑓
𝑧𝑐

− 𝑣
𝑧𝑐

− 𝑓 2+𝑣2
𝑓

𝑢𝑣
𝑓

𝑢

ª®¬ (11)

This matrix relates the camera’s spatial velocity ¤r to ¤e:

¤e = J𝑝 ¤r (12)

where ¤r includes translational and rotational velocities. J𝑝 thus

connects the movement of the quadcopter to image shifts, facilitat-

ing control adjustments that maintain the target within view by

minimizing 𝑒 (𝑡). This mapping is critical for developing control

laws that directly influence the flight path of the quadcopter based

on image feedback.

B Module Overview
This section describes the proposed interception system’s architec-

ture, detailing its key modules and their interactions. The design

employs an IBVS approach, where image coordinates derived from

object detections are used as inputs to the control algorithm. The

system integrates modules for perception, state estimation, and con-

trol, ensuring seamless operation in dynamic interception scenarios.

Figure 4 illustrates the structure of the designed system.

Figure 4: IBVS control loop of designed system

Control scheme of designed system. Design decisions for the
controller and perception are covered in the subsequent subsections.

The process initiates with a comparison between the required

feature— centred in the image to keep the target in view—and the

detected feature, representing the target’s actual position in the

image. This comparison yields a feature error, which is then fed

into the controller. The controller consists of two components: high-

level and low-level. The high-level component generates position

or velocity set points, while the low-level component maintains

attitude stability. In this way motor commands are generated to

minimize the image feature error and relative distance, effectively

guiding the quadcopter toward its desired state—in this case, adher-

ing to Eq. 3. Stability is crucial, as oscillations in flight can amplify

perturbations in the image space, potentially leading to even more

oscillatory behaviour.

In the following subsections, the considerations and decisions

underlying the design of this system are discussed in detail.

C Perception
The perception module is an important component of the inter-

ception system, serving as the interface between the quadcopter’s

sensory inputs and its control mechanisms. In IBVS, the primary

objective of the perception module is to accurately and efficiently

generate image features of the target. This must be achieved at a

rate compatible with the control loopwhile operating under the con-

straints of limited onboard computational resources. High levels of

random errors can destabilize the control algorithm, whereas signif-

icant systematic errors may lead the quadcopter astray, potentially

resulting in the loss of target visibility or failed interceptions. To

address these challenges, the perception module in this design com-

prises three interconnected components: object detection, tracking,

and filtering, visualized in Fig. 5.

Figure 5: Perception pipeline

parallel execution of detection and tracking, the reinitialization
mechanism, and the application of the Kalman filter for state

estimation

4.3.1 Object detection For the object detection the YOLOv8

Nano model [29] is used. The YOLOv8 Nano operates by dividing

the input image into a grid and simultaneously predicting bound-

ing boxes and class probabilities for each grid cell. This end-to-end

approach enables rapid processing, essential for maintaining high

frame rates (18 fps) necessary for effective IBVS control.

In the comparative study by Lee et al. [10], various state-of-the-

art object detection models were evaluated on their performance

with quadcopter imagery. The study concluded that the YOLO Tiny

variant offered the optimal compromise between speed and accu-

racy. Building on this, YOLOv8 Nano, the latest lightweight version

in the YOLO series, improves upon earlier models such as YOLOv4

Tiny by incorporating architectural enhancements that further opti-

mize performance under limited computational resources [30] [31].

Consequently, YOLOv8 Nano was selected for this design to ensure

efficient and reliable object detection.

The model was trained using a dataset from Zheng et al. [32],

which comprises over 13,000 images of a flying target UAV. These

images encompass a diverse array of practical scenarios, including

varying background scenes, viewing angles, relative distances, fly-

ing altitudes, and lighting conditions. The training process utilized

standard hyperparameters over 100 epochs, ensuring robust learn-

ing and generalization across different environmental contexts.
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4.3.2 Tracking While object detection effectively identifies tar-

gets within individual frames, it is inherently limited by its frame-

by-frame processing nature, which may result in intermittent de-

tection delays or missed frames. A tracking algorithm is employed

to provide a continuous and high-frame-rate signal of the target’s

image features. In this design, the Discriminative Correlation Filter

with Channel and Spatial Reliability (DCF-CSR), commonly referred

to as CSRT [33], is implemented.

CSRT is integrated within the OpenCV library and leverages

a spatial reliability map to dynamically adjust the filter’s support

region based on the spatial configuration of the target within the

tracking frame. This adaptability enhances the tracker’s robustness

against occlusions and background clutter. Comparative studies

have demonstrated that CSRT outperforms other tracking algo-

rithms such as Kernelized Correlation Filters (KCF), Minimum Out-

put Sum of Squared Error (MOOSE), and Mean-Shift in minimizing

tracking failures and maintaining speed efficiency [34], [35].

4.3.3 Filtering Despite the combined efficacy of YOLOv8 Nano

and CSRT, the system remains vulnerable to false positives, missed

detections, and tracking inaccuracies induced by environmental

noise or rapid target movements. To address these issues, a Kalman

filter is incorporated to process the image centroid data, thereby

smoothing out detection failures and predicting the target’s subse-

quent position in the image plane.

The Kalman filter operates as a recursive estimator, utilizing

a series of measurements observed over time to estimate the un-

known state of a dynamic system [36]. In this context, the state

comprises the target’s position and velocity within the image plane.

The choice of the Kalman filter is motivated by its optimality prop-

erties under Gaussian noise assumptions and its computational

efficiency, which aligns with the real-time processing requirements

of the IBVS control loop.

The equations governing the Kalman filter’s operation, the pa-

rameters utilized and the tuning process are detailed in app. A.

