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Chip-to-chip entanglement of transmon qubits using engineered measurement fields

C. Dickel,1,2 J. J. Wesdorp,1,2 N. K. Langford,1,2,3 S. Peiter,1,2 R. Sagastizabal,1,2 A. Bruno,1,2

B. Criger,4,2 F. Motzoi,5 and L. DiCarlo1,2,*

1QuTech, Delft University of Technology, Delft, The Netherlands
2Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

3School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
4Computer Engineering, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

5Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

(Received 19 December 2017; published 13 February 2018)

While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish
high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon
qubits on different cQED chips with 49% concurrence and 73% Bell-state fidelity. We engineer a half-parity
measurement by successively reflecting a coherent microwave field off two nearly identical transmon-resonator
systems. By ensuring the measured output field does not distinguish |01〉 from |10〉, unentangled superposition
states are probabilistically projected onto entangled states in the odd-parity subspace. We use in situ tunability
and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to
fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled
state of similar quality, by engineering the matching of outputs for the |00〉 and |11〉 states. The protocol is
characterized over a range of measurement strengths using quantum state tomography showing good agreement
with a comprehensive theoretical model.

DOI: 10.1103/PhysRevB.97.064508

I. INTRODUCTION

The quest for large-scale quantum information processors is
inspiring a multitude of architectures over a range of different
qubit platforms that can be divided into two broad categories:
monolithic [1–5] and modular [6–9]. Monolithic architectures,
in particular 2D lattices of qubits, are suitable for implementing
the surface code [10,11], but designers face challenges with
fabrication yield, connectivity, and cross-talk on large-scale
devices. In contrast, modular architectures promise switch-
board-like all-to-all connectivity, reduce design complexity
and even correlated noise to the module scale, but face the
challenge of distributing entanglement between nodes. While
local entangling operations inevitably outperform their remote
counterparts, the challenges of scaling up suggest that a
future quantum computer will require a hybrid architecture,
which balances local speed and fidelity with the benefits of
modularity.

In circuit quantum electrodynamics (cQED) [12], entangle-
ment distribution schemes have mainly relied on two mech-
anisms: entanglement by measurement [13,14] with either
coherent [15–17] or Fock states [18,19], where a nonlocal
entangling measurement is implemented by measuring pho-
tonic modes that have interacted with the qubits; and pitch-
and-catch schemes [20,21], where qubit-qubit entanglement is
created by photons traveling from one qubit to another. Since
these protocols rely on photonic quantum information carriers,
photon loss can limit either the achievable entanglement or
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the success rate. Modest entanglement can be bolstered by
entanglement distillation to produce high-fidelity quantum
links. Ultimately, the important figures of merit defining
the performance of entanglement distribution protocols are
entanglement generation rate and entanglement fidelity. Exper-
iments have primarily focused on qubits embedded in separate
3D superconducting cavities [15,16,18], which allows separate
fabrication and selection of qubits and cavities, and tuning of
the cavity coupling to input ports. The effort to locally scale
up to many-qubit experiments on the other hand has largely
happened “on chip” [22–25], where both qubits and resonators
are patterned in superconducting thin films and where fast,
high-fidelity multiqubit gates have been demonstrated [26]. In
these 2D cQED devices, fabrication variability impedes the
precise parameter matching required for many entanglement
protocols, but these devices are arguably better suited for
integration and scale-up. Therefore generating rapid, high-
fidelity entanglement chip-to-chip enables the exploration of
interesting modular architectures in cQED.

Here, we entangle two transmon qubits on separate 2D-
cQED chips by engineering a half-parity measurement using
the bounce-bounce entanglement-by-measurement protocol
[13,15,16]. A perfect odd half-parity measurement prob-
abilistically projects a maximum superposition state onto
|00〉, |11〉 or an entangled superposition of |01〉 and |10〉.
Distinguishability between |01〉 and |10〉, caused by differ-
ences between the two chips, leads to dephasing of the resulting
entangled state and therefore degrades the entanglement. Two
innovations make the protocol robust to fabrication variations.
Firstly, adding resonator tuning qubits for frequency matching
overcomes imperfect resonator frequency targeting. Secondly,
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we use an additional weakly coupled port of the second
resonator to apply a compensation pulse and reduce any
distinguishability in the output fields for |01〉 and |10〉. We
demonstrate the versatility of this technique by also matching
the outputs for |00〉 and |11〉 to create an even-parity Bell state
with similar performance. We characterize the performance
of our protocol in aggregate by comparing the output states
at different measurement strengths against a comprehensive
model of the experiment.

II. EXPERIMENT OVERVIEW AND EXTENDED
BOUNCE-BOUNCE PROTOCOL

The bounce-bounce approach to entanglement was pro-
posed as a continuous two-qubit parity measurement in cavity
quantum electrodynamics [13]. The qubit parity is mapped on a
coherent state that successively reflects from two cavities and
is then read out with a continuous homodyne measurement,
leaving the two qubits entangled. Our setup [Fig. 1(a)] consists
of two nominally identical chips each containing two transmon
qubits both coupled to a coplanar waveguide (CPW) resonator.
The two qubits in red will be entangled in the protocol. The λ/2

CPW resonator is coupled strongly to a feed line on one side
and weakly on the other. This asymmetric coupling directs
most of the photons on a single path that leads through the
circulators to a Josephson parametric amplifier (JPA) [27],
realizing a high-fidelity measurement of the output field.
Details on the experimental setup and device fabrication can
be found in Appendices A and B.

In order to understand the measurement central to this
experiment, it is useful to first consider the standard cQED
measurement for a single qubit-resonator system in the disper-
sive limit [28]. In this limit, the qubit-resonator interaction
simplifies to a qubit-dependent, dispersive shift χ of the
resonator frequency. Under a coherent drive, the resonator
therefore follows qubit-dependent coherent-state trajectories
|αi(t)〉 with classical equations of motion for αi(t) that depend
on system parameters and the time-dependent drive. This
entangles the resonator and qubit, creating the state a|0〉|α0〉 +
b|1〉|α1〉 for a qubit initially in a|0〉 + b|1〉. As photons leak
out of the resonator carrying qubit-state information, the qubit
becomes more mixed, with coherence decaying according to
the measurement-induced dephasing rate �m:

�m = 2χ

∫
Im[α0(t)α∗

1 (t)]dt . (1)

The dephasing seen by the qubit can be controlled by the
coherent cavity drive, but the ability to infer the qubit state
from the measured time-varying output signal, or transient, also
depends on the noise added by the detection chain. Importantly,
because the output field is directly related to the intracavity
field, if the cavity starts and ends in the vacuum state, the
dephasing can also be related to the measured average transient
difference [29].

