
 
 

Delft University of Technology

Thermo-mechanical fatigue lifetime assessment of spheroidal cast I\iron at different
thermal constraint levels

Ghodrat, Sepideh; Kalra, Aakarshit; Kestens, Leo; Riemslag, Ton

DOI
10.3390/met9101068
Publication date
2019
Document Version
Final published version
Published in
Metals

Citation (APA)
Ghodrat, S., Kalra, A., Kestens, L., & Riemslag, T. (2019). Thermo-mechanical fatigue lifetime assessment
of spheroidal cast I\iron at different thermal constraint levels. Metals, 9(10), Article 1068.
https://doi.org/10.3390/met9101068

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/met9101068
https://doi.org/10.3390/met9101068


  

Metals 2019, 9, 1068; doi:10.3390/met9101068 www.mdpi.com/journal/metals 

Article 

Thermo-Mechanical Fatigue Lifetime Assessment of 
Spheroidal Cast Iron at Different Thermal  
Constraint Levels 
Sepideh Ghodrat 1,*, Aakarshit Kalra 2,3, Leo A.I. Kestens 2,4 and Ton (A.C.) Riemslag 2 

1 Department of Design Engineering, Faculty of Industrial Design Engineering, Delft University of 
Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands 

2 Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2,  
2628 CD Delft, The Netherlands; A-Aakarshit.Kalra@DAFTRUCKS.com (A.K.);  
leo.kestens@ugent.be (L.A.I.K.); A.C.Riemslag@tudelft.nl (T.A.C.R.) 

3 DAF Trucks N.V., Hugo van der Goeslaan 1, 5643 TW Eindhoven, The Netherlands 
4 Metal Science and Technology Group, EEMMeCS Department, Ghent University, Technologiepark 46, 

B9052 Ghent, Belgium 
* Correspondence: s.ghodrat@tudelft.nl; Tel.: +31-1527-81655 

Received: 27 July 2019; Accepted: 26 September 2019; Published: 1 October 2019 

Abstract: In previous work on the thermo-mechanical fatigue (TMF) of compacted graphite iron 
(CGI), lifetimes measured under total constraint were confirmed analytically by numerical 
integration of Paris’ crack-growth law. In current work, the results for CGI are further validated for 
spheroidal cast iron (SGI), while TMF tests at different constraint levels were additionally 
performed. The Paris crack-growth law is found to require a different 𝐶  parameter value per 
distinct constraint level, indicating that Paris’ law does not capture all physical backgrounds of TMF 
crack growth, such as the effect of constraint level. An adapted version of Paris’ law is developed, 
designated as the local strain model. The new model considers cyclic plastic strains at the crack tip 
to control crack growth and is found to predict TMF lifetimes of SGI very well for all constraint 
levels with a single set of parameters. This includes not only full constraint but also over and partial 
constraint conditions, as encountered in diesel engine service conditions. The local strain model 
considers the crack tip to experience a distinct sharpening and blunting stage during each TMF 
cycle, with separate contributions to crack-tip plasticity, originating from cyclic bulk stresses in the 
sharpening stage and cyclic plastic bulk strains in the blunting stage. 

Keywords: thermo-mechanical fatigue; spheroidal cast iron; partial constraint; crack growth 
models; crack-tip cyclic plasticity; crack-tip blunting and sharpening 

 

1. Introduction 

Cast iron finds widespread application in the automotive industry. Spheroidal (or nodular) cast 
iron is a grade of cast iron frequently used in engine components. It is often preferred over flake and 
compacted cast irons for load-bearing applications. Higher strength of spheroidal cast iron stems 
from the spheroidal shape of graphite particles. However, the spheroidal shape of the graphite 
particles also leads to lower thermal conductivity. In SiMo spheroidal cast iron, silicon and 
molybdenum are added to the material to compensate for the lower thermal conductivity by 
providing strength to the material at high temperatures.  

As a result of sequential start-up and shutdown, these engine components are subjected to 
repeated thermal cycling, resulting in a phenomenon known as thermo-mechanical fatigue (TMF). 
The extent of resulting TMF damage depends on the amount of constraint during the thermal 
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expansion. This constraint emanates from the spatial temperature gradients that develop in the 
material during start-up and shutdown. 

For the manufacturers of engine components, it is imperative to predict the thermo-mechanical 
fatigue lifetime of these components under the constraint conditions during service. Various 
approaches are available for TMF lifetime prediction as summarized by Gocmez et al. [1]. According 
to this reference, three main types of models can be distinguished: (i) phenomenological models, (ii) 
cumulative damage models, and (iii) crack-growth models.  

Rémy et al. [2] successfully calculated lifetimes under high cycle fatigue for a powder metallurgy 
(PM) material containing defects, using the hypothesis that a defect can be considered a crack. To 
calculate the high cycle fatigue (HCF) lifetime, they employed Paris’ fatigue crack-growth equation, 
which describes the crack-growth rate (da/dN) as a function of the stress intensity range (ΔK), taking 
a representative dimension of particles as the initial crack size.  

Fatigue-crack initiation and growth in graphitic cast irons is largely affected by the presence of 
graphite particles. Because of the likely fast initiation of TMF cracks in cast irons as a result of 
delamination at the graphite–metal interface, Ghodrat et al. [3–5] evaluated TMF lifetime using a 
crack-growth model, and they proved that, in tension, the graphite particles can be considered as 
internal notches or defects, from which TMF cracks start to grow during the very first TMF cycles. In 
the presence of an external notch, the notch depth can be considered as the initial crack length. The 
mechanical graphite/matrix interaction of CGI is demonstrated by Ghodrat and Kestens [6], showing 
a weak mechanical bonding. This was confirmed by a recent work [7], studying the mechanical 
behavior of the graphite/matrix interface for cycling load conditions at room temperature, for three 
types of cast iron, including spheroidal cast iron. The measured macroscopic cyclic stress–strain 
behavior was validated using both micromechanical calculations with the finite element method 
(FEM) and microstructural strain measurements by digital image correlation (DIC). De-bonding of 
the graphite/matrix interface was found to develop during the initial load cycles, resulting in an 
interface free of bonding forces. Consistently, both the FEM calculations and the DIC observations 
showed a pronounced increase in strain levels at the graphite particle boundaries. Therefore, the 
results of Reference [7] confirmed that graphite particles can be considered as internal notches, as 
also argued in the current work.  

Despite the fact that TMF loading is often a case of low cycle fatigue involving bulk cyclic 
plasticity, Ghodrat et al. [3] proved the applicability of the Paris’ crack-growth law in successfully 
predicting the TMF lifetime of compacted graphite iron (CGI) under total constraint conditions, 
although the Paris law is based on a linear elastic fracture mechanics (LEFM) approach, which ignores 
low cycle fatigue conditions. However, total constraint conditions are rarely encountered in service. 
A fracture-mechanical approach, capable of determining TMF lifetime under any possible constraint 
condition, is lacking. Considering the diesel engine background of this research, this work focuses on 
out-of-phase TMF loading, signifying that there is a 180° phase difference between temperature and 
mechanical cycling. 

This work aims to understand and model crack growth in spheroidal cast iron for any TMF 
constraint condition. To this purpose, TMF tests were performed at different constraint levels, and 
results were analyzed using two fatigue crack-growth models. Both models were developed using 
the same set of experimental results, with their backgrounds covered in Section 3. 

It is acknowledged that, apart from TMF constraint levels, other factors also influence TMF 
lifetime, most notably high temperature effects such as creep and oxidation. However, the additional 
variation of test conditions identifying high temperature effects, such as using prolonged holding 
times [5], was considered to be beyond the scope of this research. 

2. Experimental Set-Up and Methods 

This section covers details about the materials used, as well as the experimental set-up, and 
specifies the definition of test conditions. 