4.3.4 Perception Integration To achieve reliable and efficient tar-

get localization, the perception module integrates object detec-

tion, tracking, and filtering. The YOLOv8 Nano detector and CSRT

tracker operate in parallel, leveraging their respective strengths to

maintain continuous and accurate tracking of the target. Specifi-

cally, YOLOv8 Nano performs object detection at a lower frequency,

providing periodic bounding box updates that reinitialize the CSRT

tracker. This reinitialization mitigates drift ensuring that the tracker

remains accurately aligned with the target between detection in-

tervals. Concurrently, the CSRT tracker maintains high-frame-rate

tracking, offering smooth and real-time localization based on the

most recent detections.

To further enhance the reliability of the perception system, a

Kalman filter is employed to process the centroid data derived from

both YOLOv8 Nano and CSRT. The Kalman filter smooths out tran-

sient errors and predicts the future position of the target, providing

a stable and predictive estimate of the location of the target. This

filtered centroid information is then utilized by the IBVS control

system to generate precise control commands, ensuring robust and

accurate interception.

The integration process is captured in Algorithm 1, which out-

lines the parallel execution of detection and tracking, the reinitial-

ization mechanism, and the application of the Kalman filter for

state estimation.

Algorithm 1 Perception Module Integration

1: while system is active do
2: Execute YOLOv8 Nano detection at low frequency
3: Execute CSRT tracking continuously at high frame rate
4: if YOLOv8 Nano detects a new bounding box then
5: Reinitialize CSRT tracker with the new bounding box

6: end if
7: Retrieve centroid from CSRT tracker

8: Retrieve centroid from YOLOv8 Nano (if available)

9: Apply Kalman filter to the centroid data

10: Output smoothed and predictive target position

11: end while

This integrated approach ensures that the perception module

delivers high-fidelity image features to the IBVS control system.

By balancing the computational load between YOLOv8 Nano and

CSRT, and enhancing the data with Kalman filtering, the system

maintains target visibility and achieves accurate interception. The

parallel execution and periodic reinitialization effectively reduce

common perception-related issues such as false positives, missed

detections, and tracking drift, thereby providing the overall efficacy

and robustness of the interception system.

D Control Design
A multi-axis PID controller with an acceleration limiting strategy

is proposed that combines individual PID controllers for yaw rate,

vertical velocity, and forward velocity. By incorporating accelera-

tion constraints into the forward velocity controller, this method

ensures smooth and physically feasible motion across all controlled

axes.

The image errors 𝑒𝑢 and 𝑒𝑣 are defined relative to the image

centre, measuring the displacement of the target from the centre

along the𝑢-axis and 𝑣-axis, respectively. These errors are minimized

by adjusting the yaw rate and vertical velocity as follows:

Yaw Rate Control: The yaw rate control input 𝜔yaw is calculated

based on the error 𝑒𝑢 along the 𝑢-axis:

𝜔yaw = 𝐾
yaw

𝑝 · 𝑒𝑢 + 𝐾yaw

𝑖

∫
𝑒𝑢 𝑑𝑡 + 𝐾yaw

𝑑

𝑑𝑒𝑢

𝑑𝑡
(13)

Vertical Velocity Control: The vertical velocity control input 𝑣𝑧 is

derived from the error 𝑒𝑣 along the 𝑣-axis:

𝑣𝑧 = 𝐾v

𝑝 · 𝑒𝑣 + 𝐾v

𝑖

∫
𝑒𝑣 𝑑𝑡 + 𝐾v

𝑑

𝑑𝑒𝑣

𝑑𝑡
(14)
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Forward Velocity Control with Acceleration Limiting: To control

forward velocity 𝑣𝑥 , the distance error 𝑒𝑑 is used. Acceleration

clipping is applied to prevent large pitch changes, which could

cause the target to move rapidly through the image, potentially

leading to tracking issues. It is defined as:

𝑣
target

𝑥 (𝑡) = 𝐾x

𝑝 · 𝑒𝑑 (𝑡) + 𝐾x

𝑖

∫ 𝑡

0

𝑒𝑑 (𝜏) 𝑑𝜏 + 𝐾x

𝑑
· 𝑑𝑒𝑑 (𝑡)

𝑑𝑡
(15)

𝑎
desired

(𝑡) = 𝑣
target

𝑥 (𝑡) − 𝑣𝑥 (𝑡)
Δ𝑡

(16)

𝑎
limited

(𝑡) = clip (𝑎
desired

(𝑡), −𝑎max, 𝑎max) (17)

𝑣𝑥 (𝑡 + Δ𝑡) = 𝑣𝑥 (𝑡) + 𝑎limited
(𝑡) · Δ𝑡 (18)

Here the distance error 𝑒𝑑 is crucial for interception, and it is

defined as follows:

𝑒
d
= 𝑑

estimated
+ 𝑑

hit
(19)

Here,𝑑
hit

is a user-defined parameter that ensures the quadcopter

hits the target with a non-zero hitting velocity. The 𝑑
estimated

term

represents the estimated distance between the drone and the target,

derived from visual features of bounding boxes in the image plane.

The normalized bounding box width, computed as:

Normalized Bounding Box Width =
pixel width

image width

(20)

was selected as the feature for distance estimation. This choice

was made after comparing it to other features, such as the normal-

ized bounding box size. The normalized width exhibited a smoother

gradient across distances, leading to more stable and reliable esti-

mations, especially under 10 meters where precision is critical. To

map the normalized bounding box width to the actual distance, a

degree-4 polynomial regression model was used:

𝑑
estimated

(𝑥) = 1.538×105𝑥4−7.185×104𝑥3+1.201×104𝑥2−874.1𝑥+27.18
(21)

where 𝑑
estimated

(𝑥) represents the estimated distance as a func-

tion of 𝑥 , the normalized bounding box width. This model ensures

accuracy with a standard deviation of 2 meters for distances under

10 meters, supporting controlled deceleration during interception.