In a multiqubit context, these concepts were generalized
to realize entangling measurements [13,30,31]. For a joint
measurement, selectively tuning the distinguishability be-
tween different state-dependent output transients can give
dramatically different dephasing rates for different two-qubit
coherence terms. For example, minimizing the dephasing
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FIG. 1. (a) Bounce-bounce entanglement scheme. A microwave
field (orange arrows) from the reflection input successively reflects
on two CPW resonators (light blue) on separate chips via two
circulators and is then amplified using a JPA. Each resonator is
dispersively coupled to a transmon qubit (red). Additional tuning
qubits (dark blue) are used to match the resonator frequencies via
their dispersive shifts. A weakly coupled input port to the resonator
on the second chip is used to inject a compensation field (green
arrow) to reduce distinguishability caused by a mismatch between
parameters of different qubit-resonator systems. (b) Pulse scheme
of the experiment. An initial measurement is used to condition on
qubits in the ground state. Then, the entanglement qubits are prepared
in the | + +〉 = [(|0〉 + |1〉)/√2]⊗2 state. Entangling measurement
pulses are applied through the reflection and compensation input.
After waiting for the photons to leak out of the resonator, quantum
state tomography is performed by applying an overcomplete set of
prerotations and a final measurement.

between |01〉 and |10〉 creates a half-parity measurement that
selectively preserves superpositions in the odd subspace, while
giving distinct outcomes for |00〉 and |11〉. Thus this mea-
surement projects a separable maximum superposition state to
an entangled odd-parity Bell state with 50% probability, with
the corresponding measured outcome heralding successful
entanglement generation.

In the bounce-bounce scheme, a perfect half-parity mea-
surement requires identical qubit-cavity pairs and zero in-
tracavity loss η̃l = 1 − ηl, the complement of the photon
transmission ηl. In 2D-cQED devices, however, fabrication
variability makes precise parameter matching infeasible, and
a more sophisticated approach is required. In our experiment,
we introduced two techniques to mitigate these effects. Firstly,
the variable dispersive shifts from two additional tuning qubits
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[dark blue in Fig. 1(a)] are used to match the fundamental
frequencies of the two resonators (see Appendix F for details).
Secondly, to minimize any remaining transient distinguishabil-
ity due to different resonator linewidths or dispersive shifts, we
apply a compensation pulse to an additional, weakly coupled
input port at the back of the second resonator [denoted by
green arrows in Fig. 1(a)]. Effectively, interacting with only
one resonator, this compensation pulse adds coherently to the
reflected field from the bounce-bounce path (orange arrows in
Fig. 1) and can be shaped to conditionally displace the target
trajectories to remove residual transient distinguishability.

For a given input pulse and system parameters, the optimal
compensation pulse shape can be solved directly from the clas-
sical field equations in the Fourier domain (see Appendix D for
detailed derivation). In this approach, the qubit state dependent
output field yij (ω) is a linear function of the reflection input
field εs(ω) and the transmission compensation field εw(ω) via

yij (ω) = H
ij

refl(ω, �p)εs(ω) + H
j
trans(ω, �p)εw(ω), (2)

where i,j ∈ {0,1} denote the state of the first and second qubit,
and where H

ij

refl(ω, �p) and H
j
trans(ω, �p) are complex valued

transfer functions that denote the individual system response to
each input. The system parameter vector �p consists of, for each
chip, the resonator linewidth κ̄ = κs + κw + κI , with terms
for the weakly and strongly coupled ports and the intrinsic
losses, the dispersive shift χ , and the resonator-drive detuning

, as well as ηl and φ, the interchip loss and acquired phase
(see Table I for the measured values). This approach was
tested by comparing predicted and measured output fields for
various input fields (see Fig. 9). To ensure a measurement
does not distinguish in the odd [even] subspace, we require
y01(t) = y10(t) [y00(t) = y11(t)] at all times. This gives a
linear equation εw(ω) = H comp(ω, �p)εs(ω) where H comp(ω, �p)
relates the transmission input to the reflection input. The clas-
sical solutions were then used to implement master equation
(ME) and stochastic master equation (SME) models in the
polaron frame incorporating the effect of qubit decoherence
and post-selection on the measurement result, respectively
[15,31] (see Appendix D for details).

III. EXPERIMENTAL PULSE SEQUENCE AND
COMPENSATION PULSE TUNEUP

The experimental pulse sequence [Fig. 1(b)] is designed
to faithfully characterize the entangling measurement using
quantum state tomography (QST) with a joint readout [32,33].
We first apply a projective measurement to be able to filter
out residual qubit excitations. While conditioning on the
initial measurement reduces residual excitation, any remaining
residual excitation can lead to an overestimate of the achieved
entanglement by QST, an effect which we correct for (see
Appendix E). Next, we prepare the two qubits in the maximum
superposition state | + +〉, a tensor product with both qubits
in the state |+〉 = (|0〉 + |1〉)/√2. Qubit gates are applied to
the entanglement qubits via a capacitively coupled drive line
(see Appendix C for qubit tuneup and performance). Then,
we apply the entangling measurement to probabilistically
project the maximum superposition state to an entangled state.
To verify the entanglement, we perform QST by applying
an overcomplete set of different prerotations on the qubits

followed by a final measurement. All measurements consist
of coherent microwave drives that populate the resonators
with photons. The initial and final measurements are tuned for
high single-shot fidelity (and avoiding measurement-induced
excitations in case of the initial measurement).

The entanglement measurement strength can be varied
either by changing the measurement amplitude or the duration,
as marked in Fig. 1(b). However, the simple equations of
motion for the resonator state are only valid in the absence of
qubit relaxation, thus the measurement time should be much
shorter than the qubit lifetime T1. As the shorter T1 of the
two qubits is 9 μs, we use a 300-ns measurement pulse with
a smoothed square envelope to ease bandwidth requirements
on the compensation pulse. The pulse is too short for the
resonators to reach steady state. While the resonator-qubit
system is in an entangled state with nonvacuum coherent states
in the resonator, reliable gates on the qubits are not possible.
Accordingly, the entangling protocol is only completed once
the photons have left the resonators. We wait 700 ns for
the resonators to empty before doing tomography, fixing the
duration of the entangling protocol to 1 μs. Thus measurement-
independent qubit decoherence is fixed and the tomography as
a function of measurement amplitude reveals the action of the
measurement.

To realize the optimum compensation pulse εw(ω) for an
input εs(ω), the parameters �p need to be determined. Precise
measurements are not straightforward for several parameters,
such as κW and κI, the power difference of the two drives (due
to small unknown differences in line attenuation and in the two
mixers), ηl, and the phase shift that the signal acquires between
the two chips. To tune up the optimal compensation pulse,
we minimize the transient difference between the odd (even)
subspace |01〉 (|00〉) and |10〉 (|11〉) normalized by the sum of
the other transient differences to keep the impact on readout
fidelity to a minimum. This is optimized by iteratively varying
�p using a combination of hands-on and hands-off optimization
[34].