2.1. Material and Specimens 
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The material under investigation for this study was a type of SiMo spheroidal graphite cast iron, 
also known as ductile cast iron, with a ferritic matrix, and Si and Mo as the major alloying elements. 
The microstructure of the material under investigation is represented in Figure 1, showing graphite 
nodules with an average size of 30 μm ± 8 μm. The chemical composition is listed in Table 1. The 
coefficient α of linear thermal expansion of the material was obtained by measurements of the strain 
during heating from 50 to 550 °C in free expansion. By plotting the axial strain measured as a function 
of temperature, linear expansion was observed, of which the slope, α, was found to be 13.6 × 10  
°C−1. 

 
Figure 1. Typical microstructure of the material under consideration. 

Table 1. Chemical composition (in wt%) of the spheroidal cast iron under consideration. 

C Si Mo Mn S P Fe 
3.40 4.20 0.80 0.50 0.05 0.02 Balance 

Cylindrical dog bone-shaped specimens were used for TMF testing. A sharp circumferential 
notch was machined in the center of the gauge section of some of the samples, using a lath and a 
sharp chisel. The machined notch depth used for each TMF test is reported in Table 2. The geometrical 
specifications of the sample and notch are given in Figure 2. A dedicated extensometer with a gauge 
length of 12 mm was used to measure the total strain (extensometer model 632.53 F14, MTS systems, 
Eden Prairie, MN, USA). 
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Figure 2.  Geometry of thermo-mechanical fatigue (TMF) dog-bone specimen for (a) the case of 
unnotched (smooth) specimens, and (b) for circumferentially notched specimens with notch depth of 
0.2 mm (as example) and a 0.04-mm notch-tip radius (dimensions are given in mm). 

Table 2. Typical values for thermo-mechanical (TMF) crack-growth parameters for all TMF tests 
performed, with calculated lifetimes according to the local stress model (Paris), with the 𝐶  
coefficient based on units for  and ∆𝐾 of m(cycle)−1 and MPa m . , respectively. 

γ (%) 𝒂𝒐(mm) Z (1) 
Experimental Values 

Local Stress Model Calculations 
(Paris’ law) 

S (2) (MPa)      𝑵𝟏𝟎 (2) (–) Δemech 

(%) 𝑵𝚫𝑲 (2) (–) 𝑪paris 𝒎 (– ) 

125 
0.15 3 836 ± 3% 29 ± 41% 

0.84 
24 ± 12% 

9.0 × 10−11 3.58 
0.40 2 808 ± 3% 8 ± 0% 8 ± 12% 

100 
0.03 6 718 ± 1% 157 ± 55% 

0.67 
287 ± 4% 

8.5 × 10−11 3.58 0.15 3 772 ± 3% 48 ± 23% 41 ± 10% 
0.40 2 710 ± 2% 13 ± 8% 14 ± 7% 

75 
0.15 3 654 ± 4% 168 ± 19% 

0.51 
193 ± 16% 

3.3 × 10−11 3.58 
0.40 2 631 ± 0% 56 ± 7% 55 ± 0% 

50 
0.15 3 480 ± 2% 803 ± 28% 

0.34 
990 ± 8% 

1.8 × 10−11 3.58 0.40 4 480 ± 7% 284 ± 20% 276 ± 21% 
0.60 3 453 ± 2% 244 ± 14% 144 ± 7% 

(1) Number of replicate tests; (2) standard deviation (SD), given as a percentage of the average value. 

2.2. Experimental Set-up  

A TMF test set-up, capable of independently imposing temperature and strain profiles on the 
specimen, was employed for TMF testing identical to the set-up that was as used by Ghodrat et al. 
For a detailed description of the TMF test set-up, the reader is referred to this previous work [3,4]. 
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The material was subjected to temperature cycling between minimum and maximum values of 
50 °C and 550 °C, respectively. Holding times of 30 and 140 s were applied at maximum and 
minimum temperatures, respectively, whereas the heating and cooling rates were 7 and 6 °C∙s−1, 
respectively. Out-of-phase TMF tests were performed at the following constraint levels: 125% (over 
constraint), 100% (total constraint), 75% (partial constraint), and 50% (partial constraint). The 
definition of the constraint levels is given in Section 2.4. It is acknowledged that 100% is the maximum 
theoretical constraint level possible, as a result of a thermal mismatch, in product service situations. 
However, the enforced 125% constraint level, enabled by using a TMF test machine, was chosen to 
broaden the range of TMF conditions, so as to model TMF crack-growth parameters more accurately. 
As a bonus, the 125% constraint TMF tests have the advantage of short lifetimes, i.e., short testing 
times. 

The total strain (directly measured by the extensometer) was controlled in order to realize the 
abovementioned constraint values. Figure 3 shows the schematic input temperature and total strain 
profiles for different constraint conditions. Figure 4 presents the controlled temperature and strain 
profiles of a conducted 75% constraint TMF test, together with resulting cycling out-of-phase stress 
levels. Figure 5 exhibits typical resulting hysteresis loops, for the lowest (50%) and highest (125%) 
constraint levels tested, demonstrating that a stable regime sets in already after the first few loops.  

Figure 3. Temperature and total strain profiles for the out-of-phase TMF tests. For all constraint levels, 
temperature was varied from 50 °C to 550 °C in 70 s, and from 550 °C to 50 °C in 80 s. Holding times 
of 30 s and 80 s were introduced at 550 °C and 50 °C, respectively. 



Metals 2019, 9, 1068 6 of 23 

 

 
Figure 4. A typical tested TMF test stress–strain response for a 75% TMF test constraint level as an 
example. 

 
(a) 

 
(b) 

Figure 5. Strain hysteresis loops obtained from TMF tests performed on samples with a notch depth 
of 0.15 mm (a) at 50% partial constraint, and (b) at 125% total constraint. Total strain is defined as zero 
at room temperature. N depicts the number of TMF cycles. 

2.3. The Necessity and Relevance of Using Notched Specimens  

In order to shorten the tests and improve the statistical relevance of the data, the test program 
necessarily employed specimens with various machined notch depths. In our previous work [3], it 
was found that the average TMF lifetimes were calculated by taking the notch depth values as initial 
fatigue crack length [3], which resulted in an accurate match between calculated and experimental 
TMF lifetimes. Moreover, for unnotched (smooth) specimens, taking the average graphite particle 
size as initial crack length for the numerical lifetime calculations also produced good results, which 
indicated the general validity of the initial crack length concept. The quick crack initiation was also 
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microscopically confirmed in recent work on TMF of CGI [8]. The principle of initial crack lengths is 
adopted in the current research on SGI, the results of which are discussed in Section 4.  

The use of various notch depths is essential to determine the crack-growth model parameters. 
For instance, a model with two unknown model parameters needs at least two distinct boundary 
conditions to determine the model parameters. Different notch depths (i.e., initial crack lengths) 
produce distinct TMF lifetimes and can, therefore, provide the necessary boundary conditions to find 
the crack-growth model parameters. Also, with known model parameters, i.e., from notched 
specimens, TMF lifetimes of smooth specimens can be calculated by taking the average graphite 
particle size as initial crack length. This strategy is especially valuable for less severe (i.e., realistic) 
TMF conditions, since a TMF test for a smooth specimen typically requires a testing time of several 
weeks.  

2.4. TMF Test Constraint Levels and TMF Lifetime 

The following constraint test conditions were applied in this work: (i) partial constraint, (ii) total 
constraint, and (iii) over-constraint. The amount of constraint can be defined as the amount of thermal 
strain (𝑒 ) that is converted into mechanical strain (𝑒 ), according to Equation (1). It is noted that 
e and S are respectively used for bulk strain and bulk stress levels, while 𝜀 and 𝜎  are used 
respectively for local strain and stress values, at the crack-tip level. The mechanical strain is defined 
as 𝑒 = −𝛾 ∙ 𝑒 , (1) 

where 𝛾 is the amount of constraint. The range of values for 𝛾 for the aforementioned constraint 
conditions are 0 < 𝛾 < 1 (partial constraint), 𝛾 = 1 (total constraint), and 𝛾 > 1(over-constraint) [9]. 

Thus, the thermal strain is partially, totally, or excessively converted into mechanical strain 
under partial, total, or over-constraint conditions respectively.  