Further details on the regression model development and validation

are provided in Appendix B

4.4.1 Control Design Considerations The model-free multi-axis

PID Control with acceleration limiting simplifies the control strat-

egy by abstracting the relationship between system dynamics and

image kinematics, which are difficult to encapsulate accurately

within a model-based method. This makes it adaptable to unpre-

dictable target movements and enhances robustness. Furthermore,

this approach is computationally efficient, reducing overhead and

enabling faster real-time responses compared to computationally

intensive model-based solutions. Additionally, its simplicity facili-

tates easy tuning and implementation, and by generating high-level

commands, it is scalable to other multirotor platforms with similar

flight controllers like PX4 or Ardupilot, enhancing applicability and

ease of integration across different hardware configurations.

On the other hand, its simple three degrees of freedom control

outputs may not produce the agile movements needed for aggres-

sive target trajectories. Furthermore, the lack of underlying models

makes it difficult for this method to predict future movements in

the image space of the target. Additionally, in this system where

variables are highly interdependent, the model-free PID controllers

might not effectively handle the coupling, whereas model-based

controllers can incorporate these relationships into the control law.

To address the coupling of variables, a virtual plane mechanism

(discussed in the following section) is introduced. In this thesis

experiments are conducted to validate if the benefits outweigh the

drawbacks.

E Virtual Plane Projection
The dynamics of a quadcopter are inherently coupled, meaning

that control inputs in one axis often impact others. In this setup,

coupling becomes challenging due to a forward velocity command

requires the quadcopter to pitch, which unintentionally alters the

vertical error and generates an undesired vertical velocity com-

mand. Similarly, when executing a sharp turn, the quadcopter rolls,

affecting both horizontal and vertical image errors and thus re-

sulting in additional unwanted control commands. To address this

issue, a virtual plane is proposed. This virtual plane is positioned

at a focal distance in front of the camera, matching the distance

of the original image plane. It is also perpendicular to the ground

plane and aligned horizontally with the camera’s yaw heading, as

shown in Figure 6.

Figure 6: Virtual Plane [37]

The virtual image plane remains parallel to the inertial frame,
allowing pitch and roll motions without affecting the image errors in

an unwanted way.

We derive the formulas for the projected image errors 𝑒virtual𝑢

and 𝑒virtual𝑣 on the virtual plane in terms of the original image

errors 𝑒𝑢 and 𝑒𝑣 and the pitch (𝜃 ) and roll (𝜙) angles. By defining a
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transformation matrix that adjusts only for the pitch and roll angles,

we ensure that the virtual plane remains aligned with the UAV’s

yaw heading but is unaffected by pitch or roll. This transformation

can be expressed as follows:

𝑇
virtual

=
©­«
1 sin(𝜙) tan(𝜃 ) − cos(𝜙) tan(𝜃 )
0 cos(𝜙) sin(𝜙)
0 − sin(𝜙)/cos(𝜃 ) cos(𝜙)/cos(𝜃 )

ª®¬ (22)

To find 𝑒virtual𝑢 and 𝑒virtual𝑣 , we apply the transformation matrix

to the original image errors 𝑒𝑢 and 𝑒𝑣 :(
𝑒virtual𝑢

𝑒virtual𝑣

)
= 𝑇

virtual
· ©­«
𝑒𝑢
𝑒𝑣
𝑓

ª®¬ (23)

Expanding the matrix multiplication, the projected image errors

𝑒virtual𝑢 and 𝑒virtual𝑣 are given by:

𝑒virtual𝑢 = 𝑒𝑢 + 𝑒𝑣 sin(𝜙) tan(𝜃 ) − 𝑓 cos(𝜙) tan(𝜃 ) (24)

𝑒virtual𝑣 = 𝑒𝑣 cos(𝜙) + 𝑓 sin(𝜙) (25)

The virtual plane projection offers several expected advantages.

Decoupling pitch motion from the vertical image coordinate, it

minimizes false vertical errors, thereby improving controller per-

formance. Additionally, the control system benefits from reduced

oscillations, as it avoids unnecessary corrections for pitch-induced

errors, resulting in smoother motion and more stable control. Sim-

plifying the control inputs also enables more predictable behaviour,

as the decoupling allows the controller to focus on actual deviations.

However, a potential drawback is the limited field of view (FoV)

in cases of significant pitch angles. If the quadcopter pitches too

steeply, it risks losing the target from view due to the narrower

effective FoV of the virtual plane. Experiments in Section 6 will

investigate whether the benefits of this approach outweigh the

limitations.

F Parameter Tuning of PID Controllers
The tuning of the three PID controllers was achieved through a

systematic manual approach. To facilitate efficient parameter adjust-

ments and high testing throughput, parameters were managed cen-

trally via ROS and dynamically reconfigured in real-time through

an interactive slider-based interface. This configuration allowed for

the real-time tuning of parameters in the simulation environment,

optimizing the feedback loop. The use of a virtual plane setup en-

abled the decoupling of the three PID control channels, allowing

each channel to be tuned independently. By incrementally adjust-

ing the PID parameters and analyzing system behaviour and error

metrics, the parameter values presented in Table 1 were selected

for use in the Software-in-the-Loop (SITL) experiments.

Table 1: PID Controller Parameters

Axis 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝑎max (m/s2)

Horizontal 2.5 0.1 1.2 -

Vertical 4.0 0.1 1.7 -

Distance 1.5 - 0.4 2.5

V System Architecture
This section discusses the simulation and hardware setup employed

in developing and testing of the quadcopter interception system.

