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Abstract

Imaging mass spectrometry (IMS) is a multiplexed chemical imaging technique that enables
the spatially targeted molecular mapping of biological samples at cellular resolutions. Within
a single experiment, IMS can measure the spatial distribution and relative concentration of
thousands of distinct molecular species across the surface of a tissue sample. The large size
and high-dimensionality of IMS datasets, which can consist of hundreds of thousands of pix-
els and hundreds to thousands of molecular ions tracked per pixel, have made computational
approaches necessary for effective analysis. This thesis focuses primarily on biomarker dis-
covery in IMS data using supervised machine learning algorithms. Biomarker discovery is the
identification of molecular markers that enable the recognition of a specific biological state,
for example recognizing diseased tissue from healthy tissue. Biomarkers are increasingly used
in biology and medicine for diagnostic and prognostic purposes, as well as for driving the
development of new drugs and therapies. Traditionally, the focus has been on maximizing
the predictive performance of supervised machine learning models, without necessarily exam-
ining the models’ internal decision-making processes. Yet, in order to generate insight into
the underlying chemical mechanism of disease or drug action, we must go beyond the scope
of just prediction and learn how these empirically trained models make their decisions and
who are the primary chemical drivers of this prediction process. Machine learning model in-
terpretability is the ability to explain a model’s predictions, and can practically be translated
into the ability to explicitly report the relative predictive importance of each of the dataset’s
features. When analyzing IMS data, interpretability is crucial for understanding how the spa-
tial distribution and relative concentration of certain molecular features relate to the labeling
of pixels into different physiological classes. The key to our data-driven approach to biomarker
discovery in IMS data is to establish (in relation to a specific biomedical recognition task)
a means of ranking the molecular features of supervised machine learning models according
to their respective predictive importance scores. Ensuring model interpretability and feature
ranking in supervised machine learning allows empirical model building to be used as a filter-
ing mechanism to rapidly determine, among thousands of features, those features that exert a
large amount of relevance to a specific class determination. With regards to biology, the top-
ranking features can help empirically highlight important molecular drivers in the biological
process under examination, and can help generate new hypotheses. In terms of translational



medicine, such top-ranking features can yield a shortlist of candidate biomarkers worthy of
further clinical investigation. Three different classifiers, namely logistic regression, random
forests, and support vector machines, are implemented and their performance is compared in
terms of accuracy, precision, recall, scale invariance, sensitivity to noise, and computational
efficiency. Subsequently, several approaches to explaining these classifiers’ predictions are
implemented and investigated: model-specific interpretability methods are tied to intrinsi-
cally interpretable classifiers, such as generalized linear models and decision trees, whereas
model-agnostic interpretability methods can also explain the predictions of black-box models,
such as support vector machines with nonlinear kernels or deep neural networks. In addi-
tion to three model-specific methods, we present two post-hoc model-agnostic interpretability
methods: permutation importance and Shapley importance. Our implementation of Shapley
importance, based on Shapley values from cooperative game theory, is novel. Having ob-
served a variability between the rankings of different interpretability methods, we investigate
improving the inter-method reliability of feature rankings by decorrelating the features prior
to training the classifiers. We also propose a robust ensemble approach to interpretability
that aggregates the importance scores attributed to each feature by different model-specific
interpretability methods. We demonstrate our methodology on two biomedical case stud-
ies: one MALDI-FTICR IMS dataset taken from the coronal section of a rat brain, and one
MALDI-TOF IMS dataset taken from the sagittal section of a mouse-pup.
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Chapter 1

Introduction

The aim of this thesis is to propose a machine learning framework for discovering biomarkers
in large-scale high-dimensional imaging mass spectrometry data. A biomarker is a measurable
indicator of a specific biological condition, for example a disease, that may be used for diag-
nostic, prognostic, or screening purposes [11]. We first introduce imaging mass spectrometry
and then briefly explain the fundamentals of supervised and unsupervised machine learning.
Rather than focus exclusively on predictive performance, we stress the importance of classifier
interpretability for biomarker discovery.

1-1 Imaging Mass Spectrometry Data

1-1-1 Mass Spectrometry

Imaging mass spectrometry (IMS) is an imaging technique, based on mass spectrometry (MS),
that enables the spatially localized chemical analysis of a sample. IMS is essentially the ad-
dition of spatial information to the chemical information provided by MS. The idea of MS
is to generate ions from either inorganic or organic compounds, to separate these ions by
their mass-to-charge ratios (m/z), and to detect their abundance per m/z [1]. MS provides
high chemical specificity and a broad analyte coverage: it enables the concurrent detection,
characterization and identification of a wide range of analytes, including metabolites, phar-
maceutical drugs, lipids, peptides, and proteins [12]. The working principle of MS is based
on the ability that magnetic and/or electric fields have to influence the motion of charged
atoms or molecules, usually in a vacuum, in relation to their mass and charge [13]. The force
developed by an electromagnetic field relates directly to the particle’s charge: the motion of
a higher-charged particle will be more affected by a given field than that of a lesser-charged
particle, assuming both particles have the same mass [12]. Conversely, the motion of a heavier
particle will be more affected by a field than that of a lighter particle, assuming both particles
have the same charge [12]. We can therefore determine the mass-to-charge ratio (m/z value)
of a particle by examining its trajectory under the influence of a given electromagnetic field.
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MS is essentially a four step process that involves sample preparation, desorption/ionization,
separation, and detection [14]. As illustrated in Figure 1-1, a mass spectrometer consists of
an ion source, where the analytes are ionized, a mass analyzer, where the ions are sorted
according to their mass-to-charge ratios, and a detector, which records the ions’ relative
abundances [15]. A typical MS experiment starts with the vaporization and ionization of
the analytes from the sample’s surface. The ionized analytes are then directed to a mass
spectrometer, where they are separated and detected based on their mass-to-charge ratios.
The output of an MS experiment is a mass spectrum, where m/z values are plotted along the
x-axis and the relative intensity of the analyte signals are plotted against the y-axis.

Figure 1-1: Diagram of the general setup of a mass spectrometer. Figure adapted from [1].

Three commonly used ionization/desorption methods, called matrix assisted laser desorption
ionization (MALDI), secondary ion mass spectrometry (SIMS), and desorption electrospray
ionization (DESI), are illustrated in Figure 1-2. The target plate on which the sample (i.e.
usually a tissue section) is mounted must be conductive for MALDI and SIMS, but not for
DESI [2]. MALDI and SIMS require the sample to be ionized in a vacuum, whereas DESI
allows for ionization under ambient conditions [16].

• MALDI uses pulsed laser light (i.e. ultraviolet or infrared) as a source of energy for
the desorption and ionization of analytes [1]. MALDI requires that the tissue section
be coated by a light-absorbent solution, called a chemical matrix, prior to ionization.
Different matrix types promote the desorption and ionization of different classes of
analytes [12]. Analyte molecules are extracted from the sample and incorporated into
the matrix during evaporation and crystallization [3], yielding analyte-doped matrix
crystals as illustrated in Figure 1-3. Ionization is achieved through exposure of the
crystallized matrix to pulsed laser light. The energy intake upon laser irradiation causes
the matrix to rapidly heat up and desorb [3]. MALDI is a soft ionization technique that
enables the ionization and desorption of heavy macro-molecules, such as proteins, with
minimal fragmentation [1]. Thanks to its wide mass range and tolerance to varying
sample geometry, MALDI is widely used for imaging mass spectrometry of biological
samples, such as animal and human tissue sections [16].

• SIMS is the oldest ionization/desorption method. Under high vacuum, a beam of pulsed
high-energy primary ions is focused onto the sample, physically perturbing the surface
by a process known as "sputtering", and generating secondary ions [16]. SIMS per-
forms hard ionization and is therefore prone to fragmentation [16], which is especially
problematic for the analysis of large molecular species.

• DESI is a relatively new soft ambient ionization method that allows samples to be
analyzed without the need for extensive sample preparation [12]. A pneumatically
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assisted electrospray ionization source is used to impact charged solvent droplets on
the surface to be analyzed, resulting in analytes being solvated and ionized from the
sample’s surface [13].

Figure 1-2: Overview of three mass spectrometry ionization/desorption methods: desorption
electrospray ionization (DESI), secondary ion mass spectrometry (SIMS) and matrix assisted
laser desorption ionization (MALDI). Figure adapted from [2]. Copyright © Bentham Science
Publishers.

Two commonly used mass analyzers are time-of-flight (TOF) analyzer and the Fourier trans-
form ion cyclotron resonance (FTICR) analyzer [12]. We briefly explain their respective
modes of operation.

• A TOF mass analyzer separates ions with differentm/z values by their respective times-
of-flight. The ionized analytes are unidirectionally accelerated by an electrostatic field
and move through a field-free drift path [12]. Since all ions are accelerated with the same
kinetic energy, lighter ions of a certain charge will travel faster than heavier ones and,
therefore, reach the detector earlier [12]. We consider an ion with mass m and charge
z subject to an acceleration voltage U . The potential electric energy P is converted
into kinetic energy K such that the velocity v attained by the ion is that of Equation
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1-1. In Equation 1-2, the time t needed to travel a field-free distance d is shown to be
proportional to the square root of m/z [1].

P = K ⇐⇒ zU = 1
2mv

2 ⇐⇒ v = ±

√
2zU
m

(1-1)

t = d

v
= d

±
√

2zU
m

⇐⇒ m

z
= 2Ut2

d2 (1-2)

• An FTICR mass analyzer separates ions with different m/z values by their respective
cyclotron frequencies. The ions are trapped inside an ion cyclotron resonance cell where
they are subject to a uniform magnetic field [1]. The ions orbit perpendicularly to the
magnetic field, written B, by action of the Lorentz force FL defined in Equation 1-3 [1].

FL = zv ×B (1-3)

The working principle of FTICR is based on cyclotron motion. The radius R of an
ion with mass m and charge z, subject to a magnetic field of strength B, increases
proportionally to its velocity v. The cyclotron angular frequency ωc of such an ion is
given by Equation 1-5. Equation 1-6 shows that the cyclotron frequency fc of an ion
is proportional to its charge z and inversely proportional to its mass m [1]. A group of
ions with the same m/z value will therefore have the same cyclotron frequency fc.

R = mv

zB
(1-4)

ωc = v

R
= zB

m
(1-5)

fc = ωc
2π = zB

2πm ⇐⇒ m

z
= B

2πfc
(1-6)

The selective acceleration of groups of ions with the same m/z value is achieved by
resonant excitation, that is the application of a transverse electric field that alternates
at their cyclotron frequency fc [1]. The cyclotron frequency of each group of ions
is recorded by image current detection and converted into a mass spectrum using a
Fourier transform [1].

Mass spectrometer performance is generally measured in terms of sensitivity and specificity.
TOF is known for its high sensitivity and FTICR is know for its high specificity [12]. Sen-
sitivity is a measure of the ability to discriminate between small differences in analyte con-
centrations or intensities. It corresponds to the slope of the calibration curve, relating signal
intensity to the mass or concentration of analyte [1]. Sensitivity is not to be confused with
the limit of detection, which is the minimum amount of analyte required to obtain a signal
that can be distinguished from the background noise [1]. Mass resolution defines the degree
of chemical specificity [17]. It is a measure of the uniqueness of MS peak assignment, that
is the ability to distinguish analytes of slightly different mass-to-charge ratios [17]. Mass
resolution usually refers to the division of the observed mass-to-charge ratio by the smallest
mass-to-charge difference of two separable ions. Note the difference between mass spectral
measurement sensitivity/specificity and statistical sensitivity/specificity (see section 1-2).



1-1 Imaging Mass Spectrometry Data 5

1-1-2 Imaging Mass Spectrometry

Imaging mass spectrometry (IMS) is essentially the use of mass spectrometry (MS) to visu-
alize the spatial distribution and relative concentration of a wide range of analytes, ranging
from atomic to macromolecular ions, in a sample [15]. IMS consists of scanning the sample’s
surface with a mass spectrometer: one small, localized region of the sample, termed a pixel, is
analyzed at a time and the resulting mass spectrum is recorded along with its corresponding
(x,y) spatial coordinates [18]. This process is repeated pixel-by-pixel until the entire sample
surface has been examined. The result is an IMS data cube of localized mass spectra.

Matrix assisted laser desorption/ionization (MALDI) is one of the most generally used ion
sources for imaging mass spectrometry (IMS) [15]. The workflow of MALDI-IMS is illustrated
by Figure 1-3: we start by thinly sectioning the sample, mounting it onto a conductive slide
and coating it with a light absorbing matrix. Matrix application refers to the deposition and
subsequent evaporation of a matrix on the tissue section [14]. What follows is the desorption
and ionization of the analyte-doped crystallized matrix by laser irradiation of designated re-
gions of the tissue section [3]. A mass spectrometer, for example a TOF or FTICR instrument,
sequentially generates a mass spectrum for each pixel. The spatial resolution is determined
by the size of the laser spot at the sample surface, the spacing between pixels, and the sample
preparation processes [19].

Figure 1-3: Schematic of a MALDI-IMS experiment: sample preparation, matrix deposition,
desorption/ionization using a laser, and analyte detection by a mass analyzer. Figure adapted
from [3]. Copyright© 2011 Jones et al. Creative Commons Attribution License.

Figures 1-4 and 1-5 show the two possible manners of examining IMS data cubes: one mass
spectrum per pixel as in Figure 1-4, or one ion image per m/z value as in Figure 1-5. Fig-
ure 1-4 represents the IMS data cube as a collection of mass spectra recording the chemical
composition of each pixel. However, IMS also produces ion images that map the spatial dis-
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tribution and relative concentration of each of its analytes across the sample surface [13]. In
Figure 1-5, each ion image provides information about the localization and signal intensity of
one specific analyte, which is characterized by a specific m/z value. Ion images are displayed
using a pseudo-color scale whose brightness is indicative of the signal intensity measured at
a given location. Signal intensity correlates with the relative analyte concentration at that
location [12].

IMS 3-D tensors may be reshaped into 2-D matrices where each row is the mass spectrum of
a given pixel and each column provides the spatial distribution and relative abundance of a
given analyte. It is the 2-D representation of IMS data, illustrated in Figure 1-6, that we use
from here-onward.

Figure 1-4: IMS data cube: Each pixel of the sample, defined by its spatial coordinates x and
y, is chemically characterized by a mass spectrum. The mass spectrum plots the measured signal
intensity of all analytes against their respective m/z values.

Figure 1-5: IMS data cube: Each analyte’s spatial distribution is represented by an ion image
whose pseudo-color scale indicates increasing relative concentration by increasing brightness.
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1-2 Machine Learning

1-2-1 Basic Terminology

Machine learning is a field of artificial intelligence (AI) concerned with the development and
application of computer algorithms that automatically learn from data and improve with
experience [20]. The data instances and predictor variables used in machine learning tasks
are respectively called observations (or examples) and features. Imaging mass spectrometry
(IMS) data is represented as a m-by-n matrix X in which each row is an observation (i.e.
mass spectrum) and each column is a feature (i.e. m/z value). As illustrated in Figure 1-6,
the rows of X are written xi = X(i,:), for i = 1, 2...m and the columns of X are written
xj = X(:,j), for j = 1, 2...n. Supervised and unsupervised learning differ from each other
in that supervised learning requires the observations to be labeled, whereas unsupervised
learning does not [20]. Supervised methods focus on modeling a specific recognition task,
whereas unsupervised methods focus on discovering patterns in the data. We provide an
overview of machine learning methods for the analysis of IMS data: Chapter 2 presents two
unsupervised methods, namely principal component analysis (PCA) and non-negative matrix
factorization (NNMF), and Chapter 3 presents three supervised methods, namely logistic
regression (LR), support vector machine (SVM), and random forest (RF) classifiers.

Figure 1-6: IMS data matrix X where each observation xi = X(i,:), for i = 1, 2...m corresponds
to a pixel and each feature xj = X(:,j), for j = 1, 2...n, corresponds to an m/z bin.
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Classification is a form of supervised learning in which observations xi are annotated with
discrete class labels yi for i = 1, 2...m [20]. We focus on binary classification problems
involving a positive class, labeled yi = +1, and a negative class, labeled yi = −1. Training
a model requires a learning algorithm to produce a function f : Rn → {−1,+1} that assigns
each observation xi to either the positive or negative class [4]. The machine learning model
f is called a classifier: it performs a mapping from inputs (i.e. observations) to outputs
(i.e. class labels). Given an observation xi, the classifier’s prediction ŷi = f(xi) is correct
if and only if ŷi = yi. Learning is a matter of tuning the model’s parameters to minimize
a target function that is proportional to the prediction error of the model, given an input
X, called the training data, and output y [21]. Parametric models assume the input-output
mapping f to have a certain form, which is determined by a fixed set of parameters, whereas
non-parametric models do not [22]. The performance of a model is measured by its ability
to generalize, that is to correctly predict the labels of new data instances, called the testing
data [21]. Overfitting is a common pitfall that occurs when a model adapts too closely to the
training data and memorizes not only the relationship between inputs and outputs but also the
noise [20]. Such a model cannot generalize well to new data and will therefore perform poorly
on the testing set. The risk of overfitting increases when handling high-dimensional datasets,
that is datasets with a large number of features, or when the algorithm is not provided with
enough training instances [20]. The difficulty of analyzing high-dimensional data is referred to
as a the "curse of dimensionality" [22]. Regularization refers to any modification we make to
a machine learning algorithm that is intended to reduce the testing error but not the training
error of the resulting model: it is therefore an effective tool to limit overfitting [4].

