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Groupwise image registration 
based on a total correlation 
dissimilarity measure for 
quantitative MRI and dynamic 
imaging data
Jean-Marie Guyader  1, Wyke Huizinga1, Dirk H. J. Poot1,2, Matthijs van Kranenburg3,4, 
André Uitterdijk4, Wiro J. Niessen1,2 & Stefan Klein  1

The most widespread technique used to register sets of medical images consists of selecting one image 
as fixed reference, to which all remaining images are successively registered. This pairwise scheme 
requires one optimization procedure per pair of images to register. Pairwise mutual information is 
a common dissimilarity measure applied to a large variety of datasets. Alternative methods, called 
groupwise registrations, have been presented to register two or more images in a single optimization 
procedure, without the need of a reference image. Given the success of mutual information in pairwise 
registration, we adapt one of its multivariate versions, called total correlation, in a groupwise context. 
We justify the choice of total correlation among other multivariate versions of mutual information, 
and provide full implementation details. The resulting total correlation measure is remarkably close 
to measures previously proposed by Huizinga et al. based on principal component analysis. Our 
experiments, performed on five quantitative imaging datasets and on a dynamic CT imaging dataset, 
show that total correlation yields registration results that are comparable to Huizinga’s methods. Total 
correlation has the advantage of being theoretically justified, while the measures of Huizinga et al. were 
designed empirically. Additionally, total correlation offers an alternative to pairwise mutual information 
on quantitative imaging datasets.

Intensity-based image registration using the maximization of mutual information is commonly used for aligning 
pairs of medical images that do not have similar intensity distributions, or are acquired from different modali-
ties1–3. Mutual information belongs to the family of pairwise dissimilarity measures. Pairwise methods quantify 
the alignment of a moving image with a fixed reference image. The optimization process performed in the context 
of pairwise registration therefore considers only two images simultaneously.

Nowadays, imaging datasets often contain more than two images, acquired from different modalities, different 
time points or different subjects, for instance. When more than two images have to be registered, the pairwise 
registration scheme is not always the most adapted. Firstly, the choice of reference image to which the remaining 
image are registered can be arbitrary, but may also influence the registration results, as shown by Geng et al.4. 
Secondly, pairwise registration does not allow the registration of all images in a single optimization procedure, 
which prevents taking into account all image information simultaneously.

Conversely, groupwise image registration methods are fully symmetric (i.e. all images play the same role in 
the registration procedure), and they consist of a single optimization procedure. Given the success of mutual 
information in the context of pairwise image registration, this paper specifically focuses on groupwise registration 
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techniques that are based on the concept of mutual information. Though the formulation of mutual information 
for two images is unique, several multivariate versions exist for its generalization for more than two images. We 
provide theory about the main multivariate dissimilarity measures based on mutual information, that could be 
used for the groupwise registration of medical images. These dissimilarity measures are called interaction infor-
mation5, total correlation6 and dual total correlation7. Total correlation is the groupwise dissimilarity measure 
that we propose to adapt in the context of groupwise image registration.

A preliminary version of our work was presented at a conference8. In the present article, we provide full theo-
retical developments, extensive implementation details, and additional experimental analyses.

Competing state-of-the-art dissimilarity measures for groupwise registration include the sum of variances 
developed by Metz et al.9, the groupwise mutual information method of Bhatia et al.10, and the groupwise dis-
similarity measures based on principal component analysis (PCA) previously developed by Huizinga et al.11. 
The expression of the total correlation dissimilarity measure that we propose is remarkably close to Huizinga’s 
PCA-based groupwise dissimilarity measures, which were shown to outperform competing pairwise and group-
wise state-of-the-art methods on qMRI datasets. The experiments conducted in this article consist of using group-
wise total correlation for the registration of a dynamic CT imaging dataset, and of five quantitative magnetic 
resonance imaging (qMRI) image datasets. Registration results are compared to Huizinga’s methods, but also to 
pairwise registration based on mutual information.

Results
Groupwise registration based on the total correlation dissimilarity measure TC  that we propose in this study is 
tested on six different types of image datasets, which overall represents 42 subjects. Dynamic series of CT images 
were acquired for the first type of image dataset, denoted CT-LUNG. The five other types of datasets, denoted 
T1MOLLI-HEART, T1VFA-CAROTID, ADC-ABDOMEN, DTI-BRAIN, and DCE-ABDOMEN, are qMRI data-
sets for which multiple MR images were acquired using different acquisition parameters (or at multiple time 
points after injection of a contrast agent). For these five qMRI datasets, we fitted a qMRI model to the image 
intensities at each spatial location, and extracted quantitative images: spin-lattice relaxation time (T1) images for 
T1MOLLI-HEART and T1VFA-CAROTID, apparent diffusion coefficient (ADC) images for ADC-ABDOMEN, 
mean diffusivity (MD) images for DTI-BRAIN, and transfer constant (Ktrans) images for DCE-ABDOMEN. More 
details on the image datasets are provided in the Experiments section of the present article.

Registration accuracy. Figure 1 provides a visualization of the image alignment for a CT-LUNG dataset, 
gathering 10 CT images acquired at different time points from the lung area of a patient. Misalignments due to 
respiratory motion are visible when no registration is applied between the images (Fig. 1a), while they disappear 
after applying image registration based on Huizinga’s PCA2  (Fig. 1b) or on the total correlation dissimilarity 
measure TC proposed in this article (Fig. 1c). Visual differences between the results obtained with PCA2  and 

TC  are more limited and harder to identify.
For the five qMRI datasets, Fig. 2 provides quantitative parameter images obtained by applying curve fitting to 

the images before registration, after registration using Huizinga’s PCA2 groupwise dissimilarity measure, and 
after registration using the total correlation dissimilarity measure TC proposed in this article. The fitting models 
used to derive the qMRI images assume that spatial correspondence is ensured between the images used for curve 
fitting. It is therefore expected that quantitative images obtained after image registration will be more reliable than 
without image registration11,12. Based on Fig. 2, visual differences in the estimates tissue maps are easily noticeable 
between the case before image registration, on the one hand, and the cases with PCA2 or TC, on the other hand. 
Such differences are particularly visible at organ interfaces. Slighter changes, identified by green arrows, can be 
identified between the tissue maps obtained with PCA2  and TC.

