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Reinforcement Learning of Potential Fields
to achieve Limit-Cycle Walking

Denise S. Feirstein ∗ Ivan Koryakovskiy ∗ Jens Kober ∗∗

Heike Vallery ∗

∗ TU Delft Department of BioMechanical Engineering
∗∗Delft Center for Systems and Control

Abstract: Reinforcement learning is a powerful tool to derive controllers for systems where no
models are available. Particularly policy search algorithms are suitable for complex systems,
to keep learning time manageable and account for continuous state and action spaces.
However, these algorithms demand more insight into the system to choose a suitable controller
parameterization. This paper investigates a type of policy parameterization for impedance
control that allows energy input to be implicitly bounded: Potential fields. In this work, a
methodology for generating a potential field-constrained impedance control via approximation
of example trajectories, and subsequently improving the control policy using Reinforcement
Learning, is presented. The potential field-constrained approximation is used as a policy
parameterization for policy search reinforcement learning and is compared to its unconstrained
counterpart. Simulations on a simple biped walking model show the learned controllers are able
to surpass the potential field of gravity by generating a stable limit-cycle gait on flat ground for
both parameterizations. The potential field-constrained controller provides safety with a known
energy bound while performing equally well as the unconstrained policy.
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1. INTRODUCTION

The demand for robot control that is both safe and energy-
efficient is greater than ever with advances in mobile robots
and robots that interact in human environments. One
such example is the bipedal robot which has applications
ranging from home care to disaster relief. Traditional
position control, common to industrial robotics, is not
suitable for robots that interact in unknown environments
because slight position errors can result in high contact
forces that can damage the robot and its environment.
In the case of humanoid robots which interact in human
environments this poses a human-safety issue.

One possible solution is to employ impedance control,
which attempts to enforce a dynamic relation between
system variables as opposed to controlling them directly
(Hogan (1984)). Specifically, impedance control based on
potential fields, which inherently bounds the energy ex-
changed between the robot and the environment. Potential
fields can modulate natural dynamics of a system and
achieve desired behavior without requiring high-stiffness
trajectory tracking. Potential fields have been developed
for path planning and motion control by reformulating the
objective into a potential function (Koditschek (1987)).
Control torques can be represented as a vector field gen-
erated by the gradient of the potential field, such that the
dimensionality of any number of actuators is essentially
reduced to one, the scalar value of the potential function.

Potential fields can only release energy stored inside them,
such that they can be classified as a passive control
method. Motion control based on passivity generates ro-

bust motions not only in real time but also autonomously,
while allowing simple task objectives, such as walking
speed or reaching targets (Hyon and Cheng (2006)). Con-
trasting the high energy demand of conventional, fully ac-
tuated bipedal robots, passive dynamic walkers have been
developed that walk down shallow slopes using only the
force of gravity and the robot’s natural dynamics (McGeer
(1990)). Thus, these mechanisms exploit the natural po-
tential field of gravity. In consequence, they possess an
extremely energy-efficient gait that is remarkably similar
to that of humans. The stable periodic gait of a passive dy-
namic walker is referred to as a Limit Cycle (LC). Render-
ing this gait slope-invariant and improving its disturbance
rejection has been the focus of many publications including
Hobbelen and Wisse (2007). For example, walking of the
so-called simplest walker on flat terrain can be achieved
by emulating a slanted artificial gravity field via robot
actuators (Asano and Yamakita (2001)). This is a very
special case of a potential field.

The design and parameterization of more generic poten-
tial fields remains challenging, particularly for systems
that exhibit modeling uncertainties or are subjected to
unknown disturbances. Reinforcement learning (RL) is a
powerful technology to derive controllers for systems where
no models are available. Policy search RL methods, also
known as actor-only methods, have been found effective
for robotic applications due to their ability to handle
higher dimensionality and continuous state and action
spaces compared to Value-based RL methods (Kober et al.
(2013)). Furthermore, policy search methods have been
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effectively implemented on bipedal robots (Tedrake et al.
(2004)).