We can look at the transient differences for all state pairs
with and without compensation pulse [see Figs. 2(a) and 2(b)],
to determine how well the compensation works. Just using
the reflection input, there is still a mismatch between the
output fields for |01〉 and |10〉 [difference |yij − ykl|]. The
improvement of the compensation pulse is twofold, increasing
the transient difference for the states we want to dephase
and minimizing it for the subspace we want to preserve. The
optimization is performed close to the optimal amplitude for
entanglement after initial experiments. Since the transient-
difference signal is noisy and affected by qubit relaxation, in
future experiments it may prove more efficient to optimize on a
qubit-based signal such as the dephasing itself or the acquired
phase shift between the target states.

IV. EXPERIMENTAL RESULTS

We now confirm the effect of the transient matching on
the qubits, using QST to reconstruct the density matrix after
measurement. Measurement-induced dephasing leads to an
exponential decay in the coherence elements of the density
matrix as a function of measurement power as shown in
Fig. 2(c). Better transient matching with the compensation

064508-3



C. DICKEL et al. PHYSICAL REVIEW B 97, 064508 (2018)

(a)

(b)

(c)

without compensation
with compensation

ME fit with compensation
ME fit without compensation

00 01 10 11
00
01
10
11

FIG. 2. (a) and (b) Average output transient differences |yij − ykl | for different pairs of initial states with and without the compensation
pulse. For the ideal half-parity measurement, the difference between the |01〉 and |10〉 outputs is zero at all times, which we realize with the
compensation pulse. Additionally, the output difference for the other states is increased. (c) Measurement-induced dephasing giving a decay of
the coherence elements of the unconditioned density matrix as a function of measurement power. Dispersive readout gives exponential decay
as a function of power as suggested by Eq. (1). A master-equation model is fitted to data with interchip loss η̃l and amplitude scaling factor as
the only free parameters. Residual dephasing is largely explained by η̃l = 11.8% (obtained from fit).

pulse results in reduced dephasing in the wanted subspace
while enhancing the dephasing of the unwanted coherence
elements over the entire amplitude range. The measurement
power was rescaled for the independently measured mixer non-
linearity. We plot the ME simulation results (see Appendix D)
for both the compensation and no-compensation case, showing
good agreement with the data. When fitting the ME, we
fixed the estimates for all parameters in �p from independent
measurements except for ηl and a scaling factor between the
input power on the arbitrary waveform generator (AWG) that
time shapes a microwave carrier and the power that arrives at
the experiment. We performed a single fit of the measurement
induced dephasing with the ME simulation to all 6 independent
complex off-diagonal density matrix elements as a function
of amplitude (populations remain constant). The full density
matrix data and fits can be found in Fig. 11 (Appendix D).

Due to the finite η̃l, there is dephasing even for perfectly
matched transients. We find that the data sets with and without
compensation pulse are well described for η̃l = 11.8% in the
model. This power loss is partially explained by the circulators,
which are specified to give 3%–4%, with the connectors
to the printed circuit board (PCB) also likely to contribute
significantly.

We now shift from looking only at the selective dephasing
in the unconditional density matrix evolution to looking at
the density matrix conditioned on the measurement outcome.
The new variable to consider in this context is the quantum
efficiency of the measurementηm, which determines the signal-
to-noise ratio (SNR) for state determination based on the
measurement outcome. We use the following entanglement
measures as figures of merit: concurrence C [35], Bell-state
fidelity FB, and ebit rate, discussed below.

For a good qubit readout at low photon numbers, we require
a low-noise amplifier. The amplifier is a JPA that we operate
in phase-sensitive mode with a single strong pump tone (see
Appendix C for tuneup procedure). This results approximately
in a homodyne measurement that is effectively only sensitive
along one quadrature due to the squeezing of the amplifier.

The single-quadrature sensitivity puts an interesting constraint
on the output fields: it penalizes having a signal that oscillates
between quadratures. For this reason, it is beneficial to place
the measurement tone at the symmetry point between the
ground and excited state frequencies of the resonators. To
simultaneously reach this condition for both resonators, they
need to be lined up using the tuning qubits. This is irrelevant for
the measurement-induced dephasing, as resonator frequency
differences can be accounted for by the compensation pulse.

In addition to optimally employing the JPA and achieving
the symmetric readout condition, digital processing of the
output traces with integration weights is used to further
increase the SNR. For a binary readout problem, the weight
function for optimally distinguishing the states is the average
transient difference in each quadrature (in the absence of qubit
decay) [36]. In this case (Fig. 2), the shape of the transient
difference for different pairs of states is similar, such that we
can economize. We used the mean of all transient differences
for |01〉-|00〉, |10〉-|00〉, |01〉-|11〉, and |10〉-|11〉 as integration
weights for the I and Q quadratures separately, giving a
complex data point for each run of the experiment.

The binary decision whether a measurement result cor-
responds to the odd-subspace is a textbook classification
problem. We relied on a machine-learning based approach
[37], training a neural network classifier [38] on calibration
points [Fig. 3(d)], which proved more robust than an ap-
proach based on Gaussian fits and linear boundaries in phase
space. The calibration points for even (odd) parity are the
red (blue) points. The color scale indicates the odd-subspace
probability landscape learned by the neural network. For
a given wanted percentage of data kept, the experimental
runs with the highest odd-subspace probability were kept.
Note that the classifier could also be trained on full single-
shot traces, in which case the integration weights would be
unnecessary.

The conditional density matrix evolution keeping 25% of
the data is shown in Figs. 3(a) and 3(b) as a function of the mea-
surement amplitude. As the measurement becomes stronger,
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FIG. 3. [(a) and (b)] Evolution of the conditional density matrix ρ as a function of measurement amplitude with and without the compensation
pulse. We keep 25% of the data based on the measurement outcome. SME simulation using the ME parameters with ηm = 50% shows good
agreement with the data. (c) Concurrence C and Bell-state fidelityFB as a function of measurement amplitude comparing both cases. Inset shows
|ρ| with compensation at optimum amplitude. (d) Thresholding the data using machine learning. Example data of integrated calibration-point
output at optimum amplitude with even (red points) and odd (blue points) subspace data points. A neural network classifier is trained on
calibration points giving a learned odd-subspace probability landscape (color scale). 90% of the calibration data is used to train, 10% is used to
estimate the assignment fidelity, here giving 85%. The classifier is used to select the fraction of data with the highest odd-subspace probability.
(e) C and FB at the optimum amplitude as a function of data kept with and without the compensation pulse. We also compute the ebit rate (red)
as described in the main text.

the ability to threshold out the even subspace increases as
shown by the reduction in even population and increase in odd
populations. The wanted odd subspace coherence element first
increases due to the selection, and is eventually limited by the
measurement induced dephasing. Qubit relaxation during mea-
surement leads to a residual population in the |00〉 state. Note
that early relaxation events will lead to |00〉 outcomes and will
be filtered out. The data show good agreement with an SME
simulation with the same parameters as the ME simulation.
The SME assumes a perfect single-quadrature measurement
with no squeezing as described in Refs. [15,31]. We find that
ηm = 50% gives good agreement with the experiment for the
no-compensation case.