Full registration accuracy results in terms of landmark/volume correspondence (mTRE or Dice coefficient), 
registration transformation smoothness (denoted ∂ ∂STD T xdet( / )g

), and uncertainty estimation (Cramér-Rao lower 
bound, denoted CRLB), are provided as supplementary material (Tables S1 to S6) for the following dissimilarity 
measures: pairwise mutual information MI , Huizinga’s dissimilarity measures based on PCA PCA and PCA2, 
and the total correlation dissimilarity measure proposed in this article TC .

Table 1 presents a partial version of the registration accuracy results, based on the middle value of the control 
point spacings that were used for the non-rigid B-spline transformation model: 13 mm for CT-LUNG, 64 mm for 
T1MOLLI-HEART, 16 mm for T1VFA-CAROTID, 64 mm for ADC-ABDOMEN, and 64 mm for 

Figure 1. Registration results for a CT-LUNG dataset. The images denoted ‘2’ and ‘3’ stack the voxel 
information of G = 10 images at the locations defined by the dotted lines drawn in the image denoted ‘1’ 
(vertical line: ‘2’, horizontal line: ‘3’).
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DCE-ABDOMEN. Registration performances in terms of landmark correspondence (mean target registration 
error, denoted mTRE) or overlap of volumes of interest (Dice coefficients) are given in Table 1a. For all dataset, 
better alignments (i.e. lower mTRE) or overlaps (i.e. higher Dice coefficients) were obtained with the groupwise 
measures TC, PCA and PCA2 than with pairwise mutual information MI , with one exception: the mTRE 
obtained with PCA2  for the CT-LUNG dataset is higher than the mTRE obtained with MI. The Dice coefficients 
and mTRE results are very similar for TC, PCA and PCA2. The only case for which TC performs slightly worse 
than the two other groupwise measures is on the DCE-ABDOMEN dataset. Table 1b provides values for the 

Figure 2. Tissue maps generated before image registration (top), after image registration with PCA2 (middle), 
and after image registration with TC  (bottom). The fitted values are shown in the myocardium for T1MOLLI-
HEART, in the carotid artery wall for T1VFA-ABDOMEN, in the spleen for ADC-ABDOMEN, in the brain 
parenchyma for DTI-BRAIN, and in the pancreas for DCE-ABDOMEN. Slight visual changes between the 
tissue maps obtained with PCA2  and TC are identified by green arrows.

CT T1MOLLI T1VFA ADC DTI DCE

LUNG HEART CAROTID ABDOMEN BRAIN ABDOMEN

(a) Dice coefficients or mTRE values (mean value ± standard deviation)

mTRE [mm] Dice [%] mTRE [mm] Dice [%] — mTRE [mm]

Mis. 6.72 ± 2.51 48 ± 8 1.47 ± 0.54 70 ± 4 — 8.49 ± 4.54

MI 1.43 ± 0.23 37 ± 11 1.22±0.43 64 ± 16 — 6.46 ± 2.32

PCA 1.40 ± 0.37 53 ± 7 1.11 ± 0.42 71 ± 5 — 6.11 ± 2.33

PCA2 1.56 ± 0.55 52 ± 11 1.08 ± 0.39 75 ± 5 — 5.99 ± 2.18

TC 1.42 ± 0.40 53 ± 11 1.09 ± 0.40 74 ± 5 — 6.18 ± 2.40

(b) Transformation smoothness ∂ ∂STD Tg xdet( / ) [%] (mean value ± standard deviation)

Mis. 0 ± 0 0 ± 0 0 ± 0 0 ± 0 — 0 ± 0

MI 15 ± 4 7 ± 2 2 ± 0 8 ± 3 — 4 ± 2

PCA 8 ± 2 2 ± 1 2 ± 1 3 ± 2 — 4 ± 2

PCA2 7 ± 2 1 ± 1 1 ± 0 3 ± 1 — 2 ± 1

TC 8 ± 2 2 ± 1 1 ± 0 5 ± 2 — 4 ± 2

(c) Uncertainty estimation 90th CRLB  of the fitted parameters (mean value ± standard deviation)

— T1 [ms] T1 [ms] ADC [μm2/ms] MD [μm2/ms] Ktrans [min−1]

Mis. — 92 ± 19 >1000 1.37 ± 0.83 0.096 ± 0.029 2.84 ± 2.30

MI — 97 ± 16 501 ± 83 0.25 ± 0.05 0.084 ± 0.028 3.64 ± 4.13

PCA — 87 ± 16 498 ± 93 0.23 ± 0.06 0.085 ± 0.029 1.52 ± 1.18

PCA2 — 83 ± 12 510 ± 110 0.27 ± 0.05 0.084 ± 0.028 1.27 ± 0.92

TC — 77 ± 13 500 ± 96 0.32 ± 0.05 0.085 ± 0.028 1.87 ± 1.79

Table 1. Registration results.



www.nature.com/scientificreports/

4SCIENTIFIC REPORTS |  (2018) 8:13112  | DOI:10.1038/s41598-018-31474-7

transformation smoothness ∂ ∂STD T xdet( / )g
. In all cases, TC, PCA and PCA2 yield lower (i.e. better) values of 

∂ ∂STD T xdet( / )g
 than MI. The only case for which TC performs slightly worse than the two other groupwise meas-

ures is on the T1VFA-CAROTID dataset. Table 1c provides uncertainty estimations of the qMRI fit (90th CRLB). 
The results indicate that the values of 90th CRLB  are lower (i.e. better) with TC than with MI  for the 
T1MOLLI-HEART and DCE-ABDOMEN datasets, while they are quite similar for T1VFA-CAROTID and 
DTI-BRAIN, and higher (i.e. worse) for the ADC-ABDOMEN dataset. The 90th CRLB obtained with TC  is 
higher than the 90th CRLB  obtained with PCA  and PCA2  for two datasets (ADC-ABDOMEN and 
DCE-ABDOMEN), while it is similar or better for three datasets (T1MOLLI-HEART, T1VFA-CAROTID, and 
DTI-BRAIN). The full results (Tables S1 to S6) are consistent with the results presented in Table 1a–c.

