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Abstract

Maximum Satisfiability (MaxSAT) is a known problem within the optimization field which has led many
different solving approaches to be devised in the last several decades. From Linear Search to unsat-
isfiable core-based solvers, many MaxSAT algorithms rely on cardinality constraints to express how
many soft clauses can be violated at most. However, as MaxSAT is expressed in the Conjunctive Nor-
mal Form, there is a need to translate, or encode, these cardinality constraints into CNF. A popular
encoding algorithm, the Totalizer Encoding, is used within these solvers - a system of encoding that
builds a binary tree to express the cardinality constraint. This paper aims to introduce an alternate con-
struction for the Totalizer Encoding, referred to as the Layered Totalizer Encoding, which interleaves
the mechanics of encoding and solving as to cut down on runtime as well as potentially solve previ-
ously unsolved instances. The research shows that the Layered Totalizer Encoding outperforms Linear
Search on average, solves more instances than Linear Search, and can be tuned through heuristics
to show even more favorable results. Moreover, the Layered Totalizer Encoding is shown to not only
work as a standalone algorithm, but can also boost the performance of the OLL algorithm.
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1
Introduction

The field of optimization in mathematics and computer science has long been a subject of extensive
research and continues to hold significance due to its far-reaching implications in everyday life. Notable
examples of optimization problems are Network Routing [24], Resource Allocation [26], and different
scheduling demands in different industries [8]. A noteworthy problem in the field of optimization is
MaxSAT due to its widespread usage [22]. Currently, most of the research on MaxSAT solvers is
focused on using unsatisfiable cores to create cardinality constraints and find the optimal solution. The
construction and encoding of these cardinality constraints significantly affect the complexity of these
algorithms. Therefore, the objective of this study is to enhance the Totalizer Encoding technique [20] by
exploiting intermediate cardinality constraints, and perform a comparative analysis between this new
manner of encoding and the established Linear Search algorithm [17].

The work presented in this paper aims to answer three research questions.

• To what extent does lower boundary tightening on individual nodes in the Totalizer En-
coding improve the performance of the Linear Search algorithm? This is the main research
question which sets the tone for the rest of the queries. Namely, the goal is to discover whether
this new approach to encoding could lead to better runtimes and potentially solve new instances.

• How can heuristic-tuning further improve the performance of the Layered Totalizer Encod-
ing? Due to the many different factors at play when solving a MaxSAT instance and encoding
cardinality constraints, it is important to look into how the Layered Totalizer can further be im-
proved. These factors range everywhere from MaxSAT instance size, to hardware specifications,
to SAT Solver choices, however the specific performance factor of interest for this study is the
variable ordering in the Totalizer tree.

• How does the OLL algorithm perform when the Layered Totalizer Encoding is used to en-
code its cardinality constraints rather than the Generalized Totalizer Encoding? The final
major research question this work aims to analyze is how an unsatisfiable core-based algorithm
benefits from this new encoding. The OLL algorithm [21] was chosen for this question because
it serves as the motivation behind the Layered Totalizer Encoding.

The primary contribution of this paper is the new Layered Totalizer Encoding, which is built in a
left-to-right, upward fashion and exploits intermediate cardinality constraints in order to raise the lower
bounds imposed on nodes. This Layered Totalizer is extended to the Weighted MaxSAT problem.
Furthermore, the Layered Totalizer Encoding is used within the OLL algorithm itself as the encoding
function, and this Layered OLL is measured against the regular OLL to determine if the new encoding
could improve a core-based algorithm.

Chapter 2 introduces and explains concepts related to MaxSAT solving relevant to understanding
Layered Totalizer Encoding. Chapter 3 presents previous work done in the field of MaxSAT solving,
as well as certain works related to more general concepts that are important to the Layered Totalizer
Encoding. Chapter 4 contains the central aspect of the study, namely the theoretical and practical
overview of the Layered Totalizer Encoding. Moreover, this chapter contains explanations of the dif-
ferent heuristics that can be tuned in order to alter the performance of the Layered Totalizer Encoding.
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Chapter 5 outlines the manner in which testing of the Layered Totalizer was performed, how results are
interpreted and why certain decisions are made regarding the analysis of the results. Chapter 6 demon-
strates the results of the aforementioned tests and discusses what the results mean in the context of
the research questions. Finally, Chapter 7 concludes the research presented in this paper, summarizes
the results, and gives an overview of possible future work.



2
Preliminaries

This section aims to present the concepts of SAT, MaxSAT, Linear Search, the OLL algorithm, and the
Totalizer Encoding.

2.1. Notation and Theoretical Background
The Boolean Satisfiability Problem, commonly referred to as SAT, has many real-life applications as
it is used in scheduling, verification, security, and other schema-based applications [28] [9].

Formally, let X = {x1, x2, . . . , xn} be a set of boolean variables, and let C = {c1, c2, . . . , cm} be a
set of clauses, where each clause ci is a disjunction of literals. A literal is either a variable xi or its
negation ¬xi, denoted as the set L = {¬l1, l1,¬l2, l2, . . . ,¬ln, ln}. The Conjunctive Normal Form is the
conjunction of all these clauses, known as CNF. The SAT problem can then be defined as finding a
truth assignment A : L→ {0, 1} such that for every clause ci ∈ C at least one literal in ci evaluates to
true. A clause ci is said to be satisfied if ∃lj ∈ ci : A(lj) = 1. A clause ci is said to be unsatisfied if
∀lj ∈ ci : A(lj) = 0.

In other words, the SAT problem is to determine whether there exists a truth assignment that sat-
isfies every clause simultaneously. If such an assignment exists, the formula is satisfiable; if no such
assignment exists, the formula is unsatisfiable.

The example in Figure 2.1 shows a SAT problem with 5 variables and 7 clauses. As can be seen,
clauses are not limited in size or number, and potentially many solutions exist for a given problem. One
such solution to this problem is x1 = 0, x4 = 0, x5 = 0, where the values of x2, x3 can take either of the
values without violating the clauses. Though small problems can easily be solved by humans, as the
problems grow in both the number of variables and clauses, the need for so-called SAT solvers or SAT
oracles is evident.

Example 1: SAT Instance

X = {x1, x2, x3, x4, x5}

C = {(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ ¬x2), (¬x3 ∨ ¬x4), (¬x1 ∨ ¬x5),

(¬x2 ∨ ¬x5), (¬x3 ∨ ¬x5), (¬x4 ∨ ¬x5)}

Figure 2.1: Example of a SAT problem instance with 5 variables and 7 clauses, as originally shown in [15]

SAT solvers are algorithms or tools created to solve the SAT problem. These solvers take as input
a set of clauses and attempt to satisfy all of them, with the output being the assigned values to each
variable if all clauses are satisfied, or an unsatisfied result. Moreover, solvers can also be invoked
with an additional input parameter, namely an assumption. An assumption is simply a variable fixed
to a certain value. Specifically, when invoking Oracles with assumptions, the question the Oracle is
answering is not only whether there is a solution to the instance, but whether a solution exists where

3



2.2. Algorithms and the Totalizer Encoding 4

a certain variable is set explicitly to 0 or 1. Over the years, many solvers have been developed on
the basis of different techniques. Two of the most advanced implementations are Glucose4 [2] and
CaDiCal [11], both of which are variations of a Conflict Driven Clause Learning Solver (CDCL) SAT
solver [30]. A CDCL Solver is a SAT solver that learns from conflicts between clauses and creates new
clauses to represent this conflict. This allows the solver to avoid the same conflicts and explore the
search space of possible solutions more efficiently [30]. This paper only uses SAT solvers as a black
box tool, thus further discussion of solver intricacies is not included. However, this study may still allow
for further research into how different types of solvers may affect the solving time for a given instance.

MaxSAT is an extension of the standard SAT problem, which adds an additional layer of complexity
to the problem, namely the concept of optimization. Optimization in Computer Science is the process
of minimizing or maximizing a given mathematical inequality equation, known as the objective function.
What constitutes an optimal solution depends on the problem at hand. MaxSAT encodes these con-
cepts using the building blocks provided by the SAT problem. MaxSAT is defined as an optimization
problem that has the goal of satisfying the maximum number of clauses. To be precise, MaxSAT has
a set of variables, X, and a set of clauses, C, just like the SAT problem, where its set C is composed
of two subsets, the set of hard clauses, H, and the set of soft clauses, S. For the length of this paper,
all soft clauses are considered to be unit soft clauses, meaning composed of a single literal, as any
MaxSAT instance can be presented through unit soft clauses [3]. MaxSAT instances can be separated
into two categories: unweighted and weighted. In the unweighted case all soft clauses have a weight
of 1, and in the weighted case each soft clause can have any integer value as its weight. In a given
MaxSAT instance, the goal is to satisfy all hard clauses and as many soft clauses as possible or to
maximize the weight of the satisfied soft clauses. Each MaxSAT instance can be viewed as having the
objective function:

max
∑

wi · is_SAT(si)

where wi is the weight of a given soft clause and is_SAT(si) is either 0 or 1 depending on whether
the current literal assignment can satisfy the given clause.

Figure 2.2 builds on top of the example given in Figure 2.1 by adding five new soft clauses. For
simplicity, the examples shown in this Chapter all utilize the same unweighted example.

Example 2: MaxSAT Instance

X = {x1, x2, x3, x4, x5}

H = {(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ ¬x2), (¬x3 ∨ ¬x4), (¬x1 ∨ ¬x5),

(¬x2 ∨ ¬x5), (¬x3 ∨ ¬x5), (¬x4 ∨ ¬x5)}

S = {(x1), (x2), (x3), (x4), (x5)}

Figure 2.2: Example of a MaxSAT problem instance with 5 variables, 7 hard clauses and 5 soft clauses, as originally shown in
[15]

Unlike the SAT version of the problem presented in Figure 2.2, there is no straightforward solution
that will satisfy all hard and all soft clauses. If the assignment devised for the SAT instance, namely
x1 = 0, x4 = 0, x5 = 0, is applied, at least 3 soft clauses are violated, resulting in a minimum cost of 3 for
this instance. However, this solution represents just one of several potential solutions to the problem.
It is not possible to determine if this solution is optimal by solely focusing on solving the hard clauses.
As will be shown throughout this chapter, 3 is in fact the optimal solution for this problem, however this
is a coincidence. Consequently, an alternative perspective of the problem is required, in which the soft
clauses are taken into consideration.

2.2. Algorithms and the Totalizer Encoding
This subsection provides an overview of two MaxSAT algorithms that served as the basis for the new
encoding presented in this research: Linear Search and the OLL algorithm. Additionally, it examines
the Totalizer Encoding in detail and lays out the groundwork for the Layered Totalizer Encoding.
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2.2.1. Linear Search
The Linear Search algorithm is an iterative MaxSAT algorithm that uses calls to a SAT oracle to find
an optimal solution. In this instance, iterativity entails the incremental testing of potential values for
the optimal cost of the solution, while the SAT Oracle denotes a SAT solver treated as a black box,
in which the input is a formula, yielding a corresponding outcome. This algorithm encompasses two
variants, namely, Linear Search UNSAT-SAT and Linear Search SAT-UNSAT. In the context of these
two versions of Linear Search, ”UNSAT” denotes unsatisfiability, whereas ”SAT” signifies satisfiability.
Both instances of the Linear Search algorithms utilize a new concept, namely relaxation. Relaxation
in terms of MaxSAT refers to the process of introducing new variables, the set of I, and using these
variables to relax the soft clauses. Relaxing a clause is to add a fresh variable to a soft clause. The
concept of relaxation is intuitive - introduce new variables which can be set to true if a certain soft clause
is violated. To illustrate the concept of relaxation, see Figure 2.3

Example 3: MaxSAT Instance With Relaxation

X = {x1, x2, x3, x4, x5}

I = {y1, y2, y3, y4, y5}

H = {(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ ¬x2), (¬x3 ∨ ¬x4), (¬x1 ∨ ¬x5),

(¬x2 ∨ ¬x5), (¬x3 ∨ ¬x5), (¬x4 ∨ ¬x5)}

S = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x4 ∨ y4), (x5 ∨ y5)}

Figure 2.3: Example of a MaxSAT problem instance with 5 variables, 7 hard clauses and 5 soft clauses with their respective
relaxation variables and the set of relaxation variables, as originally shown in [15]

As seen in Figure 2.3, a new set of variables is introduced, I, and each variable in I corresponds to
exactly one soft clause. To ensure the amount of violated soft clauses is minimal, a so-called cardinality
constraint is imposed over the relaxation variables. In the scope of MaxSAT, a cardinality constraint is a
mathematical expression that limits the number of elements that can be set to TRUE, more specifically,
the number of clauses that can be violated at most. The cardinality constraint is in a Pseudo-Boolean
form, wherein a certain set of variables is presented as a summation on the left-hand side, and the right-
hand side is an integer. The left and right-hand sides are separated by one of the five possible relation
operators, namely ≤,≤,=,≥,≥. An example of a cardinality constraint can be seen in Figure 2.4,
depicting a cardinality constraint consisting of five boolean variables that can take on a maximal total
amount of 3 or less.

Example 4: Cardinality Constraint

y1 + y2 + y3 + y4 + y5 ≤ 3

Figure 2.4: Example of a cardinality constraint with five variables and a right-hand side of 3

However, this cardinality constraint is not in CNF, like the hard and soft clauses in any MaxSAT
instance are. This presents an issue for any SAT solver, as SAT solvers can only work with CNF
formulas. To ameliorate this, an encoding can be performed - a transformation from one form to another.
This transformation can have a significant impact on the performance of any MaxSAT algorithm, which
is the central topic of this research. The specific encoding of interest is discussed further in this Chapter.

The Linear Search UNSAT-SAT algorithm, henceforth referred to as LUS, is the variation of Linear
Search that determines the optimal solution by testing all possible values that the cost of the solution can
take on, starting from the smallest up to the largest. This concept is where the name for the algorithm
comes from: first select the smallest possible cost that the instance could have, call the SAT oracle
with this value, and if the problem is unsatisfiable with that cost, increase the cost by 1. To illustrate
this algorithm, the same MaxSAT example presented throughout this chapter is used.
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Example 5: MaxSAT instance with LUS

X = {x1, x2, x3, x4, x5}

I = {y1, y2, y3, y4, y5}

H = {(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ ¬x2), (¬x3 ∨ ¬x4), (¬x1 ∨ ¬x5),

(¬x2 ∨ ¬x5), (¬x3 ∨ ¬x5), (¬x4 ∨ ¬x5)}

S = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x4 ∨ y4), (x5 ∨ y5)}

y1 + y2 + y3 + y4 + y5 ≤ 0

Figure 2.5: Example of a MaxSAT problem instance with 5 variables, 7 hard clauses and 5 soft clauses along with the
cardinality constraint created at the start of the Linear Search UNSAT-SAT, as originally shown in [15]

Figure 2.5 shows the cardinality constraint set at the lowest possible value, 0, with all soft clauses
relaxed. This modified version of the problem is then passed to the SAT oracle. For this instance, the
oracle reports UNSAT, meaning there is no solution in which no soft clause is violated. As such, the
right-hand side increases by 1, leading to the cardinality constraint below.

y1 + y2 + y3 + y4 + y5 ≤ 1

Once more, the problem is passed to the SAT oracle, and once more the oracle determines whether
there is a solution with a cost of 1. It is easy to see why the algorithm is called Linear Search UNSAT-
SAT, due to its progression from unsatisfiable to satisfiable solutions. The algorithm is stopped when the
first satisfiable assignment is reached. It can be deduced that the algorithm finds the optimal solution
because it tests the possible costs of the problem systematically, one by one. Thus there is no cost
lower that leads to a satisfiable solution the first satisfiable solution encountered.