We now extract different entanglement measures from the
conditioned density matrix keeping 25% of the data [Fig. 3(c)].
While C can be directly computed, FB requires finding the
odd (or even) Bell state with the highest overlap. A nonzero C
signals entanglement, as does a FB larger than 0.5. Both FB

and C peak at a common amplitude, which is characterized by
a balance between good SNR and low measurement-induced
dephasing in the odd-parity subspace. Improvements in ηm

would shift the optimum to lower amplitudes and improve the
result. The compensation pulse data set clearly outperforms
the no-compensation case but falls slightly below the theory
which assumes a perfect compensation pulse. It is possible
that the JPA tuneup gave a slightly lower ηm but the ME

simulation in Fig. 2(c) already shows signs of the suboptimal
compensation and the maximum C coincides for both cases.
At high amplitudes, ηm likely starts to suffer from the onset
of compression in the JPA. We reach an optimum C = 0.49 ±
0.01 and FB = 0.731 ± 0.003 with the compensation pulse,
and C = 0.40 ± 0.01 and FB = 0.683 ± 0.003 without. The
error bars are derived from Monte Carlo simulations based on
a coin-toss model of multinomial sampling statistics. Point by
point fluctuations seem to exceed the statistical errors, possibly
due to JPA related fluctuations in quantum efficiency, drift in
qubit coherence time and thermal excitations.

It is also interesting to look at the entanglement measures
at the optimum amplitude as a function of the data kept
when selecting on the entangling measurement [Fig. 3(e)]. In
addition to C and FB, we also compute the ebit rate, which
is the product of the logarithmic negativity [39], the fraction
of the data we keep and the experimental repetition rate of
10 kHz. The logarithmic negativity gives an upper bound for
the distillable entanglement of a state [40]. The ebit rate is
a relatively conservative estimate of an actually achievable
entanglement rate, as the entire experimental sequence takes
less than 5 μs including an initialization measurement, which
in principle could be combined with active feedback for faster
qubit initialization [41], and the QST. Thus repetition rates
on the order of 200 kHz should be achievable, corresponding
to ebit rates around 40 kHz, comparable to qubit coherence
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FIG. 4. (a) Measurement-induced dephasing for the even-
subspace compensation pulse. (b) Concurrence (blue points) and
even-Bell-state fidelity (green points) as a function of amplitude for
different amounts of data kept. (c) Transient matching for the even
subspace at optimum concurrence. (d) Best even-Bell-state density
matrix keeping 25% of the data.

times. The ebit rate peaks when keeping 50% of the data, which
corresponds to C = 0.38 ± 0.01 and FB = 0.668 ± 0.003.

As mentioned in Sec. III, by simply changing the form
of the compensation pulse, it can be used to minimize the
measurement-induced dephasing for any pair of states. To
demonstrate this, we also implemented the compensation pulse
that produces identical output for |00〉 and |11〉. The results are
summarized in Fig. 4. In this case, the compensation pulse has
to be stronger, as we match the two states that are naturally
most distinguishable. While the transient matching in Fig. 4(c)
is comparable to the odd case, the measurement-induced
dephasing shows a stronger deviation from the model. This
is most likely due to mixer imperfections, such as skewness
and nonlinearity, which were not independently calibrated for
both mixers. These effects were likely more detrimental with
higher mixer voltages for the even compensation pulse, but
probably also contributed to not reaching the optimum in the
odd case. Nonetheless, we realize an even-parity entangled
state almost matching the odd-parity performance and outper-
forming the no-compensation case reaching a C = 0.47 ± 0.01

and FB = 0.732 ± 0.005 when keeping 25% of the data. The
model predicts identical performance for an optimally tuned
compensation pulse.

V. CONCLUSION

We have shown that the bounce-bounce scheme can be im-
plemented in a 2D-circuit QED setup, achieving state-of-the-
art remote entanglement for superconducting qubits. The two
chips in the experiment are not identical: tuning qubits are used
to match the resonator frequencies. The resonator linewidths
are significantly different but the additional compensation
pulse allows the matching of the transients to realize either
an odd or an even half-parity measurement. The experiment
is not limited by the resonator linewidth as a steady state of
the resonators is never reached. Our current implementation
leaves room for improvement in the limiting ηl and ηm.

Managing the photon loss to improve the achieved entan-
glement is difficult, but there are several obvious improve-
ments. One circulator can be removed without compromising
performance, as done in Ref. [16]. Developments of on-chip
circulators [42] and better parametric amplifiers might lead to
improvements in ηl and ηm, respectively. The loss could also
be managed with quantum-error-correction-like protocols that
make use of ancilla qubits [43].

A current maximum of 50% success probability would
either require several pairs of qubits where the protocol is
performed in parallel or several entangling attempts. The
protocol can be sped up employing faster ramp-up and ramp-
down pulses. An entanglement generation time 1 μs would be
promising for quantum network operation given qubits with
demonstrated ∼50 μs coherence times. With further improve-
ments, a cQED realization of entanglement distillation [44,45]
should come within reach. Also, in this two-qubit/two-cavity
bounce-bounce configuration, entanglement generation via
bath engineering [46–48] and feedback-control schemes [49]
can be further explored to achieve steady-state entanglement.
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APPENDIX A: EXPERIMENTAL SETUP

Both chips were attached to the cold finger of a Leiden
Cryogenics CF-650 dilution refrigerator as seen in Fig. 5.
The temperature of the cold finger during the experiment was
around 35 mK. For radiation shielding, the entire setup is
enclosed within a copper can coated with a mixture of Stycast
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Chip 1

Chip 2

circulator

JPA

PCB

Quantum Chip

(a)

(b)

(c)

FIG. 5. Photographs of the setup. (a) Cold finger of the dilution
refrigerator with the two chips, circulators and JPA. (b) Bird’s eye
view of the PCB. (c) Microscope image of the 7 mm ×2 mm chip.

2850 and silicon carbide granules (15 to 1000 nm diameter)
used for infrared absorption [50]. To shield against external
magnetic fields, the can is enclosed by an aluminum can and
two Cryophy cans.

A detailed wiring diagram of the experiment can be found in
Fig. 6. Microwave lines are filtered using∼60 dB of attenuation
using both commercial cryogenic attenuators and home-made
Eccosorb filters for infrared absorption. Flux-bias lines are
also filtered using commercial low-pass filters and Eccosorb
filters with a stronger absorption, in principle, allowing for fast
control of qubit frequencies, even though in this experiment
only static biasing was used. The JPA is mounted with an
additional circulator to prevent leakage of the resonant pump
tone back to the experiment. This can be improved in future
experiments, as double-pumping or pump-canceling schemes
could have been used in place of the additional circulator, likely
improving the quantum efficiency.