Multivariate joint normality. As detailed in the Method section, the computation of the total correlation 
dissimilarity measure TC  that we propose is based on the approximation that the intensity distribution of the 
images to register is multivariate normal. Cumulative distribution functions (CDF) of the squared Mahalanobis 
distance d2, representing the intensity distribution for each of the six dataset types, are plotted in Fig. 3. According 
to these plots, none of these measure CDF follows the theoretical multivariate normal CDF (χG

2 distribution), 
which suggests that the image intensities of the images do not follow a multivariate normal distribution.

Computational efficiency of total correlation TC. Figure 4 illustrates the evolution of the average time 
per iteration obtained with groupwise total correlation TC  for three image registration parameters: the number 
of B-spline control points per image, the number of images G, and the number of spatial samples taken to evaluate 
the dissimilarity measure. The results show that the average registration time per iteration monotonically 
increases with each of the considered registration parameter. With the present implementation of TC  and of the 
registration components of the elastix software used to perform the registrations, the results indicate that the 

Figure 3. Cumulative distribution functions for one subject of the six image datasets (aligned case). The 
observed CDF (blue) is compared with the theoretical CDF of a chi-square distribution with G degrees of 
freedom (red).

Figure 4. Average time per iteration with respect to the number of B-spline control points per image (a), the 
number of images G (b), and the number of spatial samples (c).
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number of B-spline control points has a limited influence on the average time per iteration as it remains close to 
9 seconds for the whole span of numbers of B-spline control points that we considered. The experiments suggest 
that the number of images G influences the computation time most. For instance, when the number of image is 
G = 40, the average iteration time is 5 seconds, while this time reaches about two minutes for G = 160 images. In 
terms of the number of spatial samples, multiplying the number of spatial samples by 4 ends up in an average time 
per iteration that is multiplied by 6.

Discussion
The focus of this paper was to adapt a multivariate version of mutual information in the context of the group-
wise registration of medical images, so that it can be used to register two or more images in one optimization 
procedure.

Among the main multivariate versions of mutual information, namely interaction information II , total cor-
relation TC  and dual total correlation TC, total correlation TC theoretically allows to quantify the shared 
information between any subset of the images to register. Besides, the expression of total correlation is particu-
larly straightforward to apply for the registration of G ≥ 2 images, provided that the image intensity distribution 
is approximated by a multivariate normal distribution.

The expression of the approximated total correlation dissimilarity measure TC  that we devise is remarkably 
analogous to the expressions of two other dissimilarity measures PCA  and PCA2 introduced by Huizinga et al.11, 
which were developed based on the intuition that an aligned set of images can be described by a small number of 
high eigenvalues. The expressions of these dissimilarity measures are all sums of functions of the eigenvalues of 
the correlation matrix K (compare Equations (18), (25) and (26)). Huizinga et al.11 had proposed to weigh more 
the last eigenvalues (the λi with the highest i indexes) than the first ones (the λi with the lowest i indexes) so that 
as much variance as possible is explained by a few large eigenvectors. The form of TC obtained in this study 
confirms the intuition of Huizinga et al.11, since the natural logarithm in Equation (18) also puts more weight on 
the lower eigenvalues than on the higher ones.

Results obtained on a dynamic imaging dataset and on five multi-parametric datasets show that the total cor-
relation method that we propose yields comparable results as PCA-based methods of Huizinga et al.11, and better 
registration results than pairwise mutual information MI . The main advantage of TC  with respect to PCA  and 

PCA2  is that it is more theoretically justified: the contribution of each eigenvalue used to compute TC  is auto-
matically calibrated and follows naturally from the concepts of multivariate mutual information, whereas for 

PCA  and PCA2, the eigenvalue calibration was empirically chosen.
Our study shows that even though the intensity distribution of the datasets to register is not multivariate nor-

mal (Fig. 3), TC  yields registration results that are better than mutual information and similar to the PCA dis-
similarity measures of Huizinga et al.11. This is the case for a total of six diverse multi-parametric datasets, which 
suggests that approximating the intensity distributions, as done in this article, yields optimization minima that 
result in comparable or better registration accuracies than other state-of-the-art pairwise and groupwise tech-
niques. On multi-parametric datasets, the results suggest that the approximation by a multivariate normal distri-
bution is not detrimental to the registration results.

In the current implementation of the total correlation registration technique, increases in the number of 
images G have the largest impact on the average time per iteration, which is not surprising as both the amount of 
image data to register and the number of transformations to estimate scale with a factor G; moreover, estimating 
the correlation matrix K and its eigenvalue decomposition become increasingly computationally demanding. 
Further optimizations could improve the scalability of total correlation with respect to the number of images. 
The computation time also scales linearly with the number of spatial samples. Thanks to the use of the stochastic 
gradient descent optimization routine, we were able to use a relatively low number (2048) of spatial samples in 
our experiments, while still achieving accurate registration.

Other possible applications of the total correlation dissimilarity measure proposed in this article include 
motion tracking in ultrasound image sequences13,14, motion compensation in dynamic PET15 or dynamic 
contrast-enhanced CT16, and for population template construction17. Future research should validate the perfor-
mance of the method in such contexts.