Algorithm 1 Linear Search UNSAT-SAT
Input H,S
Output cost

1: cost← 0
2: Srelaxed ← Relax(S)
3: while True do
4: resultSAT , resultcost ← SAT (H,Srelaxed, CNF (

∑
yi ≤ cost))

5: if resultSAT is TRUE then
6: return cost
7: else
8: cost← cost+ 1
9: end if
10: end while

The pseudocode for LUS is presented in Algorithm 1. The algorithm takes two sets of clauses,
the hard and soft clauses denoted as H and S respectively, as input and outputs the minimum cost,
denoted as cost, for the given MaxSAT instance. In the algorithm, the initial value of cost is set to 0, and
the soft clauses are relaxed as previously described. The relax function is responsible for introducing
a new relaxation variable for each soft clause and appending it to the clause using the ∨ operator.
Subsequently, the algorithm explores all possible values ranging from 0 to the maximum potential cost,
which is equal to the number of soft clauses in the instance. In each iteration, the instance, along
with the cardinality constraint in CNF form, is passed to the SAT solver. If the SAT oracle returns
TRUE, the value of resultSAT is set to TRUE and the algorithm identifies the lowest cost, indicating the
optimal solution. Otherwise, the algorithm continues its execution by incrementing the right-hand side
of the cardinality constraint by 1. As discussed during the introduction of SAT solvers, the SAT Oracle
can output not only the SAT or UNSAT result, but also the potential cost it has calculated. Although
this potential cost, known as resultcost, is not taken into account for the Linear Search UNSAT-SAT
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algorithm, it is of importance in the following algorithm and has been introduced here for the sake of
clarity.

It should be noted that converting the cardinality constraint from the regular Pseudo-Boolean form
does not impact the correctness of the algorithm - any encoding can give the desired results, hence
the encoding into CNF form is left ambiguous in this algorithm.

Conversely, the Linear Search SAT-UNSAT algorithm, henceforth referred to as LSU, works in
the opposite manner of LUS. With Linear Search SAT-UNSAT, iterative calls are made to the SAT
oracle and the algorithm progresses from satisfiable solutions until the first unsatisfiable solution is
reached, at which point the algorithm halts. Everything else regarding the algorithm remains the same,
including the cardinality constraint, the encoding of said constraint, and so on. If the MaxSAT example
is considered again, it can be observed that the only difference is the value of the right-hand side as
shown in Figure 2.6. To determine the starting value of the right-hand side of the cardinality constraint
in Linear Search SAT-UNSAT, an initial call is made to the SAT oracle with all soft clauses relaxed but
no cardinality constraint imposed. Whatever cost returned by this SAT Oracle is the highest value taken
into consideration for the final result. In the case of the instance below, an assumption will be made
that the SAT Oracle returned a cost of 5 on this first call as to be able to demonstrate how the algorithm
works.

Example 6: MaxSAT Instance with LSU

X = {x1, x2, x3, x4, x5}

I = {y1, y2, y3, y4, y5}

H = {(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ ¬x2), (¬x3 ∨ ¬x4), (¬x1 ∨ ¬x5),

(¬x2 ∨ ¬x5), (¬x3 ∨ ¬x5), (¬x4 ∨ ¬x5)}

S = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x4 ∨ y4), (x5 ∨ y5)}

y1 + y2 + y3 + y4 + y5 ≤ 5

Figure 2.6: Example of a MaxSAT problem instance with 5 variables, 7 hard clauses and 5 soft clauses along with the
cardinality constraint created at the start of the Linear Search SAT-UNSAT, as originally shown in [15]

If the formulation of the problem is passed to the SAT Oracle, a satisfiable answer will be obtained,
indicating that the optimal cost of this problem could be 5 or less, but not more. To test for a lower
optimal cost, the right-hand side is decremented by 1, and the same problem formulation with the new
cardinality constraint is passed to the SAT Oracle, as shown below.

y1 + y2 + y3 + y4 + y5 ≤ 4

The iterative process continues until the first unsatisfiable answer is obtained from the SAT oracle,
indicating that the last satisfiable cost is the optimal cost for the given instance. It is worth noting that
instead of starting the process at the highest cost, such as 5 in this case, a more efficient approach
exists to obtain the solution and reduce the number of calls to the SAT oracle. Specifically, the relaxed
soft clauses and hard clauses can be passed to the SAT oracle without the cardinality constraint. The
cost of the solution returned by the SAT oracle can then be extracted and used as the starting point
for the optimal cost. This practical modification in the algorithm makes LSU more commonly used in
practice.
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Algorithm 2 Linear Search SAT-UNSAT
Input H,S
Output cost

1: Srelaxed ← Relax(S)
2: resultSAT , resultcost ← SAT (H,Srelaxed))
3: cost← resultcost
4: while True do
5: resultSAT , resultcost ← SAT (H,Srelaxed, CNF (

∑
yi ≤ cost))

6: if resultSAT is TRUE then
7: cost← resultcost − 1
8: else
9: return cost+ 1
10: end if
11: end while

As seen in Algorithm 2, the structure of the algorithm is similar to that of Algorithm 1, which is to be
expected as they share many similarities. A notable difference here occurs in terms of how the change
of cost is managed. Namely, every time the SAT Oracle returns a satisfiable answer, the new lowest
cost becomes equal to the resultcost reported by the solver. Then, the question becomes whether there
is a value for cost lower than that of resultcost, which is why in line 6 of the pseudocode the final value
of cost for a given iteration becomes resultcost− 1. If this value of cost results in an UNSAT result from
the Oracle, then the algorithm simply amends the value of cost with +1, and this is the optimal solution.

2.2.2. OLL Algorithm
The OLL algorithm represents a significant departure from the Linear Search algorithm, as it goes be-
yond simply trying each cost naively for the problem. Instead, OLL solvers learn from unsatisfiable
solutions, understanding what factors led to their occurrence. Additionally, the OLL algorithm dynam-
ically constructs cardinality constraints based on specific information, rather than generating a single
top-most constraint that encompasses all relaxation variables. The OLL algorithm, particularly its RC2
implementation, is a core-guided MaxSAT algorithm that iteratively calls a SAT oracle, extracts unsat-
isfiable cores from it, and generates cardinality constraints based on these cores [15]. To comprehend
the functioning of OLL, it is necessary to first introduce the concept of an unsatisfiable core.

An unsatisfiable core refers to a subset of soft clauses, denoted as core ⊆ S, such that the com-
bination of this core and the hard clauses leads to an unsatisfiable result, i.e., core ∧H is UNSAT [23].
In a given problem, there can exist multiple unsatisfiable cores of varying sizes. These unsatisfiable
cores can be extracted by SAT Oracles if the instance is unsatisfiable in its current state. For example,
in Figure 2.2, a potential core subset can be represented by

{(x1), (x2), (x3), (x4)}

Each soft clause within the core is then relaxed in the same manner as the one used in the Linear
Search algorithms, and the augmented soft clauses are transferred to the set of hard clauses, denoted
as H. A cardinality constraint is formulated as the summation of these relaxation variables, taking the
form

∑
yi ≤ 1, and is added to the soft clauses S which makes it eligible to be a part of an unsatisfiable

core in a later iteration, whilst the soft clauses participating in the cardinality constraint are moved to the
set of hard clauses. In cases where the core already contains a cardinality constraint from a previous
iteration, instead of relaxation, the right-hand side variable is incremented by 1. The RC2 algorithm
subsequently follows a similar approach to the LUS algorithm by invoking a SAT oracle. If the oracle
returns an unsatisfiable result along with a new unsatisfiable core, the aforementioned procedure is
repeated. Conversely, if the oracle returns a satisfiable result, it signifies that the optimal solution has
been reached.
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Example 7: MaxSAT Instance with OLL

X = {x1, x2, x3, x4, x5}

I = {y1, y2, y3, y4}

H = {(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4), (¬x1 ∨ ¬x2), (¬x3 ∨ ¬x4), (¬x1 ∨ ¬x5),

(¬x2 ∨ ¬x5), (¬x3 ∨ ¬x5), (¬x4 ∨ ¬x5), (x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x4 ∨ y4)}

S = {(x5), (y1 + y2 + y3 + y4 ≤ 1)}

Figure 2.7: Example of a MaxSAT problem instance with 5 variables, 7 hard clauses and 5 soft clauses at the beginning of the
execution of the OLL algorithm, showcasing the first cardinality constraint created based on an unsatisfiable core, as originally

shown in [15]

To illustrate the procedure, the same MaxSAT instance as before is used and modified to reflect
OLL execution, as shown in Figure 2.7. It should also be noted that much like in Linear Search, the
cardinality constraint is present in Pseudo-Boolean form. For ease of reading, the cardinality constraint
has been left as is and is not encoded in its CNF form.

As described, after the modification of the problem, the SAT oracle is called once again with the
new adjustments. Specifically, the next unsatisfiable core found is (y1 + y2 + y3 + y4 ≤ 1), meaning
a simple adjustment is needed according to the RC2 algorithm - the right-hand side is increased by 1.
Then the new cardinality constraint in the soft clause set is:

(y1 + y2 + y3 + y4 ≤ 2)

As the formula is not yet satisfiable, a third unsatisfiable core is found comprising of:

{(y1 + y2 + y3 + y4 ≤ 2), (x5)}

Per the algorithm two new soft clauses are formed, and one clause is moved to the hard clauses.
Specifically, the set of hard clauses now contains (x5∨y5). As with the previous iteration of the algorithm,
the cardinality constraint that has found itself in the unsatisfiable core has its right-hand side increased
by one, leading to the new cardinality constraint of:

(y1 + y2 + y3 + y4 ≤ 3)

A new cardinality constraint is created to express the relation between the elements of the unsatis-
fiable core; a soft clause and a cardinality constraint in this case. The new cardinality constraint is a
so-called composite cardinality constraint, which means that it is a cardinality constraint that contains
a cardinality constraint within itself. In this particular case, the composite cardinality constraint takes
on the form of:

(y5 + ¬(y1 + y2 + y3 + y4 ≤ 2) ≤ 1)

At this point of the algorithm, a satisfiable result is obtained from the SAT Oracle, and thus the RC2
algorithm concludes.

Algorithm 3 shows the pseudocode for the RC2 algorithm as originally showcased in [15].
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Algorithm 3 RC2
Input: H,S
Output: cost

1: cost← 0
2: while True do
3: I = ∅
4: (result, core)← SAT (H,S)
5: if result == True then
6: return cost
7: else
8: cost← cost+ 1
9: for clausei ∈ core do
10: if clausei is not a cardinality constraint then
11: S ← S \ clausei
12: H ← H ∪ (clausei ∪ yi)
13: I ← I ∪ {yi}
14: else
15: I ← I ∪ {clausei}
16: rhs(clausei)← rhs(clausei) + 1
17: end if
18: end for
19: S ← S ∪ CNF (

∑
yi∈I yi ≤ 1)

20: end if
21: end while

Algorithm 3 demonstrates the functionality of the RC2 implementation of the OLL algorithm, as
presented in [15]. Similarly to LUS, the cost is initialized to 0, and an iterative process is carried out
involving calls to the SAT oracle. However, in the RC2 implementation, the relaxation of soft clauses
is not performed upfront. Instead, soft clauses are only relaxed if they appear in the unsatisfiable
core identified by the SAT oracle, as depicted in lines 10 through 13. Conversely, if an unsatisfiable
core contains a previously established cardinality constraint, the right-hand side is incremented by 1.
Once these steps are executed for all elements of the unsatisfiable core, the new cardinality constraint
representing the unsatisfiable core is added to the set of soft clauses, as presented in line 19, and the
process is repeated.

2.3. Totalizer Encoding
As previously discussed in the overview of both Linear Search and the OLL algorithm, cardinality con-
straints play a crucial role in determining the optimal solution for a given MaxSAT instance. These
constraints define an upper limit on the number of soft clauses that can be violated when invoking the
SAT oracle. The focus is on specifying the number of violated clauses rather than explicitly identifying
which clauses can be violated. This allows the SAT oracle to explore various combinations of violated
clauses as long as the total count remains within or below the specified limit.

However, cardinality constraints are typically expressed in the Pseudo-Boolean form, which is not
compatible with SAT solvers. Therefore, an encoding process is required to transform these Pseudo-
Boolean expressions into the appropriate CNF form. While several encoding techniques exist, this
research focuses on the Totalizer Encoding, and more specifically, the Generalized Totalizer Encoding,
which lies at the core of the investigation.

The Generalized Totalizer Encoding [16] utilizes a Binary Tree structure to devise all possible
clauses and values required for representing a given cardinality constraint. A Binary Tree, which is a
special type of tree data structure, permits each node to have a maximum of two children. Within the
context of the Totalizer Encoding, individual relaxation variables are represented by leaf nodes, while
the upper-level nodes depict distinct cardinality constraints associated with different variable combina-
tions. It is important to note that the term ”cardinality constraint” has been previously used to refer
solely to the sum of relaxation variables in the case of Linear Search or the sum of variables represent-
ing unsatisfiable cores in OLL. However, within the Totalizer Encoding, any non-leaf node signifies a
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cardinality constraint. As an illustration of the structure, Figure 2.8 provides an example.

Example 8: Totalizer Encoding Tree

q1, q2

i1 i2

Figure 2.8: Totalizer Encoding of the possible values the sum i1 + i2 can take

The two leaf nodes depicted in Figure 2.8 each represent relaxation variables for aMaxSAT instance.
To construct the subsequent layer of the Totalizer Encoding Binary Tree, the value of i1 + i2 ≤ k needs
to be expressed. In this scenario, k is restricted to three possible values: 0, 1, and 2. These values
stem from the fact that both i1 and i2 are limited to 0 or 1. Consequently, the following three cardinality
constraints arise:

i1 + i2 ≤ 0

i1 + i2 ≤ 1

i1 + i2 ≤ 2

These cardinality constraints must be expressed within the parent node. To appropriately represent
these constraints, the representation utilized is known as the Unary Numeral System or the ”Unary
Representation.” The Unary Representation is a straightforward method of expressing a number using
only 0s and 1s. It represents a number b by constructing a sequence of 1s with a length of b, followed
by as many 0s as needed. To illustrate how this would appear in the context of the three cardinality
constraints concealed in the upper node of Figure 2.8, the variables q1 and q2 are considered. Then,
the value 0 is represented as 00, the value 1 is represented as 10, and the value 2 is represented as
11.

For ease of understanding, in all following figures, including this one, the subscript of a given variable
indicates what value it represents. In this case, q1 is variable representing the cardinality constraint
denoting that at most one soft clause can be violated, and q2 is the variable representing the cardinality
constraint violating at most 2 soft clauses.

Using the technique of representing different right-hand side values for a cardinality constraint, the
Totalizer Encoding Tree can be constructed for any given problem. However, the tree itself is not in
CNF form either, necessitating the creation of clauses to establish the relations between the variables
in the children nodes and the parent nodes. These clauses denote the constraints and rules to be
imposed. Referring back to the example in Figure 2.8, there are four possible outcomes the values i1
and i2 can take on:

i1 = 0, i2 = 0

i1 = 1, i2 = 0

i1 = 0, i2 = 1

i1 = 1, i2 = 1

Because the value of 0 is represented by the lack of any variable being set to 1 rather than its own
variable, the sum of i1 + i2 = 0 does not require encoding. When one variable is set to 0 and another
to a non-zero value, a clause needs to be expressed to allow only one child variable to be set to true.
In this case, two combinations lead to i1 + i2 = 1, and thus the following clauses are generated:

(¬i1 ∨ q1) ∧ (¬i2 ∨ q1)

Finally, the clause that accounts for the case of i1 + i2 = 2 is generated as follows:
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(¬i1 ∨ ¬i2 ∨ q2)

The generalization of this procedure can be found in Figure ??. In the figure, Q and R represent
the child nodes, while P represents the parent node. The variables within each node that correspond
to a certain number in the Unary Representation are denoted by lowercase letters. The subscripts of
each variable represent weights, which are relevant in the case of weighted MaxSAT. In the unweighted
case, each soft clause has a weight of 1, hence each variable withing a given node represents the full
range of integers beggining at the lower bound, namely 0, and its upper bound.