In this work, we propose to combine RL and PF-
constrained impedance control to improve robot safety for
robots that operate in uncertain conditions because:
• PF-constraint provides safety with a known energy

bound
• RL provides controllers for systems with modeling un-

certainty.
The question arises, can policy search RL be combined
with potential fields to achieve LC walking? While the
theoretical advantage of a PF-constrained impedance con-
trol, specifically energy boundedness, are presented in lit-
erature, the sub-question arises, are there limitations when
it comes to RL convergence?

As a first step towards answering these questions, this
paper presents a methodology for defining a potential field-
constrained (PF-constrained) impedance control and im-
proving it via reinforcement learning. To achieve this, we
define an impedance control as a parameterized mapping
of configurations to control torques, which is analogous
to a policy in Reinforcement Learning (RL) algorithms.
A PF-constrained and an unconstrained parameterization
of an impedance controller are compared before and after
RL applied to the bipedal walking problem. These control
methods are compared for three cases: the reference case
of the simplest walking model (SWM), the slope-modified
case of the SWM on flat ground, and the mass-modified
case, of the SWM with modified foot mass on flat ground.

This paper is organized as follows: In Section 2, we describe
the parameter optimization method for deriving an initial
impedance control policy for an unconstrained and a PF-
constrained parameterization. In Section 3, we describe a
policy search reinforcement learning algorithm that uses
the control policies defined in Section 2 as an initial guess.
In Section 4 we describe how this method can be applied
to the LC walking problem. In sections 5, we present
our evaluation protocol for comparing the unconstrained
and PF-constrained impedance control for the bipedal
walking. In Section 6, we present our results followed by
our discussion in Section 7. Finally, in Section 8 we present
our conclusions and suggestions for future work.

2. IMPEDANCE CONTROL INITIALIZATION

As opposed to conventional set-point control approaches
that directly control system variables such as position and
force, impedance control attempts to enforce a dynamic
relation between these variables (Hogan (1984)). In this
section, an open-loop impedance controller is derived for
a fully actuated robot with n Degrees Of Freedom (DOF)
using least squares optimization. The controller is open-
loop in that it does not use feedback to determine if the
output matches a desired value. We assume an accurate
model of the robot as well as the ability to measure
the position and torque at each joint as well as full
collocated actuation. Each configuration of the robot can
be described by a unique vector q = [q1, q2, ..., qn]T where
qn, with index i = 1...n, are the generalized coordinates.

If a desired trajectory, x =
(
qTd , q̇

T
d , q̈

T
d

)T
, is known,

the idealistic control torques, τ 0, required to achieve this
trajectory can be found using inverse dynamics. A function
to approximate the torques applied to the system as a
function of the robot’s configuration, τ (q) ∈ Rn, can be
found by formulating the least squares problem(

τ 0,k(xk)− τ (qk)
)2

−→ min (1)

where τ 0,k(xk), k = 1...S, is a set of training data with
S samples and τ (qk) can be approximated as normal-
ized radial basis functions (RBF) G(q), parameterized by
weighting vector w such that

τ k = G(qk)w (2)

The choice of G(q) will be discussed in the following
subsections.

Defining vector b = (τ0,1...τ0,S) and matrix A =(
G(q1)...G(qS)

)
, the least squares estimate of w, denoted

ŵ can be formulated as the minimization problem

min
ŵ
‖b−Aŵ‖2Q (3)

which is dependent on the number of training samples,
S. The symmetric positive definite weighting matrix Q
contains weights that reflect the importance of certain
joints or training samples. The parameter vector w can
be found using the pseudoinverse. The solution can also
be found recursively if there is a large amount of training
data. The procedure for recursive least squares given by
Papageorgiou (2012) was modified to include weighting
of various parameters such as training data, joints, and
torque magnitude.

2.1 Unconstrained Parameterization

The vector function τ (q) can be defined in terms of
its components τi(q), i = 1...n, where n is the number
of degrees of freedom, and parameterized as normalized
radial basis functions of the form

τi(q) =

∑N
j=1 wi,jfj [rj(q)]∑N
j=1 fj [rj(q)]

= g(q)Twi (4)

where N is the number of basis functions, wi,j is the jth

parameter of the ith weighting vector, fj is an RBF, rj is
a radius function and g(q) is a vector function. For the
unconstrained case g(q) is used as G(q) in Equation 2.