A Software Setup
The software framework for the simulation environment integrates

several components to model, control, and analyze the interception

process. An overview of the key tools and their roles follows:

• Gazebo: The dynamics and visualization of the quadcopter

drone are modelled in Gazebo-classic. The irismodel is used

as the quadcopter model due to its comparable dimensions

to the Holybro X500 V2, used in real-world test flights.

Since the proposed algorithm leverages the pre-tuned PX4

low-level controller and utilizes high-level velocity and

yaw rate commands, no significant differences are expected

between the simulation and real-world flights in terms of

PID tuning. The sim-to-real gap is expected to lie primarily

in the perception module.

• PX4: PX4 acts as the simulated flight controller and mirrors

the behavior of the physical flight controller. It uses the

MAVLink communication protocol to exchange data and

control commands, ensuring compatibility across simula-

tion and hardware platforms.

• MAVROS:MAVROS serves asmiddleware, bridgingMAVLink

messages with the Robot Operating System (ROS), allowing

seamless communication between the PX4 flight controller

and ROS nodes.

• ROS Noetic: ROS Noetic is the overarching communica-

tion framework that integrates all components. It facilitates

modular communication using topics and services. ROS

plugins enable Gazebo and PX4 to publish and subscribe to

sensor data and control commands.

These nodes operate within the ROS ecosystem, utilizing its

publish-subscribe architecture for real-time coordination.

Figure 7: Software architecture and data flow in the simula-
tion environment.

The integration of Gazebo, PX4, and ROS facilitates realistic
simulations and modular development.
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B Hardware Setup
The hardware setup mirrors the simulated environment to mini-

mize the gap between virtual tests and real-world implementations.

The following components form the physical test platform:

• Quadcopter Platform: The Holybro X500 V2 serves as

the base frame, offering a stable and reliable structure for

testing.

• Flight Controller: The Pixhawk 6C is employed, equipped

with an Inertial Measurement Unit (IMU) and running PX4

flight control software.

• Camera: A USB camera with a resolution of 640x480 pixels

captures real-time visual data for the IBVS algorithm.

• Onboard Computer: A Raspberry Pi 4B executes all com-

putational tasks, including perception and control, enabling

full autonomy onboard the quadcopter. The quadcopter

runs ROS Noetic as the master node, while a laptop con-

nected via telemetry acts as the slave node, primarily for

monitoring and analysis. Central parameter management

enables real-time dynamic reconfiguration of parameters,

such as PID values, from the laptop.

• Communication Devices: A telemetry radio establishes

a link between the quadcopter and the laptop. Additionally,

an RC joystick provides a manual override mechanism for

safety-critical operations.

Figure 8: Quadcopter test platform with integrated hardware
components.

The Holybro X500 V2 equipped with a Pixhawk flight controller,
Raspberry Pi, camera, and telemetry module.

C Safety Measures
Safety is a critical consideration during the preparation and opera-

tion of the quadcopter. In addition to pre-flight checks and in-flight

monitoring, several safety mechanisms have been integrated into

the system to ensure robust and reliable operation:

• Geofence: The PX4 geofence feature ensures the quad-

copter operates within pre-configured boundaries. If the

quadcopter breaches the geofence, experiences battery or

other system failures, or receives a manual command from

the laptop, the PX4 built-in Return to Starting Position

(RTSP) is triggered.

• RC Override: The RC controller can override the offboard

(autonomous) mode at any time. This allows the operator

to safely land the quadcopter during a malfunction.

The hardware-software integration ensures a smooth transition

between simulation and physical testing. ROS enables consistent

communication protocols and data structures across environments,

bridging the gap between virtual and real-world deployments.

VI Results
This section presents the outcomes of the experiments conducted,

evaluating the proposed IBVS algorithm across various scenarios.

The metrics and the benchmarking are discussed first to establish a

foundation for the analysis.

A Metrics
To evaluate the performance of the proposed IBVS algorithm, sev-

eral metrics were employed to quantify specific aspects of the sys-

tem’s effectiveness and robustness. The significance of thesemetrics

and their application in the experiments are outlined below:

• Interception Error: This metric measures the Euclidean

distance between the drone and the target at the moment

of interception. A lower interception error indicates higher

precision in guiding the drone to the target. It is particularly

important in scenarios where the accuracy of interception

directly impacts mission success. This metric was assessed

using scatter plots, box plots, and the Circular Error Proba-

ble (CEP), defining the radius enclosing 50% of interception

points.

• Interception Time: The time taken for the pursuer to

reach the target from its initial position is used to evaluate

the algorithm’s speed and agility. A lower interception time

signifies a more efficient trajectory and higher speed, being

critical for fast-moving targets or time-sensitive missions.

• Field-of-View (FOV) Maintenance: This is evaluated by

measuring normal velocity and normal acceleration, repre-
senting the components of the pursuer’s movement orthog-

onal to the line of sight (LOS) to the target. Low values

for these metrics indicate that the pursuer maintains a tra-

jectory closely aligned with the LOS, keeping the target

centred in the image frame and minimizing lateral devia-

tions.

• Trajectory Smoothness: Oscillations in the pursuer’s path
are undesirable as they can destabilize the system and in-

crease interception time. Normal acceleration profiles are

analyzed to assess the smoothness of the trajectory and the

stability of control.

B Benchmarking
To assess the performance of the proposed IBVS algorithm, it is

benchmarked against model-based approaches in the literature. Yan

et al. [24], a recent study published in September 2024, introduced

an IBVS framework that employs a low-level controller to align
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the drone’s velocity vector with the line-of-sight (LOS) to the tar-

get. Their method demonstrated superior precision in intercepting

quadcopters, utilizing only a monocular camera and an Inertial

Measurement Unit (IMU), which aligns with our sensor constraints.

Consequently, Yan et al.’s approach was selected as the primary

benchmark. The studies it was compared to, by Jana et al. [38] and

Yang et al. [13], are also included in the comparative analysis.