Formula 1: Totalizer Encoding

∧ qw1
∈ Q.node_vars

rw2
∈ R.node_vars

w3 = w1 + w2

pw3 ∈ P.node_vars

(¬qw1 ∨ ¬rw2 ∨ pw3)

 ∧
∧ sw ∈ (Q.node_vars ∪R.node_vars)

w = w′

pw′ ∈ P.node_vars
(¬sw ∨ pw′)


Figure 2.9: Totalizer Encoding formulation as originally presented in [16]

As observed in the formula above, the rules for clause creation are straightforward. A clause is
formed to represent the sum of two non-zero variables, involving three variables (one from each partic-
ipating node). Additionally, a clause is formed when one child is ”set” to zero. In the case of the sum
clause, the variable from the parent node must be the sum of the variables from the child nodes, as
demonstrated in the example depicted in Figure 2.9. Conversely, when creating the clause with one
child set to 0, the variables or weights of the child and parent must be equal.

This encoding is suited for both the unweighted and weighted MaxSAT problem, with the only differ-
ence being in the number of variables produced in the Binary Tree. In the unweighted case, there is a
linear increase of variables - namely, each layer will produce at most (v+w)− 1 new variables, where
v and w represent the amount of variables in the child nodes respectivelly. On the other hand, when
dealing with the weighted case, in the worst-case scenario each level can introduce up to 2(v +w − 1)
variables due to the variation of weights [16].

Example 9: Totalizer Encoding of MaxSAT Instance

l1, l2, l3, l4, l5 [0, 5]

m1,m2,m3,m4[0, 4]

k1, k2[0, 2]

i1

[0, 1]
i2

[0, 1]

h1, h2[0, 2]

i3

[0, 1]
i4

[0, 1]

i5

[0, 1]

Figure 2.10: Full Totalizer Encoding Tree for the running example as shown in Figure 2.5

Figure 2.10 displays the complete Totalizer Encoding Tree for the running example of Linear Search
UNSAT-SAT. The tree was constructed using the procedure described earlier and consists of 9 nodes
and a total of 16 variables, including 5 relaxation variables as leaf nodes. The figure illustrates the
upper and lower boundaries for each node, indicating that every number within the range, including the
upper bound, can be a valid value for the right-hand side of a cardinality constraint.
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Below is the pseudo code for the encoding showed in ??.

Algorithm 4 Totalizer Encoding
Input: childleft, childright, parent
Output: clauses

1: clauses← ∅
2: for x ∈ childleft do
3: for z ∈ parent do
4: if xvalue == zvalue then
5: clauses← clauses+ (¬x ∨ z)
6: end if
7: end for
8: end for
9: for y ∈ childright do
10: for z ∈ parent do
11: if yvalue == zvalue then
12: clauses← clauses+ (¬y ∨ z)
13: end if
14: end for
15: end for
16: for x ∈ childleft do
17: for y ∈ childright do
18: for z ∈ parent do
19: if xvalue + yvalue == zvalue then
20: clauses← clauses+ (¬x ∨ ¬y ∨ z)
21: end if
22: end for
23: end for
24: end for
25: return clauses

The encoding takes as input the child nodes along with the parent node, and outputs the clauses that
should be added to the SAT Oracle in order to ensure the cardinality constraint is properly represented
for the MaxSAT instance. From line 2 to 8, and from line 9 to 15, the encoding shown on the right-hand
side of ?? is performed, whilst from line 16 to 25 the encode of the the left-hand side of the encoding
in ?? is carried out. It should be noted that this pesudocode utilizes the term value rather than weight.
This is to keep in line with the example demonstrated throughout the chapter. Thus an example of
xvalue as shown in line 4, is the value of 3 of variable m3 as shown in Figure 2.10



3
Related work

To understand how the different fields of MaxSAT solving came to be, it is pertinent to look at the history
of MaxSAT solving. [22] is a literature survey that presents the state-of-the-art algorithms for MaxSAT
in 2013. Its extensive overview of the history of MaxSAT shows that first algorithms were focused
on stochastic local search, in which a random assignment was initially set after which variables were
flipped from TRUE to FALSE and the solution was approximate rather than exact [13]. [22] continues
by introducing two of the main families of interest for MaxSAT solving, the iterative approach and the
core-guided approach. A more recent overview of the MaxSAT landscape can be found in [18], which
discusses not only algorithms for MaxSAT solving, but heuristics can can be applied to different algo-
rithms to improve performance. One such heuristic presented in [18] is variable ordering, which is a
point of interest for the Layered Totalizer Encoding.

Linear Search belongs to the aforementioned iterative algorithms [22]. [17] is an example of an
implementation of Linear Search UNSAT-SAT, which focuses on increasing the lower bound, whilst
[14] contains an implementation of Linear Search SAT-UNSAT which focuses on lowering the upper
bound. Though newMaxSAT algorithms have been introduced throughout the past two decades, Linear
Search algorithms are still of interest in the research field. [7] introduces a Linear Search algorithm
that is preceded by a core-based phase, showcasing how an iterative algorithm could benefit from
information provided by a core-guided algorithm. Moreover, [7] demonstrates promising results that
show that this core-boosted Linear Search performs well against other state-of-the-art solvers.

[12] introduces two approaches, namely Diagnosis Based and Encoding Based, The Diagnosis
Based approach is the first core-based approach introduced for MaxSAT solving. Different versions
of this core-extraction process have spawned since, such as PM1 MSU1, WPM1, [12] and further
developments of these algorithms such as MSU4 [19]. The version of interest in this paper is the OLL
algorithm [21], which belongs in the family of core-guided algorithms. The OLL algorithm uses the
cores extracted from the SAT solver to define and create cardinality constraints and allows for these
newly introduced variables to be part of the core found in the next iteration. For the purpose of this
study, the implementation of OLL used from this point on is known as RC2 [15].

Cardinality constraints play an important role in MaxSAT solving, as both iterative and core-guided
algorithms make use of them. An example of their significance can be found in [1], in which research
shows that limiting the size of a cardinality constraint impacts the performance of the OLL algorithm.
Thus, it is easy to see that smaller cardinality constraints are one of the factors that lead to a faster
solving time. A secondary point of note when dealing with cardinality constraints is how to encode them
such that they fit the CNF format. [27] presents two encoding principles based on sequential counters.
This encoding predates the Totalizer Encoding, however, it serves as a good example of how encodings
impact the number of clauses and variables. A recent overview on encoding practices for cardinality
constraints is provided by [29], which compares tree-based encodings to other encodings. This survey
provides a good basis to understanding why tree-based appraoches, such as the Totalizer Encoding,
have gained popularity in recent years - namely, they are constantly among the top 2 performers for a
given benchmark set.

The Totalizer encoding was first introduced by [5], as a way to encode Boolean cardinality con-
straints. This encoding builds a Totalizer tree, such that each node of the tree represents the possible
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sum of its children nodes. Each node represents the possible sums with unary variables, which means
there is one variable to represent each possible value of the sum being encoded. The original Totalizer
Tree needed to be re-encoded at each pass over the linear search algorithm, however, [16] and [20]
have improved upon the use of the Totalizer by making it more flexible and reusable by introducing unit
clauses to not re-encode the full Totalizer tree.



4
Layered Totalizer Encoding

The main contribution of this paper is the Layered Totalizer, an adjustment to the construction and
encoding of the Totalizer Encoding, aimed at potentially reducing execution time. The chapter begins
by discussing the concept and motivation behind this new Totalizer approach, followed by a discus-
sion of correctness, nd example, and finally the pseudocode. Additionally, the paper explores various
scenarios in which the Totalizer is tested and heuristic learning is applied.

4.1. The Layered Totalizer
Chapter 2 provides an overview of the Totalizer Encoding technique, which converts a given Pseudo-
Boolean constraint into CNF clauses suitable for SAT solvers. However, the resulting Totalizer Encod-
ing, whether weighted or unweighted, often generates a large number of clauses and variables, which
can potentially lead to a subpar runtime of the SAT Oracle. Therefore, the focus of the research is to
explore to what extent raising the lower bound of nodes in the Totalizer tree can reduce the solution
space by removing variables and clauses and fixing assignment of variables to a value.

To address the question, the systematic approach of OLL is analysed. In contrast to Linear Search,
which employs a single cardinality constraint encompassing all relaxation variables at the top node of
the Totalizer Tree, the OLL algorithm utilizes multiple smaller Totalizer Trees. Each of these trees rep-
resents a distinct cardinality constraint that denotes an unsatisfiable core. The improved performance
of OLL, compared to Linear Search, stems from this distinction. By focusing solely on cardinality con-
straints that are guranteed to increase their right-hand value and generating only the necessary clauses
and variables, irrelevant information is eliminated. Furthermore, the cardinality clauses produced by
the OLL algorithm tend to be smaller than those generated by Linear Search, resulting in a reduced
workload for the SAT sovler partially due to the smaller number of clauses and variables generated.

While the ability of OLL to construct these smaller and more concise Totalizer Trees is contingent
on its knowledge of unsatisfiable cores, it is possible to borrow certain aspects of its functionality. More
precisely speaking, the OLL algorithm creates smaller cardinality constraints that can potentially go on
to be part of composite cardinality constraint. However, even before becoming part of a composite
cardinality constraint, the original cardinality constraint is tightened. This idea of tightening cardinality
constraints at various iterations is the inspiration behind the Layered Totalizer Encoding.

As presented in Chapter 2, the Totalizer Tree is built bottom-up, node by node, wherein each node
represents different cardinality constraints as expressed by a set of variables. Thus it follows that the
fewer variables present in a pair of child nodes, the fewer possible values the parent has to represent.
Figure 2.10 displays the lower and upper boundaries for each node, and the lower boundary can be
leveraged to reduce the number of variables. The objective is to tighten the lower bound, increasing it
as much as possible until it reaches its maximum limit. With each raise of the lower boundary, there is
one less value present in the node, and thus fewer values for any nodes in the upper layers that have
the tightened node in its subtree. If the bounds on one layer are tightened, the subsequent layer in
the Totalizer Tree can exclude the values that have been identified as unnecessary. As a result, the
number of variables in that layer is reduced.

The process begins by relaxing the soft clauses with new relaxation variables and representing

16
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these variables as leaf nodes in the Totalizer Tree. The leaf nodes do not require any additional clauses
since they are not yet connected by cardinality constraints. Next, the pruning stage involves sequen-
tially assuming the negation of each relaxation variable and querying the SAT Oracle. If the Oracle
responds with an unsatisfiable answer, then this variable has to be set to True for the solution to be
True.

To properly observe the workings of the Layered Totalizer, the example is presented once again,
and its corresponding Layered Totalizer step-by-step.

Example 10: MaxSAT Instance

X = {x1, x2, x3, x4, x5}

I = {y1, y2, y3, y4, y5}

H = {(¬x1∨¬x2∨¬x3∨¬x4), (¬x1∨¬x2), (¬x3∨¬x4), (¬x1∨¬x5), (¬x2∨¬x5), (¬x3∨¬x5), (¬x4∨¬x5)}

S = {(x1 ∨ y1), (x2 ∨ y2), (x3 ∨ y3), (x4 ∨ y4), (x5 ∨ y5)}

y1 + y2 + y3 + y4 + y5 ≤ 0

Figure 4.1: Example of a MaxSAT problem instance with 5 variables, 7 hard clauses, and 5 soft clauses, as originally shown in
[15], with relaxed soft clauses at the start of the Layered Totalizer Encoding process

As depicted in Figure 4.1, five soft clauses exist, corresponding to five relaxation variables requiring
encoding in the Totalizer Tree. Figure 4.2 displays the encoding of these variables, along with their
respective lower and upper boundaries. The initial steps of this process align with the description
provided in Chapter 2, involving the creation of nodes to encompass the variables. However, this marks
the divergence between the two encodings. Subsequently, the bound tightening process is initiated by
assuming the negation of each variable individually and querying the SAT Oracle. In practice, this is
done by invoking the SAT Oracle by providing not only the clauses to it, but a negative assumption of
a single variable at a time.

Example 10.1: Layer 1 of Layered Totalizer Encoding

y1

[0, 1]
y2

[0, 1]
y3

[0, 1]
y4

[0, 1]
y5

[0, 1]

Figure 4.2: The leaf-node layer, Layer 1, of Figure 4.1 as built by the Layered Totalizer Encoding procedure

The first SAT Oracle call made includes all of the hard clauses, the relaxed soft clauses, and the
assumption of y1 = 0, with all other variables left to take on either value. The Oracle then returns
satisfiable for this particular example, which means that the boundary cannot be tightened further - that
is, there is a solution that includes y1 = 0. Had unsatisfiable been the answer from the Oracle, the
deduction would be that there is no solution where ¬y1 is set to 1, meaning y1 has to always be set to
1 to satisfy this particular instance. The more high-level meaning of this assumption and result can be
simply explained as a query to the SAT Oracle which aims to answer whether there is a solution to the
MaxSAT instance in which a particular clause or a set of clauses are not violated.

This process is repeated for all of the leaf nodes present in the tree, one by one. At the end of the
bound tightening procedure, for this particular problem, no bound has been tightened, thus the process
of creating the second layer can begin.
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Example 10.2: Layer 2 of Layered Totalizer Encoding

k1, k2[0, 2]

y1

[0, 1]
y2

[0, 1]

m1,m2[0, 2]

y3

[0, 1]
y4

[0, 1]

y5

[0, 1]

Figure 4.3: Layer 2, of Figure 4.1 as built by the Layered Totalizer Encoding procedure, before any SAT Oracle calls

Once again, the Layered Totalizer Tree currently looks like the regular Totalizer Tree because there
were no nodes for which the lower boundary could be increased.

The necessary clauses between parent and child nodes are created as outlined in Chapter 2, and
the first SAT Oracle call is made with the new variables shown in Figure 4.3, along with the soft clauses,
hard clauses, and Totalizer clauses. Additionally, the assumption of ¬k1 is provided. In this particular
case, the SAT Oracle returns an unsatisfiable result, indicating that at least either y1 or y2 must be set to
true for the MaxSAT instance to be satisfied. Consequently, the lower boundary of node k1, k2 is raised
to 1, signifying that k1 is always set to true. Next, a SAT Oracle call is made with the assumption of ¬k2
to determine if the lower boundary can be further increased. The SATOracle responds with a satisfiable
result, indicating that the lower bound remains at 1. The same process is repeated for the other node
in the layer, node m1,m2, resulting in a similar increase in its lower boundary by 1. Figure 4.4 depicts
the updated state of the Layered Totalizer Tree, where redundant variables have been removed and
the lower bounds have been raised.

Example 10.3: Layer 2 of Layered Totalizer Encoding - Result

k2[1, 2]

y1

[0, 1]
y2

[0, 1]

m2[1, 2]

y3

[0, 1]
y4

[0, 1]

y5

[0, 1]

Figure 4.4: Layer 2, of Figure 4.1 as built by the Layered Totalizer Encoding procedure, after SAT Oracle calls, with tightened
lower bounds

Based on the SAT Oracle’s response, the lower boundary is adjusted or the next node is processed.
The tree construction process continues by creating a layer of nodes and performing SAT calls with
assumptions of a specific variable being set to false. Figure 4.5 illustrates that the upper-most node
with variables h3 and h4 initially has a lower boundary of 2 and consists of only two variables. This is a
result of the previous layer, where variables were removed and the lower bound was increased. This
example highlights the effectiveness of variable pruning and its influence on the tree by eliminating
unnecessary encoding of information.
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Example 10.4: Layer 3 of Layered Totalizer Encoding

h3, h4[2, 4]

k1, k2[1, 2]

y1

[0, 1]
y2

[0, 1]

m1,m2[1, 2]

y3

[0, 1]
y4

[0, 1]

y5

[0, 1]

Figure 4.5: Layer 3, of Figure 4.1 as built by the Layered Totalizer Encoding procedure, before any SAT Oracle calls,
demonstrating the ripple-effect of a parent node’s starting lower bound when tightening is possible in the children nodes

The procedure of generating clauses for the new node and its variables is repeated, followed by a
SAT Oracle call. The call results in a satisfiable answer, indicating that the lower boundary cannot be
raised.