Figure 1-7: Typical relationship between classifier capacity, bias, and variance: bias decreases
and variance increases as capacity increases. Models with below-optimal capacity risk underfitting
(i.e. high training and testing error) whereas models with above-optimal capacity risk overfitting
(i.e. low training error but high testing error). Figure adapted from [4].

The problem of overfitting comes from the bias-variance trade-off. Bias and variance are
two sources of predictive error: bias is a measure of how accurately the model estimates
the relationship between features and target labels on the training set, whereas variance is a
measure of how specific a model is to its training set [23]. Low bias comes at the expense of
high variance and, conversely, low variance comes at the expense of high bias. In Figure 1-7,
bias and variance are plotted against capacity. Capacity, which is usually quantified by the
Vapnik–Chervonenkis (VC) dimension, is a measure of a model’s complexity and flexibility
[4]. The VC dimension of a model generally coincides with the number of degrees of freedom,
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or parameters, in the model [24]. Simple models have low variance but high bias and therefore
tend to underfit the training data, whereas complex models have low bias but high variance
and therefore tend to overfit the training data [23].

We now review a few commonly used measures of predictive performance for supervised
learning algorithms used to solve binary classification problems. Classification problems with
multiple target classes can be decomposed into multiple binary tasks, each of which involves
evaluating one class against the remaining classes, according to the one-versus-all (OVA)
approach [23].

• Accuracy: accuracy is the proportion of all predictions that are correct. Maximizing
accuracy is equivalent to minimizing the prediction error rate.

• Precision, recall and the F-score: precision is the proportion of all positive predictions
that are correct, whereas recall is the proportion of positive instances identified [20].
Precision and recall are defined by Equations 1-7 and 1-8 respectively. A correct positive
prediction is called a true positive (TP), a correct negative prediction is called a true
negative (TN), an incorrect negative prediction is called a false negative (FN), and
an incorrect positive prediction is called a false positive (FP). The F-score, defined in
Equation 1-9 as the harmonic mean of precision and recall, is generally recognized to
be a better measure of predictive performance than accuracy on imbalanced datasets
(i.e. datasets with unequal class cardinality) [25].

Precision = TP
TP + FP (1-7)

Recall = TPR = Sensitivity = TP
TP + FN (1-8)

F-score = 2 Precision · Recall
Precision + Recall = 2 TP

2 TP + FN + FP (1-9)

• Sensitivity and specificity: sensitivity, also known as the true positive rate (TPR) or
recall, measures the proportion of positive examples that are correctly identified as such.
Sensitivity is defined in Equation 1-8. Specificity, which is defined in Equation 1-11 as
one minus the false positive rate (FPR), measures the proportion of negative examples
that are correctly identified as such. Maximizing sensitivity implies minimizing the false
negative rate, whereas maximizing specificity implies minimizing the false positive rate.
In the context of biomarker discovery (see subsection 1-2-2), maximizing sensitivity
guarantees the exhaustive identification of all candidate biomarkers, whereas maximiz-
ing specificity guarantees the identification of reliable biomarkers [11]. Sensitivity and
specificity are better measures of classifier performance than accuracy on imbalanced
datasets.

FPR = FP
FP + TN (1-10)

Specificity = 1− FPR = TN
TN + FP (1-11)
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1-2-2 Model Interpretability & Feature Importance

Interpretability is core to the field of explainable artificial intelligence (XAI). Research in XAI
is driven by the need to understand the inner workings of complex AI systems and explain
their decision-making process to users [26]. Being able to explain and present the inner work-
ings of an AI system in a form that humans can understand is key to guaranteeing user trust
and social acceptance, both of which are crucial for the AI system’s successful deployment
[26]. Interpretable AI systems are easier for developers to debug, tune, and monitor. Since
the European Union’s General Data Protection Regulation (GDPR) went into effect in 2018,
algorithmic explainability and accountability became legal requirements for the deployment
of AI systems that involve autonomous decision making processes [27]. The "right to ex-
planation" allows those impacted by the decision of an algorithm to demand an explanation
[27]. Since there is no agreed-upon formal technical definition for interpretability in machine
learning [28], we proceed to define what we mean by interpretability in our work. We use the
terms interpretability and explainability interchangeably.

Model interpretability is the ability of a supervised machine learning model to ex-
plain its predictions by explicitly reporting the relative importance of its features.
Note that interpretability is a quality of a model, rather than of the machine learning algo-
rithm that is used to learn the machine learning model from data. We define the importance
of a feature as the degree to which it influences the model’s prediction, considering both its di-
rect effect (i.e. correlation with the prediction) and its indirect effect (i.e. correlation between
features). Feature importance, which is also referred to as relevance or predictive power, is
measured differently depending on the choice of classifier and interpretability method. Fea-
ture ranking refers to the task of ordering the features by their respective importance. Note
that feature ranking differs from feature selection in that none of the original features, no
matter how irrelevant or redundant, are removed [29]. An irrelevant feature is one that does
not contribute to the predictive performance of the classifier under study. A feature is said
to be redundant if one or more of the other features are highly correlated with it, and its
relevance is reduced by the knowledge of any one of these features [30]. Many of the ap-
proaches commonly used in scientific literature to evaluate the relative predictive importance
of features fail to correctly account for feature correlation [31]. Yet, it is by studying the
inter-dependencies of features that we can accurately identify the critical risk factors and
biomarkers of a disease, and hence improve our understanding of the features’ biochemical
functions and interactions [32]. The issue of feature correlation makes the ranking of IMS
features, many of whom are biologically related and therefore highly correlated, a challenging
task [33].

We differentiate between global and local interpretability: global interpretability methods
aim to explain the model’s behavior holistically by investigating the relationship between the
features and the model’s predictions, whereas local interpretability methods aim to explain
specific decisions [34]. Global interpretability is recommended to improve our understanding
of the phenomenon being modeled, whereas local interpretability is recommended to justify
the predictions produced by the model for individual instances [35]. We prioritize global inter-
pretability for the analysis of IMS data because our aim is ultimately to discover explanatory
principles for how the spatial distribution and relative concentration of certain molecular
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features relate to the classification of a tissue sample. Interpretability methods can further
be categorized as model-specific or model-agnostic [26]: model-specific interpretability
methods derive explanations by examining the model’s structure and parameters, whereas
model-agnostic interpretability methods derive post-hoc explanations by observing how
perturbing the model’s inputs affects it output. Model-specific methods owe their computa-
tional efficiency to the fact they perform feature ranking in the process of training the model
[36]. Unlike model-specific methods, model-agnostic methods are applicable across differ-
ent types of predictive models. By treating the model as a black-box input-output mapping,
model-agnostic approaches provide flexibility both in the choice of model and in the form of ex-
planation [37]. In practical applications, model-agnostic interpretability methods also remove
the need for rebuilding a model-specific explanation framework every time the underlying pre-
dictive model is replaced [37]. Yet, our main reason for using post-hoc model-agnostic methods
is that, by separating explanation from prediction, these methods can achieve interpretabil-
ity without having to sacrifice performance [37]. Post-hoc model-agnostic interpretability
methods effectively provide a solution to the trade-off between predictive performance and
interpretability of machine learning models. The performance versus interpretability
trade-off can be summarized as follows: low-capacity models, such as decision trees or gen-
eralized linear models (e.g. linear and logistic regression), tend to be intrinsically transparent,
whereas high-capacity models, such as deep neural networks or support vector machines with
non-linear kernels, tend to behave like opaque black-boxes [34]. Unlike black-box models, the
predictions of intrinsically interpretable models can be easily explained using their respective
model-specific explanations. The problem is that, when dealing with high-dimensionality,
large-scale complex datasets, like those generated by IMS, black-box high-capacity models
often outperform intrinsically interpretable low-capacity models. Restricting the analysis of
IMS data to intrinsically interpretable low-capacity models may therefore be limiting, and
that is why we resort to post-hoc model-agnostic interpretability methods for explaining the
decision-making process of black-box high-capacity high-performance models.

1-3 Research objectives

The aim of this thesis is to propose a machine learning framework for discovering biomarkers
in high-dimensional, large-scale imaging mass spectrometry data. A biomarker is an objec-
tively measurable molecular indicator of a specific biological state that may be used to screen
for, diagnose, or monitor a disease, to identify new drug targets, or to assess therapeutic
response [11]. Research into biomarkers is expected to advance the development of transla-
tional medicine, and hence facilitate the transfer of medical or biological advances from the
laboratory to the clinic [38]. In healthcare, biomarkers are frequently used to predict and
detect the development of a disease and to determine the best course of action for patient
care [39]. In the pharmaceutical industry, biomarkers enable the evaluation of whether drugs
have sufficient exposure to the site of action, engagement with the drug target, activity in line
with the mechanism of action, pharmacological efficacy, clinical efficacy, and potential risks
[39]. Biomarkers are also increasingly being used to predict therapeutic outcomes, driving
personalized medicine [39]. Biomarker discovery refers to the process by which the differential
expression of specific molecules between biological states is first observed [11]. The aim of
biomarker discovery is to identify molecular markers that enable the recognition and charac-
terization of a specific biological state, for example diseased versus healthy tissue. Biomarker
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discovery is the key to empirically identifying the molecular drivers of physiological and patho-
physiological processes, and better understanding the effect of pharmacological interventions
[40].

Our computational workflow for biomarker discovery encompasses unsupervised and super-
vised methods: unsupervised machine learning algorithms are used for exploratory analysis
and dimensionality reduction, whereas supervised machine learning algorithms are used for
classification. Traditionally, the focus has been on maximizing the predictive performance
of supervised machine learning models, without necessarily examining the models’ internal
decision-making processes. Yet, in order to generate insight into the underlying mechanism
of disease and drug action, we must go beyond the scope of predictive modeling and extract
actionable scientific knowledge from our models. We argue that interpretability is crucial for
understanding how the spatial distribution and relative concentration of certain molecular
features relate to the labeling of pixels into different classes. We believe that it is crucial for
the user to understand why a supervised machine learning model makes a certain decision,
and how that model captures underlying biological, pathogenic, or pharmacological mecha-
nisms. In this thesis, we develop a data-driven approach to biomarker discovery based on the
identification of highly discriminative features using interpretable supervised machine learn-
ing algorithms for classification. The key to biomarker discovery in IMS data is therefore the
ranking of features according to their respective discriminative importance: the top-ranking
features can then be used as candidate biomarkers worthy of further clinical investigation.



Chapter 2

Methodology: Preprocessing &
Dimensionality reduction

The datasets generated by imaging mass spectrometry (IMS) are large and complex. Nowa-
days, a typical IMS dataset consists of tens of thousands of pixels, each with a mass spectrum
encoding thousands of distinct mass-to-charge ratios. As IMS technology development pro-
gresses, the attainable mass and spatial resolution, sample surface area, and analyte range
keep rising, yielding a drastic increases in the amount of raw data generated. Analyzing
IMS data therefore requires dimensionality reduction methods that compress the data, while
retaining most of its information, prior to classification. We will be focusing on two matrix
factorization methods, namely principal component analysis (PCA) and non-negative matrix
factorization (NNMF). These are unsupervised machine learning methods that may also be
used for noise removal and exploratory analysis. Dimensionality reduction by matrix factor-
ization is based on the assumption that low-rank structures are embedded in high-dimensional
data [41]. Both PCA and NNMF take advantage of the redundancies in the data in order to
find a low-rank model describing its underlying structure [41]. The data is expressed as a linear
combination of basis vectors, each of which encodes a latent pattern in a lower-dimensional
space. We will see that extracting latent trends and patterns from IMS data significantly
facilitates human understanding. The essential difference between PCA and NNMF arises
from their respective constraints: PCA imposes an orthogonality constraint, whereas NNMF
imposes a non-negativity constraint on the matrix factors. Note that, as part of this thesis,
both PCA and NNMF were implemented from scratch in MATLAB using different solvers.



14 Methodology: Preprocessing & Dimensionality reduction

2-1 Principal Component Analysis

Principal component analysis (PCA) is a matrix factorization method for reducing the di-
mensionality of a dataset while retaining most of its variance [42]. The variance of a dataset
is a measure of its statistical dispersion or spread. PCA transforms the original, possibly
correlated, variables into a new set of uncorrelated variables, called the principal components
(PCs), which are linear combinations of the original variables. The principal components are
orthogonal to each other and together form an orthonormal basis onto which is projected the
data. PCs are calculated in decreasing order of explained variance: the first PC accounts
for the maximum variance contained in the original dataset, while subsequent PCs account
for the maximum residual variance [43]. The number of PCs retained is determined by the
desired percentage of total variance retained in the transformed dataset [44]. It is the number
k of retained PCs that defines the rank of the reduced data.

2-1-1 Introductory Example to Principal Component Analysis

We consider a three-dimensional example dataset plotted in Figure 2-1a. The dataset has m
= 30 observations and n = 3 variables, defining an (m × n) matrix X̃. Before performing
PCA, the data is moved to the center of the coordinate system as in Figure 2-1b. Centering
consists in subtracting the column means µj from the columns of X̃ so that the columns of
the centered data matrix X have zero mean [45]. The observations (i.e. rows) and variables
(i.e. columns) of X are respectively written xi = X(i,:) and xj = X(:,j) with i = 1, 2...30 and
j = 1, 2, 3. Note that exponent j in notation xj does not represent a power but rather a
feature index.

X = X̃ − µ with ∀j, µj = 1
m

m∑
i=1

X̃(i,j) (2-1)

(a) Original data X̃ (b) Centred data X

Figure 2-1: Centering the original data prior to principal component analysis. Figure adapted
from [5]. Copyright © 2010 to 2019 Kevin G. Dunn - creative commons attribution license.
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The first principal component is drawn in Figure 2-2a: it’s loading is the three-dimensional
unit vector v1 whose direction maximizes the variance of the data point projections. Vector
v1 is a normalized linear combinations of the original variables x1, x2 and x3: v1 = α1,1x

1 +
α2,1x

2 +α3,1x
3 where loading coefficients αj,1 represent the contribution of xj to v1. Since v1

is oriented primarily in the x2 direction, α2,1 >> α1,1 and α2,1 >> α3,1. The most important
variable in understanding the data’s overall variability is x2. Each observation xi has a score:
it is the distance to the origin of the observation’s projection on the PC. Maximizing the scores’
variance is equivalent to minimizing the error, which is the sum of the residual distances from
the original data points to the principal component. The perpendicular distances from two
data points to the first PC are indicated by dotted lines in Figure 2-2a. The projections of
all 30 points form a score vector z1 of dimension 30. The score value of the ith observation
along the first principal component is a linear combination of the ith row of the data matrix
X and the PC’s direction vector v1: zi,1 = xTi v1 where i = 1, 2...30.

The second principal component must be orthogonal to the first principal component as shown
in Figure 2-2b. The second PC’s loading is the three-dimensional unit vector v2 pointing in
the direction of second largest variance such that v2 = α1,2x

1 +α2,2x
2 +α3,2x

3 where loading
coefficients αj,2, where j = 1, 2, 3, represent the contribution of original variable xj to v2. The
corresponding score vector z2 is computed by projecting the data points onto v2 such that
zi,2 = xTi v2 for i = 1, 2...30.

The first and second principal components define a 2D plane within the 3D original coordinate
system as shown in Figure 2-2b. These two PCs form a new coordinate system whose axes
coincide with the directions of maximum variation of the data. Reducing the data from
three to two dimensions by projecting it on a plane exposes the data’s latent structure and
facilitates visualization.

(a) First principal component (b) Second principal component

Figure 2-2: First and second principal components. Figure adapted from [5]. Copyright © 2010
to 2019 Kevin G. Dunn - creative commons attribution license.