Conclusion
In conclusion, we proposed an implementation of an approximated version of total correlation TC for which the 
registration results are comparable to the results obtained with the dissimilarity measures of Huizinga et al.11, on 
multi-parametric datasets. Our results indicate that approximating the intensity distributions by a joint normal 
distribution for the sake of efficient calculation of the entropy, used to derive total correlation TC , does not con-
stitute a limitation in the practical application of TC  to quantitative imaging datasets. Total correlation TC has 
the advantage of being elegant and theoretically justified, while the dissimilarity measures PCA and PCA2 pro-
posed by Huizinga et al.11 were elaborated empirically. Additionally, groupwise total correlation TC  offers an 
alternative to pairwise registration based on mutual information on multi-parametric imaging datasets.

Method
Let us consider  M M{ , , }G1= ... , a series of G images that have to be registered. Each image Mg, consists of N 
voxels. To quantify how well the G images are aligned, a dissimilarity measure has to be defined. In this study, we 
consider dissimilarity measures based on the concepts of mutual information. We choose the convention to for-
mulate the measures as dissimilarity measures instead of similarity measures, so that the registration problem can 
be written as a cost function minimization problem.
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Pairwise mutual information. Mutual information is a robust measure that is commonly used for the 
pairwise registration of datasets of medical images, including multimodal datasets3. For G = 2 images M1 and M2, 
the negated mutual information MI  is computed as follows1,3:

M M H M M H M H M( , ) ( , ) ( ) ( ) (1)MI 1 2 1 2 1 2= − −

with H(M1) the entropy18 of image M1, H(M2) the entropy of image M2, and H(M1, M2) the joint entropy of M1 
and M2. For two images M1 and M2, the joint entropy can be computed as follows19:

H M M P x x P x x( , ) ( , ) ln[ ( , )]
(2)x x

1 2 1 2 1 2
1 2

∑∑= −

where x1 and x2 represent the discrete values of images M1 and M2, respectively. P(x1, x2) is the probability of these 
values occuring together. P(x1, x2) ln[P(x1, x2)] is defined to be 0 if P(x1, x2) equals 0.

When the dataset of images to register contains G > 2 images, it is still possible to use a pairwise method to 
register the images, but several independent registration procedures have to be performed. A typical method 
consists of selecting one of the images as fixed reference, and then successively applying pairwise registration with 
the remaining G−1 images considered as moving images (Fig. 5a). This technique is not well suited to registration 
problems for which there is no obvious reference image. Besides, the registration results may be different accord-
ing to the choice of fixed reference image, as shown by Geng et al.4. Seghers et al.20 introduced a method that we 
will refer to as semi-groupwise, which is based on multiple pairwise registrations and does not require the selec-
tion of a reference space. For each i, Mi is taken as fixed image and G−1 independent registration are performed 
between each remaining image, Mj, yielding G−1 transformations Ti→j per fixed image Mi. Each image Mi is then 
resampled into an average or mid-point image space using Ti

1− (x), the inverse of the arithmetic mean of the trans-
formations Ti→j (Fig. 5b). The method of Seghers et al.20 has the disadvantage of requiring G × (G−1) registration 
procedures, which becomes computationally complex when G grows. It also does not allow to register all images 
in a single optimization procedure.

Groupwise dissimilarity measures based on multivariate mutual information. Groupwise regis-
tration techniques allow to register G ≥ 2 images. In this study, we will focus on groupwise techniques that allow 
to register all images in one optimization procedure, and that treat the images equally (Fig. 5c). In particular, the 
order in which the images are supplied should have no influence on the value of the groupwise dissimilarity meas-
ure ...M M M( , , , )G1 2 , and therefore no influence on the registration results.

This article more precisely focuses on groupwise generalizations of mutual information, given the wide inter-
est and range of applications of that dissimilarity measure in the context of pairwise image registration3. There 
exist multiple multivariate forms of mutual information5–7, the concepts of which can be used for groupwise 
image registration.

The first multivariate generalization of mutual information is known as interaction information5, denoted II . 
It measures the amount of information shared by all the images. For the G images of , negated interaction 
information is written:

∑= −
⊆

−D M
M

H V( ) ( 1) ( )
(3)V

G V
II

with V ⊆  meaning that V can be any subset of images of  (e.g. if G = 3, then V successively represents the 
following subsets of images: {M1}, {M2}, {M3}, {M1, M2}, {M1, M3}, {M2, M3}, and {M1, M2, M3}), |V| the number of 
images in the corresponding subset, and H(V) the joint entropy of the subset V. For G images M1...MG, the joint 
entropy is the generalization of Equation (2):

T1

M1

M2 M3

T2 T3

(c)

M1

M2 M3

(a)

T1 2 T1 3

M1

M2 M3

(b)

T1 2 T2 1 T1 3T3 1

T2 3

T3 2

Figure 5. (a) Pairwise registration scheme (the orange frame indicates that this method requires the selection 
of a reference image), (b) semi-groupwise registration scheme proposed by Seghers et al.20, and (c) groupwise 
registration scheme.
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∑ ∑... = − ... ... ...H M M P x x P x x( , , ) ( , , ) ln[ ( , , )]
(4)

G
x x

G G1 1 1
G1

where the x1, ..., xG are the values of images M1, ..., MG, respectively. The same definitions as for P(x1, x2) and P(x1, 
x2)ln[P(x1, x2)] are directly extended for P(x1, ..., xG) and P(x1,..., xG)ln[P(x1, ..., xG)]. Interaction information 
quantifies the information shared together by images M1, ..., MG

21. This means that if at least one of the images of 
 shares no information with all other images, the interaction information will be zero21,22.