APPENDIX B: DEVICE FABRICATION AND PARAMETERS

The devices were fabricated with the same process as those
in Ref. [51]. Device parameters can be found in Table I.
Bare resonator frequencies are close to the target frequency,
resonator targeting is discussed in more detail in Appendix F.
The difference in κc between the two chips with identical
base-layer patterns that come from the same die is surprising
and suggests that either wire bonds or packaging play a role.
Likely this is also the cause of the κc value being off target.

The qubit frequencies are well matched for this pair of
devices. Usually, Josephson junction fabrication leads to an
expected relative spread of several percent in qubit frequen-
cies [52]. When multiple devices are made, pairs of similar
frequency qubits can be selected based on measurements of the
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FIG. 6. Detailed schematic of the experimental setup.

room-temperature resistance of the Josephson junctions, which
is related to the Josephson energy [53]. For this pair of devices,
resistances were within 1% of each other and frequencies were
indeed almost identical. However, the absolute frequencies
were not on target, due to systematic shifts in the junction
parameters between different fabrication runs. Reducing the
statistical spread and systematic variations between Josephson
junction fabrication runs remains an outstanding challenge for
future many-qubit devices.

TABLE I. Key device parameters and designed target values. The
large difference in resonator κ is either an effect of the wire bonds or
an effect of sample packaging. For both qubits, χ is given at the upper
sweet spot, where they are operated throughout the experiment.

Parameter Target Chip 1 Chip 2

fr,bare 6.27 GHz 6.344 GHz 6.339 GHz
κ/2π 2 MHz 3.01 MHz 4.53 MHz
fq,max 5.57 GHz 5.23 GHz 5.24 GHz
Ec/h 280 MHz 293 MHz 293 MHz
χ/2π −1 MHz −335 kHz −335 kHz
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FIG. 7. Flux-dependent frequency for the qubits in the experiment.

APPENDIX C: QUBIT TUNEUP AND PERFORMANCE

A plot of the qubit frequencies as a function of flux through
their SQUID loops is shown in Fig. 7. For this data set, two-tone
spectroscopy was performed after decoupling the flux bias
lines from an initial 2% on-chip crosstalk to <0.2% using
a compensation matrix. All qubits in the experiment have
SQUID loops with asymmetric Josephson junctions, leading
to a top and bottom sweet-spot and reducing the sensitivity to
flux noise. For the entanglement qubits, the bottom sweet-spot
is estimated to be at ∼4 GHz.

Single-qubit rotations on the entanglement qubits were
implemented using DRAG pulses [54,55] using the first AWG.
A sideband modulation of −100 MHz was used to put the
carrier leakage above the qubit frequency. Gaussian pulses
comprise 4σ with a total duration of 20 ns. The AllXY
sequence [56] was used to tune up the DRAG parameter. T1,
T ∗

2 , and T2,echo measurements, as well as AllXY sequences
and readout fidelity measurements were performed interleaved
with the experimental runs in order to monitor performance.
The cross-driving isolation from chip 1 to chip 2 was estimated
to be larger than 30 dB by trying to measure a Rabi oscillation
on the chip 2 qubit through the drive-line of the chip 1 qubit.
During this procedure, the chip 1 qubit frequency was detuned.
The isolation from chip 2 to chip 1 should be ∼40 dB larger
due to the directionality of the circulators, but this was not
confirmed by measurement.

The entanglement qubits were operated at their flux sweet-
spots which maximized coherence and dispersive shift. Coher-
ence times can be found in Fig. 8. T1 was a factor ∼2 below
the Purcell limitT Purcell

1 = 
2
/g2κ for both qubits, with dielectric

loss likely to be the other limiting factor. The charging energy
of the transmon EC/h = 293 MHz was higher than the design
value. The resulting maximum charge-parity splitting was
measured to be ≈66 kHz from the beating pattern measured

FIG. 8. Coherence-time histograms for the entanglement qubits
at operating point. Data were taken intermittently over a 24 h interval
with almost 300 data points per quantity.

in Ramsey experiments. However, this frequency uncertainty
does not become a limiting factor on the time scale of the
experiment.

One microwave source was split four ways to generate
the carriers for the bounce-bounce and compensation input,
the JPA pump tone and the local oscillator for demodulation.
Readout pulses were defined using the second AWG. The qubit
readout using the JPA was optimized for separation between
all four computational states. A sequence preparing all four
states with subsequent readout was used and single shots
were collected. We then optimized JPA pump power, flux-bias
setting, and pump phase, minimizing the overlap between the
resulting probability distributions [57]. Single-shot fidelities
for the final readout for each individual qubit were generally
on the order of 95%–99%. A quantum efficiency ηm = 50%
gives good agreement between the SME simulation and the
experimental data in Fig. 3. This is below the limit expected
from photon loss according to component specifications but
consistent with reported values in other experiments [15,58].
In principle, ηm = 100% can be achieved, but finite JPA gain
and bandwidth as well as photon loss on the way to the JPA
(for this setup 25% is expected from component specifications)
limit the quantum efficiency. Using a phase-insensitive, higher-
bandwidth amplifier such as the traveling wave parametric
amplifier [59] would result in imposing a 50% upper limit on
the achievable quantum efficiency by that definition making the
protocol more sensitive to loss between the chips—the residual
source of measurement-induced dephasing.

In future experiments, it would be helpful to fully calibrate
the mixer nonlinearity and skewness across the experimental
range or use step attenuators in order to realize more linear
sweeps of the readout power. Mixer imperfections impact the
experiment in several ways but can in principle be completely
corrected. We did cancel the carrier leakage of the mixers in
the experiments using fixed dc voltages, as it would lead to
additional photon shot noise. In addition, there is nonlinearity
in the output power, which manifests in our mixers as reduced
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output at high voltages. We only corrected this effect in
post-processing when we realized the severity but accordingly
the compensation pulses, where two mixers with different
amplitudes were involved, got affected. Another effect that
would start playing a role in the compensation cases is mixer
skewness, which we did not account for. In future experiments,
all these things can be measured and fixed by adjusting the
AWG pulses.

APPENDIX D: COMPREHENSIVE MODELING
OF THE EXPERIMENT

We now describe the modeling for this experiment both for
the output fields and the density matrix evolution. It is natural to
begin with the classical equations of motion in Appendix D 1,
since the full two qubit two cavity ME can be reduced to a
qubit only ME using the resonator field solutions and a polaron
transformation [31]. The classical equations of motion are
also used to derive the compensation pulse in Appendix D 2.
We then describe the ME in Appendix D 3 and finally add a
stochastic term to model post-selection of the measurement
results in Appendix D 4.