Radius functions ri are scalar functions of the distance
vector δi and scaling factor s which defines the size of the
radial basis function:

rj(q) = s ‖δj‖ . (5)

δj describes the distance from the center point cj of the
jth RBF to the joint configurations q:

δj(q) = q − cj . (6)

For the RBF, fj , we choose to use compactly supported
radial basis functions which allow for the use of a minimal
number of center points cj in the neighborhood of the
robot’s position to sufficiently compute the function value
(Vallery et al. (2009a)). This reduces the computational
resources needed during operation.



2.2 Potential Field-constrained Parameterization

Function τ (q) can be constrained to describe a potential
field by enforcing that its work is zero for any closed-path
trajectory. This implies the control torques are a function
of the joint variables q and can be defined as the negative
gradient of a potential function ψ(q) with respect to q:

τ (q) = −∇qψ(q). (7)

This is similar to the method of Generalized Elasticities
presented in Vallery et al. (2009a) and Vallery et al.
(2009b).

Similar to Equation 4, potential function ψ(q) can be
parameterized as normalized radial basis functions (RBF)
of the form

ψ(q) =

∑N
j=1 wjfj [rj(q)]∑N
j=1 fj [rj(q)]

= g(q)Tw. (8)

Unlike the unconstrained parameterization, which requires
a unique weighting vector wi for each degree of freedom,
for the PF-constrained parameterization, the torques can
be formulated as the gradient of the potential shown in
Equation (7). This can be estimated as the transposed
Jacobian of g(q):

τ (q) = −

(
∂g(q)

∂q

)T
w. (9)

where G(q) = −
(
∂g(q)
∂q

)T
.

3. POLICY SEARCH REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a machine learning
method which attempts to find a control policy, π(u|x,w),
which maps states x to actions u. For policy search algo-
rithms, the policy is parameterized by a weighting vector
w. The policy is analogous to the impedance control laws
derived in the previous section where generalized coordi-
nates q are states and control torques τ are actions.

3.1 Exploration Strategy

The policy space is explored by randomly perturbing the
weighting vector w. Batch exploration is performed where
the policy is independently perturbed from the initial
policy a set number of times. The perturbed policies are
then evaluated and updated according to the strategies in
the following sections.

3.2 Evaluation Strategy

The performance of the policy is numerically evaluated by
computing the expected return J , which is a sum of the
expected reward R. Based on the expected return J the
policy is updated with the objective to find a policy which
maximizes the expected return J . The policy evaluation
strategy determines how to evaluate the performance of an
executed policy by using a reward function, R(x,u). For a
finite-horizon model, this corresponds to maximizing the
expected reward for the horizon H over h steps. The series

of states and actions over H steps is called an episode. The
expected return is calculated

J = E

{
H∑
h=0

Rh

}
. (10)

Episode-based policy evaluation uses the entire episode to
assess the quality of the policy used directly (Deisenroth
et al. (2011)).

3.3 Update Strategy

The policy is updated based on the performance of the
previous policy or set of policies. Policy search methods
optimize around an initial policy π(u|x,w0). The pol-
icy is iteratively updated using an update strategy that
computes changes in the policy parameter in a way that
increases the expected return.

Several update strategies for episode-based policy search
have been developed. One method developed in Kober and
Peters (2011) specifically for motor primitives in robotics
is Expectation Maximization Policy learning by Weighted
Exploration with the Returns (PoWER). The iterative
policy search method with episode-based evaluation is
summarized in Algorithm 1.

Algorithm 1 Policy Search using Expectation Maximiza-
tion PoWER

Initialize: Generate initial episode using policy π0

parameterized by w0. Compute return J0.
repeat

Explore: Perform i = 1 : N episodes using
perturbed policy parameters wi = wi−1 + εi with
εi ∼ N (0, σ2)

For each episode compute return Ji
Reweight: Compute importance weights, keep

10 high-importance episodes, discard low-importance
episodes.