C Multi-Angle Static Target Interception Experiment
In this subsection, we replicate the experiment conducted by Yan et

al. [24] to evaluate the performance of our proposed interception

algorithm compared to their results. We conducted fifty static target

interception experiments with targets located at various positions.

The quadcopter initiates from the position (0, 0, 10) meters in the

world frame. The target positions however, as depicted in Fig. 9,

are randomly generated within a range of 15 to 35 meters from the

starting point of the pursuer.

As observed in Fig. 9(a), the trajectory shapes differ between

the two methods. In Yan et al. [24], the trajectories begin together

and diverge more as they approach the targets. In contrast, our

proposed algorithm causes the divergence to occur earlier, resulting

in interception angles that are more parallel to the ground plane.

Figures 9(b) and 9(c) illustrate that our proposed IBVS method

achieves a lower circular error probable compared to the method

in Yan et al. [24], with errors of 0.072 meters and 0.089 meters,

respectively. This represents a reduction of 19%, indicating that our

algorithm enhances the accuracy of static target interception.

D Moving Target Interception Experiment: Three Sce-
narios

This experiment evaluates the interception accuracy of the proposed

algorithm across various target manoeuvring scenarios. Three ma-

noeuvring models were tested: constant velocity (CV), constant

acceleration (CA), and sinusoidal manoeuvre (SM). The parameters

used were consistent with those defined at the beginning of this

section. Table 2 depicts the initial relative positions of the pursuer

and target, along with the target’s movement in each scenario. The

results for the CV, CA, and SM scenarios are depicted in Figures 10,

11, and 12, respectively.

Table 2: Experiment Parameters for Different Scenarios: Con-
stant Velocity (CV), Constant Acceleration (CA), and Sinu-
soidal Maneuver (SM)

CV CA SM

Start Position Pursuer (m) (0, 0, 10) (0, 0, 10) (0, 0, 10)
Start Position Target (m) (0, 25, 1) (−8, 15, 8) (0, 30, 10)

Movement Target v =

©­­­«
0

0

1

ª®®®¬ a =

©­­­«
0.8

0

0.2

ª®®®¬ p =

©­­­«
2 sin

(
2𝜋
14
𝑡
)

3𝑡

0

ª®®®¬
6.4.1 Constant Velocity (CV) Scenario In the CV scenario, our pro-

posed algorithm demonstrates a shorter interception time compared

to the other methods, as shown in Fig. 10(a). Additionally, the nor-

mal acceleration exhibits a lower peak and overall smaller values

(Fig. 10(c)), indicating a better ability to keep the target within the

field of view (FOV) while approaching, even with a reduced inter-

ception time. Despite an interception error of 0.16 meters, which

is slightly larger than that reported by Yan et al. [24], the error

remains within the acceptable margin for hitting the target (the

target is 0.4 meters wide), as illustrated in Fig. 10(d).

6.4.2 Constant Acceleration (CA) Scenario In the CA scenario, as

shown in Fig. 11(a), the trajectory of our proposed algorithm ini-

tially overshoots in the y-direction but subsequently corrects itself

to intercept the target. The methods proposed by Yan et al. [24]

and others seem to better anticipate the target’s path, moving more

directly toward the interception point. Although the normal ve-

locity of our algorithm remains lower than that of Yan et al. [24]

throughout the interception (Fig. 11(b)), the normal acceleration

experiences a spike around 3 seconds (Fig. 11(c)), corresponding to

the sharp turn required to align with the trajectory of the target.

Nevertheless, the interception time of 4.42 seconds is comparable to

that of Yan et al. [24], and our algorithm achieves a slightly higher

precision with an interception error of 0.41 meters compared to

0.45 meters, as shown in Fig. 11(d).

6.4.3 Sinusoidal Manoeuvre (SM) Scenario In the SM scenario, our

proposed algorithm maintains normal acceleration and velocity

below 0.5 m/s
2
and 0.5 m/s, respectively (Figs. 12(b) and 12(c)),

significantly lower than the other algorithms. This indicates that,

in the absence of vertical translation of the target, the algorithm

is superior in keeping the target within its FOV. Although the

interception error is slightly higher than that of Yan et al. [24],

it remains within an acceptable range, affirming the algorithm’s

ability to intercept accurately, as depicted in Fig. 12(d).

E Virtual Plane Experiment
The objective of this experiment is to assess the effectiveness of the

Virtual Plane technique in improving interception efficiency. To

this end, we compare the interception trajectories and performance

with and without the Virtual Plane under identical conditions. The

simulation setup remains consistent, with the pursuer starting from

(0, 0, 10) meters and the target beginning at (0, 10, 10) meters, mov-

ing this time at a higher velocity of v = (1, 8, 1) meters per second.

This increased target speed intensifies the pitch angle required for

pursuit, accentuating the impact of the Virtual Plane on intercep-

tion dynamics.

In Fig. 13 (a), the trajectory results demonstrate that the pur-

suer utilizing the Virtual Plane (blue line) follows a more direct

path toward the target. In contrast, the pursuer without the Virtual

Plane (green line) adopts a less efficient trajectory, attempting to

intercept the target from above. This divergence is attributed to the

lack of a Virtual Plane, which causes pitch adjustments to amplify

vertical error, triggering the vertical controller to issue compen-

satory commands that lead to overshooting. By incorporating the

Virtual Plane, this drawback is mitigated, enabling the pursuer to

intercept the target more efficiently and successfully, whereas the

non-Virtual Plane approach results in a missed interception in this
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Figure 9: Results for intercepting targets from 50 different angles
(a) Pursuer trajectories for 50 interceptions. (b) Scatterplot of interception errors for the 50 interceptions. (c) Boxplot of interception errors for the

50 interceptions.

scenario.