For a uniaxial case, the total strain (𝑒 ), as could be measured by an extensometer, can be 
obtained by making use of the Equations (1), (2) and (3), resulting in Equation (4). 𝑒 = 𝑒 + 𝑒  (2) 

where 𝑒  can be calculated using the values for the coefficient of thermal expansion (𝛼) and the 
temperature difference (∆𝑇) (see Equation (3)). 𝑒 = 𝛼 ∙ ∆𝑇 (3) 

From Equations (1), (2) and (3), the following relationship is obtained between total strain, 
amount of constraint, and temperature (Equation (4)): 𝑒 = (1 − 𝛾)𝛼∆𝑇 (4) 

The amount of constraint (𝛾) is commonly also designated as a percentage, for instance, a 
situation of total constraint (𝛾 = 1) is equivalently denoted as 100% constraint. 

The experimentally determined TMF lifetimes are denoted as 𝑁 , signifying the number of 
cycles at which σ  drops by 10% relative to the maximum value; the reason for having this 
criterion was explained in Appendix C of Reference [4].  

3. TMF Crack-Growth Models  

This work studies the influence of TMF constraint levels on TMF lifetime using two crack-
growth models. Both models consider cyclic damage at the crack-tip level to control crack growth. 
The first model is based on Paris’ fatigue crack-growth law and was successfully used in earlier work 
on CGI [3]. The second model is developed as an extension of the first model by considering the effect 
of TMF constraint levels on a more fundamental level. As argued subsequently, these models are 
designated as the local stress (or Paris’ law) model and the local strain model, respectively. The term 
local refers to the crack tip, either sharp or blunt.  
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3.1. The Local Stress Crack-Growth Model 

The Paris law equation establishes a relationship between the crack-growth rate  and a 
fracture-mechanical parameter, the stress-intensity range ∆𝐾 (see Equation (5)).  𝑑𝑎𝑑𝑁 = 𝐶 (Δ𝐾) , (5) 

where a is the crack size, N is the number of load cycles, while coefficient 𝐶  and exponent m are 
material-dependent parameters. Since stress intensity characterizes the stress distribution ahead of a 
crack tip, the Paris model can also be designated as the local stress model. 

3.1.1. Calculating TMF Lifetime by Numerical Integration (Local Stress Model) 

The cyclic lifetime 𝑁  is obtained from Equation (5) by performing numerical integration by 
incrementing the crack size with small steps of, e.g., 0.001 mm. It is assumed that a crack initiates 
immediately from the machined notch or from a graphite particle in the case of an un-notched 
specimen. Assuming specific values for the Paris parameters 𝐶  and m, the number of cycles is 
calculated as needed for the first 0.001 mm of crack growth around the entire circumference of the 
specimen. This process is repeated for subsequent steps of 0.001 mm, adjusting ∆K in each step in 
accordance with the increased crack length, until a final crack length value. The chosen final crack 
length for the iteration process is 2 mm, but this value was not found to be critical for the calculated 
number of cycles to failure. As shown in Section 4, relatively high TMF crack growth rates are found 
for crack length values above 1 mm, i.e., the final crack growth stage does not represent a significant 
portion of the TMF lifetime.  

For smooth specimens, the average size of graphite particles (30 μm) is considered as the initial 
crack size. For notched specimens, the cracks originate from the graphite particle location at or near 
the notch tip. Thus, the effective initial crack length in the case of notched specimens is constituted 
by the size of the notch. For calculating ΔK, the K solution for mode I loading in a cylindrical specimen 
with a circumferential crack, reported in Reference [10], is used (see Equation (6)). 𝐾 = 𝑆√𝜋𝑎 11 − 𝑎𝑟 1.122 − 1.302 𝑎𝑟 + 0.988 𝑎𝑟 − 0.308 𝑎𝑟 , (6) 

where 𝑟 is the radius of the gauge length of the cylindrical test specimen, and S is the nominal (bulk) 
stress level. To account for crack closure during compression, Δ𝐾  was assumed equal to 𝐾  in 
earlier work [3,4,6]. However, a more detailed analysis of test results shows that most of TMF lifetime 
is consumed during an initial crack extension of about 0.3–0.5 mm (originating from the machined 
notch). In this situation, i.e., for short cracks growing from the notch, the effect of crack closure is 
reported to be limited [11–13]. This indicates that the crack-tip stress intensity range (i.e., Δ𝐾 =𝐾 − 𝐾  ) is more suitable to characterize TMF crack growth of cast iron.  

Furthermore, to simplify calculations, the maximum stress range (Δ𝑆) developed during each 
TMF test was taken to calculate ΔK. The coefficient 𝐶  and exponent m are considered as model 
parameters that are fitted to experimental data, whereby only one specific set of values is accepted as 
best fit for all notch depths employed at a particular constraint level. For a more detailed description 
regarding the Paris law calculations, the reader is referred to References [3,4,6,10].  

3.2. The Local Strain Crack-Growth Model 

In Section 4.1, it is discussed that the local stress model, previously used successfully for CGI, 
also predicts TMF lifetimes for SGI well. However, each TMF constraint level tested for SGI required 
an adaption of the 𝐶  parameter value to match calculated and experimental results. The 
variation in 𝐶  values discounts the general applicability of the local stress model and inspired 
the development of a local strain crack-growth model.  

To better capture the effect of constraint levels on TMF lifetimes, an improvement of the local 
stress model is proposed. From the literature, the acknowledged strain-life approach considers cyclic 
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bulk strains to govern low cycle fatigue (LCF) lifetimes, with a combined role for cyclic bulk elastic 
strains and cyclic bulk plastic strains. For instance, the strain-life approach was used successfully to 
model the fatigue behavior of three types of metal alloys, with a good match between modeled and 
experimental results, with cycles to failure ranging from 103 to 107 cycles [14]. In the present work, 
the original strain-life approach is the point of departure to develop a crack-growth model based on 
local strains, i.e., strains acting at the crack-tip level, and assumed to originate from cyclic bulk strains.  

A crack-growth model based on both cyclic bulk elasticity and cyclic bulk plasticity suggests a 
mechanism to be controlled by a combined LEFM and elastic plastic fracture mechanics (EPFM) 
damage mechanism. During each TMF cycle, the crack tip blunts during tensioning and sharpens 
again during compressing. Therefore, the crack tip can be considered to experience a distinct sharp 
stage and blunt stage during each TMF cycle. It is hypothesized that, during the sharp stage, an LEFM 
damage mechanism is active, while, during the blunt stage, an EPFM damage mechanism takes over. 
Most notably, the blunting mechanism can be associated with the EPFM concept of crack-tip opening 
displacement (CTOD). In References [15–17], a model for TMF-lifetime prediction was developed 
based on a crack-growth law, with the CTOD as main controlling parameter, signifying the relevance 
of blunting during TMF. However, a sharpening mechanism was not implemented in the referred 
models. The blunting and sharpening approach proposed here justifies a TMF crack-growth model 
involving subsequently applying LEFM and EPFM approaches, with a cumulative effect. The 
blunting/sharpening concept is employed to translate bulk cyclic strains to local cyclic plastic strains, 
with separate mechanisms acting during the sharp and blunt stages of the crack tip. As a result, the 
local strain crack-growth model involves an unconventional combination of LEFM and EPFM.  

3.2.1. The Blunting and Sharpening Mechanisms  

Figure 6 shows a typical series of measured TMF (100% constraint tested example) hysteresis 
loops, combined with a sketch of an ideal elastic–plastic TMF hysteresis loop i.e., points A–B–C–D. 
As an example, a machined notch of 0.15 mm is illustrated, from which a TMF crack extends by about 
0.2 mm, creating a crack length of 0.35 mm. 
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Figure 6. Development of bulk and local plasticity during the different stages of a TMF hysteresis 
loop. Note: For clarity, strain levels at the crack tip and notch root are illustrated in terms of 
dimensions of the resulting plastic zones. It is recognized that this representation is valid 
schematically only. 