Subsequently, the final node, which serves as the root of the tree, is created as depicted in Figure 4.6.
From this point onward, the process resembles that of Linear Search. Specifically, a main cardinality
constraint is established to express the relationship among all relaxation variables, and each possible
value on the right-hand side of the cardinality constraint is iteratively tested. Notably, two out of the
six possible constraint values have already been eliminated, leading to a reduced number of SAT calls
required at the top level.

Example 10.5: Layer 4 of Layered Totalizer Encoding

l3, l4, l5 [2, 5]

h3, h4[2, 4]

k2[1, 2]

y1

[0, 1]
y2

[0, 1]

m2[1, 2]

y3

[0, 1]
y4

[0, 1]

y5

[0, 1]

Figure 4.6: Layer 4, of Figure 4.1 as built by the Layered Totalizer Encoding procedure, before any SAT Oracle calls

A call is made to the SAT Oracle assuming ¬l3, resulting in an unsatisfiable answer. As a result,
the lower bound of the root node is increased by one. Subsequently, another SAT Oracle call is made
assuming ¬l4, which yields a satisfiable solution, representing the optimal solution. As these calls
follow the regular flow of Linear Search, the final result is not displayed in Figure 4.6, instead it is left
with a lower boundary of 2 at the topmost node to show that its lower boundary is increased strictly due
to the bounding in lower layers.

This encoding approach involves a trade-off. It requires more SAT Oracle calls, but it leads to
potentially faster results from the Oracle due to a reduced number of clauses and fixed variables.

It is important to note that it is theoretically sound to remove any variable or clause that is fixed to
the value of 1 or TRUE in a given MaxSAT instance. This is because clauses containing variables set
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to true will always evaluate to TRUE. Removing these variables and clauses is equivalent to fixing all
the removed variables to always be TRUE and including them in the solver.

Algorithm 5 Layered Totalizer Encoding
Input: H,S
Output: cost

1: Srelaxed, I ← relax’(S)
2: node_layers← ∅
3: while true do
4: if node_layers is ∅ then
5: layer ← initial_layer(I)
6: else
7: layer ← create_layer(node_layers.last)
8: end if
9: for node in layer do
10: for variable in node do
11: result← SAT(H,S, variable = 0)
12: if result is UNSAT then
13: node.lower_bound← node.lower_bound+ 1
14: else
15: break
16: end if
17: end for
18: end for
19: node_layers← node_layers ∪ layer
20: end while
21: return node_layers.last.lower_bound

Algorithm 5 shows the pseudocode for the Layered Totalizer Encoding. The first notable difference
between this algorithm and those previously presented is the change in the functionality of the relax
function. The only change is that the current version of relax, named relax’, returns the set of relaxation
variables as well. As seen in line 2, a structure is initiated to hold all of the layers of the Layered Totalizer
as an easy means to access them. If the first layer of the Layered Totazlizer is being created, then the
set of relaxation variables, I, are used to create the bottom-most nodes. Conversely, if at least one
layer already exists then the last layer created is used as the basis for the creation of the next layer. The
method create_layer itself simply follows the formula shown in Figure 2.9. After a new layer has been
created, the boundary-raising procedure begins as seen in lines 9 through 18. As previously explained,
for each node in a layer, and each variable in said node, a SAT call is invoked with the variable of
question passed as an assumption with a value of 0. If the answer from the Oracle is UNSAT then the
lower boundary of the given node can be raised, otherwise the algorithm can move on to testing the
variables of another node in the layer. At the end of the boundary-raising section, the newly created
(and bounded if possible) layer is added to the set of all layers. Finally, the algorithm returns the lower
boundary found at the top-most node.

4.2. Variable Ordering for Better Intermediate Constraints
Variable Ordering can impact how well an algorithm performs due to several reasons. In the terms of
the Layered Totalizer Encoding, Variable Ordering can help find good intermediate constraints at lower
levels and the sooner a lower-level constraint is tightened, the fewer variables, and by extent clauses,
are created at upper levels.

As was shown in the previous section through the running example, the removal of a variable at a
node in level i leads to a decrease of its parent’s variables in level i + 1 by 1. Clause-wise, however,
because a variable has been eliminated, there is a decrease of n+1 clauses, where n is the size of the
set of variables in its sibling node and 1 for the encoding of itself along with the variable in the parent
node that represents the same sum. The formula can be further generalized as



4.2. Variable Ordering for Better Intermediate Constraints 21

v ∗ (n− 1)

where v is the total number of variables removed from the child node.
Thus it is easy to see that the bigger v is, the more variables and clauses are removed at a given

level, thus positively impacting the upper levels by having fewer variables to encode. However, how
many variables are removed at a given layer is partially linked to how the variables are ordered in the
leaf nodes.

In the example depicted in Figure 4.6 and upon rearranging the leaf nodes, different lower bounds
can potentially be obtained. This phenomenon is attributed to the concept of unsatisfiable cores in-
troduced in Chapter 2. When a set of soft clauses forms an unsatisfiable core, the corresponding
cardinality constraint’s right-hand side must be increased to at least 1, and potentially more depending
on the problem’s structure. On the other hand, if two soft clauses do not form an unsatisfiable core,
the right-hand side of their cardinality constraint remains at 0 in the conswcutive layer of the Layered
Totalizer. The size of the unsatisfiable core directly affects how quickly said core is encountered and
bounded in the Totalizer Tree, leading to a ripple effect in the upper layers of the tree.

Unfortunately, determining an unsatisfiable core is not an easy task, nor is ordering the variables
in an approximately optimal manner even if the cores are given to us. To that extent, this section
introduces heuristic approaches to ordering the leaf nodes in the Layered Totalizer Encoding tree in
order to observe how a different variable ordering can impact the runtime of the algorithm, and to
potentially explore what a ”good” variable ordering is.

4.2.1. Most Frequently Occurring Variable Ordering
The first Variable Ordering heuristic of interest is the Most Frequently Occurring Variable. As the name
suggests, the variables are ordered from most frequently occurring to least, as observed in the hard
clauses of a given MaxSAT instance.

Firstly, all variables are ordered from most frequently occurring to least, based on their frequency
in the hard clauses. The variable order serves as the foundation for the arrangement of the leaves in
the Layered Totalizer Tree. The most frequent variable is considered first, which means the soft clause
containing the most frequently occurring variable has its relaxation variable placed in the left-most
position in the Layered Totalizer tree. This ordering follows for each soft clause.

The intuition behind this order is straightforward. It is assumed that a variable which appears fre-
quently in hard clauses is more likely to be involved in an unsatisfiable core along with another variable
that also appears frequently in hard clauses. While this assumption may not always hold true, it has
the potential to be valid in certain instances of MaxSAT.

Unfortunately, this heuristic has a downside as well, because if it holds that frequently occurring
variables form an unsatisfiable core, then it leads that infrequently occurring variables do not form a
core. In fact, by the outlined logic, it is more probable that a frequently occurring variable forms a
core with an infrequently occurring variable, rather than two infrequent variables. Then, if this line of
reasoning holds up for certain MaxSAT instances, a possible outcome is a Layered Totalizer Tree which
has a left subtree with tightly bound nodes, whilst the right subtree is left with loosely bound nodes, if
bounded at all. This is not necessarily true - there is no guarantee that the most frequently occurring
variable is part of any unsatisfiable core - however, it is pertinent to determine whether this heuristic
Variable Ordering outperforms not ordering the leaf nodes in any manner.

4.2.2. Most Frequently Occurring Variable Pair Ordering
A closely related Variable Ordering to that of the Most Frequently Occurring Variable Ordering is to look
at the Most Frequently Occurring Variable Pair Ordering [10]. This approach has the same benefits
and reasoning behind it as the single-variable version, as well as the same pitfalls. The goal behind
this alternate frequency-based approach is to determine whether an interaction of variables in the hard
clauses, and its consequent frequency, could be more significant in variable ordering than considering
each variable’s frequency in isolation.

The procedure for finding the most frequently occurring pair of variables is much the same as the
single variable case - the pair frequencies in the hard clauses is determined and these frequencies are
used to order the relaxation variables in the lowermost level of the encoding tree.
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4.2.3. Core-Based Variable Ordering
As discussed at the beginning of this section, an intermediate constraint in the Layered Totalizer Encod-
ing Tree can only have its lower boundary tightened if it represents an unsatisfiable core. By ordering all
leaf nodes in a specific manner that guarantees their interaction with other relaxation variables higher
up in the tree, it becomes possible to successfully tighten lower bounds. This especially holds if the
unsatisfiable cores used to order the relaxation variables are small, meaning that nodes in lower levels
of the encoding trees would be tightened, which is a desired outcome as previously discussed.

However, several adjustments need to be made before ordering the leaf nodes based on unsatisfi-
able cores. Firstly, obtaining multiple cores is necessary to establish the proper order. Simply obtaining
one core through a single call to the OLL algorithm is insufficient. Multiple calls are needed to gather as
many variable relations as possible, ensuring the accuracy of the ordering. This requires making multi-
ple calls to OLL or another core-based algorithm. However, one challenge arises from the fact that OLL
may potentially solve the problem before enough cores are generated for creating the variable order.

Secondly, while OLL has been beneficial in improving the Totalizer Encoding, it is not the only
algorithm for core generation. Another core-based MaxSAT algorithm called the Implicit Hitting Set
Algorithm (IHS) comes into play. Despite the possibility of IHS also solving the instance prematurely,
its approach to core generation aligns better with the objective [6]. The primary reason behind the
use of IHS over OLL is simple - a core generated by OLL could contain a cardinality constraint or a
variable not present in the original formulation of the problem. On the other hand, IHS generates cores
only containing the variables found in the original problem. Though IHS is an impressive and popular
algorithm in its own right, as it is being used as a black-box variable generator for this study, it will not
be discussed in detail beyond its ability to generate unsatisfiable cores.

The third and final challenge in ordering the relaxation variables to form cores quickly in the en-
coding tree is the consideration that a variable can exist in multiple cores. This raises the question of
determining which core is more desirable and how to make that determination.

For the first obstacle, specifically the issue of core generation potentially solving the problem for
the core-based algorithm itself, the decision has been made to exclude instances solved by IHS during
the core-generation phase from being considered as solved by the Layered Totalizer. If the problem
is solved by IHS within the given time frame, it is considered an invalid instance for the Core-Based
Variable Ordering. Although this approach results in the rejection of many solved instances, the focus
is not solely on the speed of performance of a core-ordered Layered Totalizer, but rather on determining
whether any instances not solved by another Variable Ordering method can be solved.

The final identified obstacle involves a single variable being present in multiple unsatisfiable cores
simultaneously. In this research, the approach to variable ordering is chronological. Specifically, if a
variable xi appears in a core for the first time, its position in the Variable Ordering is determined by that
core. If the same variable xi appears in a subsequent core, it is disregarded, and its original position
in the Variable Ordering is maintained.

Lastly, the generation process of the Core-Based Variable Ordering is discussed. The procedure
begins with the execution of the IHS algorithm, which is limited by a specified time duration. Termination
occurs either when the time limit is reached or when an optimal solution is found, which is disregarded.
The first produced core is the starting point for the ordering of the relaxation variables, meaning that if
a soft clause appears in the core, its relaxation variable is placed in the ordering. For any next core,
if it contains a soft clause that has not been encountered so far, its relaxation variable is placed in
the variable order. Thus, if a potential core trace is [{(x1), (x2), (x5)}, {(x3), (x4), (x5)}], the relaxation
variable ordering would amount to {y1, y2, y5, y3, y4} where each yi relaxation variable responds to the
soft clause of (xi).

4.3. Layered-Linear Hybrid
Themain goal of this research is to explore how the Layered Totalizer Encoding performs in comparison
to Linear Search - however, it is important to also look at how they work in tandem. The assumption is
that the Layered Totalizer Encoding outperforms Linear Search for certain instances, though it is also
expected for the inverse to hold. Moreover, there might be some instances only solved by only one of
the algorithms but not both.

A hybrid approach would present a new perspective - namely, what would happen if certain layers of
the Totalizer Tree are built using the layered approach and others by the regular Totalizer Encoding. As
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established, raising the lower bound in the lower layers of the Totalizer has a ripple-effect for the upper
layers, however, raising the lower bound in the upper parts of the Totalizer Tree would only impact the
small number of layers above it and might not play a role as important as bounding at the start.

This theory can be tested by introducing the Hybrid Totalizer Encoding, in which a certain amount
of layers are built through the Layered Totalizer Encoding and the rest with the regular Generalized
Totalizer Encoding, followed by Linear Search. The implementation of this idea is as straight-forward
as it appears; several layers are set to be built and have their lower bounds increased, whilst the rest
are built as described in Chapter 2. After the full Totalizer Tree is built the standard Linear Search
UNSAT-SAT algorithm is used to find the optimal solution.

4.4. Layered Totalizer in OLL
As noted throughout this work, the OLL algorithm serves as a theoretical inspiration for the Layered
Totalizer Encoding. As such, it is pertinent to explore how the Layered Totalizer performs in the RC2
implementation of the OLL algorithm. When using the newly proposed encoding in Linear Search the
improvement can be seen through the lower overall solve time at the price of more SAT calls.

Going back to the discussion in Chapter 2, an unsatisfiable core can be of any size, and a minimal
core implies the existence of a core for which no proper subset of the elements forms a core itself.
Core minimization is an area of research of its own within core-based algorithms that aims to find these
minimal cores and use them as the building blocks for MaxSAT solving. However, finding a minimal
core is an expensive task, which grows more complex the bigger the discrepancy is between the core
returned by the SAT Oracle and the minimal core itself.

Though several different core minimization techniques exist and are used, a potential contribution
the Layered Totalizer Encoding could have to the OLL algorithm is identifying minimal cores. To be
more precise, given an unsatisfiable core, as the Layered Totalizer Encoding builds the Totalizer Tree
layer by layer, it could potentially raise the bounds of the inner nodes as it does in Linear Search. As
has been discussed, only a node representing an unsatisfiable core can have its bound raised. Hence,
given an unsatisfiable core and its Totalizer Tree, if a given inner node can have its bound raised, it
implies that this proper subset of variables is a core within itself. This does not necessarily mean that
this proper subset is a minimal core itself, rather that the core represented at the top-most node is not
minimal.

To explore this possibility, the Layered Totalizer Encoding has been given to the RC2 algorithm
instead of the Generalized Totalizer Encoding. What this means is that for each cardinality constraint
devised during the main phase of the RC2 algorithm the encoding used is the Layered Totalizer Encod-
ing. The Totalizer Tree is built following the procedure displayed in Algorithm 5. In practice, this leads to
more SAT calls during the RC2 algorithm, with a significant portion of those SAT calls occurring during
the Totalizer Tree encoding. This in turn means that the OLL algorithm will not be able to process the
unsatisfiable cores from those SAT calls. Instead, the purpose of these SAT calls is to tighten the lower
bounds on the nodes of the Totalizer Tree.

As implied, this procedure can be used as an alternative to existing core-minimization procedures.
Comparison among different core-minimization algorithms is left for future work, as this paper only aims
to determine if an OLL algorithm can benefit from the Layered Totalizer Encoding in any way. The work
from [7] is in close relation to this idea, and seeing as there is precedent that unsatisfiable cores and
Linear Search can work in a hybrid manner, a Layered Totalizer Encoding OLL algorithm is a promising
premise.



5
Methodology

Due to the nature of the research topic of this paper, some statistical testing can be applied to deduce
how well the Layered Totalizer Encodingperforms. However, much of the data gathered is better exam-
ined through a descriptive approach. To that extent this section presents the data gathering process, the
data processing procedure, as well as the meaning of the data analyzed and how each characteristic
is examined in the Chapter 6 is presented.

5.1. Tools and Libraries
In order to have a consistent result and remove as many confounding variables as possible, the Gener-
alized Totalizer Encoding as well as the Layered Totalizer Encoding were both implemented in Python.
Both Totalizer Encodings share the same interface, meaning that methods and data structures were
kept as similar as possible as to avoid potential noise in the data produced by using different tools.