1. Classical equations of motion

In the dispersive regime and in the absence of qubit
relaxation, the resonator field modeling reduces to qubit state
dependent harmonic oscillators. We generally work in a rotat-
ing frame of the coherent measurement drive. Making use of
the cascaded nature of our system we can derive the Heisenberg
equation of motion for the system using input output theory
[60]. Taking the expectation value immediately we end up with
the following set of classical qubit-state-dependent coupled
linear differential equations:

α̇±(t) = ( − i(
1 ± χ1) − 1
2κ1

)
α±(t) + √

κs
1ε

s(t),

z±(t) = √
κs

1α
±(t) − εs(t),

β̇±±(t) = ( − i(
2 ± χ2) − 1
2κ2

)
β±±(t)

+√
κs

2ηle
iφz±(t) + √

κw
2 εw(t),

y±±(t) = −√
κs

2ηle
iφz±(t) + √

κs
2β

±±(t), (D1)

where the qubit 0(1) state is denoted by +(−), α±,β±± denote
the two qubit-state-dependent coherent states inside resonator
1 and 2, respectively, z(t) denotes the reflected output field
of resonator 1, y(t) denotes the monitored output field after
reflection off both resonators. Driving fields εs(t), εw(t) are
the reflection input at the strongly coupled resonator ports
and the transmission input at the weakly coupled port of
the second resonator, respectively. The system parameters are
the resonator linewidths κi = κs

i + κw
i + κ I

i with contributions
from the two ports and the intrinsic loss, the dispersive shifts
χi , the resonator detunings from the measurement tone 
i .
Between the chips, the field undergoes a power loss 1 − ηl and
a phase shift φ.

The above set of equations describes a linear time invariant
system, so it can be readily solved in the Fourier domain. The
solutions are written using transfer functions for the single-

FIG. 9. Output transients and model fits for the uncompensated,
the odd-compensation and the even compensation case, each at
maximum-concurrence amplitude. The signal was rotated to maxi-
mize the difference of the matched states in the I quadrature for visual
clarity.

qubit-resonator systems as

α±(ω) = H±
1 (ω)εs(ω), z±(ω) = H±

1R (ω)εs(ω),

β±±(ω) = √
ηle

iφH±
2 (ω)H±

1R (ω)εs(ω) +
√

κw
2

κs
2

H±
2 εw(ω),

y±±(ω) = √
ηle

iφH±
1R (ω)H±

2R εs(ω) + √
κw

2 H±
2 (ω)εw(ω),

(D2)

where H±
j (ω) =

√
κs

j

iω+i(
j ±χj )+ 1
2 κj

, j ∈ {1,2} are the transfer

functions into resonator 1 and 2 and H±
jR (ω) =

√
κs

jH
±
j (ω) −

1 is the transfer function after reflection from them. This
approach shows clearly that cascading systems entails a simple
multiplication of their transfer functions.

We use these equations to fit the measured output transients
at the optimum entangling measurement amplitude. The results
for all three cases can be found in Fig. 9. To further compare
experiment and model, we can look at the integrated output
power which is to a good approximation qubit state indepen-
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FIG. 10. (a) Integrated output power in experiment (dots) and
theory (lines) for the three cases to confirm the modeling of the output
fields. We again find the best agreement for the no-compensation
case. In the relevant regime up to the concurrence maximum, we
find good agreement. (b) and (c) Maximum photon numbers in each
resonators extracted from the model for all three cases. The critical
photon number imposed by the tuning qubit QTi on chip i is marked
by the horizontal line for each resonator (see Appendix F).

dent. This is shown in Fig. 10(a). For low powers, particularly
up to the point of maximum C, we find good agreement with
theory. The no-compensation case shows the expected linear
behavior. For the odd-compensation case, we find deviations
at high powers while the even compensation case shows a
general systematic deviation from linearity, likely due to mixer
imperfections. Using the fitted amplitude scaling factor from
the ME (Appendix D 3), we can use the qubits as photon meters
and estimate the photon numbers in the resonators as a function
of input power for both resonators, found in Figs. 10(b) and
10(c).

For this work, we did not attempt active ramp-up and ring-
down pulses for the resonators as done in Refs. [61,62], but
the transfer function mechanism provides a simple way to do
this. The transfer functions relate the drive to the resonator
fields. Any ansatz for the driving field at the strong port with
enough free parameters can be used to derive a pulse where
the resonator photon numbers are ramped up and reset to zero
faster than the resonators ring-up and ring-down time. The
number of parameters necessary is given by the number of
different qubit states for which the ramp-up and ramp-down is
supposed to work.

2. Compensating pulse solution

Using the compensation pulse to limit measurement-
induced dephasing was already suggested in Ref. [31]. Here,
we expand on the conceptual solution we presented to the
compensation pulse in Eq. (2) in the main text. By sending
a drive through the weak input port simultaneously with the
existing pulse in the strong port, we can make nearly any pair
of the four classical output states equal by solving ykl(ω) =
ymn(ω), where y is the qubit state dependent output field of
Eq. (D2), k,m denote the state of the first qubit, and l,n of the
second qubit. Solving this, we can obtain a general expression
for the weak compensation measurement field εw

kl,mn(ω) as a
function of the strong port measurement field εs(ω) and the
desired pair of matching output states |kl〉 and |mn〉:

εw(ω) = H comp(ω)εs(ω),

H comp(ω) =
√

ηle
iφ

(
Hk

aR (ω)Hl
bR (ω) − Hm

aR (ω)Hn
bR (ω)

)√
κw

2

(
Hn

2 (ω) − Hl
2(ω)

) .

(D3)

Using this simple relation allows us to reduce the dephasing
of the two-qubit density matrix element ρkl,mn and therefore
create an odd [y01(ω) = y10(ω)] or even [y00(ω) = y11(ω)]
parity state robust to fabrication variations in the chips. The
full parity measurement is a special case in this context, where
two pairs of states are always matched, leading to an entangled
state independent of the measurement result [63]. This is only
possible with another symmetry in the system, namely 2χ = κ

for both chips (leading to a steady-state phase shift of 180◦), a
condition we could not reach with these devices. The number
of free parameters available with two driving fields does
not allow us to satisfy y00(ω) = y11(ω) and y01(ω) = y10(ω)
simultaneously.

3. Master equation model

As derived in [31], in the dispersive regime, we can fully
model the average evolution of the qubit states using a qubit-
only ME:

ρ̇ =
∑
ijkl

aijkl(t)Pijρ(t)Pkl + Ldρ(t),

aijkl(t) = 2iχ1(1 − δik)((−1)iαkα∗i)

+ 2iχ2(1 − δjl)((−1)iβklβ∗ij ), (D4)

where Pij = |ij 〉〈ij | are the two qubit projection operators,
δij the Kronecker delta function, and Ld is given by the
standard Lindblad type D[A]ρ = AρA† − 1

2 (A†Aρ + ρA†A)
phenomenological qubit dissipation (with rate γ i) and dephas-
ing (with rate γ i

φ) operators Ld = ∑2
i=1 γ i

φD[σ i
z ] + γ iD[σ−].