What follows is the mathematical derivation of the first and second principal components. We
consider only one of the 30 observations of X, that is one row xi = X(i,:). Vector xi has zero
mean and variance-covariance matrix Σi whose diagonal terms σ2

1, σ
2
2, σ

2
3 are the variances of



16 Methodology: Preprocessing & Dimensionality reduction

x1
i , x

2
i , x

3
i respectively and whose non-diagonal terms are the covariances between x1

i , x
2
i , x

3
i .

xi =

xi,1xi,2
xi,3

 v1 =

v1,1
v2,1
v3,1

 v2 =

v1,2
v2,2
v3,2

 (2-2)

Σi =

 σ2
1 σ1,2 σ1,3

σ2,1 σ2
2 σ2,3

σ3,1 σ3,2 σ2
3

 (2-3)

The first PC maximizes the variance of score zi,1, which is a linear combination of xi and
the PC’s direction vector v1. The second PC’s direction vector v2 is perpendicular to v1 and
maximizes the variance of score zi,2. The scores are given by Equation 2-4, their variance and
covariance are defined by Equation 2-5 [42].

zi,1 = xTi v1 = xi,1v1,1 + xi,2v2,1 + xi,3v3,1

zi,2 = xTi v2 = xi,1v1,2 + xi,2v2,2 + xi,3v3,2
(2-4)

var(zi,1) = vT1 Σiv1 var(zi,2) = vT2 Σiv2

cov(zi,1, zi,2) = vT1 Σiv2 = vT2 Σiv1
(2-5)

The loading vector v1 of the first PC must maximize var(zi,1) subject to the normalization
constraint vT1 v1 = 1. The method of Lagrange multipliers is used to maximize variance
subject to a normalization equality constraint as per Equation 2-6 where λ1 is a Lagrange
multiplier [42]. Differentiation with respect to v1 yields Equation 2-7 where I is the 3 × 3
identity matrix.

max
v1

(vT1 Σiv1) subject to vT1 v1 = 1 ⇐⇒
{
∇(vT1 Σiv1)− λ1∇(vT1 v1 − 1) = 0
vT1 v1 − 1 = 0 (2-6)

∇(vT1 Σiv1)− λ1∇(vT1 v1 − 1) = 0 ⇐⇒ Σiv1 − λ1v1 = 0 ⇐⇒ (Σi − λ1I)v1 = 0 (2-7)

Hence λ1 is an eigenvalue of variance-covariance matrix Σi and v1 is the corresponding eigen-
vector. Since the variance can be rewritten as var(zi,1) = vT1 Σiv1 = vT1 λ1v1 = λ1v

T
1 v1 = λ1,

maximizing the variance is equivalent to maximizing λ1 [42]. Therefore λ1 is the largest
eigenvalue of Σi and v1 is the corresponding eigenvector.

The loading vector v2 of the second PC must maximize var(zi,2) subject to the normalization
constraint vT2 v2 = 1 along with the additional constraint that zi,1 and zi,2 are uncorrelated
such that cov(zi,1, zi,2) = 0. The zero covariance constraint can be rewritten as per Equation
2-8 using the equality Σiv1 = λ1v1 demonstrated in Equation 2-7.

cov(zi,1, zi,2) = 0 ⇐⇒ vT2 Σiv1 = 0 ⇐⇒ vT2 λ1v1 = 0 ⇐⇒ λ1v
T
2 v1 = 0 ⇐⇒ vT2 v1 = 0

(2-8)
The method of Lagrange multipliers is once again used to maximize var(zi,2) subject to
two equality constraints as per Equation 2-9 where λ2 and φ are Lagrange multipliers [42].
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Differentiation of Equation 2-9 with respect to v2 yields Equation 2-10.

max
v2

(vT2 Σiv2) subject to
{
vT2 v2 = 1
vT2 v1 = 0 ⇐⇒


∇(vT2 Σiv2)− λ2∇(vT2 v2 − 1)− φ∇(vT2 v1) = 0
vT2 v2 − 1 = 0
vT2 v1 = 0

(2-9)
∇(vT2 Σiv2)− λ2∇(vT2 v2 − 1)− φ∇(vT2 v1) = 0 ⇐⇒ Σiv2 − λ2v2 − φv1 = 0 (2-10)

Multiplying Equation 2-10 on the left by v1 yields Equation 2-11 hence φ = 0. Therefore
Equation 2-10 reduces to Equation 2-12 which demonstrates that λ2 is also an eigenvalue of
Σi and v2 is its corresponding eigenvector. Since λ2 = vT2 Σiv2, maximizing the variance is
equivalent to maximizing λ2. Assuming that Σi does not have repeated eigenvalues, λ2 is the
second largest eigenvalue of variance-covariance matrix Σi.

vT1 Σiv2︸ ︷︷ ︸
0

−λ2v
T
1 v2︸ ︷︷ ︸
0

−φ vT1 v1︸ ︷︷ ︸
1

= 0 (2-11)

Σiv2 − λ2v2 = 0 ⇐⇒ (Σi − λ2I)v2 = 0 (2-12)

We demonstrated that the variance accounted for by the jth principal component (PC) is
equal to the jth largest eigenvalue λj of the variance-covariance matrix Σi for j = 1, 2, 3. The
total variance of observation xi is the trace of Σi, that is the sum of the original variables’
variances. This is equal to the sum of the eigenvalues of variance-covariance matrix Σi as
shown in Equation 2-13.

Tr(Σi) = σ2
1 + σ2

2 + σ2
3 = λ1 + λ2 + λ3 (2-13)

The proportion of total variance Ωj accounted for by the jth principal component (PC) is
the jth eigenvalue divided by the sum of eigenvalues as per Equation 2-14. Consequently, the
cumulative percentage of variance Pk explained for by the first k PCs is the sum of the first
k eigenvalues divided by the sum of all eigenvalues. In this example, the number of retained
PCs is k = 2. Equation 2-15 indicates that the first and second PCs explain more than 95%
of the total variance. Computing a third PC is therefore not necessary.

Ωj = λj
λ1 + λ2 + λ3

(2-14)

P2 = 100(Ω1 + Ω2) = 100 λ1 + λ2
λ1 + λ2 + λ3

> 95% (2-15)

The dimensionality reduction of vector xi achieved by PCA can be summarized by the fol-
lowing two equations. Note that since only two out of three PCs are retained, PCA actually
computes a low-rank approximation of xi. Equation 2-16 expresses PC score zi by an or-
thonormal linear transformation of xi. The columns of matrix V are the eigenvectors of
variance-covariance matrix Σi. Equation 2-17 relates Σi to the diagonal eigenvalue matrix Λi
such that λj = var(zi,j).

zi ≈ V Txi ⇐⇒
(
zi,1
zi,2

)
≈

v1,1 v1,2
v2,1 v2,2
v3,1 v3,2


T xi,1xi,2

xi,3

 (2-16)

ΣiV ≈ V Λi ⇐⇒

 σ2
1 σ1,2 σ1,3

σ2,1 σ2
2 σ2,3

σ3,1 σ3,2 σ2
3


v1,1 v1,2
v2,1 v2,2
v3,1 v3,2

 ≈
v1,1 v1,2
v2,1 v2,2
v3,1 v3,2

(λ1 0
0 λ2

)
(2-17)
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2-1-2 Two Methods for Principal Component Analysis

The imaging mass spectrometry dataset is represented as a (m× n) matrix X of m observa-
tions, and n features, where each observation corresponds to the mass spectrum of a pixel,
and each variable corresponds to the mass-to-charge ratio of a molecular ion. It is assumed
here that n < m, hence the rank of X is equal to the number of variables n. The objective of
PCA is to reduce the rank of X from n to k << n such that most of X’s variance is accounted
for by the k first principal components. We assume that the n columns of X have be centered
prior to performing PCA.

There are two approaches to performing principal component analysis of IMS data: PCA by
eigen-decomposition of the variance-covariance matrix, which is the original method developed
by Pearson in 1901 [42], and PCA by singular value decomposition (SVD) of the data matrix,
which is preferred in practice due to its higher computational efficiency and precision [42].
The main advantage of the singular value decomposition (SVD) approach is that it does not
require computing the large variance-covariance matrix of data matrix X.

2-1-2-1 Eigen-decomposition of the Variance-covariance Matrix

PCA by eigen-decomposition of the variance-covariance matrix Σ is a generalization of the
method explained in the introductory example: the PCs are computed by solving an eigenvalue-
eigenvector problem [42]. The (n × n) variance-covariance matrix of X is calculated as per
Equation 2-18. The eigen-decomposition of Σ is given by Equation 2-19 where V is an orthog-
onal matrix and Λ is a diagonal matrix. The columns of V are the eigenvectors of covariance
matrix Σ as well as the principal directions of the data. The columns of V are orthogonal
to each other. The diagonal elements of Λ are the eigenvalues of Σ as well as the variances
explained by the principal directions.

Σ = 1
m− 1X

TX (2-18)

Σ = V ΛV T (2-19)

If we were to proceed iteratively as in the introductory example, we would start with the
first PC whose score is z1 and whose loading vector v1 is chosen to maximize var(z1) subject
to the normalization constraint vT1 v1 = 1. Coefficients zi,1 = vT1 xi are the scores of the ith
observation projected onto the first PC, where i = 1, 2...m. Geometrically, maximizing the
variance of z1 can be interpreted as maximizing the distance between the projections of the
m observations on the first PC. The second PC is computed as follows: its score z2 has co-
efficients zi,2 = vT2 xi for i = 1, 2...m and its direction vector v2 maximizes var(z2) subject to
the normalization constraint vT2 v2 = 1 and to the zero correlation constraint cov(z1, z2) = 0.
The following PCs are computed similarly.

For j = 1, 2...n, the jth PC’s direction vector vj is the eigenvector of Σ with the jth largest
eigenvalue λj and the variance explained for by this jth PC is equal to λj = Λj,j . The matrix
of principal component scores is defined by Equation 2-20. It’s size is (m×n). The coordinates
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of the ith data point in the new subspace spanned by the PCs are given by zi, that is the ith
row of Z.

Z = XV (2-20)

2-1-2-2 Singular Value Decomposition of the Data Matrix

The SVD of data matrix X is presented in Equation 2-21: U and V are (m×m) and (n×n)
orthogonal matrices respectively and S is an (m×n) diagonal matrix. The diagonal elements
of S are the singular values of X in descending order. Since n < m, only the n first singular
values are positive: the last m−n singular values are zero and can therefore be removed. The
corresponding m−n columns of U need not be computed. We obtain the following matrices:
U (m× n), S (n× n) and V (n× n).

X = USV T (2-21)

The variance-covariance matrix Σ defined in Equation 2-18 can be rewritten as per Equation
2-22 using the SVD of X and the orthogonal matrix property UTU = I. The singular values
sj are related to the eigenvalues λj of Σ by Equation 2-23 where j = 1, 2...n. The variance
explained by principal component j is proportional to the squared singular value sj [42].

Σ = 1
m− 1X

TX = 1
m− 1V SU

TUSV T = V
S2

m− 1V
T (2-22)

λj = s2
i

m− 1 (2-23)

The score matrix Z, defined in Equation 2-20, can also be rewritten using the SVD of X and
the orthogonal matrix property V TV = I. Equation 2-24 expresses Z as the product of U
and S.

Z = XV = USV TV = US (2-24)

2-1-3 Determining the Optimum Number of Principal Components

Once the scores matrix Z and loading matrix V have been computed by either performing
the singular value decomposition of X or the eigen-decomposition of Σ, we must determine
how many principal components should be retained for the low-rank approximation of X.

The most frequently used method to estimate the number k of necessary principal components
consists in determining the percentage of total variation P ? one desires be retained in the
low-rank approximation of the data [42]. The number k of retained PCs is the smallest integer
j = 1, 2...n for which P ? is exceeded [42]. The percentage of variance accounted for by the
first k PCs is defined by Equation 2-25, which is a generalization of Equation 2-15.

Pk = 100
∑k
j=1 λj∑n
j=1 λj

> P ? (2-25)
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The original data matrix is approximated by the product of Zk and Vk in Equation 2-26.
The reduced scores matrix Zk, of dimension (m× k), and the reduced loadings matrix Vk, of
dimension (n×k), are obtained by removing the last n−k columns from Z and V respectively.
When applying PCA to an IMS dataset, only the k first PCs encode relevant biochemical
information, whereas the last n − k PCs are assumed to be noise. Noise does not provide
useful information and can therefore be omitted. Equation 2-26 therefore effectively performs
noise removal.

X = ZV T ⇒ X ≈ ZkV T
k (2-26)

In the context of IMS data analysis, the reduced scores matrix Zk and the reduced loadings
matrix Vk may be interpreted as follows:

• Matrix Zk of dimension (m×k): the scores are the transformed observations. Each of the
m observations will have a k-dimensional score vector corresponding to the k retained
principal components [17]. The scores are the coordinates of the observations in the
new coordinate system formed by the principal components. Geometrically, the scores
can be interpreted as the projections of the observations onto the principal components
[5]. The ith row of the scores matrix represents the coefficients of the linear combination
of principal components describing the mass spectrum of the ith pixel. The larger the
(ith, jth) entry of the scores matrix is, the more important the contribution of the jth
principal component to the mass spectrum of the ith pixel. The columns of Zk can
also be used to plot score images showing the degree of expression of each principal
component throughout the tissue section, which provides useful insight into the data’s
underlying structure.

• Matrix Vk of dimension (n× k): the loadings represent the contribution of the original
coordinate system to the new coordinate system formed by the principal components
[17]. Each of the loadings are n-dimensional unit vectors that span a k-dimensional hy-
perplane within in the n-dimensional space of original variables [5]. The loadings matrix
serves as a mapping from the original coordinate system to the PC’s coordinate system.
The jth column of the loadings matrix lists the coefficients of the linear combination of
original variables describing the jth principal component. The larger the (ith, jth) entry
of the loadings matrix is, the more important the contribution of the ion with the ith
mass-to-charge ratio to the jth principal component. The jth column of Vk therefore
represents the mass spectrum of the jth principal component.

In Figure 2-3, we study IMS data whose sample is the coronal section of a rat-brain. PCA
produces PCs that extract latent biochemical patterns from the data. The score images in
Figure 2-3 show the degree of expression of the two first PCs across the sample’s surface and
enable the visualization of different types of cerebral tissue and nuclei, such as the corpus
striatum, corpus callosum, and cortex 1. Note that the score images and pseudo-spectra take
on negative values in Figure 2-3, unlike Figure 2-6 that is obtained by non-negative matrix
factorization. In Figure 2-4, PCA is performed on another IMS dataset taken from the whole-
body section of a mouse-pup. Please refer to section 4-1 for more information regarding these
two IMS datasets.

1The following anatomical atlas was used to recognize rat brain structures in mass spectrometry images:
https://instruct.uwo.ca/anatomy/530/ratpix.pdf

https://instruct.uwo.ca/anatomy/530/ratpix.pdf
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(a) First principal component: score image and pseudo-spectrum

(b) Second principal component: score image and pseudo-spectrum

Figure 2-3: Two first principal components (PCs) obtained by performing principal component
analysis (PCA) of an IMS dataset: the score images illustrate the spatial distribution and relative
abundance of each PC across the surface of the sample, whereas the loading pseudo-spectra define
each PC as a linear combination of the original variables (i.e. m/z bins)
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(a) First principal component: score image and pseudo-spectrum

(b) Second principal component: score image and pseudo-spectrum

Figure 2-4: Two first principal components (PCs) obtained by performing principal component
analysis (PCA) of another IMS dataset: the score images illustrate the spatial distribution and
relative abundance of each PC across the surface of the sample, whereas the loading pseudo-
spectra define each PC as a linear combination of the original variables (i.e. m/z bins)
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2-2 Non-negative Matrix Factorization

Non-negative matrix factorization (NNMF) is a matrix factorization method that consists of
approximating a non-negative matrix X by a lower-rank product of two non-negative matri-
ces W and H. Similarly to principal component analysis (PCA), NNMF expresses the data
as a linear combination of basis vectors in a lower-dimensional space. The non-negativity
constraint of NNMF is especially useful for analyzing imaging mass spectrometry (IMS) data.
Unlike PCA whose score and loading matrices contain both positive and negative terms,
NNMF approximates the original data by a lower-rank product of two positive matrices. The
original data is expressed as an additive linear combination of latent features [46]. Since
imaging mass spectrometry data is inherently non-negative, decomposing IMS data matrices
into non-negative factors avoids contradicting physical reality and facilitates human interpre-
tation of the matrix factors.

Unlike PCA whose representation of the data is holistic, NNMF achieves a parts-based repre-
sentation of the data by expressing it as an additive linear combination of biologically relevant
latent features [46]. The importance of a parts-based representation was demonstrated by Lee
and Seung who proposed NNMF as an image decomposition method in 1999 [46]. The image
of a human face was approximated by a linear superposition of basis images: the basis images
obtained by NNMF represented individual features such as the nose and mouth, whereas
PCA generated "eigenfaces" without any obvious visual interpretation [46]. In Figure 2-5,
we perform NNMF on an IMS dataset whose sample is the coronal section of a rat brain.
Figures 2-5a, 2-5b and 2-5c represent specific anatomical regions of the rat’s brain, namely
the striatum (i.e. caudate and putamen) and the cerebral cortex 2. Note that in Figure 2-5a,
NNMF successfully differentiates the white matter (i.e. nerve tracks including the corpus
callosum, anterior commissure, optic chiasma and olfactory nerve tracks) from the rest of the
brain tissue. The basis images of Figures 2-5d, 2-5e, and 2-5f represent instrumental noise
that NNMF has extracted from the IMS data. In Figure 2-7, we perform NNMF on an IMS
dataset whose sample is the whole-body section of a mouse-pup: the basis image of Figure
2-7a highlights the brain and spine, whereas the basis image of 2-7b highlights the intestines
and liver. In Figure 2-7, the parts-based representation of the data achieved by NNMF ex-
tracts latent features that capture biochemical information relevant to different organs.