Moreover, for each algorithm, the SAT Oracle in use is Glucose-4, as provided by PySAT [14]. As
PySAT is a Python library, it is worth mentioning that the implementation of any of the Totalizers is
dependent on the speed of Python’s functionality itself. An example of Python’s impact on the runtime
is its slow read-in time when compared to languages such as C and Rust.

The Variable Ordering heuristics were implemented from scratch as well except for the Core-Based
Variable Ordering. Because PySAT offers its own IHS implementation [14], its interface is used to
generate the needed cores.

5.2. Data
The data of interest for this research is the performance of the Layered Totalizer Encoding in comparison
to Linear Search, as well as the different heuristic approaches presented in Chapter 4. To collect this
data, all algorithms are given the same set of MaxSAT instances. The MaxSAT instances given to
these Totalizer Encodings are all from the MaxSAT 2022 competition [4]. Then, the data collected from
each instance is the time it took for each instance to be solved in seconds.

The next piece of information of interest is the number of variables and clauses removed per in-
stance in the Layered Totalizer Encoding. This data is gathered at the end of execution by looking at
only the variables and clauses generated by the Layered Totalizer Encoding and Linear Search.

Finally, the correlation or pattern between the times it takes to create the layers for the Layered
Totalizer Encoding is explored.

5.3. Tests
5.3.1. Devised Calculations
The goal is to compare all relevant Totalizer Encodings to gain a broader understanding of how to
employ and improve the Layered Totalizer Encoding. To that extent, different tests were performed on
the gathered data, and the results are interpreted.

The heart of this research is the potential speedup in seconds provided by the Layered Totalizer
Encoding over Linear Search. To that extent, the first point of interest is the speedup factor obtained
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by the Layered Totalizer Encoding. The speedup factor is defined as the percentage of time by which
the Layered Totalizer is faster than Linear Search. The deduced formula is shown below.

SF =

{
(1− tlay

tlin
) ∗ 100 if tlay ≤ tlin,

−(1− tlin
tlay

) ∗ 100 if tlay > tlin

The piecewise function defines the behaviour of the Speedup Factor such that the values obtained
denote a positive value between 0 and 100 if the Layered Totalizer Encoding produces the faster run-
time, and a negative value between 0 and -100 if the runtime of Linear Search is faster. This factor can
be averaged over all instances in the benchmark set to determine the overall faster algorithm and can
be used in combination with other metrics to find a correlation.

However, it is not only pertinent to discover if the Layered Totalizer outperforms Linear Search,
but to also determine why it outperforms Linear Search and under what conditions. As discussed in
Chapter 4, the Layered Totalizer has the potential to eliminate certain variables from being considered,
which leads to the elimination of clauses as well. The question of interest, then, is whether this variable
and clause elimination is correlated to the performance of the Layered Totalizer, and if yes, what can
be concluded based on the result in terms of performance.

The number of variables created with a given Generalized Totalizer Encoding is a fixed number de-
pending on the number of soft clauses. Conversely, the number of variables in the number of variables
in the Layered Totalizer Encoding depends not only on the number of soft clauses, but on how much
the lower boundary can be tightened, meaning there is no formula or generalization as to how many
variables are within a given Layered Totalizer Encoding. The difference in variables per Totalizer En-
coding can be expressed as the Variable Decrease Factor, which looks at the percentage of variables
that are not present in the Layered Totalizer Encoding versus the Generalized Totalizer Encoding. The
calculation for the Variable Decrease Factor can be defined as:

V DF = (1− vlay
vlin

) ∗ 100

The factor is similar to that of the Speedup Factor as the goal is to find a correlation between
these factors. Similarly to the SF calculation notation, vlay denotes the amount of variables created by
using the Layered Totalizer Encoding and vlin the amount of variables generated by the Linear Search
algorithm which relies on the Generalized Totalizer Encoding.

As noted, a decrease in variables indicates a decrease in clauses. To that extent, the Clause
Decrease Factor is introduced, and defined as:

CDF = (1− clay
clin

) ∗ 100

In order to determine whether there is a correlation between the aforementioned factors, a statistical
analysis in the form of Linear Regression is performed in Chapter 6. The correlation of interest is the
one between the Speedup Factor and VDF and CDF respectively. The aim of this Linear Regression
analysis is to determine the strength of the correlation and to extract a possible recommendation on
when to use the Layered Totalizer Encoding based on the regression formula. As can be observed,
both the VDF and CDF function follow the same structure as the SF calculation, bar the condition that
the layered factor is bigger than the linear factor, as the number of both variables and clauses can only
decrease when using the Layered Totalizer approach.

The third and final aspect of interest with respect to the performance of the Layered Totalizer En-
coding is the number of SAT calls per layer as well as the time spent to encode and tighten each layer.
This metric provides insight into how the layers impact each other in terms of potential information gain.
Moreover, on the basis of the SAT calls made per layer and time spent on said layer, a potential baseline
could be formed to determine when to switch from the Layered Totalizer Encoding to the Generalized
Totalizer Encoding followed by Linear Search. The assumption regarding this metric is intuitive and
goes as follows: if the layer li has made a significant amount of SAT Oracle calls and tightened its
nodes’ bounds, then its successor, layer li+1, would potentially need less time to be encoded, due to
the amount of values removed by the previous layer. The reverse notion also holds - if layer li makes
few SAT calls per node, meaning the nodes’ lower boundaries are not significantly tightened if at all,
the successor layer li+1 will potentially take longer to perform its bounding.
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To be able to analyze any potential connection between two consecutive layers in a Layered Totalizer
Encoding, it is pertinent to define a relation between a given layer, the number of SAT calls, and the time
spent in encoding said layer. Though it might be intuitive to simply average over the time spent on layers
li and li+1 and then simply find the ratio between the two averages, due to the very different structure of
the benchmark instances, this calculation would not provide any deeper knowledge or understanding
for a randomly selected MaxSAT instance. Instead, the SAT Call Cost ratio is introduced, which looks
at the average cost of a SAT call, in seconds, of a given layer.

SCC =
tl
ns

The SCC ratio will then be used to plot different instances and to determine how the cost of a SAT
call changes for a given instance or family of instances. The formula above speicifies how the average
cost per layer is calculated for a given layer. Namely, tl is the total time in seconds it took for a given
layer to go through all SAT calls instantiated at that level, whilst ns is the number of SAT calls performed
on said level.



6
Results

This chapter of the paper focuses on analysing the results as described in Section Chapter 5. The re-
sults can be summarized as overall positive for the Layered Totalizer Encoding approach. The section
details the different tests and comparisons conducted between the presented versions of the Layered
Totalizer versus Linear Search, the analysis of the heuristic approaches, and the combination of the
Layered Totalizer Encoding and the OLL algorithm. In brief, for all tests, the Layered Totalizer Encod-
ing outperforms Linear Search in terms of both speed, amount of instances solved, and amount of
unique instances solved. The heuristic approaches show some deeper insight into the structure of the
problems and the behaviour of the Layered Totalizer under different circumstances, though they do
not show a significant increase in instances solved - rather they provide certain unique solutions and
different runtimes. Finally, incorporating the Layered Totalizer Encoding into the OLL algorithm has
shown itself as the overall leader of any other algorithm presented, solely in the number of instances
solved.

6.1. Unweighted Layered Totalizer Encoding and Linear Search
The first point of interest in this research is whether the Layered Totalizer Encoding provides an im-
provement over Linear Search UNSAT-SAT. To this extent, as explained in Chapter 5, 581 benchmark
instances are tested, limited to 3600 seconds of execution time, for both algorithms with the results in
Figure 6.1.
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Figure 6.1: Cactus plot showing the performance of the Layered Totalizer Encoding against Linear Search
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As can be seen in Figure Figure 6.1, the Layered Totalizer first and foremost solves more instances
than LUS. Overall, the Layered Totalizer Encoding algorithm solved 257 instances, while Linear Search
solved 234. Out of these solved instances, 231 instances were solved by both algorithms, with Lay-
ered Totalizer Encoding solving an additional 25 unique instances, and Linear Search solving 3 unique
instances. Out of these 231 shared instances, the Layered Totalizer Encoding solved 167 instances
faster, with an average speedup of 41%. Conversely, 63 problems were solved faster by Linear Search
in comparison to the Layered Totalizer, with an average gain of 46%over the Layered Totalizer. The 3
unique instances solved by Linear Search provide examples of situations in which the Layered Total-
izer Encoding could run into problems. Namely, in instances where little bounding takes place in lower
layers and SAT calls grow more expensive as each additional layer is built, by the time the Layered
Totalizer Encoding reaches the last layer the time might have run out. On the other hand, the Linear
Search algorithm directly begins these expensive calls on the final layer and as such can solve the
problems in the 3600 second time frame.

Based on the collected and analyzed data, it is evident that the Layered Totalizer demonstrates
superior performance compared to Linear Search in over 70% of the tested problems. On average
over all instances, the Layered Totalizer Encoding showed a 17% faster runtime. Additionally, the
Layered Totalizer exhibits a higher capability to solve unique problems compared to Linear Search.
These findings indicate that the Layered Totalizer algorithm is a strong contender against the Linear
Search algorithm. Furthermore, there is potential for combining these two algorithms to tackle problems
that neither algorithm can solve individually, offering even more promising prospects.

6.2. Weighted Layered Totalizer Encoding and Linear Search
Similarly to the Unweighted case, the Weighted Layered Totalizer Encoding and Weighted Linear
Search UNSAT-SAT were tested against 563 benchmark instances provided by the MaxSAT competi-
tion. Figure Figure 6.2 shows the cactus plot that shows how both algorithms performed with respect
to the above-mentioned benchmarks.
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Figure 6.2: Cactus plot showing the performance of the Weighted Layered Totalizer Encoding against Weighted Linear Search

Figure Figure 6.2 displays the cactus plot illustrating the performance comparison between the
Weighted Layered Totalizer and Weighted Linear Search algorithms. Once again, it is evident that the
Layered Encoding surpasses the Linear Search algorithm.

Among the provided problem instances, the Weighted Layered Totalizer successfully solved 116,
while Weighted Linear Search solved 82, with an overlap of 80 instances. This indicates that the
Weighted Layered Totalizer encoding solved 37 unique instances, whereas Weighted Linear Search
only managed to solve 2. In the 80 overlapping instances, the Weighted Layered Totalizer Encoding
outperformed Weighted Linear Search in 49 problems, achieving an average runtime speedup of over
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50%. Conversely, in cases where Weighted Linear Search solved the problems faster, its average
runtime was 29% faster than that of the Weighted Layered Totalizer.

Although the weighted and unweighted instances exhibit differences that affect the speed of the
algorithms, it is worth noting that the Weighted Layered Totalizer demonstrates a larger speedup com-
pared to the unweighted version. Additionally, when considering the problems that were solved faster
by Linear Search, it can be observed that in the weighted instances, Weighted Linear Search achieved
a speedup of approximately 30%, while unweighted Linear Search achieved a speedup of 50%. This
discrepancy indicates that in weighted instances, even when the Weighted Layered Totalizer Encod-
ing is slower than Weighted Linear Search, the negative impact on performance is less pronounced
compared to the unweighted case. This outcome was anticipated due to the exponential expansion
of the Totalizer Encoding, which results in a greater number of variables in the weighted instances
encoding. Consequently, the Weighted Layered Totalizer has a more substantial positive impact and
a comparatively smaller negative impact on performance. It should also be noted that the weighted
algorithms solved less than the unweighted ones, meaning that some of the discrepancy could be due
to this difference.

6.3. Relation Between Unweighted Variables and Clauses, and Time
To grasp why the Layered Totalizer Encoding performs better on a majority of instances as well as how
the number of variables and clauses impacts the solving time, this section delves into the aforemen-
tioned ratios that relate speedup and variable and clause decrease, respectively.

First, a look into variable decrease and speedup as shown in Figure 6.3.
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Figure 6.3: Linear Regression Analysis and scatter plot showing the positive linear relationship between the Variable Decrease
Factor and Speedup Factor, named VDF and SF respectively, where each dot represents a singular instance solved by both

Linear Search and the Layered Totalizer Encdoing

The graph above shows the scatter plot of the relation between the Variable Decrease Factor and
Speedup Factor as described in Chapter 4.

The relation between these two factors shows whether variable decrease and solving time are
correlated. More precisely, the goal is to discover by how much, and if at all, the bounding of inner
nodes in the Totalizer Tree is responsible for the faster solving time of the Layered Totalizer.

To that extent, the scatter plot in Figure 6.3 underwent a Linear Regression Analysis, which deter-
mines the correlation between two variables and its strength. This analysis provides several parame-
ters, such as the p-value, sum of squares, as well as the regression line equation, which all describe
the strength of the relation between the two variables.

In this specific case, the linear regression equation explains how much speedup can be obtained
depending on how many variables have been eliminated. The Linear Regression analysis can be seen
in Table 6.1.
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Equation P-value X-intercept R2

Linear Regression (̂y) = 1.2651x− 3.956 0.0001775 3.127 0.2757

Table 6.1: Breakdown of statistics obtained through Linear Regression

Table 6.1 depicts several metrics produced by the Linear Regression analysis. The first entry in
the table is the equation which describes the relation between the two variables. Namely, what the
equation conveys is that for each 1% increase in the Variable Decrease Factor, there is a 1.2651%
increase in the Speedup Factor. In essence, the equation helps predict and explain how eliminating
variables through the Layered Totalizer Encoding positively impacts the runtime. The p-value shown in
the table represents the significance of the results, meaning this value determines whether the results
are statistically significant enough to draw conclusions from. Per convention, a value smaller than 0.05
indicates a statistically significant result, and as the p-value in Table 6.1 is less than 0.05, the correlation
between decrease in variables and decrease in solving time is statistically significant. The X-intercept
represents the predicted value of x when ŷ is set to 0. This value is 3.127, which implies that if the
decrease of variables is less than 3%, there is no guarantee that the Layered Totalizer Encoding will
outperform Linear Search. This is in line with the original theoretical reasoning presented in Chapter 4
- that in a worst-case scenario where none or almost none of the bounds can be raised, the Layered
Totalizer Encoding could perform worse due to the extra SAT calls with no benefit. Finally, the R2 value
describes the strength of the causative relationship between the two variables. The linear regression
model yielded an R-squared value of 0.28, suggesting that approximately 28% of the variance in Y can
be explained by changes in X. While this value indicates a relatively weak relationship between the two
variables, it is still significant given the right-tailed distribution of the data as well as the large sample
size. The moderate R2 result suggests that there are other variables at play that impact the runtime
of the Layered Totalizer, which is to be expected. These other factors are significant aspects of the
solving process, such as the original size of the MaxSAT instance, but also include more peripheral
factors, such as processor speed and coding language.

Aside from the regression results demonstrating the correlation and moderate causation between
the Variable Decrease Factor and Speedup Factor, Figure 6.3 also provides an insight into the likeli-
hood that the Layered Totalizer Encoding will outperform Linear Search after a certain point of variable
elimination. Namely, for x > 20, meaning 20% of variables have been eliminated, there are only five
shown instances for which Linear Search performs better, versus the majority of instances for which
the Layered Totalizer has outperformed. This information could lend itself to potentially devising a hy-
brid Layered Totalizer to Linear Search algorithm which changes algorithm depending on how many
variables have been eliminated.

Figure 6.4 shows the relation between the Clause Decrease Factor and Speedup Factor. A first
observation on this graph is its similarity to Figure 6.3, which is to be expected seeing as the number
of clauses created depends entirely on the variables present in a given child node. In fact, the impact
of removing variables is potentially better showcased in this figure, seeing as there are multiple data
points mapped close to the x-axis value of 100%, indicating that with enough variables removed a very
significant decrease in clause number is observed.

Similarly to Figure 6.3, the more clauses are removed by using the Layered Totalizer Encoding
approach, the more likely it is that the Layered Totalizer will outperform Linear Search.