The second form of multivariate mutual information, called total correlation6, measures the amount of infor-
mation shared between any subset of . The negated total correlation is written as:

∑= −














=

H H M( ) ( ) ( )
(5)g

G

gTC
1

D M M

with H( ) the joint entropy of the images of the set M M{ , , }G1 = ... .
The third form is a refinement of total correlation called dual total correlation7, and can be written as:

D M M M∑=








|








−
=

H M M H( ) ( ( \ )) ( )
(6)g

G

g gDTC
1

with M\ g  the set of images {M1, ..., MG} without Mg. H M M( ( \ ))g g|   is the conditional entropy19 of Mg given 
M\ g . In other terms, |H M M( ( \ ))g g  is the entropy of the image Mg given the knowledge of images {M1, ..., 

Mg−1, Mg +1, ..., MG}.
Theoretically, both total correlation and dual total correlation quantify the amount of shared information 

between all possible combinations of images, while interaction information only quantifies the amount of infor-
mation shared by all images23. Venn diagrams19,23,24 for II, TC  and DTC are shown in Fig. 6. In the context of 
image registration, TC and DTC  seem more adapted than II , as they are built to quantify shared information 
not only between all images, but also between any of their subsets21,22. In particular, including an image with little 
dependence towards the others would impair the registration of the remaining images when using II, while this 
would theoretically not be the case when using TC or DTC. We therefore chose to consider the dissimilarity 
measures based on total correlation in order to construct a groupwise dissimilarity measure.

Groupwise total correlation. In this section, we describe how total correlation, as expressed in Formula 
(5), can be brought to practical use in the context of image registration. As such, computing total correlation 
implies computing the joint entropy H( ), but this computation is subject to the curse of dimensionality25: the 
evaluation of joint entropy requires to compute a G-dimensional joint histogram that becomes increasingly 
sparser as G increases, and therefore becomes computationally prohibitive.

Let us consider a random variable ∈ X G following a G-variate normal distribution given by:

f X
C

X C X( ) 1
det(2 )

exp 1
2

( ) ( )
(7)

T 1

π
μ μ=



− − −





−

with μ ∈ G an expectation vector, ∈ ×C G G a covariance matrix, and with det(.) the determinant operator. Ali 
Ahmed et al.26 have shown that the entropy of the multivariate normal variable X may be written as:

π= + +H G GX C( )
2 2

ln(2 ) 1
2

ln(det( )) (8)

To circumvent the curse of dimensionality, and make it possible to use registration in a groupwise manner on 
datasets containing any number G ≥ 2 images, we propose to use Equation (8) in the context of G images 
 = ...M M{ , , }G1 . For the sake of efficient calculation of the entropy, we approximate the intensity distribution 
of the images by a joint normal distribution, and we make the hypothesis that the minimum of the resulting cost 
function is still a good solution for the underlying registration problem. Let M be a N × G matrix in which each 
image Mg is represented by a column. The matrix C of covariances between the images Mg is obtained as follows:

N
C M M M M1

1
( ) ( ) (9)

T=
−

− −

with M, a matrix that has in each of its column the column-wise average of M. To make the method robust to 
linear intensity scalings and offsets, we incorporate an intensity standardization (i.e. z-score) within the definition 
of the dissimilarity measure. This is done by computing the entropy H( ) using the correlation matrix K instead 
of the covariance matrix C, with:

K C (10)1 1= Σ Σ− −

with Σ a diagonal matrix with the standard deviations of the columns of M as its diagonal elements. A diagonal 
element Σgg of Σ verifies:
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∑Σ =
−

−
=N

M M1
1

( )
(11)gg

i

N

g i g
1

,
2

where the Mg,i are the individual voxel values and Mg  the average voxel value of image Mg . By construction, each 
diagonal element of the correlation matrix K is equal to 1. The expression of the joint entropy therefore becomes:

 π= + +H G G K( )
2 2

ln(2 ) 1
2

ln(det( )) (12)

Equation (12) can also be used to derive the marginal entropies H(Mg). When considering only one image Mg, 
the correlation matrix K is the scalar 1. All H(Mg) are therefore constant and equal to:

π= +H M( ) 1
2

1
2

ln(2 ) (13)g

By combining Equations (5), (12) and (13), we define the dissimilarity measure based on total correlation TC 
as follows:

Figure 6. Venn diagram representations for three images M1, M2 and M3. (a) The green, red and cyan circle 
represent the entropy of each image. The fact that the images share information is symbolized by the fact that 
these circles overlap. Subfigures (b), (c) and (d) were constructed based on Equations (3), (5) and (6). In (c), the 
dark greay area signifies that its contribution to the dissimilarity measure is twice as high as the contribution of 
each light-grey area.
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D M ∑ λ= =
=

K( ) 1
2

ln(det( ))) 1
2

ln
(14)j

G

jTC
1

using Kdet( ) j
G

j1 λ= ∏ = , with λj the jth eigenvalue of K, and λj > λj+1. Such a simple expression was not found for 
dual total correlation, which is why we selected total correlation as groupwise dissimilarity measure.

Gradient-based optimization and implementation. To implement the approximated version of TC 
provided in Equation (14), we define an interpolation scheme based on B-splines. This scheme associates with 
each original image Mg a continuous and differentiable function Mg(x) of the spatial coordinate x. The aim is to 
simultaneously bring the images Mg(x) to an average space by means of a transformation T(x, μ), where μ is a 
vector containing the parameters μg that correspond to the transformation Tg(x, μg) related to each image Mg. 
Examples of transformation models are the affine model, or the non-rigid model in which deformations are mod-
eled by cubic B-splines27.

In the groupwise scheme, the measure  quantifies the dissimilarity between all transformed images Mg(Tg(x, μg)). 
We adopted the pull-back definition of a warped image. Groupwise registration can therefore be formulated as the 
constrained minimization of the dissimilarity measure  with respect to μ, as previously proposed by Huizinga et al.11:

 M T M Tx xargmin ( ( ( , )), , ( ( , )))
(15)G G G1 1 1μ̂ μ μ= ...