Adding the qubit relaxation operators makes this equation no
longer exact but is still reasonably valid in the limit κs

1,κ
s
2 �

χ1,χ2 [31]. Since the resonators are traced out in this equation
during the measurement process, we can see a trajectory with
possible non-Markovian revival of coherence due to entangled
photons leaking out of the resonators.

In order to fit the master equation model to the experimental
data, we take several steps. As predicted by the model, the qubit
populations are constant as a function of measurement power.
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data

No Compensation Odd Compensation Even Compensation(a) (b) (c)
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FIG. 11. Master equation fits for the three cases: no-compensation (a), the odd compensation (b) and the even compensation (c). Populations
are used to fit the T1 Lindblad operators and do not show a dependence on the measurement power. For the off-diagonal density matrix, amplitude
and phase are plotted independently. The phase is only plotted if the amplitude of the off-diagonal density matrix elements is above 0.01. This
no-compensation case shows the best agreement between theory and experiment, while the odd and even compensation pulse cases deviate at
larger amplitudes.

They only depend on the qubit T1 dissipation operators, which
are fitted to the diagonal terms, since they fluctuate between
data sets. The density matrix at zero measurement power can
be used to estimate γ i

φ . We used a fit to extract the scaling factor
between the AWG voltage at room temperature and the power
that arrives at the experiment, as well as the interchip loss,
fixing the other system parameters. The results can be found
in Fig. 11. We find excellent agreement with theory for the no-
compensation case, for the other two cases, we simply applied
the compensation in the model without re-fitting. Similar to the
integrated output power, agreement for the two compensation
cases is considerably worse, which we attribute mostly to mixer
imperfections that were not properly accounted for. While we
believe this is the main source of mismatch, we also reach
the limits of the dispersive approximation due to the tuning
qubits (see Appendix F). These effects can be included in a full

two-qubit/two-cavity master equation including higher-order
terms, but this would be computationally much more involved.

4. Stochastic master equation simulation

The JPA in phase-insensitive mode, due to the squeezing,
can be modeled as reading out a single quadrature of the output
field. Thus we can define the angle θ along which we read out.
We approximate the imperfect readout due to photon loss up to
the JPA and finite gain and bandwidth with a single quantity, the
quantum efficiency of the measurement ηm. Modeling single
runs of a homodyne measurement with angle θ and quantum
efficiencyηm requires us to add another superoperatorLm to the
right-hand side of Eq. (D4) adding the stochastic measurement
dynamics to the ME. This allows us to calculate the density
matrix conditioned on the measurement result. This gives a
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stochastic differential equation in Itô form [64] andLm is given
by [31]

Lmρ = √
ηmξ (t)[Mρ + ρM† − Tr(Mρ + ρM†)ρ],

(D5)

where M = eiθ (−√
κs

1ηl�1 + √
κs

2�2), �1(t) =∑
i,j Pijα

ij (t), �2(t) = ∑
i,j Pijβ

ij (t) are resonator-
state-dependent qubit projection operators, ξ (t)dt = dW

is a white noise process satisfying E[dW ] = 0 and
E[dW (t)dW (s)] = δ(t − s)dt and dW is a Wiener increment.
The measured output voltage corresponding to such a trajectory
is given by [31]

V (t) = √
ηmRe(〈M〉) + ξ (t). (D6)

This was used to simulate the measurement including post-
selection and to generate the theory curves for Fig. 3.

Although simulating the SME allows comparing individual
trajectories at each point in time, we only looked at the
qubit-only density matrix at a time where the resonators were
back to the vacuum state. Only at this point in time are the
qubits a useful resource for remote information processing
schemes. Studying the trajectories themselves, on the other
hand, is performed in more detail in Refs. [15,16], which will
be relevant for real-time feedback schemes.

APPENDIX E: QUANTUM STATE TOMOGRAPHY
AND SPAM ERRORS

In this experiment, we diagnose the entanglement, the key
figure of merit, via QST. QST allows us to reconstruct the
density matrix from which the entanglement measures are
computed. Our QST procedure consists of two steps. First,
we do a set of calibration measurements with known input
states to determine the observable M̂0. For a joint dispersive
readout, the measurement operator for a d-dimensional Hilbert
space is of the simple form M̂0 = ∑d−1

k=0 akPk with Pk = |k〉〈k|
[65], so the coefficients ak can be directly read out from
computational basis state inputs, e.g., ak = Tr(M̂0Pk). The
second step is the reconstruction of an unknown ρ using the
now known measurement operator M̂0. We can reduce this to
a simple linear algebra problem where we need to estimate
the d2 − 1 independent basis coefficients of ρ by measuring
the expectation values 〈M̂i〉 = Tr(M̂iρ) of at least d2 − 1 or-
thogonal measurement operators M̂i and solving the resulting
system of equations. The measurement operators Mi can be
effectively obtained by rotating ρ before measurement using

Tr(R̂iM̂
ˆ

R
†
i ρ) = Tr(M̂R̂i

†
ρR̂i). In this experiment, we used the

cardinal set (an overcomplete set of 36 single qubit rotations:
{I,X,Xπ/2, X−π/2, Yπ/2, Y−π/2}×2) on both qubits. The 36 rota-
tions together with four calibration points (each repeated five
times) were measured sequentially and the whole sequence was
repeated 12 800 times. We binned the measurement outcomes
based on the calibration points, where one bin was mostly
comprised of outcomes corresponding to |00〉 and another to
those of |11〉. Using proper normalization, the counts in bin
n for rotation i corresponded to the expectation value 〈M̂n

i 〉
of the bin operator M̂n

i . This resulted in an overcomplete set
of 36 × 2 = 72 equations with 15 unknowns and was solved

(a)

(b)

FIG. 12. (a) Histogram of single-shot measurements of the system
in the nominal ground state reveals additional peaks that coincide with
the |01〉, |10〉, and |11〉 calibration points. (b) A multi-Gaussian fit
can be used to estimate the residual populations of the two qubits for
different conditioning on the pre-measurement. The conditioning on
the ground state can bring down the residual populations to about
1% (0.5%) for qubit 1 (2) by rejecting 10% of the experimental
runs. In practice, the rejection rate was closer 15%–17% indicated
by the vertical line. A simple threshold estimate of the excited state
population gives a slightly higher estimate. The constant offset could
be due to tuning qubit excitations.

by performing standard maximum likelihood techniques with
physicality constraints [66–68].

While QST is a widely used way to confirm entanglement,
its accuracy is limited by state-preparation and measurement
(SPAM) errors. SPAM errors mainly impact the measurement
operator, and thus arise in step 1, the calibration process. They
likely exceed the errors due to imperfect qubit gates.