6.4. Relation Between Weighted Variables and Clauses, and Time 31

10 20 30 40 50 60 70 80 90 100

−50

50

CDF

SF

Figure 6.4: Linear Regression Analysis and scatter plot showing the positive linear relationship between the Clause Decrease
Factor and Speedup Factor, named CDF and SF respectively, ]where each dot represents a singular instance solved by both

Linear Search and the Layered Totalizer Encdoing

As was done for Figure 6.3, the Linear Regression analysis was carried out leading to the following
table:

Equation P-value X-intercept R2

Linear Regression (̂y) = 0.8094X − 9.1929 0.00005551 11.3579 0.3029

Table 6.2: Breakdown of statistics obtained through Linear Regression

The table presents results similar to those of Table 6.1, which is to be expected as the number of
clauses is directly impacted by the number of variables in the Totalizer Tree. The linear equation shows
that for every 1% increase of the Clause Decrease Factor means a 0.8094% increase in the Speedup
Factor. The p-value is less than the conventional factor of 0.005, meaning that the relation between
the clause decrease and solving time decrease is statistically significantly correlated. The X-intercept
shows that the Layered Totalizer is more likely to outperform Linear Search if more than 11.3579%
of the clauses have been eliminated. The R2 is slightly higher than that of the relation between the
Variable Decrease Factor and Speedup Factor. There is a possible indication here that the amount
of clauses is more significant to the runtime than the amount of variables, however, to decrease the
number of clauses, the number of variables needs to be decreased; hence this conclusion does not
give new insight into how to improve the algorithm.

Once more, it is observable that after a certain X-axis value, namely x > 30, most data points are
above y = 0, meaning that if 30% or more clauses are eliminated by the Layered Totalizer Encoding, it
has a high likelihood of solving a given instance faster than Linear Search.

6.4. Relation Between Weighted Variables and Clauses, and Time
A Linear Regression analysis was also carried out on the weighted instances of MaxSAT with its results
displayed below. As the weighted instances were fewer in number with regard to howmany were solved
by either Linear Search or the Layered Totalizer Encoding, the results are not as reliable. Namely, due
to the amount of data points, this data set does not pass the Shapiro-Wilks test of normality [25]. This
test checks how close the data is to having a Normal Distribution, and the results of this test indicate
that the data cannot be considered normally distributed. To that extent, all of these results can and
should be re-examined to determine whether the conclusion are as reliable as the dataset provided in
the previous section.

Figure 6.6 displays the scatter plot of the gathered data with respect to the Variable Decrease Factor
and Speedup Factor. The figure also shows the linear equation obtained by the Linear Regression
analysis.
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Figure 6.5: Linear Regression Analysis and scatter plot showing the positive linear relationship between the Variable Decrease
Factor and Speedup Factor, named VDF and SF respectively for the weighted instances, where each dot represents a singular

instance solved by both Linear Search and the Layered Totalizer Encdoing

Much like the unweighted case, these results indicate a positive linear correlation which indicates
that the variable decrease obtained by the Layered Totalzer Encoding has a positive impact on the
runtime of the algorithm. In fact, partially due to the smaller sample size, this figure might visually
indicate a stronger linear relation. Table 6.3 breaks down the important observations of the data.

Equation P-value X-intercept R2

Linear Regression (̂y) = 1.7807X − 25.2444 0.00002269 14.1769 0.6047

Table 6.3: Breakdown of statistics obtained through Linear Regression

The linear equation demonstrates that for every increase of 1% of the Variable Decrease Factor
there is a 1.7807% increase in the Speedup Factor for the weighted MaxSAT instances. The data
obtained is statistically significant according to convention. The Layered Totalizer Encoding more defi-
nitely outperforms Linear Search if more than 14% of variables have been eliminated and the causative
relationship between variable decrease and runtime is stronger with an R2 of 0.6047. This discrepancy
between the weighted and unweighted cases could be due to the difference in variable growth per node,
however, due to the smaller sample size of solved instances, a definitive answer cannot be given.

Once again, after a certain variable decrease%age, the Layered Totalizer Encoding is almost guar-
anteed to overtake Linear Search in solving time, with this value being approximately 25%.

Though the results are more promising with the weighted instances, it should once again be taken
into account that the data set is smaller and not normally distributed, meaning further tests with other
instances could lead to counter indications.

6.5. Relation Between Weighted Clauses and Time
This section presents the results of the Linear Regression analysis between the Clause Decrease Fac-
tor and Speedup Factor. Figure 6.6 presents the scatter plot and linear equation of the aforementioned
analysis.
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Figure 6.6: Linear Regression Analysis and scatter plot showing the positive linear relationship between the Clause Decrease
Factor and Speedup Factor, named CDF and SF respectively, for the weighted instances, where each dot represents a singular

instance solved by both Linear Search and the Layered Totalizer Encdoing

Much like in the unweighted case, the data for the weighted MaxSAT instances indicates a stronger
relationship between solving time and clause quantity. However, as previously observed, the amount
of clauses depends directly on the amount of variables and their weights, hence this impact of clauses
is only secondary to the impact of the variables within the encoding. Nonetheless, the figure above
demonstrates the power of the Layered Totalizer Encoding for certain instances where the lower bound
can be tightened. Specifically, looking at the cluster of points located on the rightmost side of the x-axis
shows how big of an impact this bounding technique can have on the runtime.

Table 6.4 displays the important observations from the Linear Regression analysis.

Equation P-value X-intercept R2

Linear Regression (̂y) = 1.2989x− 33.0777 0.00001964 25.4661 0.674

Table 6.4: Breakdown of statistics obtained through Linear Regression

The linear equation shows that for each 1% increase of the Clause Decrease Factor there is a
1.2989% increase in the Speedup Factor, meaning the more clauses eliminated the faster the solving
time. The p-value is once again low enough to be statistically significant. The x-intercept demonstrates
the value at which there is a higher certainty that the Layered Totalizer Encoding will overtake Linear
Search with regard to runtime. Finally, the R2 value indicates a strong direct relationship between the
two variables.

As with the other results up until this point, the value at which the Layered Totalizer Encoding is
almost guaranteed to overtake Linear Search is at the 40% point of the x-axis.

As with the Variable Decrease Factor, a disclaimer with regard to the results should be given. Due
to the inconsistency with a normal distribution these data points have, the Shapiro-Wilks test does
not pass its p-value threshold and as there are not enough data points, the conclusion drawn from
this analysis is not guaranteed to be correct. As such a repeat test of this nature can be done with
different benchmarks that can confirm or deny the strength of the linear relationship between these two
variables.

6.6. Unweighted Variable Ordering Heuristics
By examining the various Variable Ordering heuristics discussed in earlier chapters, the objective is to
assess the influence of an effective or ineffective ordering of leaf nodes in the Totalizer Tree and its
potential impact on performance. The performance of the implemented Variable Ordering heuristics,
along with the standard Layered Totalizer Ordering, can be observed in Figure 6.7 and Figure 6.8. The
results are split in two figures due to the different data processing steps. As noted in Chapter 4, the
core generation process, IHS, can lead to a solution of a given instance before the core-generation
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time comes to an end. To that extent, many instances were removed from the set of solved instances
as they were not solved by the method discussed in this study, namely Layered Totalizer Encoding.
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Figure 6.7: Cactus plot showing the performance of the different Non-Core Variable Ordering Heuristics

Figure 6.7 displays the non-core Variable Ordering heuristics and their performance in comparison
to the standard Alphabetic Layered Totalizer as well as the baseline of a randomly ordered Layered
Totalizer. As expected, the randomly ordered Totalizer Encoding performed the worst, whilst the Al-
phabetic Totalizer proved to be the best. As presented in Chapter 3, the two frequency based variable
orderings are Most Frequently Occurring Variable, denoted as MFV in the table, and Most Frequently
Occurring Pair of Variables, denoted as MFP in the table.
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Figure 6.8: Cactus plot showing the performance of the different Core Variable Ordering Heuristics

Figure 6.8 shows the results of the core-based ordering heuristics. Each heuristic is labeled as Core-
X, where X denotes the number of seconds for which the core-generation process was ran, thus Core-
30 means the core generation algorithm ran for 30 seconds. Though the table shows a significantly
less impressive runtime and a lower number of overall instances solved, this result especially shows
the power of a good ordering. As can be seen most prominently in the performance of the Core-600
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heuristic, which runs the core-generation phase for 600 seconds, has an almost flat line for 70 instances
- implying that with a good variable ordering the bounding process is a lot more successful in binding
nodes in lower levels of the Totalizer Tree.

Nonetheless, it is not only vital to determine which Variable Ordering solves the most instances,
but which heuristic is the fastest, and which heuristic solved what amount of instances that no other
heuristic solved. Table Figure 6.9 shows the breakdown of relevant information per heuristic used. For
each Variable Ordering presented are the unique instances solved, followed by how many instances
the given heuristic dominated given that at least one other Variable Ordering also solved that instance,
and finally the total instances solved by each Variable Ordering heuristic.

Alphabetic MFV MFP Core-30 Core-60 Core-600
Unique Solution 2 30 0 1 1 0
Fastest Instances Total 120 49 34 44 12 0
Total Instances 257 237 245 131 121 79

Figure 6.9: Numeric breakdown of the Variable Ordering performances

As observed in the table above, it is not as straightforward to determine which Variable Ordering
Heuristic to choose when solving a MaxSAT instance with the Layered Totalizer Encoding. First, a look
into the worst-performing heuristic, Core-600. Core-600 uses IHS to generate cores for 600 seconds
before stopping and ordering the variables according to the cores found so far. With Core-600, more
than 200 instances had to be removed from the pool of solved instances because IHSmanaged to solve
them before the 600 seconds were up. Though it is not surprising that IHS solved these instances in
such a short time, it is surprising that there is not even one unique instance solved when using this
heuristic. However, this is easily justified by the simple fact that IHS is a well-established algorithm
that has proven to be good at solving many different types of MaxSAT instances in short periods of
time. It is then no wonder that if IHS did not manage to solve an instance in 10 minutes, then perhaps
the Layered Totalizer Encoding might not be able to solve it in the remaining 50 minutes. Moreover,
there is an overall decrease in the total number of instances solved in comparison to its Core-Based
counterparts, which can easily be explained by the time change. To be precise, for a given instance
that was solved in Core-60 and not solved by Core-600, it is simply due to the fact that the instance
was solved by IHS and then removed from the set of solved instances. Despite the non-dominant
performance of the Core-600 heuristic, it should be noted that measure was kept of the time it took
to solve the instances after the ordering was done - meaning the actual time it takes for the Layered
Totalizer to be built without the 10 minutes spent on core-generation was measured. The achieved
speedup when not taking into account core-generation is an impressive 82% for the 62 instances in
which Core-600 outperformed the no-heuristic approach. Although Core-600 does not provide unique
solutions or the fastest solving time for any instance, it shows that with a proper Variable Ordering,
suited for the Totalizer Tree, a significant speedup can be achieved.

The same analysis can be extended to Core-30 and Core-60. Both suffer from the same pitfall
- a race against IHS and its core-generation, which ultimately solves the problem itself. It can also
be seen that even though both Core-30 and Core-60 solved a unique instance, these instances in
particular are more of a measure regarding which instances get solved with IHS before the time is
up, rather than an actual metric that speaks about the usefulness of the heuristic with regard to the
Layered Totalizer Tree leaf ordering. Nonetheless, Core-30 and Core-60 each proved to be the fastest
for a non-negligible portion of the overlapping instances. With regard to Core-30, there was a 34%
increase in speed in comparison to the non-heuristic approach, whilst Core-60 displayed a 40% speed
gain when compared to the non-heuristic Totalizer. Unlike Core-600, the 30 and 60-second overhead
from the ordering procedure is insignificant in the speedup.

Although the Core-Based heuristics proved that a good Variable Ordering tailored to the Totalizer’s
functionality can lead to new and faster solutions, the focus now shifts to the Variable Ordering heuristics
that use properties of the MaxSAT instance and their effects.

The Most Frequent Variable Ordering heuristic is in the lead out of all heuristics with regard to how
many unique solutions it provides, with 30 unique instances. Moreover, the second fastest approach
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is the Aplabetic approach. Although certain shortcomings of this approach were outlined in Chapter
Chapter 4, it seems that the positives outweighed the negatives in practice. Due to the nature of this
ordering, the time it took to reorder the variables is negligible, making it a great candidate for any use
case. Regarding the speedup, on average for each instance, there was a 30% speedup compared to
the Alphabetic approach, which is not as impressive as the introduced Core-Based heuristics. However,
with the presence of the 30 unique solutions, this heuristic ordering should not be ignored.

Finally, let’s move onto the Most Frequent Variable Pair Heuristic, which is the heuristic with the
most instances solved, only preceded by the Alphabetic approach. With the same drawbacks as the
Most Frequent Variable Heuristic, it once again demonstrates that in practice these drawbacks might
not be as deterring. Although it did not solve any unique solutions, it was the fastest heuristic for 34
of the instances. Unfortunately, there was only an increase of about 10% in runtime compared to the
Alphabetic approach, meaning that this heuristic pales in comparison to its counterpart.

6.7. Unweighted Hybrid Approach
Figure Figure 6.10 displays the performance of each Hybrid Totalizer Encoding in comparison to a fully
layered encoding and Linear Search.
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Figure 6.10: Cactus plot showing the performance of the different hybrid Totalizer Encodings and their performance compared
to the pure Layered Totalizer Encoding and pure Linear Search

This table presents the results from the several different hybrid models, where each model is de-
noted by Hybrid-X, where X denotes the percentage of the Totalizer Encoding build by the Layered
Totalizer Encoding. As shown in the cactus plot, the Layered Totalizer Encoding outperforms any of
the hybrid approaches in terms of total instances solved. Surprisingly, the Hybrid-25 performs the worst
in terms of total instances solved. Though the intuition from the previous section suggests that even
small lower-boundary increments can have a big impact, it seems that only bounding the lower quarter
of the layers is an ineffective strategy. On the other hand, Hybrid-50 and Hybrid-75 do solve more
instances than Linear Search, however, there is not a big gap between the performance of the two
Hybrids.

Table Figure 6.11 displays the breakdown of results more precisely. Hybrid-50 and Hybrid-75 only
differ by 1 instance, however, both have instances for which they were the fastest. Hybrid-25 has the
most fastest instances out of any hybrid approach, which shows that even though it solves the least
amount of instances, its speed is non-negligible.
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Layered Linear 25 50 75
Unique Solution 8 1 0 0 0
Fastest Instances Total 132 54 31 28 16
Total Instances 257 234 196 249 248

Figure 6.11: Numeric breakdown of the hybrid Totalizers’ performace

For the instances in which Hybrid-25 outperformed the rest, there was an almost 30% increase in
runtime. Hybrid-50 and Hybrid-75 also showed an only 30% increase, which is not surprising.

Given the results, it seems that a hybrid approach does not offer either a significant speedup, nor
were new instances solved by any hybrid option. The hybrid approach has proven to not outperform
the Layered Totalizer Encoding on its own, and the reasoning behind this can be seen through the
difference in the amount of instances solved by Hybrid-25 and Hybrid-50. Namely, if an impactful
bounding step is not encountered before switching to Linear Search, the time spent tightening lower
bounds is in essence ”wasted” time, as the cost of the SAT calls at the topmost level remain largely
unchanged. This can further be seen in the following section, where different instances are analysed
and show how the cost of a SAT call per layer changes during the execution of the Layered Totalizer
Encoding.

6.8. Unweighed Instance Family Overview
This section aims to summarize the results obtained for the Layered Totalizer with respect to the different
families of instances. Below, Table 6.5 displays how each variation of the Layered Totalizer Encoding,
as well as Linear Search, performed.