μ

subject to the following constraint, allowing to define a mid-point space28:

0
(16)g

G

g
1

∑ μ =
=

The implementation of the total correlation dissimilarity measure TC  was performed as part of the open 
source software package elastix29. The adaptive stochastic gradient descent (ASGD) developed by Klein et al.30 is 
used as optimization method for image registration. This method randomly samples positions in the image space 
at each iteration in order to reduce computation time. Sampling is done off the voxel grid, which was shown to be 
necessary to reduce interpolation artefacts29. A multi-resolution strategy is used: the images are Gaussian-blurred 
with a certain standard deviation, which is decreased at each resolution level. This means that the large deforma-
tions are corrected first, and that finer deformations are corrected in subsequent levels. Linear interpolation is 
used to interpolate the images during registration, which reduces computation time, but cubic B-spline interpo-
lation was used to produce the final registered images. For the chosen ASGD optimization method, the gradient 
of the dissimilarity measure is needed. Based on Equation (14) and van der Aa et al.31, we find:

 v vK1
2

1 1
2

1

(17)j

G

j

j

j

G

j
j j

TC

1 1

T∑ ∑μ λ

λ

μ λ μ
∂

∂
=

∂

∂
=






∂
∂




= =

where vj
T is the jth eigenvector of K. Similarly to van der Aa et al.31, we assume that the repetition of eigenvalues is 

unlikely.
When the eigenvalues λj tend towards zero, evaluating TC implies taking the natural logarithm of a near-zero 

number (as shown in Equation (14)), which might result in a failing optimization. We therefore introduce an 
adjusting constant c ∈ + that is added to the eigenvalue λj before taking the natural logarithm:

c cK I( ) 1
2

ln (det( )) 1
2

ln ( )
(18)j

G

jTC
1

∑ λ= + = +
=

D M

where I is the identity matrix. The gradient of the adjusted total correlation dissimilarity measure therefore 
becomes:

c c
v vK1

2
1 1

2
1
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+

∂

∂
=

+






∂
∂




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To derive an appropriate value for c, we make the assumption that the first mode, corresponding to λ1, 
accounts for half of the total data variation. Given that the trace of K is equal to the sum of its eigenvalues, we can 
write that Ktr( ) i

G
i1λ= ∑ = . In addition, the diagonal elements of the correlation matrix K are all equal to 1, which 

induces that GKtr( ) i
G

i1λ= = ∑ = . The assumption that the first mode accounts for half of the total data variation 
therefore yields λ1 = G/2. We then constrain the ratio (λ1 + c)/(λG + c) to G, so that the weights 1/(λi + c) in 
Equation (19) remain within a known, finite range. We also make the assumptions that c ≪ G and that λG ≪ c. 
This leads to the solution c = 0.5. In addition to solving a computational issue, the constant c introduces a lower 
bound on the variance associated with each eigenvector. Initial experiments confirmed that with this choice for c, 
occasional numerical instabilities were successfully eliminated, while not visibly affecting the results in other 
cases.

Based on Equation (10), the expression of ∂K/∂μp in Equation (19) becomes:
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The property of commutativity of the dot product yields:

v v v vAB B A (21)T T T T=

with A and B, two matrices and v a vector. Using Equations (19–21), the derivative of TC  with respect to an ele-
ment μp becomes:
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To obtain ∂Σ−1/∂μp, the diagonal elements Σ−
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1 of the diagonal matrix Σ−1 can be derived one by one:
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The quantity ∂M/∂μp is computed as follows:
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It was verified that the derivative M/ pμ∂ ∂  of the mean intensities was negligibly small and it was therefore 
ignored in the implementation.

Related groupwise dissimilarity measures. Huizinga et al.11 previously presented two dissimilarity 
measures, the expressions of which are close to the total correlation measure presented in the current article. 
Huizinga’s dissimilarity measures are based on PCA and rely on the idea that an aligned set of multi-parametric 
images can be described by a small number of high eigenvalues, since the underlying model mg is low-dimensional 
(i.e. the size Γ of θ is lower than G). A misaligned set of multi-parametric images would, on the contrary, be char-
acterized by an eigenvalue spectrum that is more flat: more eigenvalues of average intensity are required for 
describing the data in that case.

The first dissimilarity measure introduced by Huizinga et al.11, denoted PCA , quantifies the difference 
between the sum of all eigenvalues and the sum of the first few eigenvalues:

∑ ∑ ∑λ λ λ= − =
= = = +

( )
(25)j
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j
j L

G
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1 1 1

D M

with L a user-defined constant with 1≤L≤G, and λ∑ = == tr GK( )j
G

j1 . This means that PCA  is the sum of the 
lowest G−L eigenvalues. Contrary to PCA , the second dissimilarity measure, denoted PCA2 , does not require 
the selection of an arbitrary cut-off L. It consists of weighting the last eigenvalues more than the first ones:

∑ λ=
=

D M j( )
(26)j

G

jPCA2
1

The dissimilarity measures of Huizinga et al.11 were developed based on different ideas than total correlation: 
PCA and PCA2  were developed based on the concepts of PCA, while TC  is a multivariate derivation of mutual 
information. Nevertheless, the expressions of PCA  and PCA2 , on the one hand, and of TC , on the other hand, 
happen to resemble each other quite closely: all of them consists of a sum of functions of the eigenvalues.

The main disadvantage of Huizinga’s PCA with respect to the other techniques is that it requires to choose the 
cut-off L. In PCA2 , this user-defined constant is avoided, but the weights j in Equation (12) are actually still cho-
sen arbitrarily. For the total correlation dissimilarity measure TC  that we propose is that the contribution of each 
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eigenvalue follows naturally from the derivation of mutual information. A key asset of TC  is therefore that the 
influence of each eigenvalue is automatically calibrated, because the expression of the dissimilarity measure is 
derived from the concept of mutual information.