NNMF is a form of additive bi-clustering [47]. Bi-clustering is the simultaneous clustering
of variables and observations in order to identify subsets of variables that exhibit similar
behavior across subsets of observations and, conversely, subsets of observations that exhibit
similar behavior across subsets of variables [48]. Bi-clustering produces a local partitioning of
the data by organizing it into sub-matrices, called bi-clusters, whose rows (i.e. observations)
and columns (i.e.variables) are highly correlated [48]. Each variable is ascribed a bi-cluster
using but a subset of all observations, and each observation is ascribed a bi-cluster using
but a subset of all variables. Bi-clustering by NNMF has proven useful for the extraction
of localized, biologically relevant patterns in genomic data [49]. NNMF-driven bi-clustering
is also a promising method for the exploratory analysis of IMS data because it enables the

2The following anatomical atlas was used to recognize rat brain structures in mass spectrometry images:
https://instruct.uwo.ca/anatomy/530/ratpix.pdf

https://instruct.uwo.ca/anatomy/530/ratpix.pdf
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discovery of subsets of biomolecules, characterized by their respective mass-to-charge ratios,
that exhibit similar behavior across but a subset of pixels and vice versa [48]. For example,
co-regulated biomolecules may only be co-expressed in certain regions of the IMS sample,
and the mass spectra of neighboring pixels may only have a small number of biomolecules in
common [50].

(a) Basis image of nerve tracks (b) Basis image of the striatum

(c) Basis image of the cerebral cortex (d) Basis image of instrumental noise

(e) Basis image of instrumental noise (f) Basis image of instrumental noise

Figure 2-5: Parts-based representation of an IMS dataset using non-negative matrix factorization:
some latent features extract biochemical information specific to different anatomical structures,
whereas other latent features extract noise
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2-2-1 Three Methods for Non-negative Matrix Factorization

We consider an (m×n) IMS data matrix X containingm mass spectra, hencem observations,
with n mass-to-charge bins each, hence n variables. The rows of X are the mass spectra
measured at each pixel, whereas the columns of X can be reshaped into ion distribution
images. In order to reduce the dimensionality of X, NNMF approximates X by the product
of two matrices: the basis matrix W , of size (m × k), and the coefficient matrix H, of size
(k × n) according to Equation 2-27. The target number k of factors, or latent features, is
predefined. The non-negativity constraint imposed by NNMF forbids negative entries in the
matrix factors. As a result, W and H are positive matrices: W ≥ 0, H ≥ 0. Assuming for X
that n < m and rank(X) = n, NNMF generates a matrix product whose rank is at most k
such that 1 < k < n.

X ≈WH (2-27)

NNMF extracts the biochemical structure of a sample by finding k factors, each defined as
a non-negative linear combination of ions, and approximating the mass spectra of each pixel
by a non-negative linear combination of factors. In Equation 2-27, matrices W and H serve
purposes similar to those of PCA’s scores matrix Zk and loadings matrix Vk respectively.
Furthermore, if we were to look at NNMF through the lens of bi-clustering, matrices W and
H would perform the clustering of observations and variables respectively. Figure 2-6 displays
the basis images (i.e. columns ofW ) and pseudo-spectra (i.e. rows ofH) of two latent features
obtained by NNMF on an IMS dataset whose sample is the coronal section of a rat brain. In
this section about non-negative matrix factorization, we consider indices i = 1, 2...m for the
observations (i.e. rows of X), j = 1, 2...k for the latent features (i.e. columns of W and rows
of H) and p = 1, 2...n for the variables (i.e. columns of X).

• Matrix W of dimension (m × k): The rows of W are the projections of the observa-
tions onto the subspace spanned by the k basis vectors. Each of the m observations is
expressed as a linear additive combination of these factors. The ith row of W lists the
non-negative coefficients of the linear combination of basis vectors describing the mass
spectrum of the ith pixel. The columns of W are the vectorized basis images of the
data: the jth column of W can be reshaped into a basis image showing the jth factor’s
spatial distribution and degree of expression throughout the sample.

• Matrix H of dimension (k×n): Multiplying by H performs a mapping from the original
coordinate to the new coordinate system. The rows of H express the factors, or basis
vectors, as a non-negative linear combination of the n original variables. The jth row
of H is actually the characteristic mass spectra of the jth factor.

Non-negative matrix factorization starts by constructing random non-negative initial esti-
mates for matrix factors W and H. The W and H matrices are iteratively updated to
minimize the cost function defined in Equation 2-28 as the mean-squared-error or squared
Euclidean distance between X and WH [51]. Note that the root-mean-squared-error could
also be used as cost function.

f(W,H) = 1
2 ||X −WH||2F (2-28)
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The Frobenius norm (i.e. Euclidean norm) of matrix (X −WH) is defined in Equation 2-29
as the square root of the trace of (X −WH)(X −WH)T , or equivalently as the square root
of the sum of its squared elements.

||X −WH||F =
√
Tr ((X −WH)(X −WH)T ) =

√√√√ m∑
i=1

n∑
p=1

(X −WH)2 (2-29)

Solving the non-negative matrix factorization problem can be formulated as the following
optimization problem [51]: cost function f(W,H) is minimized subject to non-negative con-
straints.

min
W,H

1
2 ||X −WH||2F subject to W ≥ 0, H ≥ 0 (2-30)

The cost function f(W,H) of Equation 2-28 is convex with respect to W or H, but it is
not convex with respect to both W and H. The existence of local minima and the lack of
a unique solution are the two most important challenges affecting the optimization problem
stated in Equation 2-30 [52]. The problem is therefore divided into two convex non-negative
least-squares problems which are solved by keeping one factor fixed while updating the other,
alternating and iterating until convergence [41]. Although there are many different numerical
approaches to solving the NNMF optimization problem of Equation 2-30, all the NNMF
methods we use adhere to the same general framework: start by randomly initializing factors
W (0) and H(0), then at each iteration t, fix one of the two factors and update the other in
such a way that the objective function is reduced [53].

• Fix H(t) and find W (t+1) ≥ 0 such that ||X −W (t+1)H(t)||2F < ||X −W (t)H(t)||2F

• Fix W (t+1) and find H(t+1) ≥ 0 such that ||X −W (t+1)H(t+1)||2F < ||X −W (t+1)H(t)||2F

Two of the NNMF methods studied hereafter, the multiplicative update algorithm [46] and
the alternating least squares (ALS) algorithm [52] are frequently used standard methods for
computing NNMF that can be found in MATLAB’s Statistics and Machine Learning Toolbox.
The hierarchical alternating least squares (HALS) algorithm is more efficient and returns a
more precise low-rank approximation [54].

2-2-1-1 Multiplicative Update Algorithm

Non-negative matrix factorization was approached by Lee and Seung using the multiplicative
update algorithm [46]. Minimization of the objective function f(W,H) defined in Equation
2-28 is done through the alternative update of W and H. First W and H must randomly be
initialized and the columns of W must be scaled to unit norm. What follows is one iteration
of the multiplicative update algorithm to be repeated until convergence:

1. Update matrix H with ε << 1:

H ← H
(W TX)

(W TWH) + ε
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2. Update matrix W with ε << 1:

W ←W
(XHT )

(WHHT ) + ε

3. Normalize the columns of W

The multiplicative update algorithm is not guaranteed to converge to a local minimum, but
only to a stationary point where the cost function ceases to decrease [53]. It is also very sen-
sitive to its initial conditions and should therefore be run multiple times, with different initial
conditions, until the solution is satisfactory [52]. Another disadvantage of the multiplicative
update algorithm is it does not have the flexibility to escape from a poor minimization path:
once an element in W or H becomes zero, it will remain zero [52].

2-2-1-2 Alternating Least Squares Algorithm

The alternating least squares (ALS) algorithm exploits the objective function’s convexity in
either W or H (not both) to solve the optimization problem in Equation 2-30. The ALS
algorithm was developed by Paatero and Tapper in 1994 [52]. The matrix factors W and
H must be randomly initialized before implementing ALS. W and H are then alternatively
updated by solving unconstrained least-squares problems. After each update of W or H,
non-negativity is insured by setting the negative elements obtained from the least squares
solution to zero. What follows is one iteration of ALS:

1. Solve for H in W TWH = W TX while fixing W

2. Set negative elements of H to 0

3. Solve for W in HHTW T = HXT while fixing H

4. Set negative elements of W to 0

The ALS algorithm converges faster and more consistently than the multiplicative update
algorithm [52]. It is however not guaranteed to converge to a global optimum [54]. Unlike the
multiplicative update algorithm, the ALS algorithm can recover from a poor minimization
path [52]: if an element of W or H becomes zero, it does not necessarily have to remain zero.

2-2-1-3 Hierarchical Alternating Least Squares

The hierarchical alternating least squares (HALS) algorithm was developed by Cichocki and
Phan in 2009 [54] in order to improve the convergence rate of the alternating least squares
(ALS) algorithm and reduce its computational complexity. The HALS method is robust to
noise and suitable for large scale problems [54].

The idea of hierarchical alternating least squares is to decompose the NNMF optimization
problem of Equation 2-30 using "local learning rules" to sequentially process blocks of data.
In order to approximate X by matrix product WH of reduced rank k, factors W and H are
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updated by fixing all the variables except for the block comprised of the jth column of W ,
written W(:,j), and jth row of H, written H(j,:) [41]. HALS minimizes the cost function of
Equation 2-28 with respect to the remaining k − 1 blocks [41]. We obtain the following local
optimization problem where R(j) is the jth residual, for j = 1, 2...k.

min
W(:,j),H(j,:)

f
(j)
local = ||R(j) −W(:,j)H(j,:)||2F (2-31)

R(j) = X −
k∑
i 6=j

W(:,j)H(j,:) (2-32)

The local cost function f (j)
local defined in Equation 2-31 is expanded in Equation 2-33 and its

gradient with respect to the unknown vectors W (:, j) and H(j, :) is computed in Equations
2-34 and 2-35 respectively [41].

f
(j)
local = Tr

(
R(j)TR(j) − 2R(j)TW(:,j)H(j,:) +HT

(j,:)W
T
(:,j)W(:,j)H(j,:)

)
f

(j)
local = ||R(j)||2F − 2 Tr

(
R(j)TW(:,j)H(j,:)

)
+ Tr

(
HT

(j,:)W
T
(:,j)W(:,j)H(j,:)

) (2-33)

∂f
(j)
local

∂W(:,j)
= W(:,j)H(j,:)H

T
(j,:) −R

(j)HT
(j,:) (2-34)

∂f
(j)
local

∂H(j,:)
= HT

(j,:)W
T
(:,j)W(:,j) −R(j)TW(:,j) (2-35)

The sequential update rules for the jth components of W and H are obtained by setting
Equations 2-34 and 2-35 to zero and enforcing non-negativity as per Equation 2-36 [41]:

W+
(:,j) = max

 R(j)HT
(j,:)

H(j,:)H
T
(j,:)

, 0


H+

(j,:) = max
(
R(j)TW(:,j)

W T
(:,j)W(:,j)

, 0
) (2-36)

Note that by rewriting the residual of 2-32 as per Equation 2-37, the update rules of 2-36 can
be simplified. The simplified update rules, stated in Equation 2-38, avoid having to explicit
compute of the residual R(j) at each iteration [41]. In practice, it is recommended to normalize
vectors W(:,j) and H(j,:) at the end of each iteration [54].

R(j) = X −WH +W(:,j)H(j,:) (2-37)

W+
(:,j) = max

(
W(:,j) +

[XHT ](:,j) −W [HHT ](:,j)
[HHT ](j,j)

, 0
)

H+
(j,:) = max

(
H(j,:) +

[XTW ](:,j) −HT [W TW ](:,j)
[W TW ](j,j)

, 0
) (2-38)
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(a) First NNMF latent feature: basis image and pseudo-spectrum

(b) First NNMF latent feature: basis image and pseudo-spectrum

Figure 2-6: Two latent features obtained by performing non-negative matrix factorization of an
IMS dataset: the basis images illustrate the spatial distribution and relative abundance of each
latent feature across the surface of the sample, whereas the pseudo-spectra define each latent
feature as a linear combination of the original variables (i.e. m/z bins)
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(a) First NNMF latent feature: basis image and pseudo-spectrum

(b) First NNMF latent feature: basis image and pseudo-spectrum

Figure 2-7: Two latent features obtained by performing non-negative matrix factorization of
another IMS dataset: the basis images illustrate the spatial distribution and relative abundance
of each latent feature across the surface of the sample, whereas the pseudo-spectra define each
latent feature as a linear combination of the original variables (i.e. m/z bins)
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2-2-2 Determining the Optimum Number of Latent Features

Choosing the number of factors k prior to performing non-negative matrix factorization
(NNMF) determines the rank of data matrix X’s approximation. The importance of de-
termining k so as to maximize dimensionality reduction while minimizing loss of information
has been thoroughly examined in scientific literature, and yet there is no blueprint on how to
do so. The methods we use for optimizing the choice of k make use of NNMF’s bi-clustering
properties. Given the non-negative matrix factorization X ≈ WH, we can choose to either
cluster the m observations (i.e. pixels) or the n variables (i.e. mass-to-charge ratio bins) of
X into k latent features. We consider indices i = 1, 2...m for the observations (i.e. rows of
X), j = 1, 2...k for the latent features (i.e. columns of W and rows of H), and p = 1, 2...n for
the variables (i.e. columns of X).

• In order to cluster observations, we look at the rows of basis matrix W : observation
xi = X(i,:) is assigned to latent feature number j if max

(
W(i,:)

)
= W(i,j).

• In order to cluster variables, we look at the columns of coefficient matrix H: variable
xp = X(:,p) is assigned to latent feature number j if max

(
H(:,p)

)
= H(j,p).

For the sake of simplicity, we hereafter assume that we use NNMF to cluster observations,
rather than variables. Each observation xi is assigned to exclusively one cluster (i.e. one
latent feature). The distance in n-dimensional feature space between two observations xi and
xj , with i 6= j, is a measure of the biochemical dissimilarity between the corresponding pixels
of the IMS sample. We choose the squared Euclidean distance as our preferred distance metric.

2-2-2-1 Silhouette Analysis

Silhouette analysis may be used for determining the optimal number k of latent features
for non-negative matrix factorization by assessing the quality of the resulting data partition.
Clustering quality is quantified by comparing cluster compactness to cluster separation [55].
An observation is considered to be well clustered if it is close to the other observations in the
same cluster and far from observations in other clusters. Ideally, within-cluster dissimilarities
should be small and between-cluster dissimilarities should be large. For each observation
xi = X(i,:), for i = 1, 2...m, the silhouette index si is computed as follows [55]:

1. For each observation xi, calculate the average dissimilarity αi between xi and all other
observations in the cluster Cp to which xi belongs. Note that #Cp = card(Cp).

αi =
∑#Cp

l=1 ||xi − xl||2

#Cp
(2-39)

2. For all other clusters Cj to which xi does not belong, calculate the average dissimilarity
di,j of xi to all observations of Cj . Equation 2-40 is reiterated for j = 1, 2...p−1, p+1...k
as a result of which a (k − 1)-dimensional vector Di is obtained. Vector Di’s jth entry
is the average dissimilarity of xi to the elements of cluster Cj where j 6= p.

di,j =
∑#Cj

l=1 ||xi − xl||2

#Cj
(2-40)
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3. Define βi as the dissimilarity between xi and its neighbor cluster, that is the closest
cluster to which xi does not belong. The neighbor cluster is the second most similar
cluster to observation xi, after cluster Cp.

βi = min(Di)
∀Cj 6=Cp

(2-41)

4. The silhouette index si of observation xi is defined by Equation 2-42 [55]:

si = βi − αi
max(αi, βi)

⇐⇒


1− αi

βi
if αi < βi

0 if αi = βi
βi
αi
− 1 if αi > βi

(2-42)

The silhouette index si ranges from -1 to 1 and can be interpreted as follows [55]:

• If si ≈ 1, the within-cluster dissimilarity αi is much smaller than the minimum between-
cluster dissimilarity βi. So observation xi has been assigned to the right cluster.

• If si ≈ 0, observation xi lies equally far from two clusters so it is unclear to which cluster
xi should be assigned.

• If si ≈ −1, βi >> αi implies that xi is closer to a different cluster than Cp. Observation
xi has therefore been assigned to the wrong cluster.

Given a targeted reduced rank k, the cluster mean silhouette of a cluster Cj , for j = 1, 2...k, is
defined in Equation 2-43 as the average of the si silhouette indices of all observations belonging
to Cj . Sj(k) is effectively the ratio of the compactness of cluster Cj to its separation. If k is too
low, some of the data’s natural clusters will be artificially combined in order to divide the data
into k groups. The artificially combined clusters will have large within-cluster dissimilarities
and Sj(k) will be reduced as a consequence. On the other hand, if k is too high, some of
natural clusters will be artificially partitioned in order to conform to the specified number
of clusters k. Since these artificially partitioned clusters resemble their natural cluster, their
between-cluster dissimilarity will be small, which also results in a reduced Sj(k).