Starting at point A (550 °C), the tip of a TMF crack is sharp due to high compressive bulk stress 
levels, and pronounced plastic deformation in the bulk material during compression is present. 
Along path A → B, i.e., during the cooling phase, the sharp TMF crack tip is loaded toward a high 
bulk tensile stress level, where crack-tip plasticity is considered to develop according LEFM 
principles. Subsequently, along path B → C, the plastic deformation of the bulk material surrounding 
the crack tip blunts the crack tip, transforming the relatively sharp crack tip (point B) into a blunt 
crack tip (point C). The plastic bulk strain produced along path B → C causes a crack-tip strain 
development not related to the previously formed LEFM crack-tip plasticity (path A → B). At point 
C of the hysteresis loop, the total crack-tip strain is considered a superposition of the two independent 
contributions discussed above.  

Following path C → D → A, i.e., heating up to 550 °C, the blunt crack tip is sharpened again due 
to the development of both high compressive stresses and pronounced compressive bulk plasticity. 
After reaching point A, the blunt crack transforms into a sharp crack again, as a starting point for the 
next TMF cycle.  

3.2.2. Modeling Local Cyclic Plastic Strains for the Sharp and Blunt Crack Stage 

A new model is proposed that incorporates the following elements: (i) applying the renowned 
strain-life approach from bulk material to the crack tip, (ii) applying the local stress model (Paris), 
and (iii) the assumed blunting/sharpening concept associated with the LEFM and EPFM mechanisms. 

In the strain-life approach [12,14], cyclic bulk strain levels characterize the fatigue lifetime. For 
this, both the cyclic plastic bulk strain and the cyclic elastic bulk strain are taken into account. This 
constitutes the total cyclic bulk strain as a characterizing parameter and, therefore, could be referred 
to as the total strain-life approach. However, in practice, the model is usually concisely referred to as 
the strain-life approach, i.e., the term “total” is omitted. 

The area surrounding the crack tip is not an isolated region, but is an integral part of the adjacent 
bulk material. A crack tip experiences a level of cyclic plasticity that is related to that in the 
surrounding bulk material. Therefore, a crack-growth model should involve a parameter related to 
cyclic bulk plasticity. In addition, the strain-life approach also incorporates cyclic bulk elastic strain 
as a parameter controlling fatigue lifetime. A crack-growth model should, therefore, also include a 
parameter reflecting the effect of bulk elasticity.  

The local strain crack-growth model is developed respecting the aspects mentioned above. 
Where the strain-life approach is based on cyclic bulk strains, this crack-growth model is based on 
cyclic plastic strains at the crack-tip level. A polynomial relation is postulated, which relates the crack-
growth rate (da/dN) to the cyclic crack-tip plastic strain (Δε  ), i.e., 𝑑𝑎𝑑𝑁 = 𝐵 Δε  , (7) 

where B and m represent material-related constants.  
The crack-tip cyclic plastic strain Δε   is considered to be the superposition of the cyclic 

crack-tip plastic strain developing during the sharp crack stage of the TMF cycle (Δε  ), and that 
developing subsequently during the blunt crack stage of the TMF cycle (Δε  ), i.e., Δε  = Δε  + Δε  . (8) 

The local cyclic plastic strain originating from the blunt crack stage, (Δε  ), is considered to 
be related straightforwardly to the cyclic plastic bulk strain, (Δ𝑒  ), as mentioned before. A blunt 
crack can also be perceived as a highly loaded notch, for which a strain concentration factor can be 
used to define the notch root strain level. Even in the case of full bulk plasticity, the principle of strain 
concentrations is documented to be still relevant [18]. Therefore, a strain concentration factor (𝐾 ) is 
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used for estimating the cyclic crack-tip plastic strain, (Δε  ), during the blunt crack stage (see 
Equation (10)). For clarity, it is mentioned that the cyclic plastic bulk strain, (Δ𝑒  ), is taken 
straightforwardly as the width of the stabilized hysteresis loop at a zero-stress level (see Figure 4).  

The local cyclic plastic strain contribution for the sharp crack stage (Δε  ) is hypothesized 
to be related to the stress intensity range (Δ𝐾 ), i.e., the cyclic stress distribution ahead of the sharp 
crack tip is assumed to also characterize the cyclic strain distribution, within the plastic zone. The 
value of Δε   should be considered a characteristic (or average) cyclic plastic strain near the 
crack tip, affecting TMF crack growth. Its value is assumed to be linearly related to Δ𝐾  using a 
proportionality factor A (see Equation (9)).  

To summarize, in the local strain model, crack growth is controlled by cyclic plasticity at the 
crack-tip level (Δε  ), with its value being a superposition of the local cyclic plasticities produced 
during the sequence of the sharp stage and the subsequent blunt stage of each TMF cycle, i.e., Δε   and Δε  , respectively. The sharp crack-stage contribution is related to cyclic bulk 
elasticity, while the blunt crack-stage contribution originates from cyclic bulk plasticity. Therefore, 
the strain-life approach and the local strain model share the same controlling cyclic bulk parameters.  

The new local strain model is built-up with the following model equations: Δε  = 𝐴 × Δ𝐾 , i.e., based on LEFM; (9) Δε  = 𝐾 × Δ𝑒   , i.e., based on EPFM. (10) 

Combining Equations (7)–(10) gives the overall representation of the local strain crack-growth 
model as follows:  𝑑𝑎𝑑𝑁 = 𝐵 Δε  = 𝐵 Δε  + Δε  =  𝐵 𝐴 ∙ Δ𝐾 + 𝐾 ∙ Δ𝑒  . (11) 

It can be seen from Equation (11) that the local strain model implicitly incorporates a role for the 
local stress model (see Equation (5)). For instance, at a 50% constraint level, the amount of cyclic bulk 
plasticity is negligible (Δ𝑒   ≈ 0) and, therefore, the local stress model and the local strain model 
coincide, i.e., = 𝐶 (Δ𝐾)  = 𝐵 (𝐴 ∙ Δ𝐾) . (12) 

For a 50% constraint level, the local stress model parameter 𝐶 , and the local strain parameter 
combination 𝐵 𝐴  should match, which is covered in Section 4.3.  

In Equations (7)–(12), the local cyclic plastic strains produced during the sharp and blunt crack 
tip stage are represented by Δε   (m/m) and Δε   (m/m), respectively. The total local cyclic 
plastic strain produced during each TMF cycle is Δε   (m/m), the cyclic plastic bulk strain is Δ𝑒   (m/m), the crack length is a (m), the number of TMF cycles elapsed is N and the stress 
intensity range is Δ𝐾  (MPa√m  ), defined in Section 3.1.1. The units of the local strain model 
parameters A, B, and m can be deduced from Equations (9) and (11). 

3.2.3. Calculating TMF Lifetime by Numerical Integration (Local Strain Model) 

For the local strain model, TMF lifetimes are calculated numerically in a similar manner as 
described for the local stress-based model. Assuming specific values for the model parameters B, A, 𝐾 , and m, the number of cycles is calculated for the first 0.001 mm of crack extension around the 
entire circumference of the specimen (see Equations (7) and (11)). This process is repeated for 
subsequent steps of 0.001 mm, adjusting the values of Δε   in each step in accordance with the 
increased crack length (the value of Δε   is constant). Summing the results of all steps gives the 
total number of cycles to failure, 𝑁   A detailed account of all calculations and model 
parameters involved is given in Appendix A. 

4. Results and Discussion 
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The results of the TMF tests performed are listed in Table 2 and Table 3, with calculated lifetimes 
using the local stress and local strain crack-growth models, respectively. The tables share the same 
underlying experimental data, but Table 2 is organized around the constraint level (first column), 
while Table 3 is structured around the machined notch depth (first column). From the experimental 
results, a clear decrease in TMF lifetimes is found for higher constraint levels (see Table 2) and larger 
notch depth values (see Table 3).  

Table 3. Values for TMF crack-growth parameters for all TMF tests performed, with calculated lifetimes based 
on the local strain model. 