Implementation codes. The implementation of total correlation will be made available within the open 
source image registration package elastix, downloadable at the following address: http://elastix.isi.uu.nl.

Experiments
The quantitative imaging datasets previously considered by Huizinga et al.11 are covered by the more generic term 
of multi-parametric datasets, i.e. datasets {M1, ..., MG} for which the images Mg are characterized by an underlying 
model mg describing their intensity values, such that:

M mx x x( ) ( ( )) ( ) (27)g g θ ε= +

with θ a vector (dimension Γ < G) containing the model parameters, and ε the noise at coordinate x. An example 
of model is the monoexponential model θ = −m S b u uD( ) exp( )g g g g0

T  used in diffusion tensor imaging, with 
θ = (S0, D11, D12, D13, D22, D23, D33), ug the diffusion gradient direction vector, D a 3 × 3 symmetric diffusion ten-
sor, and b the b-value32.

In particular, Huizinga et al.11 applied the groupwise dissimilarity measures PCA  and PCA2 to a variety of 
multi-parametric datasets, and compared the results with other state-of-the-art techniques: pairwise mutual 
information MI , the accumulated pairwise estimates (APE) introduced by Wachinger and Navab33, the group-
wise sum of variances designed by Metz et al.9, and the groupwise mutual information method of Bhatia et al.10. 
Huizinga et al.11 concluded that their measures PCA and PCA2 yielded better or equal registration results with 
respect to the other tested methods.

The present experiment uses total correlation TC as groupwise dissimilarity measure for the registration of 
the same datasets as in Huizinga et al.11. On these datasets, the methods of Huizinga et al.11 were shown to be the 
best ones, which is why we will compare the registration results of TC  with PCA and PCA2 only. The results 
reported by Huizinga et al.11 for the other dissimilarity measures are directly comparable with the results reported 
in the present study.

Description of the six image datasets. The first dataset, denoted CT-LUNG34, consists of ten patient 
subsets containing G = 10 three-dimensional CT images of the thorax. The intensity distribution in this dynamic 
imaging dataset are analogous in all images, which means that the model mg can be considered as a constant 
(see Equation (27)): it is therefore a particular case of multi-parametric dataset. The second study, denoted 
T1MOLLI-HEART35, consists of nine T1-weighted MRI datasets of porcine hearts with transmural myocardial 
infarction of the lateral wall. G = 11 two-dimensional images were acquired for nine subjects. For each registra-
tion case, a voxelwise curve fitting was applied to the registered images, producing quantitative T1 maps. The third 
study, denoted T1VFA-CAROTID36, involves MRIs of the carotid arteries. G = 5 three-dimensional images were 
acquired for 8 human patients. For each patient, the images were registered and fitted to obtain quantitative T1 
maps. The fourth study consists of DW-MR images of the abdominal region, and is denoted ADC-ABDOMEN12. 
Five datasets, each of them including G = 19 three-dimensional images, were registered and fitted to produce 
ADC maps. The fifth study is denoted DTI-BRAIN37–41 and consists, for each of the five considered datasets, of 
registering diffusion tensor images (DTI) of the brain. The number of images to register varied between G = 33 
and G = 70 for each dataset11. The fitted parameter is the mean diffusivity (MD). The sixth study involves DCE 
images of the abdomen. Five DCE-ABDOMEN42 datasets were acquired, each of them containing G = 160 
three-dimensional images. The fitted parameter of interest considered in this study is Ktrans. The full descriptions 
of the fitting models are provided by Huizinga et al.11.

All human data used in this study came from anonymized datasets. Data from the CT-LUNG dataset was 
obtained from a publicly available dataset34 available at the following address: https://www.dir-lab.com. The ethics 
committee of the Academisch Medisch Centrum, Amsterdam, the Netherlands, approved the research related to 
the T1VFA-CAROTID and DCE-ABDOMEN datasets. The Research Ethics Committee of the Royal Marsden 
Hospital, United Kingdom, approved the research related to the ADC-ABDOMEN dataset. The medical eth-
ics committee for research in humans of the University Medical Center Utrecht, the Netherlands, approved the 
research performed on the DTI-BRAIN dataset. Informed consent was obtained from all patients in human 
datasets. Porcine data from the T1MOLLI-HEART dataset were approved by the Animal Ethics Committee of the 
Erasmus MC Rotterdam, the Netherlands. All studies were carried out in accordance with the relevant guidelines 
and regulations.

Registration characteristics. We selected the same registration settings as Huizinga et al.11, for compari-
son purposes. The dissimilarity measures were applied in identical environments. Apart from the dissimilarity 
measure, all other registration settings such as the choice of optimizer, number of resolutions, number of itera-
tions or number of considered samples, were identical. Two resolutions of 1000 iterations were used for all six 
image datasets. To account for deformations caused by heart-pulsations and breathing, we used a B-spline trans-
formation model for the CT-LUNG, T1MOLLI-HEART, T1VFA-CAROTID, ADC-ABDOMEN and 
DCE-ABDOMEN datasets. The registrations were performed for three distinct B-spline grid spacings: 32 mm, 
64 mm and 128 mm for the T1MOLLI-HEART, ADC-ABDOMEN, DCE-ABDOMEN datasets, 8 mm, 16 mm 
and 32 mm for the T1VFA-CAROTID dataset, and 6 mm, 13 mm and 20 mm for the CT-LUNG dataset. All results 
are reported as supplementary material (Tables S1 to S6). Results for the intermediate values of the spacings (i.e. 
either 64 mm, 16 mm or 13 mm), are reported in the Results section of this article. To account for deformations 

http://elastix.isi.uu.nl
https://www.dir-lab.com
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caused by head motion and eddy current distortions, we used an affine transformation model for the DTI-BRAIN 
dataset. When applying PCA , the value of L was 1 for CT-LUNG, 3 for T1MOLLI-HEART, 1 for 
T1VFA-CAROTID, 4 for ADC-ABDOMEN, 7 for DTI-BRAIN, and 4 for DCE-ABDOMEN.