Sj(k) = 1
#Cj

∑
i∈Cj

si (2-43)

Finally, the global silhouette index S̄(k) is the average of the mean silhouettes of all clusters,
or, equivalently, the average of the si silhouette indices of all m observations in the dataset
[55]. The global silhouette index, defined in Equation 2-44, verifies −1 ≤ S̄(k) ≤ 1. The
closer the average silhouette is to 1, the more stable the clustering and the better the choice
of k [55].

S̄(k) = 1
k

k∑
j=1

Sj(k) = 1
m

m∑
i=1

si (2-44)
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2-2-2-2 Consensus Clustering

Consensus clustering may be used to determine the optimal number of latent features k to
use for non-negative matrix factorization by assessing cluster stability [49]. For a given value
of k, we compute how frequently different observations are grouped together (i.e. assigned to
the same latent feature) in repeated runs of NNMF. The resulting pairwise consensus rate
is used to measure the robustness of NNMF to its random initialization. If the number k of
clusters reflects the inherent structure of the data, the assignment of observations (i.e. pixels)
to latent features should vary little from run to run [49]. The more stable the clusters are
with respect to random initialization, the more reliable the resulting partition and the better
the choice of k [49]. The advantage of consensus clustering is that, unlike silhouette analysis,
it exploits the stochastic nature of NNMF driven bi-clustering.

For each run of NNMF, the pixel assignment is defined by a connectivity matrix C of size
m ×m: Ci,j = 1 if pixels i and j belong to the same cluster, and Ci,j = 0 if they belong to
different clusters [49]. The agreement among several clustering runs is represented using a
consensus matrix: the consensus matrix C̄ stores, for each pair of observations, the proportion
of clustering runs in which two observations are clustered together [56]. It is computed by
taking the average over the connectivity matrices of each run of NNMF. The entries of C̄
range from 0 to 1 and reflect the probability that two observations are grouped together:
C̄i,j = 1 if observations xi and xj are always assigned to the same latent feature, C̄i,j = 0 if xi
and xj are never assigned to the same latent feature. If k is well chosen, C should vary little
from run to run and the entries of C̄ will be close to either 0 or 1 [49]. The two following
consensus clustering metrics may be used for determining the optimal value of k for NNMF:

• Dispersion coefficient [57]: the consensus matrix’s dispersion is a measure of the repro-
ducibility of the cluster assignment for a given value of k. The dispersion coefficient ρ
of the consensus matrix C̄ is defined by Equation 2-45. The number of latent features
k should be chosen to maximize ρ.

ρ(k) = 1
m2

m∑
i=1

m∑
j=1

4
(
C̄i,j −

1
2

)2
(2-45)

• Proportion of ambiguous clustering [58]: the proportion of ambiguous clustering is
defined as the fraction of sample pairs whose consensus coefficients fall between 0 and
1. The number of latent features k should be chosen to minimize the proportion of
ambiguous clustering. Ideally, all entries of consensus matrix C̄ are either equal to 0 or
1 and the proportion of ambiguous clustering is 0.

Figure 2-8 shows that, for the toy dataset of Figure 2-8a that is obviously made up of four
latent clusters, the three clustering measures agree: the global silhouette index and the dis-
persion coefficient are maximum for k = 4, whereas the proportion of ambiguous clustering
is minimum for k = 4.
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(a) Scatter plot of a 2-D dataset whose number of natural latent clusters is four

(b) Plot of the global silhouette index, dispersion coefficient, and proportion of ambiguous clustering
versus the number of clusters

Figure 2-8: Toy clustering example: grouping the data into four clusters, which is the natural
number of clusters inherent to the data, maximizes the global silhouette index, and the dispersion
coefficient, and minimizes the proportion of ambiguous clustering.



2-3 Whitening 35

2-3 Whitening

Statistical whitening, or sphering, is a common preprocessing step for linearly decorrelating
variables by imposing an identity covariance matrix to a zero-centered dataset [21]. We have
an m-by-n imaging mass spectrometry dataset X whose observations and variables are writ-
ten xi = X(i,:) and xj = X(:,j) for i = 1, 2...m and j = 1, 2...n respectively. We assume
that centering has been performed as per Equation 2-1 prior to whitening. The covariance
matrix Σ of X is related to covariance matrix P and diagonal variance matrix V by Equation
2-46. We have V = diag(σ2

1, σ
2
2...σ

2
n) such that σ2

j = var(xj) for j = 1, 2...n. The eigen-
decomposition of Σ and P are presented in Equation 2-47: U and G are the eigenvectors of
Σ and P respectively; Λ and Θ are their respective eigenvalues.

Σ = V 1/2 P V 1/2 (2-46)

Σ = U Λ UT P = G Θ GT (2-47)

Whitening transforms the original variables xj into new orthogonal variables zj using the
n-by-n whitening matrix W [59]. Equation 2-48 defined the linear transformation through
which whitening is achieved. The original covariance cov(X) = Σ becomes the identity matrix:
cov(Z) = I. The new sphered variables zj are centered, such that E[zj ] = 0, and scaled to
have unit variance, such that var(zj) = 1 for j = 1, 2...n.

Z = XW (2-48)

The whitening transformation of Equation 2-48 requires choosing of a whitening matrix W
that makes cov(Z) = I. Equation 2-49 states the condition that W must satisfy [60].

cov(Z) = I ⇐⇒ E[ZZT ] = I ⇐⇒ E[XWW TXT ] = I ⇐⇒ WΣW T = I ⇐⇒ W TW = Σ−1

(2-49)

Due to rotational freedom, W is not uniquely determined by Equation 2-49. Rewriting W
in polar form demonstrates that whitening combines multivariate rescaling by Σ−1/2 with a
rotation by Q1 [59]. Q1 is an orthogonal matrix such that QT1 Q1 = I. So W will satisfy
Equation 2-49 regardless of the choice of Q1 [59]. There are therefore infinitely many possible
whitening procedures: each procedure uses a different whitening matrix to linearly decorrelate
the variables.

W = Q1 Σ−1/2 (2-50)

Depending on the application, it may be necessary to start by standardizing the original
variables by multiplying by V −1/2. Whitening matrix W can be rewritten as per Equation
2-51 where Q2 is another orthogonal rotation matrix.

W = Q2 P
−1/2 V −1/2 (2-51)

We discuss five commonly used statistical whitening procedures based either on the zero-phase
component analysis (ZCA), principal component analysis (PCA), or Cholesky decomposition
of X. Our five whitening methods arise from specific constraints on the cross-covariance Φ
and cross-correlation Ψ between the sphered data Z and the original data X [59]. Equation
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2-52 demonstrates that the cross-covariance Φ and cross-correlation Ψ are related to rotation
matrices Q1 and Q2 of Equation 2-50 and 2-51 respectively [59].

Φ = cov(Z,X) = W Σ = Q1 Σ1/2 Ψ = cor(Z,X) = Φ V −1/2 = Q2 P
1/2 (2-52)

Zero-phase component analysis (ZCA) is an image processing technique introduced by Bell
and Sejnowski in 1997 [60]. ZCA whitening, also known as Mahalanobis whitening, is the only
method to produce a symmetric whitening matrix WZCA [59]. ZCA whitening maximizes the
average cross-covariance between the whitened and original variables, and uniquely produces
a symmetric cross-covariance matrix Φ [59].

WZCA = Σ−1/2 (2-53)

ZCA-cor is a scale-invariant alternative to ZCA whitening. ZCA-corr whitening is done by
standardizing the original variables by multiplication by V −1/2 and then employing ZCA
whitening based on the cross-correlation rather than the cross-covariance matrix. ZCA-cor
whitening maximizes the average cross-correlation between the whitened and original vari-
ables, and uniquely produces a symmetric cross-correlation matrix Ψ [59]. Unlike WZCA,
WZCA-cor is asymmetric. ZCA-corr is the only whitening method that ensures that the sphered
variables zj remain maximally correlated with the original variables xj [59]. Using ZCA-corr
is recommended if the aim is to obtain uncorrelated variables that are similar enough to the
original variables to maintain their original interpretation.

WZCA-corr = P−1/2 V −1/2 (2-54)

PCA whitening performs decorrelation and dimensionality reduction. PCA whitening is the
unique sphering procedure that maximizes the compression of all original variables in each new
variable using the cross-covariance Φ as the compression metric [59]. The whitening matrix
WPCA is subject to a sign ambiguity due to the eigenvectors U . Enforcing diag(U) > 0 makes
PCA whitening unique and guarantees Φ and Ψ to be positive diagonal [59].

WPCA = Λ−1/2 UT (2-55)

PCA-cor is a scale-invariant alternative to PCA whitening: cross-correlation, rather than
cross-covariance is the metric to optimize. PCA-cor whitening maximally compresses all
dimensions of the original data into each dimension of the whitened data using the cross-
correlation Ψ as the compression metric [59]. Like WPCA, WPCA-cor is subject to a sign
ambiguity due to the eigenvectors G. Enforcing diag(G) > 0 makes PCA-cor whitening
unique and guarantees Φ and Ψ to be positive diagonal [59].

WPCA-cor = Θ−1/2 GT V −1/2 (2-56)

Cholesky whitening is based on Cholesky factorization LLT = Σ−1 where L is the unique
lower triangular matrix with positive diagonal values. It produces a lower triangular positive
diagonal cross-covariance Φ and cross-correlation Ψ [59].

WChol = LT (2-57)



Chapter 3

Methodology: Classification &
Biomarker Discovery

In subsection 1-2-2, we formulate the problem of biomarker discovery in high-dimensional,
large-scale imaging mass spectrometry (IMS) data as a feature ranking problem. The IMS
dataset is represented by anm-by-nmatrixX whosem rows are observations or instances, and
whose n columns are predictor variables or features. We use the superscript j, ranging from 1
to n, to denote a particular feature xj = X(:,j) and we use subscript i, ranging from 1 to m, to
denote a particular observation xi = X(i,:). We use supervised machine learning algorithms to
train predictive models for the biochemical classification of IMS data. Three binary classifiers,
namely logistic regression, support vector machines, and random forests, are presented. In
order to improve our understanding of the biochemical mechanisms being modeled, we rank
the features according to their relative predictive importance using global model-specific and
model-agnostic interpretability methods, implemented and extended as part of this thesis.
The features with the highest discriminative power are candidate biomarkers that may be
useful for recognizing a specific class within IMS data. Model interpretability is the ability to
explain a supervised machine learning model’s predictions by explicitly reporting the relative
importance of its features. Please refer to subsection 1-2-2 for the definition of local versus
global interpretability, and model-specific versus model-agnostic interpretability. We will see
that logistic regression, linear support vector machines, and random forests are intrinsically
interpretable models whose predictions can be explained using model-specific interpretability
methods. Nonlinear support vector machines are black-box models that require the use of
post-hoc model-agnostic interpretability approaches to produce a ranking of features. We
will present, implement and apply two state-of-the-art post-hoc model agnostic methods,
namely permutation importance and Shapley importance. Our implementation of Shapley
importance as a global interpretability method is novel. Note that every supervised machine
learning algorithm and every interpretability method discussed in Chapter 3 was implemented
from scratch in MATLAB.
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3-1 Logistic Regression

3-1-1 Regularized Logistic Regression

Logistic regression (LR) is a simple classification algorithm for binary problems consisting of
an (m× n) input data matrix X whose m-dimensional output vector y has either positive or
negative labels. Each of the n-dimensional observations xi, where i = 1, 2...m, may be labeled
yi = 1 or yi = 0 depending on whether it belongs to class C+ or C− respectively. The n features
are written xj , where j = 1, 2...n. Hence the jth element of xi, where j = 1, 2...n, is written xji .

Logistic regression models the probability p(xi) that a given test observation xi belongs to
the positive class C+ as per Equation 3-1 [44]. Equation 3-2 defines the probability that xi
belongs to the negative class C−. The hypothesis of the logistic regression (LR) classifier
is defined by the sigmoid function as per Equation 3-3 [44]. As illustrated by Figure 3-1,
the sigmoid function maps the linear ( actually affine) combination of features θ0 + θTxi
to the probability interval [0, 1]. The steepness of the sigmoid curve is determined by the
n-dimensional parameter θ.

p(xi) = p(yi = 1|xi) = hθ(xi) (3-1)

p(yi = 0|xi) = 1− p(yi = 1|xi) = 1− hθ(xi) (3-2)

hθ(xi) = exp(θ0 + θTxi)
1 + exp(θ0 + θTxi)

= 1
1 + exp(−(θ0 + θTxi))

⇐⇒ hθ(xi) = 1
1 + exp(−θ0 − θ1x1

i − θ2x2
i − ...− θnxni )

(3-3)

Figure 3-1: Sigmoid function

The odds of xi belonging to C+ are defined by Equation 3-4 [61]. The logarithm of the odds,
called the log-odds or logit function, is the inverse of the sigmoid function. The logit function
maps the probability p(xi) back to θ0 + θTxi. The logarithm of the odds spans from −∞ to
+∞ whereas the corresponding probability is bounded between 0 and 1. Since the logarithm
of the odds is linear in the features xj , with j = 1, 2...n, of a given observation xi, the LR
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classifier is said to be a generalized linear model (GLM) with a logit linking function and a
binary response [61]. Equation 3-5 demonstrates that the logistic regression model is a linear
model for the log odds.

p(xi)
1− p(xi)

= exp
(
θ0 + θ1x

1
i + θ2x

2
i + ...+ θnx

n
i

)
(3-4)

log
(

p(xi)
1− p(xi)

)
= θ0 + θ1x

1
i + θ2x

2
i + ...+ θnx

n
i (3-5)

The impact of increasing the jth feature of observation xi by one unit, while fixing all other
features, is a multiplicative increase of the odds ratio by a factor exp (θj), or - equivalently - an
additive increase of the log odds by θj [34]. In Equation 3-16, we show that odds

xj +1
odds = exp (θj).

p(xi)xj
i +1

1− p(xi)xj
i +1
· 1− p(xi)

p(xi)
=

exp
(
θ0 + θ1x

1
i + ...+ θj(xji + 1) + ...+ θnx

n
i

)
exp

(
θ0 + θ1x1

i + ...+ θjx
j
i + ...+ θnxni

) = exp (θj) (3-6)

In logistic regression, the classification threshold is hθ(xi) = 0.5 such that if hθ(xi) > 0.5,
the predicted label is ŷi = +1 and if hθ(xi) < 0.5, the LR classifier predicts ŷi = 0 [44].
The decision boundary is the set that verifies Equation 3-7. Logistic regression divides the
feature space into two by a hyperplane H defined in n dimensions by θ0 + θTxi = 0 where θ0
is the intercept and θ is the n-dimensional normal vector. Observation xi will be classified
positive or negative depending on whether it is on the positive or negative side of hyperplane
H. Parameters θ1, θ2...θn are the weights, or coefficients, assigned to each of the n variables.

H = {x ∈ Rn|p(yi = ω+|xi) = p(yi = ω−|xi) = 0.5} (3-7)

ŷi =
{

1 if hθ(xi) > 0.5 ⇐⇒ θ0 + θTxi > 0
0 if hθ(xi) < 0.5 ⇐⇒ θ0 + θTxi < 0 (3-8)

The maximum likelihood approach is used to estimate parameter θ and intercept θ0 [61]. The
likelihood p(yi|xi) is the probability that the LR classifier predicts output yi considering input
xi: p(yi|xi) can be rewritten as per Equation 3-9 [61]. Assuming that (x1, y1), (x2, y2)...(xm, ym)
are independent and identically distributed (IID), the total likelihood is the product of the
m likelihoods. The aim of the maximum likelihood approach is to estimate θ so that the
prediction ŷi corresponds as accurately as possible to the known output label yi. Parameter
θ is therefore chosen to maximize the logarithm of the total likelihood L(θ0, θ) as per Equa-
tion 3-10. Maximizing L(θ0, θ) is equivalent to minimizing the convex cost function J(θ0, θ)
of Equation 3-11 [44]. Since there is no closed form solution to this problem, minimizing
J(θ0, θ) must be done numerically.

p(yi|xi) =
{
hθ(xi) if yi = 1
1− hθ(xi) if yi = 0 ⇐⇒ p(yi|xi) = (hθ(xi))yi + (1− hθ(xi))1−yi (3-9)

L(θ0, θ) = log
(
m∏
i=1

p(yi|xi)
)

(3-10)
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J(θ0, θ) = − 1
m

log
(
m∏
i=1

p(yi|xi)
)

= − 1
m

(
m∑
i=1

log(p(yi|xi))
)

= − 1
m

(
m∑
i=1

yi log(hθ(xi)) + (1− yi) log(1− hθ(xi)
) (3-11)

Cost function J(θ0, θ) is minimized using the gradient descent method. Parameters θ0, θ1, θ2...θn
are iteratively updated as per Equation 3-12 where α is the learning rate [44]. Hyperparame-
ter α should be chosen by validation. The n+ 1 parameters must be simultaneously updated
at each iteration. The gradient of the cost function is an n-dimensional vector whose jth
element is defined by Equation 3-13.