Update: Compute updated policy

wk+1 = wk +

〈∑10
i Ji

〉−1〈∑10
i εiJi

〉
until Policy converge

4. APPLICATION TO LC WALKING

4.1 Simplest Walking Model

The simplest walking model (SWM) developed in Garcia
et al. (1998) is often used as a tool to study the paradigm
of Bipedal Limit-Cycle walking and is detailed in the
following sections. A diagram of the SWM is shown in
Figure 1.

The model consists of two massless rigid links of length L
connected at the hip by a frictionless hinge. The mass is
distributed over three point masses at the hip and feet such
that the hip mass mh is much larger than the foot mass
mf. The model is situated on a slope of angle γ and acts
only under the force of gravity with acceleration constant
g. The configuration of the model is given by the ankle
angle θ and hip angle φ. The generalized coordinates are
q = (xc, yc, θ, φ)T where the subscripts “c” denotes the
contact point of the stance foot with the ground. The
model is actuated at the ankle and hip.
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Fig. 1. Diagram of the Simplest Walking Model which
consists of two massless links, point mass mh at the
hip and mf at each foot walking on ground of slope
γ. The generalized coordinates θ and φ are the angle
of the stance leg perpendicular to the slope and the
inter-leg (or hip) angle respectively.

4.2 Inverse dynamics

A vector of the global coordinates of the point masses
is p = (xst, yst, xhip, yhip, xsw, ysw)T where subscripts “st”
and “sw” denote the stance leg and swing leg respectively
and subscript “hip” denotes the hip. The generalized
coordinates can be transformed to Cartesian positions
using transfer function p = F (q). The equations of motion
can then be found using the virtual power equation

δṗT [f −Mp̈] = 0. (11)

where M is the global mass matrix defined
M =Diag(mf,mf,mh,mh,mf,mf). The resulting equa-
tions of motion are

[FT,qMF,q]q̈ = FT,q[fg −MF,qqq̇q̇] +Q (12)

where the subscript comma operator followed by q denotes
partial derivative by q, and fg are the applied forces due
to gravity given

fg = M[sin γ,− cos γ, sin γ,− cos γ, sin γ,− cos γ]T (13)

and Q = (Qxc
, Qyc , Qθ, Qφ)T are the generalized forces.

For unactuated cases, Qθ and Qφ both equal zero. The
contact forces at the stance foot Qxc

and Qyc are only
valid for Qyc > 0. In this case Q is known and q̈ can be
found using the ordinary differential equation

q̈ =
FT,q[fg −MF,qqq̇q̇] +Q

[FT,qMF,q]
. (14)

The unactuated model exhibits an LC gait for a limited
set of combinations of initial conditions and slopes, called
the basin of attraction. In the case we would like to
deviate from the original basin of attraction (for example
by modifying the slope and/or model mass) while still
maintaining an LC gait, idealistic actuator torques can
be derived using inverse dynamics of the known LC joint
trajectories to find the generalized forces. Rearranging
Equation 12 and replacing M and fg with Mmod and
fg,mod respectively, gives the inverse dynamics equation

Q0 =[FT,qMmodF,q]q̈d

− FT,q[fg,mod −MmodF,qqq̇dq̇d]
(15)

where training data (q̇d, q̈d) is required, fg,mod corre-
sponds to the applied forces from the modified slope and

Mmod corresponds to the modified global mass matrix.
From this point forward τ 0 = [Qθ,0, Qφ,0]T will be used to
denote the generalized forces at the ankle and hip joints
corresponding to the idealistic applied motor torques.

The training data was found by first, scanning the initial
conditions (q, q̇) for cases in which the SWM converges
to an LC and then the associated accelerations q̈ were
found using Equation 14. The resulting training data

can represented by the vector x =
(
qTd , q̇

T
d , q̈

T
d

)T
=(

θ, φ, θ̇, φ̇, θ̈, φ̈
)T

.