Assuming the initial state to be perfectly |00〉 is an ap-
proximation. The histograms of the measurement outcomes
projected on one quadrature given in Fig. 12(a) clearly show
multiple peaks which coincide with the average outcomes for
the other computational states. We conditioned on an additional
initial measurement to reduce the residual excitation. The
results after post-selection are shown in Fig. 12(b) giving an
estimated decrease of 6% to less than 2% total excitation
in both qubits. Re-excitation times calculated from T1 and
the measured excitation fraction suggest that the condition-
ing should be limited to reducing the residual excitation
to ∼0.5%.

The conditioning on the ground state paradoxically de-
creases the amount of entanglement in the tomography
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outcome. As an example, for the run giving the highest
entanglement keeping 25% of the data, the extracted density
matrix without conditioning resulted in C = 0.58 ± 0.01 and
FB = 0.761 ± 0.004. After conditioning, the same data set re-
sulted in C = 0.57 ± 0.01 andFB = 0.755 ± 0.004. Reducing
the amount of residual excitation should have increased C if the
QST was accurate, because the conditioning should increase
the purity of the initial state, which in turn would reduce the
mixture in the final state. This points to SPAM errors related
to the residual excitation skewing the QST result.

Monte Carlo simulations of QST reproduce the effect,
pointing to the flawed assumption of pure calibration points,
which are in reality mixed by residual excitation as seen
in Fig. 13. This skews the measurement operators obtained
from calibration and artificially boosts the purity of the
estimated density matrix. For the optimum entangled state,
this results in a significant increase in C. Simulations also
showed that beyond the limit of reducing residual excitation by
conditioning, tomography can be further improved by taking
the known mixture of the calibration points into account. We
can then correct the calibration of the measurement operators
by assuming mixed input states P̃ij instead of pure projectors
Pij , which for |00〉 becomes

P̃00 = (
1 − pe01

)(
1 − pe10

)
P00 + pe01

(
1 − pe10

)
P01

+pe10

(
1 − pe01

)
P10 + pe01pe10P11, (E1)

where pe01 is the excitation fraction in qubit 2, pe10 is the
excitation fraction of qubit 1, and Pij is the projector onto
state |ij 〉. In the simulation (Fig. 13), the correction leads
to a more precise estimate of the density matrix given an
accurate estimate of the residual excitation. Systematic errors
in tomography due to residual excitation likely exceed the
statistical counting errors.

Correcting for the estimated residual excitations, the con-
ditioning on the initial measurement now increases the entan-
glement as expected from C = 0.46 ± 0.01 and FB = 0.71 ±
0.003 to C = 0.51 ± 0.01 and FB = 0.734 ± 0.005. The main
text data were corrected for the estimated residual excitation
in each experimental run, which remained ∼1% on both qubits
after conditioning.

APPENDIX F: ROLE OF THE TUNING QUBITS

While the mismatch in κc for the two chips was significant,
this is an effect that can be fully corrected with the
compensation pulse without affecting the performance of the
protocol. Differences in χ between the two chips could also
be compensated without sacrificing performance. However,
resonator frequency mismatch has different implications and
would have a strong impact on achievable entanglement.
The measurement-induced dephasing due to frequency
mismatch could be eliminated using the compensation field,
but the quantum efficiency would suffer. This is due to the
measurement with a phase-insensitive, low-bandwidth JPA,
which is optimal in the symmetric readout condition. For
either qubit-resonator system which is not symmetrically
driven, meaning that the measurement tone is halfway
between the resonator frequencies for |0〉 and |1〉, the
output information is not confined to one quadrature. Any
information in the de-amplified quadrature is lost, therefore

(a)

(b)

(c)

(d)

00 01 10 11

00
01
10
11

FIG. 13. Simulation of the effects of residual excitations on
quantum state tomography. Tomography runs are simulated giving the
resulting ρ tomo for an underlying density matrix ρ corresponding to
the highest concurrence state. (a) Change in measurement expectation
values for the computational states without residual excitation (RE)
and with 6% total RE symmetrical on both qubits. (b) and (c) Change
in populations and absolute coherence elements of the reconstructed
density matrix as a function of total RE (filled markers). Taking
into account known RE and fixing the measurement operators leads
to the correct reconstruction of the density matrix (open markers).
(d) Change entanglement measures as a function of total RE (filled
markers), reconstructions taking the RE into account (open markers)
lead to the correct values (lines). Statistical error bars are on the order
of the marker size.

realizing the symmetric driving condition simultaneously
for both resonators is essential for maximizing the quantum
efficiency.

Making identical microwave resonators to MHz precision
is technically conceivable but challenging, partially due to the
choice of niobium titanium nitride (NbTiN) film as the base su-
perconductor. The thin film was sputtered with the Nordico tool
from [69]. NbTiN is a high-kinetic-inductance superconductor
due to the low charge carrier density, which leads to a strong
dependence on the film thickness. Therefore the two bare res-
onator frequencies are not identical within the linewidth κi . The
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FIG. 14. Matching resonator frequencies via the dispersive shifts
of the tuning qubits. Resonator transmission is measured for the
respective entanglement qubit in |0〉 and |1〉 and frequencies fR are
extracted from Lorentzian fits for both cases. They are plotted against
the tuning qubit frequencies fQT. Tuning qubit frequency can be varied
by changing the dc flux through its bias line. The two frequencies can
be used to extract χ . Tuning qubits have no measurable effect on the
χ of the entangling qubits in this tuning range, as expected from the
qutrit Tavis-Cummings model.

additional qubits are used to shift their respective resonators via
their Lamb shift, allowing us to match the resonator frequencies
at the cost of introducing additional Kerr nonlinearity.

Tunable low-loss CPW resonators have also been demon-
strated using kinetic inductance [70] or via SQUID loops
[71,72]. Each of the tuning methods leads to Kerr nonlin-
earity in the resonator. The effect of the tuning qubit on the
ideal qubit-resonator system can be modeled via the Tavis-
Cummings Hamiltonian [73]. Tuning qubits were designed
with a top and bottom sweet-spot sitting above and below
the resonator. As seen in Fig. 14, the resonator frequency as
a function of tuning-qubit frequency is well described by the
model. Our measurements were not accurate enough to resolve
the small change in the χ of the entanglement-qubit in the range
we measured. At the operating points,T1 was found to be 3.9 μs
and 4.1 μs for chip 1 and 2, respectively. The critical photon
numbers ncrit = 
2

/4g2 calculated from the entanglement-qubit
frequency and coupling are 193 and 188 for chip 1 and chip
2, respectively, a factor ∼10 above the maximum photon
numbers we reach in the protocol at the optimum entanglement
amplitude. The nonlinearity from the tuning qubits can be
inferred, using the qubit and bare-resonator frequencies and the
coupling constants obtained from the fit above. While photon
numbers never reach ncrit of the entanglement qubits, they
do for the tuning qubits. We calculate ncrit = 50 and 37 for
chips 1 and 2, respectively. An additional unwanted effect is
that residual excitations of the tuning qubits would lead to
additional noise in the readout signal, but it should not be
correlated with the state of the entanglement qubits, such that
it would not skew the tomography result.
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