θj = θj − α
∂J(θ)
∂θj

(3-12)

∂J(θ)
∂θj

= 1
m

m∑
i=1

(hθ(xi)− yi)xji (3-13)

Applying ridge regularization to logistic regression changes the cost function J(θ0, θ) to
J∗(θ0, θ) as defined by Equation 3-14 where λ ≥ 0 [44]. Increasing the regularization pa-
rameter λ boosts the relative importance of the penalty term in the regularized cost function
J∗(θ0, θ) and enforces a preference for weights with small squared norms. When minimizing
J∗(θ0, θ) by gradient descent, the penalty term enforces a trade-off between minimizing the
training error and reducing the square of the weights’ magnitudes |θ1|2, |θ2|2...|θn|2. Smaller
weights θ1, θ2...θn simplify the classifier’s decision boundary, which in turn reduces the risk of
overfitting and improves generalization [44]. Note the difference between ridge regularization,
also called L2 regularization, in which the penalty is equivalent to the square of the weights’
magnitudes, and Lasso regularization, also called L1 regularization, in which the penalty is
equivalent to the absolute value of the weights’ magnitudes [62].

J∗(θ0, θ) = 1
m

m∑
i=1

(
−yi log(hθ(xi))− (1− yi) log(1− hθ(xi))

)
+ λ

2m

n∑
j=1

θ2
j (3-14)

The regularized cost function is differentiable. The jth entry of the regularized cost function’s
gradient is given by Equation 3-15 for j = 1, 2...n. Note that the intercept θ0 is not regularized.

∂J∗(θ)
∂θj

= 1
m

m∑
i=1

(
(hθ(xi)− yi)xij

)
for j = 0

∂J∗(θ)
∂θj

= 1
m

m∑
i=1

(
(hθ(xi)− yi)xij

)
+ λ

m
θj for j ≥ 1

(3-15)
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3-1-2 Measuring Feature Importance

3-1-2-1 Magnitude of the Feature Weights

Ranking features according to their relative predictive importance is key to machine learning
model interpretability. LR classifiers are intrinsically interpretable models whose predictions
can be explained by LR’s model-specific interpretability method. Intuitively, if a feature has
a larger magnitude than another, it should be more important. Also, the sign of the feature’s
weight indicates whether the feature contributes towards increasing (if positive) or decreasing
(if negative) the model’s prediction. If all the features were uncorrelated, the interpretations
of the logistic regression classifier’s coefficients would be simple: the larger |θj |, the stronger
the influence of feature xj on the LR classifier, hence the stronger its predictive power. In
Equation 3-16, the predictive importance of feature xj is determined by a multiplicative
increase of the odds ratio by a factor exp (θj) that is achieved by increasing the value of
xj and fixing the values of all other features. Yet, studying the impact of a unit increase
in one feature while holding the other features constant is only relevant in the absence of
feature inter-dependencies. In other words, Equation 3-16 implicitly assumes that feature
xj is uncorrelated with the other features. The problem is that the assumption of feature
uncorrelatedness does not hold for imaging mass spectrometry (IMS) data. Evaluating the
relative importance of features by simply looking at the magnitude of their relative weights
may therefore be misleading in the case of imaging mass spectrometry (IMS) data analysis.

sj = |θj | (3-16)

Note that evaluating the importance of a feature based on the magnitude of its corresponding
weight in the decision boundary of the LR model is affected by correlation bias: features that
belong to groups of correlated features receive smaller weights in the decision boundary of the
LR model because of their shared contribution to the predictive task [33]. When presented
with groups of informative correlated features, the LR training algorithm will tend to assign a
large weight |θj | to only one arbitrary representative of each group of correlated features. As
a result, feature xj will appear as being very important but the features that are correlated
with xj are redundant. These features will be discarded as unimportant, not because they
do not have discriminative power, but because they do not provide the LR classifier with any
more information than xj .

3-1-2-2 Relative Weights Analysis

Relative weights analysis was developed by Johnson in 2000 for determining the relative im-
portance of predictor variables in multiple linear regression [63]. Johnson defines a feature’s
importance as a feature’s relative contribution to the variance of the prediction, considering
its direct effect and its joint effect with other features [63]. Johnson’s definition of feature
importance is therefore compatible with our definition, stated in subsection 1-2-2. Tonidanel
and LeBreton extended relative weights analysis to classification by logistic regression in 2010
[64]. Tonidanel and LeBreton’s work enables us to determine the importance of multiple pre-
dictor variables while accounting for feature multicollinearity. The central idea of relative
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weights analysis is to perform logistic regression on a set of maximally related orthogonal fea-
tures Z, rather than on the original correlated features X, and then map the feature weights
obtained for Z back to X. Each new feature zj is uncorrelated with the other new features
but maximally correlated to their own respective original feature xj , for j = 1, 2...n [63]. Each
zj is essentially a maximally rotated orthogonal variable that represents the relationship of
each xj with the model prediction y [63].

Relative weights analysis for logistic regression involves the four following steps [64]:

• Create orthogonal approximations zj = Z(:,j) of the original features xj = X(:,j), for
j = 1, 2...n, as per Equation 3-17. Refer to Equation 2-21 for the singular value decom-
position (SVD) of matrix X. We have X = USV T where U is the matrix of left singular
vectors, S is the diagonal matrix containing the singular values, and V is the matrix
of right singular vectors. Equation 3-17 is the best fitting least squares orthonormal
approximation of X [64]. It is recommended to center and standardize the orthogonal
features zj [64].

Z = UV T (3-17)

• Obtain coefficients linking the original features xj to the orthogonal features zj . The
n-by-n mapping matrix Λ∗ is computed as per Equation 3-18 [64].

Λ∗ = (ZTZ)−1ZTX (3-18)

• Obtain coefficients β∗j = β∗(j) linking the orthogonal predictors zj to the criterion y.
We train an LR model on the orthogonal set Z and obtain feature weights θj for all
orthogonal features zj , with j = 1, 2...n. Tonidanel refers to the n-dimensional vector
θ as the unstandardized logistic regression coefficients [64]. The LR model produces
a prediction ŷ. Equation 3-19 defines the logistic regression analog to R2 [64]: R2

log
is obtained by computing the sum of squared errors (SSE) and the sum of squares
total (SST). The log-odds or logit function of ŷ is defined by Equation 3-20 and its
standard deviation is written σlogit(ŷ). Finally, Equation 3-21 defines the standardized
logistic regression coefficients β∗ such that β∗j represents the relative importance of each
uncorrelated feature zj [64].

R2
log = 1− SSE

SST = 1−
∑m
i=1(y − ŷ)2∑m
i=1(y − ȳ)2 (3-19)

logit(ŷ) = log
(

ŷ

1− ŷ

)
(3-20)

β∗ = θ Rlog
σlogit(ŷ)

(3-21)

• Combine the linking coefficients Λ∗ and β∗ to obtain the relative weights ε of the original
features in X [64]. Each relative weight εj provides an estimate of the influence each
original feature xj makes to the model prediction ŷ. The relative weights sum to R2

log
and can be scaled as the percentage of predicted variance accounted for by each xj [64].

ε = Λ∗2β∗2 (3-22)
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3-2 Support Vector Machines

3-2-1 Linear Support Vector Machines

3-2-1-1 Linear Hard-margin Support Vector Machines

Building a classifier for linearly separable data requires choosing the best hyperplane among
several possibilities. In Figure 3-2, two different hyperplanes correctly separate the red class
from the blue class. Yet, the separating hyperplane of Figure 3-11b is intuitively a better
decision boundary than the hyperplane of Figure 3-11a because it has a larger margin. The
margin is the minimum distance to the training observations. In Figure 3-11b, the distance
between the two dashed lines parallel to the decision boundary is the hyperplane’s margin.
The larger the margin, the more robust the separating hyperplane is to measurement error (i.e.
noise) and the better it generalizes to new observations [7]. The maximal margin hyperplane
is the separating hyperplane for which the margin is largest. The corresponding classifier was
introduced by Vapnik and Chervonenkis in 1964 [6].

∀xi ∈ H, g(xi) = ωTxi + ω0 = 0 (3-23)

Assuming an (m × n) input data matrix X and an output vector y, the general equation
of separating hyperplane H is given by Equation 3-23, where ω ∈ Rn and ω0 ∈ R. Note
that Equation 3-23 is invariant to scaling. Since the marginal hyperplanes are parallel to the
separating hyperplane, they admit the same normal vector ω with different biases ω−0 and
ω+

0 . The margins delimiting the positive and negative classes C+ and C− are denoted M+
andM− respectively.

(a) Random separating hyperplane (b) Maximal margin hyperplane

Figure 3-2: Two possible hyperplanes for linearly separable data. Figure adapted from [6].
Copyright © 2018 Massachusetts Institute of Technology.

Computing the separating hyperplane’s margin is equivalent to computing the distance from
H to the nearest observation. We start by considering an arbitrary observation xi ∈ Rn.
Observation xi can be expressed as per Equation 3-24 where xpi is the normal projection of
xi onto H and ri is the signed distance - positive or negative depending on which side of H
xi lies. Since g(xpi ) = 0, we have Equation 3-25. Assuming a binary problem whose classes
C+ and C− have labels yi = +1 and yi = −1 respectively, distance di from xi to H can be
written as per Equation 3-26.
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xi = xpi + ri
ω

‖ω‖
(3-24)

g(xi) = ωTxi + ω0 = ri‖ω‖ (3-25)

di = |ri| =
|ωTxi + ω0|
‖ω‖

= yi(ωTxi + ω0)
‖ω‖

(3-26)

Marginal hyperplanes M+ and M− are defined by ωTxi + ω+
0 = +1 and ωTxi + ω−0 = −1

respectively. Equation 3-27 states that any observation xi ∈ Rn belonging to a marginal
hyperplane meets |ωTxi + ω0| = 1: this is the separating hyperplane’s minimum distance to
the training observations.

min
i=1,2...m

yi(ωTxi + ω0) = min
i=1,2...m

|ωTxi + ω0| = 1 (3-27)

The margin ρ is equivalent to the distance from eitherM+ orM− to the separating hyper-
plane H. According to Equation 3-28, ρ depends directly on the Euclidean norm, or L2-norm,
of vector ω. Maximizing ρ is equivalent to minimizing ‖ω‖ [6].

∀xi ∈M±, ρ = di = |ω
Txi + ω0|
‖ω‖

= 1
‖ω‖

(3-28)

The maximum margin classifier, also referred to as the linear hard-margin support vector
machine (SVM) [7], implements the decision rule of Equation 3-29. If observation xi is
correctly classified, the prediction verifies ŷi = yi hence yi(ωTxi + ω0) ≥ 1.

ŷi =
{

+1 if ωTxi + ω0 ≥ +1
−1 if ωTxi + ω0 ≤ −1 (3-29)

The maximal margin hyperplane solves the constrained convex optimization problem of Equa-
tion 3-30, called the primal problem [6]. The quadratic objective function f : ω → 1

2‖ω‖
2 is

differentiable: it has gradient ∆f = ω and Hessian Hf = In [6]. The fact that Hf is positive
definite, added to the fact that the m inequality constraints are affine functions, guarantee
convexity and the existence of a global minimum. Indeed, there is a unique normal vector ω
defining the maximal margin hyperplane. The bias ω0 does not appear in the cost function,
but it is involved in the constraint.

minimize J(ω, ω0) = 1
2‖ω‖

2

subject to: ∀xi, yi(ωTxi + ω0) ≥ 1
(3-30)

We introduce Lagrange variables λi ≥ 0 for i = 1, 2...m, associated to the m constraints
and denote by λ the vector (λ1, λ2...λm)T . The Lagrangian is defined in Equation 3-31 for
ω ∈ Rn, ω0 ∈ R and λ ∈ Rm+ [6]. The inequality constraint is now written in standard form:
yi(ωTxi + ω0)− 1 ≥ 0.

L(ω, ω0, λ) = 1
2‖ω‖

2 −
m∑
i=1

λi(yi(ωTxi + ω0)− 1) (3-31)
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The Karush-Kuhn-Tucker (KKT) conditions are obtained by setting the gradient of the La-
grangian with respect to the primal variables ω and ω0 to zero. The complementary slackness
condition states that, for every observation, either the Lagrange multiplier is zero or the
constraint is zero.

∂

∂ω
L(ω, ω0, λ) = 0 ⇒ ω =

m∑
i=1

λiyixi

∂

∂ω0
L(ω, ω0, λ) = 0 ⇒

m∑
i=1

λiyi = 0

∀i, λi
(
yi(ωTxi + ω0)− 1

)
= 0 ⇒ λi = 0 or ωTxi + ω0 = 1

(3-32)

Hence, the weight vector ω solution to the problem is a linear combination of the training
observations x1, x2...xm [6]. Support vectors are observations belonging to the marginsM+
and M− that verify yi(ωTxi + ω0) = 1 where λi 6= 0 [6]. Observations falling outside the
region betweenM+ andM− verify λi = 0. Note that while the solution ω of the SVM prob-
lem is unique, the support vectors are not. In n-dimensional feature space, n+1 observations
are sufficient to define a hyperplane [6]. Thus, when more than n + 1 observations lie on a
marginal hyperplane, different choices are possible for the n+ 1 support vectors.

The support vectors fully define the maximal margin hyperplane. The maximal margin hy-
perplane does not depend on any other observations: changing any observation not belonging
to the marginal hyperplanes would not affect the separating hyperplane, provided that the
change does not cause the observation to cross the boundary set by the positive or negative
margin [65].

Deriving the dual formulation of Equation 3-30 is done by maximizing the Lagrangian L(ω, ω0, λ)
with respect to the Lagrangian multipliers. Equating to zero the gradient of the Lagrangian,
with respect to ω and ω0, in Equation 3-32 resulted in two stationarity constraints: ω =∑m
i=1 λiyixi and

∑m
i=1 λiyi = 0. Substituting these constraints into Equation 3-31 yields

Equation 3-33 where the Lagrangian is expressed as a function of λ ≥ 0 [7]. The dual for-
mulation reveals an important property of support vector machines: the solution depends
only on inner products between observations and not directly on the observations themselves.
Hence L(λ) does not explicitly depend on the dimensionality of the input space [66]: this
becomes crucial when extending SVMs to nonlinear decision boundaries thanks to the kernel
trick (refer to section 3.4.3).

L(λ) = 1
2ω

Tω −
m∑
i=1

λiyiω
Txi −

m∑
i=1

λiyiω0 +
m∑
i=1

λi

L(λ) = 1
2

m∑
i=1

λiyix
T
i

m∑
j=1

λjyjxj −
m∑
i=1

λiyi

m∑
j=1

λjyjx
T
j xi +

m∑
i=1

λi

L(λ) = 1
2

m∑
i=1

m∑
j=1

yiyjλiλjx
T
i xj −

m∑
i=1

m∑
j=1

yiyjλiλjx
T
i xj +

m∑
i=1

λi

L(λ) = −1
2

m∑
i,j=1

λiλjyiyjx
T
i xj +

m∑
i=1

λi

(3-33)
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The dual optimization problem for linear hard-margin SVM classifiers is given by Equation
3-34 [66]. The cost function is differentiable and the Hessian is H = −G where G is the
positive semi-definite Gram matrix such that Gi,j = 〈yixi, yjxj〉. Since the objective function
is concave and the constraints are affine, minimizing −L(λ) transforms the dual optimization
problem into a convex problem that can be solved by quadratic programming (QP) [6]. Al-
though the solution to the dual problem is generally a lower bound on the solution to the
primal problem, strong duality holds for convex QP [7]. Therefore, the solution to the dual
SVM problem is equal to the solution of the primal SVM problem.

maximize L(λ) =
m∑
i=1

λi −
1
2

m∑
i,j=1

λiλjyiyjx
T
i xj

subject to:
m∑
i=1

λiyi = 0

λi ≥ 0

(3-34)

Once the optimal Lagrange multiplier vector λ? has been computed by maximizing the La-
grangian, the normal vector ω? to the maximum margin hyperplane is obtained from Equation
3-35 [7].

ω? =
m∑
i=1

λ?i yixi (3-35)

The Lagrangian multipliers of support vectors verify λk > 0 where k = 1, 2...mSV where mSV
is the number of support vectors. According to the complementary slackness condition, the
support vectors verify yk(ω?Txk + ω?0) = 1. Hence ω?0 = yk − ω?Txk [7]. Averaging the bias
over all support vectors, as done in Equation 3-36, guarantees numerical stability [66].

ω?0 = 1
mSV

∑
k∈SV

(yk − ω?Txk) (3-36)

Since λk > 0 for the support vectors and λi = 0 otherwise, ω?0 = yk −ω?Txk can be rewritten
so as to express the margin ρ as a function of the L1-norm of Lagrangian multiplier vector
λ? [6]:

m∑
i=1

λkykω
?
0︸ ︷︷ ︸

0

=
m∑
i=1

λky
2
k︸ ︷︷ ︸∑m

i=1 λ
?
i

−
m∑
i=1

mSV∑
k=1

λ?iλkyiykx
T
i xk︸ ︷︷ ︸

‖ω‖2

⇒ ‖ω‖2 =
m∑
i=1

λ?i ⇒ ρ = 1
‖ω‖

= 1√
|λ?|

(3-37)
The decision rule of the linear SVM classifier is defined by Equation 3-38: predict the output
label of test observation xi requires computing the inner product between xi and each of the
training observations xj for which λj > 0 [7].