For scanning the initial conditions, the ankle angle was
varied between 0.1 and 0.2 rad with a step size of 0.005
rad, and the initial hip angle was set to twice that of the
ankle so the model initializes in double support phase. The
initial ankle angular velocity was varied between −0.68
and −0.38 rad/s with a step size of 0.005 rad/s, and the
initial hip angular velocity was set to 0 rad/s. The result
is shown in Figure 2.
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Fig. 2. Joint trajectories of the basin of attraction for the
simple walking model with γ = 0.004 rad, mh = 1 kg,
mf = 0.001 kg, L = 1 m, and g = 10 m/s2

The torques τ 0 found from training data x can be used
to solve the least-squares problem in Equation (3) using
the recursive least-squares method described in Section 2
resulting in impedance control laws of the form τ (q).

4.3 Reinforcement Learning

The resulting impedance control laws τ (q) parameterized
by vector w are specific to the simplest walking model case
and will likely not be effective if the model is modified
or more degrees of freedom are added. If this is the case
τ (q) parameterized by vector w0 can be used as the
initial policy for policy search RL. The policy search with
episode-based evaluation strategy described in Section 3
can be used where one episode is H steps of the biped.
For a biped robot, the state transitions from the previous
state x to the next state x′ caused by actions u can be
modeled by solving the equations of motion (14) using

iterative methods where x = (qT , q̇T )T are the states
and the generalized forces Qθ, Qφ are the actions u.



To evaluate the quality of parameter vector wk, the return
for each episode is calculated

Jk =

H∑
h=0

Rh. (16)

The reward function used for each step is

Rh(x,u) = +Rstep −R∆||∆θ|| −R∆̇||∆θ̇||
−Rt||th − t0|| −Rτ,θ||τ θ|| −Rτ,φ||τφ||

(17)

where ∆θ = θh − θh−1, and ∆θ̇ = θ̇h − θ̇h−1, and Rstep,
R∆ = 10 1/rad, R∆̇ = 10 s/rad, Rt = 1 1/s, Rτ,θ = 10
1/Nm and Rτ,φ = 100 1/Nm are constants. The first term
of the reward function is given as a reward for successfully
completing a step. The second term penalizes the change
in angle and angular velocity of the stance leg at the
beginning of each step. This is to encourage a limit-cycle
is reached where each step is the same. The third term
penalized the change in time of step h from the time of
the reference LC step t0. The fourth term penalizes the
magnitude of the control torques to minimize the energy
added to the system.

5. EVALUATION PROTOCOL

5.1 Implementation

Simulations were performed in MATLAB to assess the
impedance controllers described in the previous section.
The simulations used the ODE45 integration algorithm
with the following settings: absolute tolerance = 10−6,
relative tolerance = 10−3 and initial integration-step size
∆t = 0.02 s. In the case of an “odezero (internal error)” the
ODE45 settings were temporarily set to: absolute tolerance
= 10−8, relative tolerance = 10−5. The event detection
was used to determine when a step occurs using the step
condition: θ − φ/2 = 0 and θ̇ < 0.

The impedance control laws were implemented on a fully-
actuated simple walking model for the three cases: the
reference case of the simplest walking model (SWM) on a
slope, the slope-modified case of the SWM on flat ground,
and the mass-modified case, of the SWM with modified
foot mass on flat ground. For all cases the leg length, hip
mass and gravity remained constant at L = 1 m, mh = 1
kg and g = 10 m/s2 respectively.

For the least squares optimization, 50 RBFs were used.
The center locations were determined using a grid step
size of 0.05 rad for the ankle angle and 0.1 rad for the hip
angle in the area of the ideal trajectory of the SWM as
shown in Figure 3.
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Fig. 3. RBF center locations and support base of 10
degrees.

For the policy search RL, a horizon of H = 10 was used
corresponding to 10 steps of the robot. For the exploration
strategy, a batch size of 100 iterations was used. For the
reward function the constants were set to: Rstep = 1, R∆ =
10, Rt = 1 and Rτ = 5. The time of the reference LC step
was t0 = 1.2180 s. A Gaussian exploration ε ∼ N (0, σ2)
was used which was decrease linearly over episodes.

5.2 Experiment Setup

Initial unconstrained and PF-constrained impedance con-
trollers were found using inverse dynamics for each of the
three cases described below:

Reference case: For the reference case a slope of γ =
0.004 rad and foot mass mf = 0.001 kg was used.