𝒂𝒐; 𝑲𝜺 � Z (1) �S ± SD 
(2) 

𝚫𝒆𝒑𝒍 𝒃𝒖𝒍𝒌 𝑵𝟏𝟎 ± SD (2) 
𝑵𝚫𝜺𝒑𝒍 𝒔𝒖𝒎 ± 

SD (2) 
𝚫 (3) 

𝚫𝛆𝒑𝒍 𝒔𝒖𝒎 
(4) 

𝑹𝑬𝑷𝑭𝑴
(5) 𝚫𝑲𝒂𝒐  

(mm);
(–) 

(%) (–) MPa (%) (–) (–) (%) (%) (–) MPa√m

0.
03

; 1
.3

5 125 - 836 0.37 - 73 - 0.77 . .  0.64 9.1 
100  6 718 ± 3% 0.26 157 ± 56% 170 ± 7% +8 0.59 . .  0.60 7.9 
75 - 654 0.10 - 636 - 0.35 . .  0.39 7.1 
50  - 490 0.05 - 2478 - 0.20 . .  0.30 5.4 

0.
15

; 1
.8

0 125  3 836 ± 3% 0.37 29 ± 42% 26 ± 7% −9 1.28 ..  0.51 21 
100 3 772 ± 3% 0.23 48 ± 22% 56 ± 8% +17 0.99 ..  0.42 19 
75 3 654 ± 4% 0.10 168 ± 19% 183 ± 13% +9 0.67 ..  0.27 16 
50 3 490 ± 2% 0.05 803 ± 28% 656 ± 7% −18 0.45 ..  0.20 12 

0.
40

; 2
.9

0 125 2 808 ± 3% 0.40 8 ± 0.5% 7 ± 6% −18 2.15 ..  0.52 34 
100 2 710 ± 2% 0.25 13 ± 11% 16 ± 5% +26 1.61 ..  0.44 30 
75 2 631 ± 0% 0.05 56 ± 6% 83 ± 0% +49 0.93 ..  0.13 27 
50 4 480 ± 7% 0.02 284 ± 56% 256 ± 19% −10 0.68 ..  0.07 20 

(1) Number of replicate tests; (2) standard deviation (SD), given as a percentage of the average value; (3) 
relative difference of the calculate lifetime (local strain model), with the experimental lifetime; (4) 
superscripts and subscripts are the calculated local cyclic plastic ranges for the sharp and blunt crack 
stages, i.e., Δε   and Δε  , respectively. The values represent calculated results for the 
initial crack length 𝑎 . (5) Example: For 𝑎 = 0.15 mm, in 100% constraint, values of Δε   = 0.58% 
and Δε   = 0.41% are calculated (see Appendix A). Therefore, Δε   = (0.58 + 0.41) = 0.99%. 𝑅  = 0.41/0.99 = 0.42. Note: The italic and underlined fonts, for the “smooth” specimens, are based 
on calculations only, using the values of cyclic bulk stress/strain ranges of the 0.15 notched 
experiments, in order to estimate TMF test conditions, for tests not actually performed. 

In the following sections, it is presented that, by using notched specimens, both local stress and 
local strain crack-growth models are found to predict TMF lifetimes well for SGI, for all constraint 
levels tested, within a short testing time and with reduced scatter, while still being representative for 
TMF behavior of unnotched specimens. The local stress model does not directly address the effect of 
cyclic bulk plasticity, but accounts for the effect of bulk plasticity by adjusting the values of the 
(elastic) local stress model parameters. Therefore, the local stress model can be considered useful as 
a straightforward method to predict TMF lifetimes for a certain TMF constraint level, but does not 
identify or quantify the underlying contribution of cyclic bulk plasticity as is done in the local strain 
model.  

4.1. Results of the Local Stress Crack-Growth Model 

Results for the local stress crack-growth model (i.e., Paris), are presented in Table 2 and Figure 
7. A good match between experimental results (𝑁 )  and calculated results (𝑁 ) is found. For 
smooth specimens (i.e., without machined notch), the average graphite particle size of 30 μm was 
taken as initial crack length.  
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Figure 7. TMF lifetimes calculated according to both the local stress model and local strain model, as 
a function of constraint level. 

As a starting point, the values of the model parameters 𝐶  and m were roughly estimated, 
using a straightforward method (see Appendix B). Subsequently, the values of 𝐶  and m were 
implemented in the numerical procedure, with values of 𝐶  and m further optimized, to match 
calculated and measured TMF lifetimes. A uniform value was found for the local stress parameter m 
= 3.58, for all constraint levels. However, the values of 𝐶  needed to be adjusted per constraint 
level. Therefore, this approach does not completely capture the influence of the constraint level on 
TMF lifetimes. For instance, at a 50% constraint level and a 125% constraint level, the constant 𝐶  
increased by a factor of five, from a value of 1.8 × 10−11 to a value of 9.0 × 10−11. A clarification for the 
increase of 𝐶  at higher constraint levels is given in Section 4.3.  

4.2. Results of the Local Strain Crack-Growth Model 

Results for the local strain crack-growth model are presented in Table 3 and Figures 7 and 8, 
revealing a good match between measured and calculated lifetimes for all constraint levels using a 
fixed set of three model parameters. For smooth specimens (i.e., without machined notch), the 
average graphite particle size of 30 μm was taken as initial crack length. Model parameter m was 
copied from the local stress model, signifying the coherence between two approaches.  
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Figure 8. TMF lifetimes plotted as a function of Δε  .  , with Δε  .  being the cumulative 
local cyclic plastic strain at the crack tip (i.e., Δε  ), calculated according to the local strain model 
for a crack length extension of 0.2 mm (ahead of the start crack length, i.e., ahead of the machined 
notch depth). 

The values of model parameters A and B were initially estimated using assumptions explained 
in Appendix C. Using the estimated values as a starting point, the parameter values of A and B were 
optimized in the numerical lifetime model to match the experimental results. Values of 𝐴 =3.00 × 10  and 𝐵 = 62.0 were found to give the best results.  

An estimated value for the fourth model parameter, the strain concentration factor 𝐾 , would 
ideally be found using Neuber’s Equation (12). 𝐾 𝐾 = 𝐾 . (13) 

In Neuber’s equation, 𝐾  and 𝐾  represent the ratios of the local notch stress/strain levels and 
the remote nominal stress/strain levels, respectively. The symbol 𝐾  represents the stress 
concentration factor, for a pure elastic case, having a value depending on notch depth and notch root 
radius. In view of the extended bulk plasticity, during TMF, the value of 𝐾  is likely to approach 
unity (𝐾  ≈ 1), and 𝐾  would equal 𝐾 . A problem, however, is that the radius of the blunt crack is 
not known and 𝐾 , therefore, cannot be determined analytically. Apart from depending on the 
(unknown) blunt crack-tip radius, the value of 𝐾  also depends on the notch depth and, for small 
notch depths (i.e., smooth specimens), a value 𝐾  ≈ 1 is reasonable to assume, i.e., 𝐾  ≈ 1 also. 
Implementing a value 𝐾  = 1 in the numerical calculations for smooth specimens already gave a 
reasonable match between calculated and measured lifetimes. However, a value of 𝐾  = 1.35 was 
found to give the best match for smooth specimens. For notched specimens, the value of 𝐾  can be 
expected to rise, since 𝐾  increases with notch depth, and, according to Neuber’s equation, 𝐾  
would also increase. For notch depths of 0.15 and 0.40 mm, implementing values for 𝐾  of 1.85 and 
2.80, respectively, proved to give the best match between calculated and measured TMF lifetimes.  

In the recent work of Besel and Breitbarth [19], plastic zone strain levels were quantified using 
finite element calculations and digital image correlation techniques. From this work, it was 
recognized that strain values vary within the plastic zone of a crack tip, with the highest values near 
the crack tip. In this respect, the value of Δε   (Equation (8)) should be interpreted as an average 
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(or representative) crack-tip plastic strain range, controlling TMF crack growth. However, the levels 
of local strain at distinct Δ𝐾  values (see Table 3) were found to be of the same order of magnitude as 
reported in the literature for metals [19,20]. It is acknowledged that TMF lifetimes are also 
successfully determined as a function of plastic CTOD, with TMF crack growth rates found to be 
approximately linear with plastic CTOD values [15–17]. Both the plastic CTOD parameter and the Δε   parameter (used in Equation (7)) characterize a degree of cyclic plasticity at the crack tip. 
The plastic CTOD is defined for one specific position, being the exact location of the crack tip (this 
also holds for its associated plastic strain). However, Δε   (Equations (7) and (8)) constitutes a 
more averaged level of plasticity, within the crack-tip plastic zone as a whole. Considering the 
different backgrounds of the plastic CTOD parameter and the Δε   parameters, their role in 
controlling crack growth cannot be compared directly. 