ŷi = sgn
(
ω?Txi + ω?0

)
= sgn

 m∑
j=1

yjλ
?
jx
T
j xi + ω?0

 = sgn

∑
λ?

j>0
yjλ

?
jx
T
j xi + ω?0

 (3-38)
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3-2-1-2 Linear Soft-margin Support Vector Machines

The maximal margin classifier performs well on linearly separable data. However, the posi-
tive and negative classes are seldom linearly separable in practice. The generalization of the
maximal margin classifier to non-separable classes is known as the linear soft-margin support
vector machine. Even if the classes are linearly separable, an SVM classifier whose hyper-
plane tolerates margin violation and misclassification on the training set is often preferable
in the interest of reduced sensitivity to individual observations and better generalization [65].
Indeed, the soft-margin SVM has proven more robust to outliers and less prone to overfitting
than the hard-margin SVM classifier [7].

Rather than seeking to maximize the margin so that every training observation is not only on
the correct side of the separating hyperplane H but also on the correct side of the marginal
hyperplanes M+ and M−, the soft-margin SVM allows some observations to be on the in-
correct side ofM±, or even on the incorrect side ofH - in which case they are misclassified [65].

Observations may fall into one of the three following cases. Correctly classified observations
that fall outside the region betweenM+ andM− comply with the constraints of Equation 3-
39 [66]. If Equation 3-39 holds, the soft-margin SVM classifier is equivalent to the hard-margin
SVM classifier. Correctly classified observations that fall within the region betweenM+ and
M−, and hence violate the margins, verify Equation 3-40 [66]. Misclassified observations
obey Equation 3-41 [66].

yi(ωTxi + ω0) ≥ 1 (3-39)

0 ≤ yi(ωTxi + ω0) < 1 (3-40)

yi(ωTxi + ω0) < 0 (3-41)

All three cases can be written in the form of Equation 3-42 by introducing slack variables
ξ1, ξ2...ξm [66]. Slack variable ξi measures the distance by which observation xi violates
the desired inequality constraint of Equation 3-39. Effectively, ξi implements a hinge-loss:
ξi = max{0, 1 − yi(ωTxi + ω0)}. Equation 3-39 is obtained from Equation 3-42 for ξi = 0
[66]. Equations 3-40 and 3-41 are obtained from Equation 3-42 for 0 < ξi ≤ 1 and ξi > 1
respectively [66]. Therefore, ξi > 0 indicates that observation xi either violates the margins
or is misclassified. In Figure 3-3, observation x? is incorrectly classified hence ξ? > 1 whereas
observation x?? is correctly classified but violates the margin hence 0 < ξ?? ≤ 1. Observation
noted x??? is correctly classified without violating the margins so ξ??? = 0.

yi(ωTxi + ω0) ≥ 1− ξi (3-42)

Equation 3-42 introduces the following constraints on the soft-margin SVM classifier [9]:

• For yi = +1, ωTxi + ω0 ≥ 1− ξi

• For yi = −1, ωTxi + ω0 ≥ −1 + ξi
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Figure 3-3: Soft-margin support vector margin classifier. Figure adapted from [6]. Copyright ©
2018 Massachusetts Institute of Technology.

The goal is to maximize the margin while keeping the number of observations for which ξi > 0
as small as possible. This is equivalent to the optimization problem of Equation 3-43 where
regularization hyperparameter C ≥ 0 determines the trade-off between margin maximization
and outlier-penalty minimization [6]. Similarly to the optimization problem associated with
the hard-margin SVM, Equation 3-43 is a convex QP problem [66].

minimize J(ω, ω0, ξ) = 1
2‖ω‖

2 + C
m∑
i=1

ξi

subject to yi(ωTxi + ω0) ≥ 1− ξi
ξi ≥ 0 for i = 1, 2...m

(3-43)

Penalty parameter C determines the number and severity of the violations to the margin
and separating hyperplane that are tolerated [65]. Increasing C decreases violation tolerance,
hence a narrower margin with fewer support vectors. Conversely, decreasing C increases
violation tolerance, resulting in a wider margin with more support vectors. C also controls
the bias-variance trade-off of the soft-margin SVM classifier [65]: a classifier whose C is small
has high bias and low variance whereas a classifier whose C is large has a low bias but a high
variance.

L(ω, ω0, ξ, λ, µ) = 1
2‖ω‖

2 + C
m∑
i=1

ξi −
m∑
i=1

µiξi −
m∑
i=1

λi
(
yi(ωTxi + ω0)− 1 + ξi

)
(3-44)

The Lagrangian of the soft-margin SVM is given by Equation 3-44 where λi ≥ 0 are the
Lagrange multipliers of inequality constraint yi(ωTxi + ω0) ≥ 1 − ξi and µi ≥ 0 are the
Lagrange multipliers of ξi ≥ 0 for i = 1, 2...m [7]. The Karush-Kuhn-Tucker conditions state
that the gradient of L(ω, ω0, ξ, λ, µ) with respect to primal variables ω, ω0, ξ cancel out [6].
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Figure 3-4: Support vector machine classification boundary for different choices of penalty
parameter C: soft-margin SVMs allow for some observations to violate the margin, whereas hard-
margin SVMs do not. Figure adapted from [7]. Copyright © 2019 Yaser S. Abu-Mostafa, Malik
Magdon-Ismail, Hsuan-Tien Lin.

Hence Equation 3-45.

∂L
∂ω

= ω −
m∑
i=1

λiyixi = 0 ⇒ ω =
m∑
i=1

λiyixi

∂L
∂ω0

= −
m∑
i=1

λiyi = 0 ⇒
m∑
i=1

λiyi = 0

∂L
∂ξi

= C − µi − λi = 0 ⇒ ∀i, µi + λi = C

∀i, λi
(
yi(ωTxi + ω0)− 1 + ξi

)
= 0 ⇒ λi = 0 or yi(ωTxi + ω0) = 1− ξi

∀i, µiξi = 0 ⇒ µi = 0 or ξi = 0
(3-45)

Normal vector ω is a linear combination of the training observations: ω =
∑m
i=1 λiyixi. Hence

the support vectors are the observations verifying λi 6= 0.

The complementary slackness condition states that λi 6= 0 ⇐⇒ yi(ωTxi + ω0) = 1 − ξi.
Therefore, if ξi = 0, yi(ωTxi + ω0) = 1 so xi lies on the marginal hyperplaneM± [6]. How-
ever, if ξi 6= 0, observation xi violates the margin and may even be on the wrong side of
boundary H [6]. The support vector of the soft-margin SVM are the observations that lie
either on the margin or on the wrong side of the margin for their class.

Since observations that are on the right side of the margin verify ξi = 0 ⇒ µi 6= 0 as well
as yi(ωTxi + ω0) 6= 1, their Lagrange multipliers are λi = 0. Observations that violate the
margin verify ξi 6= 0 ⇒ µi = 0 so λi = C. Observations belonging to marginsM± therefore
verify 0 < λi < C. The KKT conditions can therefore be written as per Equation 3-46.

λi = 0 ⇐⇒ yi(ωTxi + ω0) ≥ 1
0 < λi < C ⇐⇒ yi(ωTxi + ω0) = 1

λi = C ⇐⇒ yi(ωTxi + ω0) ≤ 1
(3-46)
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Since Lagrange multipliers λi and µi sum to C, we can replace µi by C − λi to simplify the
Lagrangian in Equation 3-47 [7]. Furthermore, since both λi and µi are non-negative, the
constraint on Lagrange multipliers µi ≥ 0 is equivalent to λi ≤ C: Lagrange multipliers λi
are bounded by C [6].

L(ω, ω0, ξ, λ) = 1
2‖ω‖

2 + C
m∑
i=1

ξi +
m∑
i=1

λi
(
1− yi(ωTxi + ω0)− ξi

)
−

m∑
i=1

(C − λi)ξi

L(ω, ω0, ξ, λ) = 1
2‖ω‖

2 +
m∑
i=1

λi
(
1− yi(ωTxi + ω0)

) (3-47)

Remarkably, the obtained Lagrangian is equal to the Lagrangian of the hard-margin SVM
problem (refer to Equation 3-33). The objective function of the soft-margin SVM optimization
problem is therefore equal to that of the hard-margin SVM in Equation 3-34. However, the
soft-margin SVM problem has an additional box constraint: 0 ≤ λi ≤ C for i = 1, 2...m.

maximize L(λ) =
m∑
i=1

λi −
1
2

m∑
i,j=1

λiλjyiyjx
T
i xj

subject to:
m∑
i=1

λiyi = 0

0 ≤ λi ≤ C

(3-48)

The objective function of Equation 3-48 is concave and infinitely differentiable so minimizing
−L(λ) is a convex QP problem. Strong duality holds so the solutions ω? and ω?0 of the
primal problem can be determined from that of the dual problem using the KKT conditions.
The normal vector to the optimal separating hyperplane is ω? =

∑m
i=1 λ

?
i yixi. Bias ω?0 is

computed using only the support vectors lying on the marginal hyperplanes that verify ξi =
0 ⇐⇒ ω?0 = yi − ω?Txi. Finally, the classification hypothesis of the soft-margin SVM is
given by ŷi = sgn

(
ω?Txi + ω?0

)
according to Equation 3-38.

3-2-1-3 Measuring Feature Importance

Linear support vector machines are intrinsically interpretable. Since the key idea of SVMs is
to maximize the margin separating the two classes while minimizing the classification error,
the most important features should maximize the separation between classes [67]. In Equation
3-49, we define a measure of class separation that takes the imbalanced class cardinality into
account: card(C+) and card(C−) are the number of observations belonging to the positive
class C+ and negative class C− respectively, m+

j and m−j are their respective means in n-
dimensional feature space [67]. In Equation 3-50, we define the contribution sj of feature
xj for j = 1, 2...n: sj is a measure of feature importance that considers both the feature’s
weight ωj in the decision boundary of the linear SVM classifier and the class means [67].
The larger sj is, the more feature xj contributed to the class separation and therefore the
more it is important to the linear SVM classifier [67]. Note that sj does not account for
inter-dependencies between xj and the other features.
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S = 1
card(C+)

∑
xi∈C+

(
ω?Txi + ω?0

)
− 1

card(C−)
∑
xi∈C−

(
ω?Txi + ω?0

)
=

n∑
j=1

ωjm
+
j −

n∑
j=1

ωjm
−
j

(3-49)

sj = |ω∗j |(m+
j −m

−
j ) (3-50)

Note that the SVM feature importance measure presented in Equation 3-50 is affected by
correlation bias: features that belong to groups of correlated features receive smaller weights
in the decision boundary of the linear SVM model because of their shared contribution to
the prediction [33]. When presented with groups of informative correlated features, the SVM
training algorithm will tend to assign a high weight |ω∗j | to only one arbitrary representative of
each group of correlated features. As a result, feature xj will appear as being very important
to the SVM model because of its high importance score sj but features that are correlated
with xj will score poorly because they are redundant. The problem is that these feature will
therefore be considered a lot less important than xj , despite being very similarly associated
to the classification target labels. Although these features are unimportant from a statistical
point of view, they may contain useful biochemical information. Correlation bias may be very
misleading in the context of biomarker discovery.

3-2-2 Nonlinear Support Vector Machines

The kernel trick enables the extension of the SVM classifier to non-separable data. A nonlinear
mapping Φ : X → Z is used to project the input data into a higher-dimensional kernel-space
where the classes become linearly separable. Assuming dim(Z) = N � n, observations
xi ∈ Rn, where i = 1, 2...m, are transformed into zi ∈ RN such that zi = Φ(xi). Performing
SVM classification in the higher dimensional kernel-space Z yields nonlinear boundaries in
feature-space X .

A kernel is defined as a function K : X × X → R [6]. Kernels implicitly define the inner
product of two observations in high dimensional kernel-space. In Equation 3-51, kernel K
quantifies the similarity of xi and xj where i, j = 1, 2...m. Using a kernel is an efficient
way of computing the inner product in high dimensional space: O(N) computations would
be necessary for explicitly computing 〈Φ(xi),Φ(xj) in RN whereas only O(n) operations are
necessary for computing K(xi, xj) [6]. Note that the computational cost of nonlinear SVM is
therefore independent of kernel-space dimensionality.

∀xi, xj ∈ X , K(xi, xj) = 〈Φ(xi),Φ(xj)〉 (3-51)

Since the dual formulation of the soft-margin SVM optimization problem and its resulting
hypothesis depend directly on the inner product of observations, the SVM may be extended
to accommodate nonlinear decision boundaries by replacing inner product xTi xj by kernel
K(xi, xj).
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maximize L(λ) =
m∑
i=1

λi −
1
2

m∑
i,j=1

λiλjyiyjK(xi, xj)

subject to:
m∑
i=1

λiyi = 0

0 ≤ λi ≤ C

(3-52)

Solving Equation 3-52 yields λ? hence the bias ω?0 = yk −
∑m
i=1 λ

?
i yiK(xi, xk) where xk is a

support vector lying on the margin. The optimization does not return the weight vector ω?
defining the linear boundary in high dimensional kernel-space. This property of the kernel
trick has the advantage of reducing computational cost. Unlike the hypothesis of linear SVMs,
the nonlinear SVM hypothesis defined in Equation 3-53 can only be expressed as a function
of its support vectors. The kernel K(xj , xi) measures the similarity between test observation
xi and all m training observations xj .

Since weights ω1, ω2...ωN are not explicitly computed, the user cannot simply determine
how individual features influence the classification outcome by comparing their respective
weights. This problem is illustrative of the trade-off between interpretability and capacity in
machine learning: by choosing to use support vector machines with a nonlinear kernel, we
seem to improve classification performance at the expense of interpretability. Unlike linear
SVMs, nonlinear SVMs do not provide the user with a ranking of features according to their
importance. Nonlinear SVM classifiers are so-called "black-box" models because their decision-
making process is largely opaque to the user. We resort to model-agnostic interpretability
methods to explain the predictions of nonlinear SVMs and evaluate the predictive importance
of their features.

ŷi = sgn

 m∑
j=1

λ?jyjK(xj , xi) + ω?0

 (3-53)

The convexity of the SVM optimization problem and its convergence to a unique solution
is guaranteed if and only if kernel K verifies Mercer’s condition [6]. Any positive definite
symmetric (PDS) kernel qualifies [6]. A PDS kernel has a symmetric positive semi-definite
Gram matrix. The following kernels are frequently used for nonlinear SVM classification:

• The polynomial kernel KP of degree d is defined over Rn for any constant c > 0. Note
that KP is PDS [68]. The dimensionality of the polynomial kernel-space is N .

N =
(
n+ d
d

)
= (n+ d)!

n!d!

∀xi, xj ∈ Rn, KP (xi, xj) =
(
xTi xj + c

)d
(3-54)
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• The radial basis function (RBF) Gaussian kernel KRBF defined over Rn for σ ≥ 0.
Hyper-parameter σ determines the width of the Gaussian kernel. Note that KRBF is
PDS [68]. The Gaussian-RBF kernel is an infinite-dimensional transform, henceN =∞.

∀xi, xj ∈ Rn, KRBF (xi, xj) = exp
(
−||xj − xi||

2

2σ2

)
(3-55)

• The hyperbolic tangent, or sigmoid kernel KS defined over Rn for any real constants
a, b ≥ 0. Note that KS is conditionally positive definite, but not positive definite
symmetric (PDS) [68].

∀xj , xj ∈ Rn, KS(xi, xj) = tanh
(
a(xTi xj) + b)

)
(3-56)

Although the choice of kernel is essential for ensuring the good performance of nonlinear
SVM classifiers, there is currently no efficient method for selecting the best kernel for a
given problem [66]. Once a type of kernel has been chosen, the kernel hyperparameters
(i.e. c, d for KP , a, b for KS , and σ for KRBF ) must be tuned by validation. Changing the
hyperparameters modifies kernel-space geometry, hence affecting the margin of the separating
hyperplane. This may result in different support vectors and a different boundary in feature
space. In practice, the Gaussian kernel is often preferred because one unique hyperparameter
controls the model’s complexity and flexibility [7].

Figure 3-5: Nonlinear support vector machine classification using different Gaussian-RBF kernels:
the SVM classifier becomes more prone to overfitting as its kernel becomes narrower. Figure
adapted from [7]. Copyright © 2019 Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien
Lin.

Figure 3-5 demonstrates the need to carefully choose kernel hyperparameters: three Gaussian-
RBF kernels with different values for σ are used for nonlinear SVM classification. A small σ
makes the Gaussian kernel narrow and put the corresponding classifier at risk of overfitting
(rightmost figure). A larger σ yields a wider Gaussian kernel and a more robust boundary
will tend to generalize better (leftmost figure).