Slope-modified case: For the slope-modified case a slope
of γ = 0 rad and foot mass mf = 0.001 kg was used.

Mass-modified case: For the modified-mass case, a foot
mass of mf = 0.01 kg was used. This is 10 times the value
of the reference case. A slope of γ = 0 rad was used.

For the Slope and Mass-modified cases, RL was used to
attempt to improve the policy for both the unconstrained
and the PF-constrained parameterizations. For the ref-
erence case, the performance of the controllers can not
be improved further using RL based on the evaluation
strategy since the control torques cannot decrease further.

5.3 Benchmarking Criteria

The unconstrained and PF-constrained impedance con-
trollers were compared for each of the three cases based
on the following benchmarking criteria:



Work and Energy: The energy of the LC of the ideal
SWM (unactuated and on a slope) is bounded by the po-
tential field of gravity. The energy bound can be measured
as the maximum energy, E of the LC, defined E = V + T
where V is the potential energy and T is the kinetic energy.
For the LC of the ideal SWM, the total energy is constant
at 10.0108 J. At each step kinetic energy is dissipated
at impact and an equivalent amount of potential energy
is added by the slope. The change in kinetic energy at
the end of the step can be seen in Figure 4. The energy
added/dissipated at each step is equivalent to 0.0166 J.
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Fig. 4. Energy of the SWM on a slope of γ = 0.004 rad.
The total energy is the sum of the potential (V) and
kinetic (T) energy.

Energy consumption can be measured for the actuated
model as the work done by the actuators:

W =

∫ q1

q0

τdθ (18)

where q0 is the configuration at the beginning of the step
and q1 is the configuration at the end of the step.

Robustness: The robustness of an LC gait can be mea-
sured by its velocity disturbance rejection. An angular
velocity disturbance is introduced to the stance leg at the
beginning of the first step and the maximum disturbance
that can be applied without causing the walker to fall is
used as a measure for robustness.

RL Performance: The performance of the RL is assessed
by plotting the mean performance over the episodes, for
several trials, and observing how many episodes it takes
to level off.

6. RESULTS

6.1 Reference case

The trajectory phase plots for the Unconstrained and PF-
constrained policies derived using inverse dynamics for
the reference case are shown in Figures 5 (a) and (b)
respectively. The control torque and total energy for the
Unconstrained and PF-constrained policy derived using

inverse dynamics for the reference case shown in Figure
6 (a) and (b) respectively.
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Fig. 5. Trajectory phase plot of the (a) Unconstrained and
(b) PF-constrained policies for the Reference Case.
The control policies are represented by a vector field
and for the PF-constrained policy the contour lines of
the potential field are shown.
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The benchmarking criteria for the energy, work and ro-
bustness of the reference case are specified Table 1.

6.2 Slope-modified Case

Initialization The trajectory phase plots for the initial
Unconstrained and PF-constrained policies for the Slope-
modified case are shown in Figures 7 (a) and (b) re-
spectively. The control torques and total energy for the
initial Unconstrained and PF-constrained policies for the
Slope-modified case are shown in Figures 8 (a) and (b)
respectively.
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modified Case. The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.
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Fig. 8. Control torques and energy of one LC step of
the initial (a) Unconstrained and (b) PF-constrained
policies for the Slope-modified Case.

Reinforcement Learning Results The mean performance
of the RL for the Unconstrained and PF-constrained
controllers are shown in Figure 9. The resulting trajec-
tory phase plot for the learned Unconstrained and PF-
constrained policies for the Slope-modified case are shown
in Figures 10 (a) and (b) respectively. The resulting control
torques and energy for the learned Unconstrained and PF-
constrained policies for the Slope-modified case are shown
in Figures 11 (a) and (b) respectively.
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Fig. 9. Mean performance of the RL for the Unconstrained
and PF-constrained policies for the Slope-modified
case averaged over 10 runs with the error bars in-
dicating the standard deviation. For both policies the
exploration variance decreased linearly from 1e-6 to
1e-11 throughout the episodes.
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Fig. 10. Trajectory phase plot of the learned (a) Uncon-
strained and (b) PF-constrained policies for the Slope-
modified Case. The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.
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Fig. 11. Control torques and energy of one LC step of
the learned (a) Unconstrained and (b) PF-constrained
policies for the Slope-modified Case

The benchmarking criteria for the energy, work and ro-
bustness of the Slope-modified case are specified Table 1.