Figure 7 gives a straightforward and useful overview on how TMF lifetimes are affected by 
constraint levels. However, constraint levels are not the direct physical TMF damaging mechanism, 
but constitute boundary conditions. Representing TMF lifetimes as a function of the crack-tip cyclic 
plastic strain (Δε  ) should give more fundamental information about the TMF crack-growth 
mechanism. However, Δε   is a crack-tip parameter, increasing in value during crack growth 
and, therefore, complicating a straightforward characterization. From the numerical results, the 
development of crack length with the number of elapsed cycles is known, revealing that 80% of TMF 
lifetime is consumed during a limited crack extension of only 0.4–0.5 mm. Also, the early stage of 
crack growth should be associated with low crack-growth rates. In other words, the values of Δε . , present during the early stage of crack growth, dominate the overall TMF lifetimes.  

Figure 8 is an alternative of Figure 7, with TMF lifetimes given as a function of a newly defined 
crack-tip parameter, designated as Δε  . . The new crack-tip parameter (Δε  . ) represents 
the total local cyclic plastic strain (Δε  ), as calculated to be present at a crack extension of 0.2 mm 
(i.e., ahead of the machined notch). According to Figure 8, the TMF lifetimes can be well 
approximated by a polynomial function of Δε  . , qualifying the Δε  .  crack-tip 
parameter as a representative condition during crack growth, apparently able to characterize TMF 
lifetimes. In the final paragraph of Appendix A, an example for calculating the value of Δε  .  
is given.  

4.3. Comparing the Local Stress and the Local Strain Models 

In previous sections, it was observed that for SGI both the local stress and the local strain models 
predict TMF lifetimes well, for all constraint levels under consideration. The good match for the local 
strain model can be ascribed to its incorporated Δε   parameter, which is a function of cyclic 
bulk plasticity. In contrast, the local stress model (Paris) does not contain a dedicated parameter 
involving cyclic bulk plasticity; however, paradoxically, it is still capable of predicting satisfactory 
TMF lifetimes for all constraint levels. The reasoning below can shed some light on this paradox.  

In general, fatigue lifetime largely depends on the initial crack-growth rate, since the first phase 
of crack growth is slow and, thus, consumes most part of fatigue lifetime. In this study, the initial 
crack-growth rates in the local stress model (Paris) and the local strain model were found to be of the 
same order of magnitude. Therefore, the two models produced comparable calculated TMF lifetimes. 
The local stress model adjusts the initial crack-growth rate by choosing the 𝐶  parameter such 
that calculated results match experimental results. Therefore, the variation of 𝐶  for different 
levels of constraint does not have a physical background, but only expresses the effect of constraint 
on TMF lifetime. In contrast, the local strain model captures the effect of the constraint level on TMF 
lifetime with a clear physical parameter, i.e., the local cyclic plastic strain at the crack-tip level 
(Δε  ).  

The local stress model and the local strain models are, in principle, developed separately. 
Consequently, the values of the parameters of both models are also determined independently, 
without obvious interrelation. However, in the case of the 50% constraint TMF tests, the near lack of 
cyclic bulk plasticity observed enabled a direct comparison between both models, as discussed before 
in Section 3.2.2, considering Equation (12). Using the values found for the local strain model 
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parameters 𝐴, 𝐵, and m, the parameter combination (𝐵 𝐴 ) constitutes a value of 1.51 × 10−11. For the 
50% TMF constraint levels, the local stress model parameter 𝐶  is determined to assume a value 
of 1.80 × 10−11. Therefore, for the 50% TMF constraint level, both models predict a TMF crack growth 
rate of the same order of magnitude, validating the coinciding of both models (for 50% constraint 
levels). 

4.4. The Balance between LEFM and EPFM Mechanisms during TMF (Local Strain Model) 

As covered in Section 3.2, the local strain crack-growth model is based on a cyclic 
blunting/sharpening mechanism of the crack tip during each TMF cycle. As a result, in the local strain 
approach, crack growth originates from contributions produced separately during the sharp and 
blunt crack-tip stages. These separate crack-growth contributions are based on distinct principles of 
LEFM (sharp stage) and EPFM (blunt stage), and originate from cyclic bulk elasticity and cyclic bulk 
plasticity, respectively.  

The separate roles of LEFM and EPFM during TMF can be quantified by considering the ratio of Δε   and Δε   for each TMF condition tested, reflecting the contribution of the blunt crack 
stage to the overall TMF lifetime. This strain ratio, Δε  /Δε  , is designated as 𝑅 . An 𝑅  value of unity indicates the case that TMF is dominated by EPFM crack-growth mechanisms, 
while a zero value reflects domination by the LEFM mechanism.  

Table 3 shows 𝑅  for all TMF tests performed. With constraint levels increasing from 50% 
to 125%, 𝑅  was found to consistently increase, ranging from a value of 0.10 to 0.64, respectively. 
Clearly, an EPFM mechanism gradually takes over TMF crack growth at higher constraint levels due 
to the associated increased cyclic plastic bulk strain levels. However, it is striking that, even at the 
maximum 125% constraint level (with only a few cycles to failure), according to the local strain model, 
TMF is still controlled considerably by an LEFM crack-growth contribution and the associated cyclic 
bulk elasticity. The considerable role of LEFM, found for pronounced TMF conditions, contradicts 
the classical Manson–Coffin relationship approach, where LCF/TMF is predominantly attributed to 
cyclic bulk plasticity [12,18].  

Considering Equations (9) and (11), at increased notch depths (i.e., longer initial crack lengths), 
the related higher initial Δ𝐾  values would suggest a transition toward the sharp crack stage 
mechanism (increase in Δε  ). However, on average, per distinct constraint level, similar values 
for the 𝑅  parameter were found for all notch depths. For instance, for the 125% TMF constraint 
tests, for notch depths of 0.03 mm, 0.15 mm, and 0.40 mm, respective 𝑅  values of 0.64, 0.51, and 
0.52 were found (see Table 3). The 𝑅  ≈ 0.5 values found for both the 0.15-mm and 0.40-mm 
notches reflect similar roles for the blunt and sharp crack stages, independent of notch depth. It can 
be reasoned that, with an increase in notch depth, not only does the value of the initial Δ𝐾  level 
increases (i.e., sharp crack stage), but the strain concentration 𝐾  also becomes larger (i.e., blunt crack 
stage, increase in Δε  ; see Equation (11)). The increases in both Δ𝐾  and 𝐾  with notch depth 
are probably in balance, keeping the sharp and blunt crack stage contributions in equilibrium 
independent of notch depth. 

5. Summary and Conclusions 

In the present paper, the lifetime was measured and numerically calculated in thermo-
mechanical fatigue (TMF) tests under various constraint levels on spheroidal graphite cast iron (SGI) 
with temperatures cycling between 50 and 550 °C. The tested constraint levels were employed to 
predict TMF lifetimes more in line with actual service conditions of heavy-duty diesel engines. 

For SGI, the fracture mechanical Paris law approach worked well to predict lifetimes for all TMF 
constraint levels. However, a different 𝐶  parameter value was found for each TMF constraint 
level. Therefore, this approach does not completely capture the influence of the constraint level on 
TMF lifetimes. As this model is based on cyclic crack-tip stress distributions (characterized by Δ𝐾 ), 
the Paris model was addressed as the local stress approach.  