As the results appear daunting and not every instance family is of importance, selected families will
be discussed more in depth below.
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File Name Lay Lin 25 50 75 Rand Core-600 Core-60 Core-30 MFV MFP
aes (7) 0 0 0 0 0 0 0 1 1 0 0
aes-key-recovery (16) 16 15 14 16 16 7 1 1 1 10 16
atcoss (13) 6 5 5 5 5 6 0 2 4 6 6
bcp (16) 16 15 13 15 15 14 3 3 4 15 16
causal (16) 16 15 13 15 15 16 11 14 15 16 16
close_solutions (16) 2 3 2 3 3 2 1 1 1 2 2
decision-tree (13) 1 1 0 0 0 1 1 1 0 1 1
des (16) 2 1 0 2 1 0 0 1 2 2 2
drmx-atmost (16) 16 16 14 16 16 0 14 16 16 16 16
drmx-cryptogen (16) 0 0 0 0 0 0 0 0 0 8 0
exploits-synthesis_changjian_zhang (3) 2 1 1 2 2 2 2 2 2 2 0
extension-enforcement (16) 0 0 0 0 0 0 0 0 0 0 0
fault-diagnosis (16) 9 9 7 9 9 9 1 4 4 9 9
frb (16) 16 16 15 16 16 3 4 6 7 4 16
gen-hyper-tw (16) 3 3 2 3 3 3 0 1 1 3 3
HaplotypeAssembly (6) 0 0 0 0 0 0 0 0 0 0 0
hs-timetabling (1) 0 0 0 0 0 0 0 0 0 0 0
kbtree (14) 1 1 1 1 1 1 0 0 0 13 1
large-graph-community_detection_jabbour (8) 5 5 5 5 5 4 0 0 0 4 5
logic-synthesis (16) 6 6 5 6 6 1 1 1 2 5 6
maxclique (16) 12 13 13 13 13 13 6 7 8 13 12
maxcut (14) 0 0 0 0 0 0 0 0 0 0 0
MaximumCommonSub-GraphExtraction (16) 16 14 11 14 14 15 2 11 12 14 15
MaxSATQueriesInterpretableClassifiers (16) 9 8 7 9 9 9 2 3 3 9 9
mbd (16) 2 2 1 2 2 1 2 2 2 2 2
min-fill (16) 4 2 1 2 2 4 0 2 3 3 4
optic (16) 0 0 0 0 0 0 0 0 0 1 0
phylogenetic-trees_berg (15) 4 3 3 4 4 8 2 2 3 9 0
planning-bnn (15) 10 8 5 10 10 10 5 7 8 11 11
program_disambiguation-Ramos (10) 9 8 3 9 9 9 2 3 3 3 9
protein_ins (12) 12 12 8 12 12 12 0 0 0 0 12
railroad_reisch (11) 7 0 4 7 7 7 3 7 7 8 2
railway-transport (6) 1 1 1 1 1 1 0 1 1 1 1
ramsey (2) 0 0 0 0 0 0 0 0 0 0 0
RBAC_marco.mori (16) 6 6 5 6 6 4 3 3 3 6 6
reversi (5) 2 2 1 2 2 2 0 0 0 2 2
scheduling (5) 1 1 1 1 1 0 1 2 1 1 1
scheduling_xiaojuan (16) 10 7 7 8 8 0 1 3 2 5 9
SeanSafarpour (16) 0 0 0 0 0 0 0 0 0 0 0
security-witness_paxian (16) 0 0 0 0 0 0 0 0 0 0 0
set-covering (16) 0 0 0 0 0 0 0 0 0 0 0
setcover-rail_zhendong (4) 0 0 0 0 0 0 0 0 0 0 0
spinglass (2) 1 0 0 1 1 0 0 0 0 0 1
treewidth-computation (16) 13 14 11 13 13 14 0 1 1 13 13
uaq (16) 7 7 7 7 7 7 6 6 7 7 7
uaq_gazzarata (11) 9 9 8 9 9 9 3 5 5 9 9
xai-mindset2 (17) 5 5 2 5 5 3 2 2 2 4 5

Table 6.5: Tabular representation of the different Instances of Families and how each Layered Totalizer Encoding variation
performed

Firstly, to acknowledge the families for which no instances were solved by any of the solvers, such
as the set-cover family or hs-timetabling. The precise reason as to why these families proved difficult for
the Layered Totalizer Encoding is not necessarily the same - for certain families the instances were so
long that during the 3600 seconds time limit the read-in process was not finished. For others, due to the
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complexity of the problem, the structure, or even the implementation of the Layered Totalizer Encodings,
a solution was not found. Conversely, there are instance families for which every solver performed
more or less the same and managed to solve every instance. These families are drmx-atmost as well
as MaximumCommonSub-GraphExtraction. The frb family can also fall under this category, as the frb
instances got eliminated from the set of solved solutions for the core-based heuristics. These families
have the same commonality - all solutions of these instances have an optimal result closer to the upper
bound than the lower bound of the top-most node. As established, the lower bound of any node is at
least 0, whilst the top-most node has the upper bound of the number of soft clauses in the instance. It
is then intuitive as to why optimal solutions relatively close to the maximum - many nodes get bound
early.

However, a more interesting result to analyse is the families where there is an over or underper-
formers so that the power of the Layered Totalizer can be highlighted. An example of this occurrence
is the drmx-cryptogen family. As observed, with the exception of the Most Frequently Occurring Vari-
able, no solver manages to crack even one instance. However, the MFV heuristic managed 8. These
8 instances are proof of how much the variable order in the leaf nodes can have an impact on the
overall performance of the Layered Totalizer Encoding. The takeaway from this family and the families
which had all instances solved is that a preprocessing step determining the structure of the problem
can greatly improve the performance.

6.9. Weighted Variable Ordering Heuristics
Now let’s analyze the performance of the Weighted Layered Totalizer with different Variable Ordering.
Figure 6.12 and Figure 6.13 display the performance of the previously defined ordering heuristics as
well as the Alphabetic approach.

0 20 40 60 80 100 120 140

0

1,000

2,000

3,000

amount of instances solved

ru
nt
im
e
in
se
co
nd
s

Alphabetic
Random
By Weight

MFV
MFP

Figure 6.12: Cactus plot of all Non-Core Variable Ordering Heuristics for weighted instances

The cactus plot above displays the results obtained by the non-core Variable Ordering heuristics.
Aside from having the Alphabetic ordering and Random orderings as baselines, a new order was added
in the form of weight-based ordering. As the name suggests, the soft clauses with the highest costs
took precedence. The results are notably different in the weighted case as the random ordering and
weighted ordering are similar to the Alphabetic approach, with the Most Frequently Occurring Variable
taking the lead.
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Figure 6.13: Cactus plot of all Core-Based Variable Ordering Heuristics for weighted instances

Similar to the unweighted case, the Core-600 heuristic performs the worst in terms of instances
solved. It, along with Core-30 and Core-60, faces the same challenges in the weighted and unweighted
instances, which involve a race with IHS and core-generation resulting in many solutions being deemed
invalid. Table Figure 6.14 reveals that none of the Core-Based heuristics led to any unique instances
being solved, and they solved less than half of the instances solved by the Alphabetic approach. While
each Core-Based heuristic did exhibit better performance in certain cases, the difference was not sig-
nificant.

Alphabetic MFV MFP Core-30 Core-60 Core-600
Unique Solution 0 55 3 0 0 0
Fastest Instances Total 15 102 33 10 5 1
Total Instances 95 144 103 48 47 30

Figure 6.14: Numeric breakdown of the different Variable Orderings for the weighted instances

On the other hand, the Most Frequently Occurring Variable and Most Frequently Occurring Variable
Pair heuristics showed an increase in the number of instances solved and outperformed other heuristics
in most cases. This is particularly apparent for the Most Frequent Occurring Variable ordering, which
solved 50% more instances than the Alphabetic approach. In fact, for the instances solved faster by
the Most Frequently Occurring Variable and the Alphabetic approach, a speedup of 55% was observed
for the 80 shared instances.

A similar trend can be seen with the Most Frequently Occurring Variable Pair, although to a lesser
extent.

In general, the speedup gained from theMost Frequently Occurring heuristics is instance dependent
rather than a deep exploitation of known problem properties. When using Core-Based heuristics to
order the variables in the leaf nodes of the totalizer tree, a known property is exploited - specifically, that
unsatisfiable cores can be tightened in lower parts of the tree by ordering the variables to mimic parts of
the Totalizer Encodings observed in OLL. The order of the leaf variables determines the level at which
a certain constraint is encountered, making it desirable to use unsatisfiable cores to encounter these
constraints earlier. On the other hand, the heuristics related to Most Frequently Occurring orders are
less concerned with what is specifically beneficial to the Totalizer Tree, but rather rely on observations
of the instance and a loose intuition that variables occurring frequently may form a core.

In summary, a generalized conclusion cannot be drawn regarding the preferable variable ordering
heuristic for any particular problem. Instead, these heuristics are used to demonstrate the impact of
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different leaf orderings on the Totalizer Tree, whether positive or negative.

6.10. Weighted Hybrid Approach
Nowmoving onto the results of the Hybrid Totalizer Encodings for the weighted MaxSAT instances. Fig-
ure Figure 6.15 displays the performance of the different encodings in terms of the number of instances
solved.
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Figure 6.15: Cactus plot showing the performance of the different hybrid Totalizer Encodings along with the pure Layered
Totalizer Encoding and pure Linear Search

As with the unweighted case, it is apparent that the hybrid approaches do not offer unique solu-
tions, but do offer better runtimes. The issue of unintentionally omitting an important bounding step by
switching to Linear Search can even more obviously seen here.

Layered Linear 25 50 75
Unique Solution 21 2 0 0 0
Fastest Instances Total 13 25 22 5 35
Total Instances 116 82 96 97 97

Figure 6.16: Numeric breakdown of the hybrid Totalizers’ performace for the weighted instances

Though there are no new instances solved, it is interesting to observe the amount of instances for
which the hybrid approaches were faster. The point of interest is the discrepancy between the amount
of instances for which the three hybrid approaches had the fastest runtime, specifically the observation
that Hybrid-25 and Hybrid-75 have significantly more best runtimes than Hybrid-50. The conclusion
here is that it is better to choose either a fully Layered Totalizer Encoding approach or a fully Linear
Search approach. This could be tied to the smaller sample size solved, or the amount of variables
generated.

6.11. Weighted Instance Family Overview
As done with the unweighted case, this section presents the instance family overview and how each
version of the Layered Totalizer Encoding performed.
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File Name Lay Lin 25 50 75 Rand Core-600 Core-60 Core-30 MFV MFP
abstraction-refinement (10) 0 0 0 0 0 0 0 0 0 0 0
af-synthesis (16) 2 0 1 1 1 2 1 2 2 3 2
auctions (16) 9 0 0 0 0 9 0 0 0 8 0
binaryNN (16) 0 0 0 0 0 0 0 0 0 10 0
BTBNSL (32) 0 0 0 0 0 0 0 0 0 0 0
causal-discovery (16) 0 0 0 0 0 0 0 0 0 0 0
CSG (10) 0 0 0 0 0 0 0 0 0 0 1
csg-xiaojun (16) 0 0 0 0 0 0 0 0 0 0 0
css-refactoring (11) 0 0 0 0 0 0 0 0 0 0 0
dalculus (16) 4 0 4 4 4 4 0 0 0 5 4
decision-tree (16) 0 0 0 0 0 0 0 0 0 0 0
drmx-atmostk (16) 4 0 5 4 5 4 0 0 0 0 4
haplotyping-pedigrees (15) 0 0 0 0 0 0 0 0 0 0 0
hs-timetabling (9) 0 0 0 0 0 0 0 0 0 1 0
industrial (11) 0 0 0 0 0 0 0 0 0 0 0
lisbon-wedding (16) 0 0 0 0 0 0 0 0 0 1 0
maxcut (16) 2 1 1 2 2 2 0 0 0 0 2
MaxSATQueriesInterpretableClassifiers (15) 8 8 8 8 8 8 3 3 3 9 8
metro (16) 15 15 14 14 14 15 14 15 15 15 14
MinimumWeightDominatingSetProblem (7) 0 0 0 0 0 0 0 0 0 0 0
min-width (16) 0 0 0 0 0 0 0 0 0 0 0
mpe 0 0 0 0 0 0 0 0 0 4 0
OptimalQuantumCircuitMapping (2) 6 7 6 6 6 6 2 3 3 11 6
ParametricRBACMaintenance (16) 0 0 0 0 0 0 0 0 0 4 0
planning-bnn (6) 6 6 6 6 6 6 0 3 3 6 6
power-distribution (16) 11 11 10 11 11 11 0 0 0 16 11
preference-planning (12) 10 10 10 10 10 11 0 0 0 5 10
railroad-sc (6) 0 0 0 0 0 0 0 0 0 0 0
railroad-scheduling (8) 5 0 2 2 2 2 2 3 3 6 2
railway-transport (5) 1 0 1 1 1 1 1 1 1 1 1
ramsey (4) 0 0 0 0 0 0 0 0 0 0 0
RBACMacro (15) 0 0 0 0 0 0 0 0 0 2 0
relational_inference (10) 1 0 0 0 0 0 0 0 0 2 0
rna-alignment (16) 16 14 15 15 15 16 11 13 13 10 15
scSequencing (16) 0 0 0 0 0 0 0 0 0 0 0
Security-CriticalCyber-PhysicalComponents (15) 0 0 0 0 0 0 0 0 0 0 0
set-covering (16) 0 0 0 0 0 0 0 0 0 0 0
shiftdesign (16) 0 0 0 0 0 0 0 0 0 0 0
spot5 (16) 13 6 9 9 9 13 4 4 4 13 13
staff-scheduling (12) 1 1 1 1 0 1 0 0 0 1 1
switching-activity-maximization (1) 0 0 0 0 0 0 0 0 0 0 0
tcp (16) 0 0 0 0 0 0 0 0 0 0 0
timetabling (14) 2 2 2 2 2 2 0 0 0 7 2
warehouses (8) 1 1 1 1 1 1 0 0 0 1 1

Table 6.6: Tabular breakdown of the performance of the different Weighted Layered Totalizer Encodings

There is little to be said that was not visible in the unweighted case with regard to the positives
- namely that a good or bad ordering can make or break the runtime of a given Layered Totalizer
Encoding. An example of a Variable Ordering not performing too well can be seen in the drmx-atmost
family, wherein the Random Variable Ordering did not manage to solve a single instance whilst the
other Encodings managed to solve almost all instances.

The important takeaway from the weighted case is simply to acknowledge the added complexity
onto the Layered Totalizer Encoding due to the exponential growth of variables. As can be observed
in the table above, there are many families for which a couple of instances were solved by different
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versions of the Totalizer Encoding, however not a significant number.

6.12. Layer Analysis
So far, the results section has presented every defined goal in Chapter 5 with the exception of the
observations conducted on the layers of the Layered Totalizer Encoding. The assumption made is that
there is a certain relation between a given layer li and its successor li+1) in relation to the time its takes
to encode said layers. More precisely, there was an assumption that given the raw time and number
of SAT Oracle calls made in a certain layer, there would be a way to predict somewhat accurately the
time it would take to build the next layer.

After gathering the aforementioned data and performing a simple calculation to determine the av-
erage cost of each SAT Oracle call within a level, it can be concluded that an overreaching general
conclusion is not achievable. To illustrate why defining such a relationship is difficult, several instances,
representative of their instance families, have been selected as examples and shown in Figure 6.17
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Figure 6.17: Plot demonstrating different instances from different families

The table above demonstrates 11 instances, all from different instance families, and their average
SAT Oracle call time per layer. The x-axis represents the layer of the Totalizer Tree in question, with
layer 1 denoting the lowermost level consisting only of leaf nodes. As not every Totalizer Tree is of the
same height, certain instances only go up to 3 layers with others moving all the way to 13. The y-axis
shows the average time a SAT call costs, in seconds, for each layer. There are several instances which
have a peak in time spent per layer before reaching the topmost node. On ther other hand, there are
also instances wherein the most costly level is the lowermost level. There are instances with changing
costs of layers with no peak, or layers which simply stagnate in cost per layer. There is a slight pattern
of the initial layer costing more than the following couple of layers, however this is not a general rule
accross all instance families.