6.3 Mass-modified Case

Initialization The trajectory phase plot for the initial
Unconstrained and PF-constrained policies for the Mass-
modified case is shown in Figure 12 (a) and (b) respec-
tively.
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Fig. 12. Trajectory phase plot of the initial (a) Uncon-
strained and (b) PF-constrained policies for the Mass-
modified Case.The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.

It can be seen that neither policy leads to a stable limit
cycle so the corresponding control torque and energy plots
are not shown.

Reinforcement Learning The mean performance of the
RL for both the PF-constrained and unconstrained case
are shown in Figure 13. The resulting trajectory phase
plots for the learned Unconstrained and PF-constrained
policies for the Mass-modified case are shown in Figures 14
(a) and (b) respectively. The resulting control torques and
energy for the learned Unconstrained and PF-constrained
policies for the Mass-modified case are shown in Figures
15 (a) and (b) respectively.

Episode

0 500 1000 1500

A
v
er
a
g
e
R
et
u
rn

0

2

4

6

8

10
RL Performance for Mass-modi-ed Case

Unconstrained

PF-constrained

Fig. 13. RL mean performance of the Unconstrained and
PF-constrained policies for the Mass-modified case
averaged over 10 runs with the error bars indicating
the standard deviation. For the Unconstrained policy
the exploration variance decreased from 1e-5 to 1e-
10 and for the PF-constrained policy the variance
decreased from 1e-6 to 1e-10.
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modified Case. The control policies are represented by
a vector field and for the PF-constrained policy the
contour lines of the potential field are shown.
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Fig. 15. Control torques and energy of one LC step of
the learned (a) Unconstrained and (b) PF-constrained
policies for the Mass-modified Case.

The benchmarking criteria for the work, energy and ro-
bustness of the Mass-modified case are specified Table 1.

6.4 Results Summary

The benchmarking criteria for the energy bound, work and
robustness for each case are summarized in Table 1. The
energy bound was determined by the max energy displayed
in Figures 6, 8, 11 and 15. The work was calculated
using Equation 18. The robustness is given by the max
velocity disturbance rejection as described in Section 5.3.
The 7 indicates that an LC was not achieved so there was
no benchmarking criteria.



Table 1. Summary of Results

Case Parameter- Benchmarking Initial Learned

ization Criteria Policy Policy

R
e
fe

r
e
n
c
e

Energy 10.0107 -

bound (J)

Unconstrained Work (J) 0 -

Max velocity -0.05 -

disturbance (rad/s)

Energy 10.0107 -

bound (J)

PF-constrained Work (J) 5e-14 -

Max velocity -0.05 -

disturbance (rad/s)

S
lo

p
e
-m

o
d
ifi

e
d

Energy 10.0169 10.0258

bound (J)

Unconstrained Work (J) 1.5074 1.4877

Max velocity -0.05 -0.03

disturbance (rad/s)

Energy 10.0168 10.0185

bound (J)

PF-constrained Work (J) 1.4948 1.3321

Max velocity -0.06 0

disturbance (rad/s)

M
a
s
s
-m

o
d
ifi

e
d

Energy 7 10.2146

bound (J)

Unconstrained Work (J) 7 1.3110

Max velocity 7 -0.05

disturbance (rad/s)

Energy 7 10.0618

bound (J)

PF-constrained Work (J) 7 1.4811

Max velocity 7 -0.02

disturbance (rad/s)

7. DISCUSSION

For the reference case, it can be seen in the trajec-
tory phase plots, for both the unconstrained and PF-
constrained parameterization shown in Figure 5, that the
controlled trajectory perfectly follows the ideal trajectory.
It can be seen in the corresponding torque and energy plots
in Figure 6, that no actuator torques are generated and the
energy tracks that of the unactated ideal case, as shown
in Figure 4. It can be seen in Table 1 that both controllers
have the same energy bound and maximum disturbance
rejection as the unactuated ideal case. This serves as a
validation for both the impedance controllers derived using
inverse dynamics and least squares optimization.