Evaluation measures. No ground truth alignment was available for any of the six datasets considered. 
However, registration performance was evaluated based on four different measures, described in Huizinga et al.11,  
and briefly described in this section.

The first two measures are based on landmark correspondence and overlap of volumes of interest. Landmarks 
were manually defined on images of the T1VFA-CAROTID and DCE-ABDOMEN datasets. The correspondence 
between the corresponding landmarks was evaluated by computing a mean target registration error (mTRE). In 
the T1MOLLI-HEART case, segmentations of the myocardium were outlined on between 6 and 9 images per 
patient. In the ADC-ABDOMEN case, the spleen was manually delineated on 8 images. For these two cases, the 
overlap between the segmented structures was then evaluated using a Dice coefficient. For the DTI-BRAIN study, 
neither landmarks nor structures could be reliably identified on the diffusion weighted images, which is why no 
overlap or point correspondence was calculated11.

The second measure quantifies the smoothness of the transformation obtained through registration. Extreme 
and non-smooth deformations are unexpected. The smoothness of the deformation field can therefore be used to 
identify such undesirable transformations. A smoothness quantification can be obtained by computing the stand-
ard deviation of the determinant of ∂Tg/∂x over all x for all images: ∂ ∂STD T xdet( / )g

. Smoothness was quantified for 
all datasets except for DTI-BRAIN because an affine transformation was used in that last case. The smoother the 
transformation, the lower the quantity ∂ ∂STD T xdet( / )g

.
The last evaluation measure is an uncertainty estimation of the qMRI fit. For the five qMRI datasets, curve 

fittings were performed to generate quantitative images. The fitted values were evaluated in the myocardium for 
the T1MOLLI-HEART dataset (T1 values), in the carotid artery wall for the T1VFA-CAROTID dataset (T1 val-
ues), in the spleen for the ADC-ABDOMEN dataset (ADC values), in the brain parenchyma for the DTI-BRAIN 
dataset (MD values), and in the pancreas for the DCE-ABDOMEN dataset (Ktrans values). The qMRI models were 
fitted using a maximum likelihood estimator that takes into account the Rician characteristic of the noise in MR 
data. We used the fitting same method as Huizinga et al.11, based on the work of Poot et al.43. The uncertainty of 
these fitted qMRI model parameters can be quantified by the 90th percentile of the square root of Cramér-Rao 
lower bound (CRLB), which provides a lower bound for the variance of the maximum likelihood parameters. This 
uncertainty estimate is denoted 90th CRLB.

Assessment of multivariate joint normality. As mentioned in the Method section, the computation of 
the total correlation dissimilarity measure TC that we propose is based on the approximation that the intensity 
distribution of the images to register is multivariate normal. For most datasets, however, the intensity distribution 
is expected not to be multivariate normal. The underlying idea is that the approximated dissimilarity measure will 
result in the same minimization result as if the approximation had not been done.

A second interest of the experimental setting is therefore to evaluate how multivariate normal the inten-
sity distributions are for the six types of datasets that are registered in this study, and in the light of the regis-
tration accuracy results, to assess whether the approximation that we made can be considered as sensible on 
multi-parametric datasets.

The joint normality of two images can be assessed by computing and visualizing their joint histogram. 
Assessing joint normality on more images requires other methods. A possible graphical approach to analyze the 
multivariate joint normality of G images is to compare the distributions of observed Mahalanobis distances with 
the distribution of a chi-square distribution with G degrees of freedom χG

2. A squared Mahalanobis distance di
2 

(with i = 1...N) can be computed at each voxel location Mg(i), by: d y y y yS( ) ( )i i m
T

i m
2 1= − −− , with yi = [M1(i), .., 

MG(i)]T, the sample mean vector y y N/m i
N

i1= ∑ = , and the sample covariance = ∑ − − −= y y y y NS ( )( ) /( 1)i
N

i m i m
T

1 . 
It has been shown that the sample squared Mahalanobis distance converges to G

2χ  when y y S( , )i k m~ 44. To 
graphically check whether the distribution of intensities of M is joint normal, we will plot the cumulative distri-
bution function (CDF) of d2 and χG

2 in the same graph. If the CDF of the squared Mahalanobis distances d2 
approaches this of G

2χ , then we will consider the data as joint normal.

Computational efficiency of total correlation TC. To study the computational efficiency of the pro-
posed total correlation dissimilarity measure TC, the average time per iteration is studied by varying three reg-
istration parameters: the number of images G that are simultaneously registered, the number of spatial samples 
taken to evaluate the groupwise dissimilarity measure, and the number of B-spline control points of the transfor-
mation model used to warp the images. The influence of these three parameters on the average time per iteration 
is studied by varying each of them while setting the two remaining ones at values in the range of those described 
in the Registration characteristics section:

•	 when the number of B-spline control points evolves, the number of images G is set to 50, and the number of 
spatial samples to 1024. The numbers of B-spline control points per image vary between 50 and 20000;

•	 when the number of images G evolves, the number of B-spline control points is set to 500 per image, and the 
number of spatial samples to 1024. The numbers of images G cover the characteristics of the images described 
in the ‘Description of the six image datasets’ section (i.e. G = 5...160);

•	 when the number of spatial samples evolves, the number of B-spline control points is set to 500 per image, 
and the number of images G is set to 50. We considered numbers of spatial samples between 16 samples and 
8192.
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