The inefficiency of the non-Virtual Plane method is further high-

lighted in Figs. 13(b) and 13(c), where the normal velocity and

acceleration profiles exhibit higher magnitudes and oscillatory be-

haviour. This instability arises from conflicting commands between

the forward and vertical controllers. The Virtual Plane reduces

these interactions, resulting in a more stable trajectory with lower

normal acceleration and velocity variations.

In conclusion, the Virtual Plane technique yields a more efficient

interception path, reduces interception time, and enhances flight

stability, even at elevated target speeds (up to 8–12 m/s in this

scenario).

Table 3: Benchmark comparison results for interception ex-
periments under different scenarios

Scenario Metric Yan et al. [24] Proposed

Multi-Angle Static Circular Error Probable (m) 0.089 0.072

Constant Velocity (CV)

Interception Time (s) 6.5 4.4
FOV Maintenance Medium Medium

Interception Error (m) 0.09 0.16

Constant Acceleration (CA)

Interception Time (s) 4.4 4.4

FOV Maintenance Medium Low

Interception Error (m) 0.45 0.41

Sinusoidal Maneuver (SM)

Interception Time (s) 14.5 10.8
FOV Maintenance Medium High

Interception Error (m) 0.04 0.11

F Results Overview
The results are summarized in Table 3, showcasing performance

across different scenarios. The proposed algorithm outperforms the
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Figure 10: Results for intercepting a target with constant velocity
(a) Pursuer and target trajectories. (b) Normal velocity of the pursuer during interception. (c) Normal acceleration of the pursuer during

interception. (d) Interception errors. The benchmark papers are: Yan et al.: [24], PG: [38], IBVS: [13]

benchmark in circular error probable (CEP) for static targets (0.072

m vs. 0.089 m) and demonstrates shorter interception times for

constant velocity (CV) and sinusoidal maneuver (SM) scenarios. It

achieves lower interception errors in the constant acceleration (CA)

scenario, albeit with variations in field-of-view (FOV) maintenance.

These results highlight the proposed algorithm’s effectiveness in

enhancing accuracy and efficiency.

VII Discussion
The results of this research highlight a series of trade-offs and

challenges inherent to designing an effective, low-cost, autonomous

quadcopter interception system. By delving into the underlying

causes of these results, this discussion provides insights into the

observed performance and the implications for future development.

A Perception Module Performance
The designed perception module, a critical component of the pro-

posed system, demonstrated significant limitations in real-world

tests, particularly in its frame rate when deployed on the Raspberry

Pi 4b. This shortfall can be attributed to the high computational de-

mands of Yolov8n, a state-of-the-art object detection model. While

Yolov8n’s accuracy is important in maintaining reliable tracking

and interception, its processing requirements far exceed the capa-

bilities of resource-constrained hardware like the Raspberry Pi. As

a result, the frame rate dropped to levels insufficient for high-speed

interception or scenarios involving rapid manoeuvres. This low

frame rate creates a lag in feedback, impairing the system’s ability

to respond effectively to dynamic target movements and leading to

missed interception opportunities or reduced precision.

The decision to employ the Raspberry Pi reflects a broader cost-

efficiency trade-off in UAV design. While it enables the use of

affordable, lightweight platforms, the computational limitations



MSC. THESIS Robotics TU DELFT 2024 - Clemente van der Aa 4690451 18

Figure 11: Results for intercepting a target with constant acceleration
(a) Pursuer and target trajectories. (b) Normal velocity of the pursuer during interception. (c) Normal acceleration of the pursuer during

interception. (d) Interception errors. The benchmark papers are: Yan et al.: [24], PG: [38], IBVS: [13]

underscore the need for alternative approaches. For instance, lever-

aging less computationally intensive object detection models, such

as MobileNet variants, or integrating a more powerful processing

unit, like Nvidia’s Jetson Nano or Xavier NX, could address the

frame rate bottleneck. However, these alternatives introduce new

challenges, including increased costs, higher power consumption,

and potential reductions in battery life, which may compromise the

drone’s operational endurance.

B Virtual Plane Projection and Decoupling Dynamics
The implementation of the virtual plane mechanism emerged as a

significant contributor to the system’s improved control stability.

By decoupling pitch and vertical motion, the virtual plane reduced

the cascading effects of coupled dynamics. For example, in scenarios

without the virtual plane, forward velocity commands inadvertently

induced vertical errors, necessitating compensatory corrections that

destabilized the system. The decoupling effect not only reduced

these oscillations but also allowed for smoother trajectories and

more efficient interception paths.

However, this stability came at the cost of a reduced effective

FOV. The virtual plane’s fixed alignment relative to the UAV, while

effective for decoupling, constrains the system’s ability to track tar-

gets during steep pitch angles. This limitation becomes particularly

evident in scenarios with fast-moving or erratically manoeuvring

targets, where maintaining FOV is critical. While the results val-

idate the virtual plane’s efficacy in simplifying control dynamics,

future iterations could explore adaptive virtual planes. Such a sys-

tem might dynamically adjust the plane’s alignment based on the

drone’s attitude, balancing the benefits of decoupling with a broader

FOV.
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Figure 12: Results for intercepting a target with sinusoidal manoeuvre
(a) Pursuer and target trajectories. (b) Normal velocity of the pursuer during interception. (c) Normal acceleration of the pursuer during

interception. (d) Interception errors. The benchmark papers are: Yan et al.: [24], PG: [38], IBVS: [13]

C Model-Free PID Controller: Simplicity and Limita-
tions

The model-free PID controller demonstrated significant strengths,

particularly in its simplicity and computational efficiency. These

characteristics allowed the system to outperform benchmarks in

terms of response time and stability during scenarios with less

abrupt target movements. By reducing computational overhead,

the controller facilitated rapid adjustments to maintain the target

within the FOV, a critical factor in successful interception.