For the slope-modified case, the initial impedance con-
trollers, for both PF-constrained and unconstrained pa-
rameterization, allow the biped to achieve an LC gait on
a flat surface (γ = 0) as can be seen in the trajectory
phase plots in Figure 7. It can be seen in Table 1 that the
velocity disturbance rejections are comparable to the ideal
SWM, however, the energy bound is higher than the ideal
case for both controllers. The work done by the actuators
is similar for both controllers, however, it is almost 100
times the work done by gravity in the ideal case.

As can be seen in Table 1, RL of the initial impedance
controllers for the slope-modified case increases the energy
bound for both controllers, while decreasing the work done
by the actuators. RL also leads to decreased disturbance
rejection. As can be seen in Figures 9, the performance of
the unconstrained parameterization levels off before the
PF-constrained parameterization, indicating the uncon-
strained parameterization achieves a higher performance
with less episodes compared to the PF-constrained param-
eterization.

For the mass-modified case, the initial impedance con-
trollers, for both PF-constrained and unconstrained pa-
rameterizations, do not allow the biped to achieve an LC
gait. This can be seen in the trajectory phase plots in
Figure 12. The impedance controllers derived from inverse
dynamics appear not to be able to compensate for the
modified dynamics of the model.

Howerver, RL of these initial policies allows the biped to
achieve an LC gait as shown in Figure 14. This validates
the use of RL for achieving an LC gait. As can be
seen in Table 1, for both controllers the energy bound
and work done is greater than the ideal case. While the
robustness of the unconstrained controller is comparable
to the ideal case, it is reduced for the PF-constrained
controller. As can be seen in Figures 13, the performance
of the unconstrained parameterization levels off before the
PF-constrained parameterization.

For all cases, the energy bound and work done by the
actuators was similar for both the PF-constrained and
unconstrained controllers. As the implementation of the
RL did not converge to a single optimal solution, the
variance in the resulting energy and work was too large
to draw an accurate comparison.

For all cases, there are no improvements to the robustness
of the limit-cycle against velocity disturbances. The reason
for this is that the episode ( consisting of H steps of
the limit-cycle) is a black-box from the perspective of
the episode-based RL. Learning is based only on the
inputs and outputs of the episode, therefore any unknown
disturbances throughout the episode are not accounted
for, and consequently the robustness is not improved by
the RL. Exploring and learning throughout the episode
may be one way to improve the robustness. Additionally,
learning could take place in an unknown environment with
unknown disturbances.

The scope of these results is limited by the variables of the
simple walking model used. The only modifications tested
were the ratio of the hip mass to foot mass, and the slope
γ.

An interesting observation is the learned behavior of
“swing-leg retraction” seen in the learned policy for both
cases, as shown in Figures 10 and 14 . This is when
the swing leg retracts at the end of a step until it hits
the ground. It has been shown in Hobbelen and Wisse
(2008) that swing-leg retraction can improve disturbance
rejection.

8. CONCLUSION AND FUTURE WORK

In this work we successfully combined potential field
control and reinforcement learning to achieve limit-cycle
walking for a simple walking model. A limit-cycle was
achieved on flat ground, and for a modified hip to foot
mass ratio. The results demonstrate that a potential field
controller can not only “emulate” the effect of gravity on
the simple walking model, but also improve its perfor-
mance if reinforcement learning is applied. The potential
field-constrained controller provides safety by bounding
the energy while performing equally well compared to
an unconstrained controller. The performance of the RL
leveled off faster for the unconstrained case.



Achieving a limit cycle gait on a SMW is trivial compared
to more complex models. In future work the method pre-
sented in this paper could be applied to higher degree of
freedom models. A strength of this method is the ability
to bound the energy of the controlled system. In future
work it could be explored how to enforce a desired energy
bound. Improved tuning of the RL exploration and eval-
uation strategy could lead to improved policies and more
conclusive results for the comparison of the unconstrained
and PF-constrained parameterizations. More advanced RL
methods could lead to potential fields that further improve
performance and even increase robustness.
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