A second crack-growth model was proposed here, based on cyclic plastic strains at the crack-tip 
level. This model, which was labeled the local strain model, was found to predict TMF lifetimes well 
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for all constraint levels, using a fixed set of four model parameters. The local strain model postulates 
a cyclic blunting and sharpening of the crack tip during each TMF cycle, involving contributions of 
both linear elastic fracture mechanics (LEFM) and elastic plastic fracture mechanics (EPFM) 
principles. The LEFM contribution is associated with the stress intensity range (Δ𝐾 ) and, therefore, is 
largely controlled by cyclic elastic bulk deformation (i.e., cyclic bulk stress levels). The EPFM 
contribution is related directly to cyclic plastic bulk strain levels. This means that, in the local strain 
model, crack growth is induced by both cyclic bulk elasticity (LEFM) and cyclic bulk plasticity 
(EPFM). Therefore, the local strain crack-growth model and the established strain-life approach share 
TMF-controlling bulk parameters, demonstrating a coherence between the local strain model and the 
established strain-life approach. The coherence, however, is weakened for high TMF constraint levels, 
where the local strain model still involves a considerable role for cyclic bulk stress levels 
(contradicting the strain-life approach). 

Although both the local stress model and the local strain model predict TMF lifetimes 
satisfactorily, the local strain model can be considered to have a clear physical basis, being the local 
cyclic plastic strain at the crack tip (Δε  ). In contrast, the local stress model can be considered a 
useful fitting method for a distinct TMF constraint level, but it does not physically account for the 
effect of constraint levels. The local cyclic plastic strain, as calculated to be present 0.2 mm ahead of 
the initial crack length (i.e., the machined notch depths), was found to be a suitable characterizing 
parameter to determine TMF lifetimes. 

Abbreviations and symbols 

a TMF crack length 

A Proportionality constant, linking Δ𝐾  to cyclic (sharp) crack-tip plasticity; see Equation (9) 

α Coefficient of thermal expansion 

𝑎  Depth of a machined notch, also being the assumed initial crack length 

B Proportionality constant in the local strain crack-growth model; see Equation (7) 

𝐶  
A combination of parameters in the analytical solution for TMF lifetime, for crack growth 

according to local stress model (i.e., Paris’ law) 

𝐶  Proportionality constant in the local stress crack-growth law (i.e., Paris’ law); see Equation (5) 

𝐶  see 𝐶  

CGI Compacted graphite iron 

CTE Coefficient of thermal expansion 

da/dN TMF crack-growth rate  

𝑒   Bulk strain, as measured by the extensometer (i.e., total strain) 

𝑒   Bulk strain, resulting from stress (i.e., mechanical strain) 

𝑒  Bulk strain, resulting from thermal expansion (i.e., thermal strain) 
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Δ𝑒   Cyclic plastic bulk strain, i.e., the width of the hysteresis loop 

𝛥𝜀   
Local cyclic plastic strain at the crack tip, produced during the sharp crack stage of the local strain 

model; see Equation (9) (mechanical strain) 

𝛥𝜀   
Local cyclic plastic strain at the crack tip, produced during the blunt crack stage of the local strain 

model; see Equation (10) (mechanical strain) 

𝛥𝜀   The cumulative local cyclic plastic strain at the crack tip; see Equation (8) (mechanical strain) 

𝛥𝜀  ( ) The value of Δε   at the initial crack length 𝑎 , being the depth of the machined notch 

(a similar notation is used for initial values of Δε   and Δε  ) 

𝛥𝜀  .  The value of Δε  , at a crack length of (𝑎 + 0.2 mm), characterizing TMF lifetime 

EPFM Elastic plastic fracture mechanics 

𝑅  The relative contribution on TMF of the blunt crack stage (local strain crack-growth model) 

γ Relative degree of thermal constraint during a TMF test 

𝐾  Strain concentration factor (local strain/nominal strain) 

𝐾  Geometrical stress concentration factor (defined for elastic strains only) 

𝐾  Stress concentration factor (local stress/nominal stress)  

𝐾  Minimum value of the stress concentration factor during TMF 

𝐾  Maximum value of the stress concentration factor during TMF 

Δ𝐾  Stress-intensity range = (𝐾  – 𝐾 ) 

Δ𝐾   Initial stress-intensity range, with the machined notched depth (𝑎 ) taken as initial crack length. 

For unnotched specimens, the average graphite particle size is taken as initial crack length. 

∆𝐾∆ .  The value of Δ𝐾 , at a crack length of (𝑎 + 0.2 mm) 

LCF Low cycle fatigue 

LEFM Linear elastic fracture mechanics 

𝑁  Number of cycles at a 10% load drop in a TMF test (i.e., experimental cycles to failure) 

𝑁  
Number of TMF cycles to failure, calculated by numerical integration of the local stress crack-

growth model (i.e., Paris’ law) 

𝑁 . Number of TMF cycles to failure, given by the analytical solution of the local stress crack-growth 
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model (i.e., Paris’ law) 

∆𝑁 Number of TMF cycles elapsed 

𝑁   
Number of TMF cycles to failure, calculated by numerical integration of the local strain crack-

growth model 

r Radius of the cylindrical gauge length of the TMF test specimen 

𝑆 Bulk stress 

Δ𝑆 Nominal (bulk) stress range 

SGI Spheroidal graphite iron 

SiMo Cast iron with silicon and molybdenum as major alloying elements 

Δ𝑇 TMF cycle temperature range 

TMF Thermo-mechanical fatigue 

Z Number of replicate TMF tests 
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Appendix A: Example Calculations of TMF Lifetimes, Using the Local Strain Model 

Example Calculation for 100% Constraint TMF Test Results, for a 0.15-mm Machined Notch 

Averaging TMF test results of three replicate tests (Z = 3) resulted in a representative (measured) 
bulk cyclic stress level Δ𝑆 of 772 MPa, and a representative measured bulk cyclic plastic strain level 
(Δ𝑒  ) of 0.23%.  

At the crack-tip level, the value of the total local cyclic plastic strain (Δε  ) is calculated below 
to be 0.99% This result consists of two contributions, being the cyclic crack-tip plastic strain for the 
sharp crack stage (Δε  ) and the (additional) cyclic crack-tip plastic strain developed during the 
blunt crack stage ( Δε  ). These two contributions are calculated below under (i) and (ii), 
respectively. 



Metals 2019, 9, 1068 20 of 23 

 

i. The initial value of Δ𝐾  value (Δ𝐾  ) is calculated according to Equation (6), i.e.,            Δ𝐾  = 𝐹(𝑎 𝑟⁄ ) ∙ ∆𝑆 𝜋𝑎  considering the notch depth as initial crack length (i.e., 0.15 mm), 
resulting in Δ𝐾  = 𝐹(0.15 3⁄ ) ∙ 772 ∙ √𝜋 ∙ 0.00015 = 19.17 MPa√m  (see Table 3). Using 
Equation (9), Δε  = 𝐴 ∙ Δ𝐾 , and, using the determined value of constant A = 3 ×10 ,  Δε  = 𝐴 × Δ𝐾 = 3 × 10  × 19.2 × 100% = 0.58%. It should be noted that the value 
of A is taken as a constant for all TMF tests performed. 

ii. Using Equation (10), Δε  = 𝐾 × Δ𝑒   , with a value of 𝐾  =1.80 and Δ𝑒  = 0.23% 
results in Δε  = 1.80 × 0.23 = 0.41%. It should be noted that the value of 𝐾  = 1.80 is 
identical for all TMF tests performed using a 0.15-mm notch depth.  
Superposition of contributions (i) and (ii), according to Equation (8), gives  Δε  = Δε  + Δε   = 0.58 + 0.41 = 0.99%, (A1) 

which is reported as  Δε     i. e. 0.99 . . . (A2) 

The initial value of Δε   of 0.99%, according to Equation (7) (or Equation (11)), using values 
of local strain-model constants B and m of 62 and 3.58, respectively, gives an initial crack-growth rate. 𝑑𝑎𝑑𝑁 = 𝐵 Δε  = 62 × (0.0099) . = 4.14 × 10 mcycle. (A3) 

It should be noted that the local strain model constants B and m are identical for all TMF lifetimes 
calculations, being 62 and 3.58, respectively.  