However, this simplicity also introduced notable limitations. The

lack of predictive capabilities in the model-free PID design explains

the overshooting observed during sharp lateral turns. Unlike model-

based approaches, which leverage predictive algorithms to antici-

pate future target trajectories, the PID controller reacts solely to

the current error, making it ill-suited for highly dynamic scenarios.

This highlights a fundamental trade-off: while model-free control

reduces complexity and computational demand, it sacrifices the

ability to handle aggressive target manoeuvres effectively. Explor-

ing hybrid control architectures that combine the responsiveness

of model-free PID with the trajectory prediction of model-based

approaches could offer a pathway to overcoming this limitation.

D Recommendations and Future Directions
To address the perception module’s limitations, future research

should explore lightweight object detection models optimized for

real-time performance on low-power hardware. One promising

avenue could involve deploying feature-based tracking algorithms

that rely on computationally inexpensive heuristics rather than

deep learning models. Alternatively, hybrid architectures combin-

ing lightweight object detection with intermittent updates from

computationally intensivemodels could balance accuracy and speed.

In terms of control, incorporating predictive capabilities into

the system represents a critical next step. Reinforcement learning

models trained in simulation environments could enable the UAV



MSC. THESIS Robotics TU DELFT 2024 - Clemente van der Aa 4690451 20

Figure 13: Intercepting a moving target with and without
Virtual Plane
(a) Pursuer and target trajectories. (b) Normal velocity of the pursuer
during interception. (c) Normal acceleration of the pursuer during

interception.

to anticipate target trajectories, reducing overshooting and improv-

ing performance in dynamic scenarios. While the sim-to-real gap

remains a challenge for learning-based approaches, advances in

domain randomization and transfer learning may help bridge this

gap, enabling real-world deployment.

Finally, the virtual plane mechanism could be refined by inte-

grating adaptive capabilities that dynamically adjust the plane’s

orientation based on the drone’s attitude and target position. While

this would increase system complexity, it could enhance FOV main-

tenance, particularly during steep pitch manoeuvres.

VIII Conclusion
In this thesis, an IBVS control system was designed and evaluated

to enable a low-cost quadcopter to intercept a target autonomously

using only a monocular camera and an IMU for sensing. This work

addressed a critical need for interception control systems resilient

to GPS-denied environments, suitable for resource-constrained UAV

platforms. Two core innovations, an Integrated Multi-Axis PID Con-

trol with Acceleration Limiting and a novel virtual plane projection,

were developed to improve interception accuracy and FOV mainte-

nance.

The first contribution is the control method, where the multi-axis

PID control with acceleration limiting strategy combines indepen-

dent PID controllers for yaw rate, vertical velocity, and forward

motion. Benchmarking against Yan et al.’s model-based IBVS al-

gorithm [24], this proposed control approach demonstrated a 19%

reduction in circular error probable (CEP) for static target intercep-

tion, validating its improvement in accuracy. Moreover, in scenarios

requiring sustained target visibility, the proposed control method

showed lower normal velocities and accelerations, indicating su-

perior FOV maintenance with equivalent or reduced interception

times. This outcome highlights the advantage of the model-free

approach: reduced complexity and computational demand, while

maintaining a competitive level of interception precision and FOV

stability relative to more complex model-based methods.

The second contribution is the virtual plane projection technique,

where image errors are mapped to a virtual plane orthogonal to

the ground at the height of the quadcopter. This approach effec-

tively decouples pitch and vertical motion, further stabilizing target

tracking within the FOV. Simulation results affirmed the efficacy of

this design, as ablation studies across different scenarios demon-

strated reduced oscillatory behavior in image errors, contributing

to greater stability. Moreover, using the virtual plane improved in-

terception performance, with reductions in both interception error

and time by notable percentages in tested scenarios, underscoring

its practical value in dynamic target engagements.

In conclusion, this thesis demonstrates a feasible, resource-efficient

IBVS approach for autonomous UAV interception that is both ac-

curate and robust. The findings advance the field of autonomous

UAV interception by providing a reliable method that meets design

requirements while ensuring operational resilience. Future research

may extend this work by optimizing the perception module or ex-

ploring advanced obstacle avoidance techniques. The presented

system offers a scalable, practical solution for real-world UAV inter-

ception, with promising applications in security, surveillance, and

beyond.
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I Appendix: Mathematical Formulation of the
Kalman Filter

The Kalman Filter is integrated into the perception module to en-

hance the accuracy and robustness of target state estimation by

smoothing out detection noise and predicting future positions. Be-

low, we outline the specific parameters and configurations used in

our implementation.

A State Vector and Model
The state vector x𝑘 at time step 𝑘 is defined as:

x𝑘 =


𝑢𝑘
𝑣𝑘
¤𝑢𝑘
¤𝑣𝑘

 , (26)

where 𝑢𝑘 and 𝑣𝑘 represent the target’s position coordinates in the

image plane, and ¤𝑢𝑘 and ¤𝑣𝑘 denote their respective velocities.

B System Dynamics
Assuming a constant velocity model, the state transition matrix F
and the observation matrix H are defined as:

F =


1 0 Δ𝑡 0

0 1 0 Δ𝑡
0 0 1 0

0 0 0 1

 , (27)

H =

[
1 0 0 0

0 1 0 0

]
. (28)

Here, Δ𝑡 is the time step between consecutive measurements, set

to match the control loop frequency.

C Covariance Matrices
The performance of the Kalman Filter is significantly influenced

by the choice of the process noise covariance matrix Q and the

measurement noise covariance matrix R. These matrices were em-

pirically determined based on the system’s dynamics and sensor

characteristics.