Then, perhaps instead of stating a global rule with regard to how much each successive layer costs
with relation to its predeccesor, a look into different families’ instances could be taken.
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Figure 6.18: Plot demonstrating the cost of SAT call per layer across all layers for the subset of navigation problems in the
planning-bnn family

Figure 6.18 shows a subset of the planning-bnn family of instances, specifically all instances dealing
with navigation. As can be seen in the figure above there is a certain repeating element in this family
- that is, a very costly first layer followed by comparably cheaper layers. A potential reason behind
this behaviour is the structure of the problem leading to the SAT Oracle running into conflicts late in its
execution, partly due to the low presence and relation between the relaxation variable of interest and
the original clauses. More elaborately, the more levels are built, the stronger the relationships between
relaxation variables become. At layer 1, no relaxation variable is related to any other relaxation variable.
This means there is a low presence of this relaxation variable in the clauses, leading any SAT Oracle to
potentially spend a lot of time before running into a conflict or solution. Then, for the instances at hand,
adding more clauses helps with establishing each variable more firmly, meaning a solution of conflict
is encountered faster.

However, this is all instance-specific behaviour that does not necessarily relate to any other family
of instances.
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Figure 6.19: Plot demonstrating the cost of SAT call per layer across all layers for the ferb family
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Figure 6.19 demonstrates the plot of the frb family of instances and their behaviour with regard
to layer expenses. As shown in the figure, this family also has a pattern of behaviour, bar a couple
of instances. Namely, each level costs more or less the same. However, the reasoning behind this
family’s behaviour is unrelated to the structure of the problem - rather to the final optimal solution.
Every instance within this family has an optimal value close to the upper bound. Logically it follows
that the closer the optimal value to the upper bound, the more nodes can be bound at lower levels thus
leaving little work to upper levels. Take frb30-15-2.partial as an example problem of this occurrence -
each of this instance’s nodes in Layer 2 have their bounds raised to 1, with their upper bound staying at
2. Almost every node at Layer 3 has its lower bound raised to 3, with its upper bound staying at 4. This
family is the perfect example of how the Layered Totalizer propagates this rippling effect throughout the
layers, as well as being the example of which problems benefit the most when solved with the Layered
Totalizer Encoding over Linear Search.

6.13. Limited Unweighted Layered Totalizer Encoding
Up until this point in the testing process, there has been no time limit imposed on individual segments
of the Layered Totalizer Encoding, rather a general maximum of 3600 seconds. However, much like a
hybrid option cuts off the Layered Totalizer Encoding from proceeding with its execution based on the
height of the Totalizer Tree, it is possible to cutoff the bounding process in the Layered Totalizer encod-
ing with a time limit. More specifically, the point of interest is to determine whether halting tightening
of a given node after 300 seconds would positively impact the runtime of the algorithm. The intuition
behind this testing scenario is to use the benefits that bound tightening provides even if not every node
has been tightened fully.

Figure 6.20 demonstrates the cactus plot of the aforementioned test, with both Linear Search and
the unlimited Layered Totalizer presented as baselines.
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Figure 6.20: Cactus plot showing the performance of the Layered Totalizer Encoding in which every node has a time limit of
300 seconds maximum

As observed, the Limited and regular Layered Totalizer Encodings solve the same amount of prob-
lems. However, a look under the hood shows that they each have 8 unique instances that the other
did not solve. The 8 instances solved by the Limited Layered Totalizer Encoding in fact are also not
shared with Linear Search and are instances with lengthy runtimes. In fact, several of the 8 unique in-
stances solved by the Limited Layered Totalizer are instances that were not solved by any other solver
in the 2022 MaxSAT competition. These results are not surprising - as discussed in Chapter 4, the
weaknesses and strengths of the Layered Totalizer are two sides of the same coin. Where bounding
each node on the lowest level in the tree is almost always cheap, getting to upper levels of the Totalizer
Tree in which few if any nodes have been bound can result in a SAT Oracle call as expensive as that
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of the top-most node. Then, certain instances are sure to benefit from having a mix of a little bound
tightening but a cutoff to proceed to the upper levels.

It should be noted that majority of instances solved by the Layered Totalizer have Totalizer Trees in
which a full layer can be encoded in less than a second, bar the top-most node. This means that the
cut-off of 300 seconds was very generous with the instances as many of them did not get impacted.

Though the Limited Layered Totalizer provided more insight into how the Layered Totalizer can be
used, it is worth noting that the Layered Totalizer Encoding did outperform the Limited Layered Totalizer
by 12%. This is also not surprising, as the cutoff could have potentially inhibited certain important
bounds to be raised for a given instance leading to more time spent in the top-most Tree node instead.

6.14. Limited Weighted Layered Totalizer Encoding
Unlike its Unweighted counterpart, the Weighted Limited Layered Totalizer Encoding performance is
more similar to Linear Search than the regular Layered Totalizer. Figure 6.21 shows how each of the
three algorithms performed on the benchmarks.
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Figure 6.21: Cactus plot showing the performance of the Layered Totalizer Encoding in which every node has a time limit of
300 seconds maximum for the weighted instances

The Limited Layered Totalizer Encoding has only two unique benchmarks that the other algorithms
did not manage to solve, though unlike in the unweighted case, these instances did not take a lengthy
time or were unsolvable by any other 2022 MaxSAT solver.

The observations made in the previous section still ring true here, though it should also be ac-
knowledged that as weighted MaxSAT instances produce more clauses and variables in the Totalizer
Encoding leading to each SAT call having to deal with a potentially bigger load of information. Then, a
repeat of this experiment with a different cutoff limit might lead to more similar results to those observed
in the unweighted case.

With regard to the speed of the Limited versus unlimited Layered Totalizer Encoding, the Limited
Encoding under performed by 33%. Once again, this is to be expected, as cutting off an important
bound-raising SAT Oracle call too early in the lower layers pushed the burden onto the upper layers,
thus slowing down the runtime.

6.15. Layered Totalizer Encoding OLL
The preceding sections presented the results for the several scenarios that the Layered Totalizer En-
coding was put through with Linear Search as its direct competitor. However, the Layered Totalizer
Encoding can not only work as a standalone algorithm, but can be inserted into any other algorithm
that uses the Totalizer Encoding. To this extent, as outlined in Chapter 4, an experiment was con-
ducted in which the RC2 implementation of the OLL algorithm was adjusted so that it uses the Layered



6.15. Layered Totalizer Encoding OLL 47

Totalizer Encoding as its Totalizer Encoding of choice. Figure 6.22 visualized the results of running
RC2 with the Layered Totalizer and the Generalized Totalizer Encoding. As can be seen in the graph,
the Layered Totalizer RC2 solves an additional 50 instances that were not solved by the regular RC2
implementation with no core-minimization techniques.
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Figure 6.22: Cactus plot showing the performance of the RC2 algorithm when using the Layered Totalizer Encoding versus the
Generalized Totalizer Encoding

As with the other results shown in this chapter, the full picture cannot be conveyed solely through
a scatter plot. To that extent, Figure 6.23 showcases some observation with regard to the two RC2
algorithms. As can be seen, though the RC2 algorithm that makes use of the Layered Totalizer solved
more instances overall and more unique instances, it rarely performed the fastest. In fact, the average
runtime of the Layered RC2 algorithm was 31.5% slower than that of the regular RC2.

Layered-RC2 Regular-RC2
Unique Instances 59 5
Number of solved the fastest 77 171
Total Instances 308 255

Figure 6.23: Numeric breakdown of the performance of the RC2 algorithms

However, when talking about the Layered Totalizer’s speed in the context of RC2, there is a new
factor to consider. As explained in Chapter 2, the OLL algorithm generates an unsatisfiable core at
each iteration. Though only one such core is returned from the SAT Oracle, there may be several
unsatisfiable cores, and based on which cores are returned by the SAT Oracle different Totalizer Trees
will be built. More importantly, when running RC2with the Layered Totalizer, when building said Totalizer
Tree, the nodes are immediately bound with the top-most node of the Totalizer Tree also being bound
until a satisfactory result is returned by the SATOracle. Due tomaking SAT calls without retrieving cores
in order to tighten lower bounds and tightening said bounds, the cores encountered in the algorithm
can and will form the baseline RC2 which uses the Generalized Totalizer Encoding. Then, following
this line of reasoning it is understandable why the Layered Totalizer might slow down RC2, however
it also explains its performance in terms of solved instances - that is, different cores are encountered
which for these benchmarks have proven more useful.

As with the Layered Totalizer Encoding as a stand-alone algorithm, there is potential for different
heuristics to be applied to the Layered Totalizer Encoding. Beyond understanding that using the Lay-
ered Totalizer Encoding leads to different core traces and hence different runtimes, it is also important to
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look at the instance families solved by the Layered Encoding RC2 when compared to a regular Layered
Totalizer Encoding.

The table below showcases the amalgamation of all Layered Totalizer Encoding algorithms such
that from each heuristic approach only the best result is extracted and used. In comparison is the
Layered Totalizer Encoding OLL.
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Family Name LTE OLL GTE OLL LTE algorithm
aes (7) 1 1 1
aes-key-recovery (16) 15 15 16
atcoss (13) 5 5 6
bcp (16) 16 15 16
causal (16) 16 11 16
close_solutions (16) 9 8 3
decision-tree (13) 0 0 1
des (16) 13 15 2
drmx-atmost (16) 16 5 16
drmx-cryptogen (16) 0 0 8
exploits-synthesis_changjian_zhang (3) 0 0 2
extension-enforcement (16) 4 6 0
fault-diagnosis (16) 13 12 9
frb (16) 8 3 16
gen-hyper-tw (16) 3 3 3
HaplotypeAssembly (6) 5 5 0
hs-timetabling (1) 0 0 0
kbtree (14) 1 1 13
large-graph-community-detection_jabbour (8) 5 5 5
logic-synthesis (16) 11 9 8
maxclique (16) 13 5 13
maxcut (14) 0 0 0
MaximumCommonSub-GraphExtraction (16) 15 14 16
MaxSATQueriesInterpretableClassifiers (16) 9 9 9
mbd (16) 16 16 2
min-fill (16) 5 2 4
optic (16) 4 4 1
phylogenetic-trees_berg (15) 1 1 9
planning-bnn (15) 7 6 11
program_disambiguation-Ramos (10) 8 7 9
protein_ins (12) 12 3 12
railroad_reisch (11) 0 0 8
railway-transport (6) 2 2 1
ramsey (2) 0 0 0
RBAC_marco.mori (16) 15 16 6
reversi (5) 2 2 2
scheduling (5) 1 1 2
scheduling_xiaojuan (16) 4 4 10
SeanSafarpour (16) 0 0 0
security-witness_paxian (16) 9 7 0
set-covering (16) 0 0 0
setcover-rail_zhendong (4) 0 0 0
spinglass (2) 1 0 1
treewidth-computation (16) 13 13 14
uaq (16) 12 9 7
uaq_gazzarata (11) 9 7 9
xai-mindset2 (17) 9 7 5

Table 6.7: Tabular breakdown of the performance of the OLL algorithm with the Layered Totalizer Encoding against the
standard OLL algorithm and the best performances from any standard Layered Totalizer Encoding implementation

Table 6.7 displays some interesting results regarding the performance of all algorithms discussed so
far. Firstly, a second look into the drmx-cryptogen family. The standard Layered Totalizer approach is
the only algorithm that managed to solve any instance in this family as seen in the LTE algorithm column.
On the other hand when looking at the HaplotypeAssembly family, either version of the OLL algorithm
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outperformed the regular Layered Totalizer Encoding. Another interesting entry is the drmx-atmost, for
which the regular OLL algorithm has the weakest performance.

What all these family instances convey is that both a linear approach or a core-based approach
have their advantages. However, more importantly, is that the Layered Totalizer Encoding can be used
in both manners to solve a larger amount of instances that a Generalized Totalizer Encoding might
not solve. In fact, when choosing only the best performing heuristic per family, a Layered Totalizer
Encoding approach solves 42 more instances than the regular OLL algorithm.

While these results are promising there are a few key drawbacks that need to be acknowledged.
Firstly, there are certain instances for which the regular OLL algorithm experienced an out-of-memory
error, whilst the Layered Totalizer OLL algorithm did not. These are only a handful of instances, though
still noteworthy. Secondly, the implementation of every Totalizer Encoding was built for the purpose of
this study - this means that the OLL algorithm presented in this section is not the most optimized OLL
algorithm, nor are the encodings. Specifically, the algorithms implemented for this study might not use
the most efficient data structures or have the most optimized for and while loops, as the primary goal
was the ability to store and access information for the sake of analysis. All of these factors can skew
the results, however, every precaution has been taken to lower the impact any confounding variables.



7
Conclusion

The goal of this work was to explore a possible improvement of the MaxSAT solving process by inter-
leaving the Totalizer Encoding phase and the calls to the SATOracle in order to reduce the unnecessary
information encoded in the Totalizer Tree. As shown by the results in Chapter 6 this approach provides
a speedup for both the weighted and unweighted MaxSAT instances. Moreover, this approach has
shown that the newly introduced Layered Totalizer Encoding can solve certain instances not solved by
Linear Search.

Beside constructing the standard Layered Totalizer Encoding, it was of the essence to determine
how this new Encoding could be improved upon. To that extent, this paper provided several different pa-
rameter tuning measures, such as variable ordering and a hybrid approach of a mixture of the Layered
Totalizer Encoding and Linear Search. Different approaches yielded different results, with a possibility
into a deeper look into different kinds of variable ordering or hybrid approaches. A stand-out among
these approaches seems to be the Most Frequently Occurring Pair Variable Ordering for the weighted
MaxSAT instances.

A final point of interest was the performance of the Layered Totalizer in an alternative algorithm
such as the OLL implementation of RC2. This aspect would give an even more in-depth answer as to
how the Layered Totalizer Encoding can be used to obtain results to previously unsolved instances as
the involvement of unsatisfiable cores impacts which Totalizer Trees are seen throughout the solving
process. This experiment led to the best overall results in terms of number of instances solved, with
over 300 instances being solved in under an hour.

Tightening lower bounds within the Totalizer Tree in the process of encoding the problem has proven
to have a positive impact on the field of MaxSAT solving both in terms of instances solved and the
solving time of said instances. However, the Layered Totalizer Encoding is far from being perfect as
demonstrated throughout this work. To fully explore the impact the Layered Totalizer Encoding can
have on MaxSAT solving there are several questions that furutre work can explore.

The first and easiest adjustment to be done to the Layered Totalizer is a more efficient implemen-
tation. As it currently exists it is coded using python, which is not the fastest language when it comes
to certain methods. Then a better implementation in C or C++ could majorly benefit the Encoding and
show its true power.

Another point of interest are the results presented in the Limited Layered Totalizer Encoding experi-
ment, which suggests a statistically significant relation between a decrease in variables and a decrease
in solving time. This knowledge can be used during the encoding time to keep track of how many vari-
ables have been eliminated up to a certain point and if, say, after half of the Totalizer has been encoded
and there is not a significant decrease in variables one could stop the execution and switch to Linear
Search.

A more theoretical observation can be made on the implementation of the Layered Totalizer En-
coding in the context of RC2 and core minimization. As the Layered Totalizer Encoding builds its tree
from a given core, it is possible to encounter tightening of inner-bounds which implies that the provided
core is not minimal. Then the question becomes which cores are most suitable for the Layered Total-
izer Encoding and how different core sizes and complexities could impact the runtime. To answer this
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question several different core traces for the same instance would need to be looked at and judged to
determine which has the best outcome.

Finally, there are many different variable ordering heuristics that can be tried with the Layered To-
talizer Encoding, such as neural network generated orderings or graph generated orderings.

In conclusion, the Layered Totalizer Encoding provides an alternative to Linear Search and the
Generalized Totalizer Encoding. It has proven as a worthy alternative in all of the tested scenarios and
has even showed useful when implemented in an OLL algorithm. There are many more areas left to be
explored and tweaked with respect to the Layered Totalizer and the first step in exploring this new idea
has shown that interleaving the encoding and solving process can solve previously unsolved MaxSAT
instances.
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