For subsequent discrete steps of 0.001 mm of crack growth, the number of cycles is calculated 
needed to cover this growth. For instance, for the first iteration step, covering a crack length interval 
from 0.150 to 0.151 mm, the following is found: ∆∆ = 4.13 ∙ 10 𝑜𝑟 ∆𝑁 = ∆. ∙   with ∆𝑎 = 10  𝑚,  

 ∆𝑁 = 0.242 cycle / 0.001 mm.  (A4) 

Due to the small step size, the results of the second calculated iteration step, being the crack-
length increment from 0.151 to 0.152, are almost similar to those of the first step.  

Adding the ∆𝑁  values of all iteration steps gives a numerically calculated TMF lifetime 𝑁   of 56 cycles.  
As an example, the situation of the iteration step 0.2 mm ahead of the machined notch tip is 

considered, i.e., from a crack length of 0.350 mm to 0.351 mm. In this step, due to the longer crack, 
the value of Δ𝐾  raised to a value of 30.31 MPa√m leads to a value of Δε  = 𝐴 × Δ𝐾 = 3 × 10  ∙ 30.31 × 100% = 0.91%. (A5) 

The blunt crack-stage contribution (Δε  ) is independent of crack length, i.e., 0.41%, as 
calculated above under (ii). Therefore, at a crack length a = 0.35 mm, the local cyclic plastic strain 
(Δε  ) can be reported as 1.32 . .  . The new crack-growth rate is calculated as 1.27× 10  m/cycle, 
while the increment from 0.350 mm to 0.351 mm consumes a number of cycles ∆𝑁 =0.079 cycle/0.001 mm. 

The calculation for a specific crack extension of 0.2 mm was chosen because, in this case, the 
value of Δε   also constitutes the value of Δε  . , as discussed in Section 4.2. The value of Δε  .  = 1.32% can also be observed for label J in Figure 8. 
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Appendix B: Initial Estimation of the Local Stress Model Parameters 

The Local Stress Model Parameters 

Considering the local stress model, = 𝐶 (Δ𝐾)  (Equation (5)), the preliminary values for 
the parameters 𝐶  and m are evaluated by considering an estimation of the analytical solution of 
the local stress crack-growth law. As simplification, the geometrical function 𝐹( ), as defined in 
Equation (6), is taken as a constant value, being the initial value for a crack length equal to the 
machined notch depth. The analytical solution, with the bulk stress range (Δ𝑆) given in MPa, can now 
be derived from Paris’ law, and is also reported in the literature [12].  𝑁 . =  (𝑎 ) − (𝑎 )  with 𝐶 = 𝐶 (𝜋)½ 𝐹( ) ∙ Δ𝑆 ; 𝐶 =  (1 − ½𝑚). (A6) 

Using the 50% constraint test results for 0.15-mm and 0.40-mm notched specimens, experimental 
results are summarized below. The 50% constraint test results are chosen specifically, because, at 50% 
constraint, the experiments showed a virtual absence of cyclic bulk plasticity, typical for Paris fatigue 
crack growth behavior. 

0.15-mm machined notch: (𝛥𝑆) .  = 490 MPa, (𝑁 ) .  = 803 cycles, 𝐹 . = 1.144. 
0.40-mm machined notch: (𝛥𝑆) .  = 480 MPa, (𝑁 ) .  = 284 cycles, 𝐹 . = 1.196. 
Implementing the experimental lifetimes in the analytical solution (Equation (A6)) is achieved 

by equating the ratio of experimental lifetimes with the ratio of the analytical lifetimes, as shown 
below for the 0.15-mm and 0.40-mm machined notches, respectively. (𝑁 ) .(𝑁 ) . =  (𝑁 .) .(𝑁 .) . . (A7) 

For the analytical solution, the effect of the final crack length (af) can be omitted, since the slow 
crack growth at initial crack length (ao) dominates the TMF lifetime, which results in the following: (𝑁 ) .(𝑁 ) . =  𝐹 0.403 (𝛥𝑆) .𝐹 0.153 (𝛥𝑆) . ∙  −0.15 ( ½ )−0.40 ( ½ ) , 

2.827 =  (1.024) × (0.375)( ½ ),  log(2.827) =  log (1.024)  +  log(0.375)( ½ ), 0.451 =  𝑚 × log(1.024) + (1 − ½𝑚) × log(0.375), =  0.010𝑚 −  0.426 +  0.213𝑚,  
resulting in the estimation 𝑚 = 3.932.  

The estimated value of 𝐶  is found by substituting the estimated value of m = 3.932 in 
Equation (A6), using the experimental results of the 0.15-mm notch, being (𝛥𝑆) . = 490 MPa, (𝑁 ) .  = 803 cycles and 𝐹 . = 1.144. 𝐶 = 𝐶 (𝜋)½ 𝐹 ∙ Δ𝑆 =𝐶 ∙ 9.493 × 1.144 × 490 . = 6.095 × 10 × 𝐶 ; 𝐶 =  (1 − ½𝑚) =  −0.966;  𝑁 . =  𝑎 −  (𝑎 )  ≈ − (𝑎 )  ⟷ 𝐶 =  . ∙ − (𝑎 ) ;  

With 𝐶 = 6.095 ∙ 10 ∙ 𝐶  ; 𝐶 = −0.966 ; 𝑎 = 0.00015 𝑚, and 𝑁 . =803 cycles yields: 6.095 × 10 × 𝐶 =  ∙ . 0.00015 . ⟷ 𝐶 = 1.05 × 10 . 
The estimated values of 𝐶 =  1.05 × 10  and 𝑚 = 3.932 were implemented as initial 

values in the numerical lifetime calculation for the 50% constraint experiments, as discussed in 
Section 3.1. By adjusting the parameter values incrementally (i.e., by trial and error), the numerical 
lifetime results were found to match all experimental results optimally for parameter values 𝐶 = 1.80 × 10  and 𝑚 = 3.58.  
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Appendix C: Initial Estimation of the Local Strain Model Parameters 

As discussed in Section 3.2.2, in the local strain model the crack-growth rate is given by 𝑑𝑎𝑑𝑁 = 𝐵 𝐴 ∙ Δ𝐾 + 𝐾 ∙ Δ𝑒  . (A8) 

Preliminary values for the parameters A and B were evaluated by considering the local strain 
model to be equivalent to the local stress model, for the case of 50% constraint. Also, it was 
hypothesized that ratios of lifetimes found reflect ratios of initial crack-growth rates, since initial 
crack-growth rates can be expected to dominate TMF lifetimes.  

Considering 50% and 100% constraint tests for 0.15 mm-notched specimens, the following can 
be found: 

50% constraint case (0.15-mm notch): (𝑁 ) .  = 803 cycles, (Δ𝐾) % = 12.0 MPa√m (see Table 
3);  

100% constraint case (0.15-mm notch) : (𝑁 ) .  = 48 cycles, (Δ𝐾) % = 19.0 MPa√m  and 𝛥𝑒  % = 0.0023 (m/m) (see Table 3);  

%%  = = 6.00 × 10 . =  ( ∙ %) ∙ % ∙  , %  = ( ∙ %) ∙ % ∙  , % . To 

summarize, with (Δ𝐾) % = 12.0 MPa√m, (Δ𝐾) % = 19.0 MPa√m , and 𝛥𝑒  % = 0.0023 (m/m) and m = 3.58, a value for parameter A is estimated as 3.16 × 10 . The value of parameter B is estimated 
by considering the local stress and local strain models to coincide for the 50% constraint level, as is discussed 
in Section 4.3 i.e. (𝐶 ) %  = 𝐵𝐴 . With values of (𝐶 ) % = 1.80 × 10 , parameter A = 3.16 × 10  and parameter m = 3.58, the value of parameter B is estimated as 61.2.   

The provisionally estimated values of 𝐴 = 3.16 × 10  and 𝐵 = 61.2  were implemented as 
initial values in the numerical lifetime calculation for the 50% constraint experiments, as discussed in 
Section 3.2.3. By gradually adjusting these estimated parameter values of A and B (i.e., by trial and 
error), the numerical lifetime results were found to match all experimental results optimally for 
parameter values 𝐴 = 3.00 × 10  and 𝐵 = 62.0. Therefore, the estimated and final values found for 
parameters A and B are in good agreement.  
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