A.3.1 Process Noise Covariance (Q)

Q =


0.1 0 0 0

0 0.1 0 0

0 0 0.5 0

0 0 0 0.5

 . (29)

The diagonal elements of Q represent the uncertainty in the accel-

eration (process noise) of the target’s motion.

A.3.2 Measurement Noise Covariance (R)

R =

[
12.5 0

0 12.5

]
. (30)

The measurement noise covariance R accounts for the uncertainty

in the centroid measurements obtained from the detection and

tracking modules.

D Initial Conditions
Initialization of the Kalman Filter is crucial for convergence. The

initial state estimate x0 and the initial estimate covariance P0 are
set as follows:

x0 =


𝑢0
𝑣0
0

0

 , (31)

P0 =


1000 0 0 0

0 1000 0 0

0 0 100 0

0 0 0 100

 . (32)

Here, a high initial covariance reflects significant uncertainty in

the initial state estimate.

E Filter Operation
The Kalman Filter operates in a recursive manner, alternating be-

tween prediction and update steps:

(1) Prediction:

x̂𝑘 |𝑘−1 = Fx̂𝑘−1 |𝑘−1, (33)

P𝑘 |𝑘−1 = FP𝑘−1 |𝑘−1F
⊤ + Q. (34)

(2) Update:

y𝑘 = z𝑘 − Hx̂𝑘 |𝑘−1, (35)

S𝑘 = HP𝑘 |𝑘−1H
⊤ + R, (36)

K𝑘 = P𝑘 |𝑘−1H
⊤S−1

𝑘
, (37)

x̂𝑘 |𝑘 = x̂𝑘 |𝑘−1 + K𝑘y𝑘 , (38)

P𝑘 |𝑘 = (I − K𝑘H)P𝑘 |𝑘−1 . (39)

These steps are iteratively performed at each time step as new

measurements z𝑘 become available from the perception module.

F Parameter Tuning
The covariance matrices Q and R were manually tuned to balance

the trust between the prediction model and the measurements. This

tuning was guided by:

• **Process Noise (Q):** Adjusted to reflect the expected vari-

ability in the target’s motion. Higher values allow the filter

to adapt more quickly to changes.

• **Measurement Noise (R):** Set based on the reliability of

the centroid measurements. Lower values increase the fil-

ter’s reliance on measurements.

Empirical testing and visual inspection within the simulation

environment ensured that the chosen parameters provided stable

and accurate tracking under various conditions.

https://github.com/cagvanderaa/thesis_avalor.git
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II Appendix: Distance Estimation
In this section, we explain the method used to establish distance

estimation for the target drone. The objective is to develop a model

that maps features extracted from the bounding box in image space

to the corresponding distance in the world frame, representing

the separation between the camera and the target. This distance

serves as an input for the forward velocity controller. Given the lim-

ited forward acceleration, precise distance estimation is not critical

for distances greater than 10 meters, as the forward velocity will

reach a limit to adhere to the maximum acceleration. For distances

under 10 meters, however, the model is required to estimate the

distance with an accuracy of approximately 2 meters to facilitate

controlled deceleration, thereby enhancing interception precision.

The controller minimizes the distance error, 𝑒
distance

, defined as

𝑑
measured

+ 𝑑
hit
, where 𝑑

hit
is set to 5 meters to ensure a non-zero

impact velocity for distance estimations with a standard deviation

of 2 meters.

A dataset of 90 annotated bounding box data points was col-

lected in Gazebo simulations. The bounding box annotations were

recorded from various distances and angles, noting the correspond-

ing distances between the pursuer and target. Data collection began

at a distance of 1 meter, where bounding boxes were recorded from

three different angles. This process was repeated in increments

of one meter up to a maximum distance of 15 meters. Using this

dataset, we constructed two plots (Fig. 14) to compare distance

estimation models based on two different bounding box features:

normalized bounding box size and normalized bounding box width.

In Fig. 14 a, the normalized bounding box size, calculated as:

Normalized Bounding Box Size =
pixel width

image width

× pixel height

image height

(40)

is plotted against distance. Fig. 14 b plots the normalized bound-

ing box width, calculated as

Normalized Bounding Box Width =
pixel width

image width

(41)

against distance. For both cases, polynomial regression models

of degrees 3, 4, and 5 were fitted to the data.

Upon examining the plots, we observe that the model based on

normalized bounding box width (Fig. 14 b) demonstrates a supe-

rior spread of data points across different distances compared to

the model based on bounding box size (Fig. 14 a). The normalized

bounding box width exhibits a smoother gradient, particularly at

distances below 10 meters, which provides a more gradual and

distinguishable relationship between bounding box feature and

distance. This characteristic reduces the steepness of the curve, fa-

cilitating a more stable and accurate regression model for distance

estimation. In contrast, the bounding box size model presents more

abrupt changes in data distribution, which could lead to higher

variance in estimated distances, particularly at closer ranges where

accuracy is most critical.

Given these observations, the normalized bounding box width

was selected as the preferred feature for distance estimation. The

Figure 14: Empirical relationship between bounding box
width and size with distance - Polynomial Regression
(a) Normalized Bounding Box Size vs. Distance with Polynomial
Regression. (b) Normalized Bounding Box Width vs. Distance with

Polynomial Regression.

degree-4 polynomial regression model for this feature yielded the

best balance between simplicity and fit, described by:

𝑑 (𝑥) = 1.538×105𝑥4−7.185×104𝑥3+1.201×104𝑥2−874.1𝑥 +27.18
(42)

where 𝑑 (𝑥) represents the estimated distance as a function of

the normalized bounding box width 𝑥 . This model captures the non-

linear relationship between the bounding box width and distance,

providing a reliable approximation across the range of observed

distances.
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