Figure 3-6 illustrates the decision boundaries obtained by nonlinear SVM classifiers with
polynomial kernels. The red and blue classes are separated by a white margin, whose support
vectors are boxed. The dimension of the second order polynomial kernel-space is N = 5
because Φ2(x) = (x1, x2, x1x2, x

2
1, x

2
2). That of the third order polynomial kernel-space is

N = 9 because Φ3(x) = (x1, x2, x1x2, x
2
1, x

2
2, x

3
1, x

3
2, x

2
1x2, x

2
2x1). Despite the fact the kernel-

space dimension near doubles from Φ2 to Φ3, the effective complexity of the classifier’s decision
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Figure 3-6: Nonlinear support vector machine classification using 2nd and 3rd order polynomial
kernels: increasing the dimensionality of the kernel space does not dramatically increase the
complexity of the SVM classifier’s decision boundary. Figure adapted from [7]. Copyright © 2019
Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin.

boundary hardly changes since the number of support vectors increases from 5 to 6. Figure
3-6 illustrates a peculiar advantage of the nonlinear SVM classifier: increasing kernel-space
dimensionality does not hinder generalization.

3-2-3 Sequential Minimal Optimization

Solving the SVM optimization problem by standard numerical quadratic programming (QP)
is computationally very costly: assuming a dataset of m observations, a QP solver takes
O
(
m3) operations and has memory requirements in the order of O

(
m2) [66]. Sequential min-

imal optimization (SMO) is an optimization algorithm introduced by Platt in 1998 to speed
up the training of dual-form linear and nonlinear soft-margin SVM classifiers and to reduce
memory requirements [6]. SMO decomposes the large QP optimization problem into a series
of small quadratic optimization problems that each involve only two Lagrange multipliers and
can therefore be solved analytically [6]. The two key elements of the SMO algorithm are the
following: a heuristic method for choosing which two Lagrange multipliers to optimize at each
step and an analytic method for solving these two Lagrange multipliers [8]. The algorithm
is guaranteed to converge to a global optimum [8]. It stops when the Lagrange multipliers
corresponding to all observations meet the KKT optimality conditions of Equation 3-46.

In order to explain the sequential minimal optimization (SMO) algorithm, we refer to sub-
section 3-2-1-2 about linear soft-margin SVMs. Note that Platt defines the bias b = −ω0.
We briefly summarize the linear soft-margin SVM problem. The primal SVM problem is
given by Equation 3-43 where penalty parameter C ≥ 0 determines the trade-off between
margin maximization and outlier-penalty minimization, and slack variables ξi measure the
distance by which observations xi violate the margins, for i = 1, 2...m. The Lagrangian is
given by Equation 3-44 where λi ≥ 0 and µi ≥ 0 are the Lagrange multipliers of constraints
yi(ωTxi − b) ≥ 1 − ξi and ξi ≥ 0 respectively. The KKT conditions are given by Equation
3-45 and the dual problem is given by Equation 3-48. We focus on solving the dual problem.
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The SMO algorithms considers the three following cases with bias b = −ω0 [9]:

• If xi is on the right side of the margin, λi = 0, µi = C and ξi = 0 so yi(ωTxi−b)−1 ≥ 0

• If xi is on the margin, 0 < λi < C, µi = C − λi and ξi = 0 so yi(ωTxi − b)− 1 = 0

• If xi is on the wrong side of the margin, λi = C, µi = 0 and ξi = 0 so yi(ωTxi−b)−1 ≤ 0

Ei = g(xi)− yi = ωTxi − b− yi =
m∑
j=1

λjyjx
T
j xi − b− yi (3-57)

yi(ωTxi + ω0)− 1 = yi(ωTxi + ω0)− y2
i = yi(ωTxi + ω0 − yi) = yiEi = Ri (3-58)

Assuming Ei is the prediction error the SVM classifier makes on observation xi, we can
rewrite yi(ωTxi + ω0)− 1 as Ri. The SMO algorithm implements the KKT conditions given
in Equation 3-59 [9]. The KKT conditions are violated either if λi < C and Ri < 0 or if
λi > 0 and Ri > 0 [9].

λi = 0 ⇒ Ri ≥ 0
0 < λi < C ⇒ Ri ≈ 0

λi = C ⇒ Ri ≤ 0
(3-59)

3-2-3-1 Choosing two Lagrange Multipliers for Optimization

Wisely choosing which two Lagrange multipliers λ1 and λ2 to optimize is crucial for efficiently
training the SVM classifier. Since there are m(m− 1) possibilities for λ1 and λ2 at each step,
the larger the dataset, the more computationally expensive it becomes to try out all possi-
ble pairs before choosing the one that yields the largest increase in the objective function.
Hence the importance of Platt’s heuristic approach for choosing which two Lagrange mul-
tipliers to optimize per step. Platt’s method is based on two loops: the outer-loop selects
λ2 and, for a given λ2, the inner-loop selects λ1 [8]. An observation must violate the KKT
conditions to be eligible for optimization [8]. Each step of the SMO algorithm is guaranteed
to increase the objective function provided one of the two Lagrange multipliers considered
for optimization violates the KKT conditions [8]. The KKT conditions of Equation 3-59 are
checked to be within ε of fulfillment. Platt recommends setting the KKT precision such that
10−4 ≤ ε ≤ 10−3 [8].

Non-bound observations whose Lagrange multipliers verify 0 < λi < C are more likely to
violate the KKT conditions than bound observations for whom λi = 0 or λi = C [8]. Indeed,
as the SMO algorithm progresses, the Lagrange multipliers of non-bound observations will
change, unlike those of bound observations [8]. The SMO algorithm therefore dedicates most
of its computational time to adjusting the Lagrange multipliers of the non-bound observa-
tions. Platt recommends maintaining and updating a cache for the error Ei of non-bound
observations [9]. The error on observations whose Lagrange multipliers take boundary values
are only computed when needed.
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The outer-loop first passes through the entire dataset, then makes repeated passes over the
non-bound observations until all the non-bound observations verify the KKT conditions,
whereupon the algorithm terminates [8]. Given a λ2 that violates the KKT conditions, the
aim of the inner-loop is to choose a λ1 that yields a large objective function increase during
joint optimization[9]. The inner-loop starts by looking for a non-bound observation that
maximizes |E2 − E1| where E1 and E2 are computed as per Equation 3-57 [8]. If this first
approach does not result in progress, SMO hierarchically resorts to the two following methods
for choosing λ1: SMO scans through the non-bound observations in search of a suitable
Lagrange multiplier and, in case of failure, it scans through the entire dataset [9]. Both the
iteration over non-bound observations and the iteration over all observations are randomly
initialized to avoid biasing the SMO algorithm towards the beginning of the training dataset
[8]. If none of these three methods for choosing λ1 succeed, SMO skips the current λ2 and
continues with another choice of λ2.

3-2-3-2 Optimizing the two chosen Lagrange Multipliers

The Lagrange multipliers λi, for i = 1, 2...m are initialized at zero. Without loss of generality,
suppose we are optimizing λ1, λ2 from a previous set of feasible solutions λold

1 , λold
2 , λ3...λm.

The bound constraint 0 ≤ λi ≤ C causes both λ1 and λ2 to lie within a box [8]. The linear
equality constraint

∑m
i=1 λiyi = 0 ⇐⇒ y1λ1 + y2λ2 = y1λ

old
1 + y2λ

old
2 causes λ1 and λ2 to lie

on a line [8]. Hence the constrained minimum of the objective function must lie on a diagonal
line segment as shown in Figure 3-7. Let s = y1y2 and γ = λold

1 +sλold
2 . Note that the feasible

line segment depends on whether the class labels of observations x1 and x2 are equal.

The objective function L(λ) of Equation 3-48 is rewritten as a function of λ2 in Equation
3-60 [9]. We consider the following entries of the Gram matrix: K11 = xT1 x1, K22 = xT2 x2
and K12 = xT1 x2.
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L(λ) = −1
2

(
y1y1x

T
1 x1λ

2
1 + y2y2x

T
2 x2λ

2
2 + 2y1y2x

T
1 x2λ1λ2 + 2

(
m∑
i=3

λiyix
T
i

)
(y1x1λ1 + y2x2λ2)

)
+λ1 + λ2

L(λ) = −1
2

(
K11λ

2
1 +K22λ

2
2 + 2sK12λ1λ2 + 2y1λ1

m∑
i=3

λiyix
T
i x1 + 2y2λ2

m∑
i=3

λiyix
T
i x2

)
+λ1 + λ2

L(λ) = (1− s)λ2 + sK11γλ2 −
1
2K11λ

2
2 −

1
2K22λ

2
2 − sK12γλ2 +K12λ

2
2

+y2λ2

(
m∑
i=3

λiyix
T
i x1 −

m∑
i=3

λiyix
T
i x2

)

L(λ) =
(

1− s+ sK11γ − sK12γ + y2

m∑
i=3

λiyix
T
i x1 − y2

m∑
i=3

λiyix
T
i x2

)
λ2

+1
2 (2K12 −K11 −K22)λ2

2

(3-60)

(a) If y1 6= y2, λ1 − λ2 = γ (b) If y1 = y2, λ1 + λ2 = γ

Figure 3-7: Feasible region of Lagrange multipliers λ1 and λ2 during one SMO step. Figure
adapted from [8].

Let η = 2K12−K11−K12. The objective function, it’s first and second order derivatives can
be rewritten as per Equations 3-61, 3-62 and 3-63 respectively [9].

L(λ) = 1
2ηλ

2
2 +

(
y2
(
Eold1 − Eold2

)
− ηλold2

)
λ2 + const (3-61)

∂L
∂λ2

= ηλ2
2 +

(
y2
(
Eold1 − Eold2

)
− ηλold2

)
(3-62)

∂2L
∂λ2

2
= η (3-63)
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The updated value of Lagrange multiplier λ2 is obtained by setting the first order derivative
to zero, hence λnew2 defined in Equation 3-64 [9]:

λnew2 = λold2 + y2(Eold2 − Eold1 )
η

(3-64)

If η < 0, the above expression is the unconstrained maximum of λ2. It must be checked
against the feasible range, which is determined as follows [9]. Figure 3-8 corresponds to the
case y1 = y2 ⇐⇒ s = 1, whereas Figure 3-9 corresponds to the case y1 6= y2 ⇐⇒ s = −1
[9]. Let the minimum feasible value of λ2 be L, and its maximum be H.

• If s = 1, then γ = λold1 + λold2 .

– If γ > C, then min (λnew2 ) = γ − C and max (λnew2 ) = C

– If γ < C, then min (λnew2 ) = 0 and max (λnew2 ) = γ

• If s = −1, then γ = λold1 − λold2 .

– If γ > 0, then min (λnew2 ) = 0 and max (λnew2 ) = C − γ
– If γ < 0, then min (λnew2 ) = −γ and max (λnew2 ) = C

Lagrange multiplier λ2 is clipped if it exceeds its feasible bounds as per Equation 3-65 [9]. As
a result, λnew,clip2 will belong to the allowed range [L,H].

λnew,clip2 =


H if λnew2 ≥ H
λnew2 if L < λnew2 < H
L if λnew2 ≤ L

(3-65)

Now, Lagrange multiplier λ1 is updated as per Equation 3-66 [8].

λnew1 = λ1 + s
(
λ2 − λnew,clip2

)
(3-66)

(a) Case y1 = y2: λold
1 +λold

2 = γ, γ > C (b) Case y1 = y2: λold
1 + λold

2 , γ < C

Figure 3-8: Feasible range assuming equal class labels hence s = 1:
L = max

(
0, λold

2 + λold
1 − C

)
and H = min

(
C, λold

2 + λold
1
)
. Figure adapted from [9].

The objective function’s second order derivative η may not be negative, in which case we need
to evaluate the objective function Ψ at the two endpoints ΨL and ΨH defined in Equation
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(a) Case y1 6= y2: λold
1 − λold

2 = γ, γ > 0 (b) Case y1 6= y2: λold
1 −λold

2 = γ, γ < 0

Figure 3-9: Feasible range assuming different class labels hence s = −1:
L = max

(
0, λold

2 − λold
1
)
and H = min

(
C,C + λold

2 − λold
1
)
. Figure adapted from [9].

3-67, and set λnew2 to be the one with the larger objective function value [9]. Therefore, if
ΨL < ΨH , we have λnew2 = L. However, if ΨL > ΨH , λnew2 = H. Otherwise, λ2 does not
change and the optimization step is deemed unsuccessful.

f1 = y1(E1 + b)− λ1K(x1, x1)− sλ2K(x2, x2)

f2 = y2(E2 + b)− sλ1K(x1, x2)− λ2K(x2, x2)

L1 = λ1 + s(λ2 − L)

H1 = λ1 + s(λ2 −H)

ΨL = L1f1 + Lf2 + 1
2L

2
1K(x1, x1) + 1

2L
2K(x2, x2) + sLL1K(x1, x2)

ΨH = H1f1 +Hf2 + 1
2H

2
1K(x1, x1) + 1

2H
2K(x2, x2) + sHH1K(x1, x2)

(3-67)

The separating hyperplane’s bias b is updated after each successful optimization step to guar-
antee both observations x1 and x2 verify the KKT conditions [8]. Threshold b1, defined
in Equation 3-68, is valid when 0 < λnew1 < C because it forces the output of the SVM
to be y1 when the input is x1 [8]. Threshold b2, defined in Equation 3-69, is valid when
0 < λnew2 < C because it forces the output of the SVM to be y2 when the input is x2 [8]. If
both 0 < λnew1 < C and 0 < λnew2 < C, both b1 and b2 are valid and they will be equal. If
both Lagrange multipliers are at the bounds (i.e. λ1 = 0 or λ1 = C and λ2 = 0 or λ2 = C)
then all the thresholds between b1 and b2 verify the KKT conditions [8].

Platt recommends setting the new threshold to the mean of b1 and b2 [8]. Hence the new bias
bnew defined in Equation 3-70.

b1 = E1 + y1(λnew1 − λ)K(x1, x1) + y2(λnew,clip2 − λ2)K(x1, x2) + bold (3-68)

b2 = E2 + y1(λnew1 − λ1)K(x1, x2) + y2(λnew,clip2 − λ2)K(x2, x2) + bold (3-69)

bnew =


b1 if 0 < λ1 < C
b2 if 0 < λ2 < C
b1+b2

2 otherwise
(3-70)
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The cached error on the non-bound observations is also updated after each successful opti-
mization step: Equation 3-71 assumes the Lagrange multiplier of observation xj verifies λj 6= 0
and λj 6= C. The errors E1 and E2 corresponding to the optimized Lagrange multipliers λ1
and λ2 are set to zero.

Ej = Ej +
(
λnew1 − λold1

)
y1x

T
1 xj +

(
λnew2 − λold2

)
y2x

T
2 xj −

(
bnew − bold

)
(3-71)
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3-3 Random Forests

3-3-1 Decision Trees

Tree-based supervised machine learning methods owe their success to the fact that decision
trees are nonlinear, non-parametric, easily interpretable models that intrinsically perform
feature selection. The methodology for building classification and regression trees (CART)
was first developed by Breiman in 1984 [69]. Decision trees recursively partition the feature
space into hyper-rectangular regions. The splitting rules necessary to partition the feature
space can be represented in the form of an upside-down tree-like directed graph whose initial
node is called the root, and whose terminal nodes are called the leaves [70]. We focus on bi-
nary trees: the root and the internal nodes have two outgoing edges and two child nodes each.

A decision tree is defined by a model φ : X → Y where X and Y are the input and output
spaces respectively. Assuming a binary classification problem, decision trees partition the
feature space into hyper-rectangles by applying a sequence of binary decisions to individual
features [69]. Note that, in section 3.6, each feature is noted xj = X(:, j) where j = 1, 2...n.
Recursive binary splitting is a top-down, greedy approach to partitioning the feature space
[70]. It starts from the root of the decision tree and then successively splits the feature space
into regions until a stopping criterion is met. Each internal node t represents a partition of
the input space Xt ∈ X . Node t divides subspace Xt into two disjoint subspaces Xt,L and Xt,R
depending on whether observations xi ∈ Xt verify xj ≤ st or xj > st respectively. Subspaces
XtL and XtR verify XtL ∩ XtR = ∅ and XtL ∪ XtR = Xt. Nodes are sometimes referred to as
weak learners [71]. We choose to use axis-aligned weak learners, also called decision stumps,
whose decision boundaries are aligned with one of the axes of the feature space [71]. Recursive
binary splitting consists in selecting the feature xj and threshold st such that partitioning Xt
into the regions XtL and XtR leads to the maximum reduction of the cost function [70].

XtL = {xi|xj ≤ st} XtR = {xi|xj > st} (3-72)

The cost function i(t) evaluated at each node t is a measure of node impurity. The most
common node impurity metrics are based on the Gini index and the Shannon entropy [69].
The Gini-based impurity iG(t) and the entropy-based impurity iH(t) are defined in Equation
3-74 and 3-75 respectively. Estimated probability p(c|t) is the proportion of observations in
subset Xt that belong to class c. In Equation 3-73, mt = card (Xt) and mc

t is the number
of observations in Xt belonging to c. Node impurity is maximum if there are equally many
observations belonging to different classes within Xt. Conversely, node impurity is minimum
if all observations xi ∈ Xt belong to just one class. Hence the purer the node, the smaller the
classification error and the better the split [69].

p(c|t) = p(yi = c|xi ∈ Xt) = mc
t

mt
(3-73)

iG(t) =
∑
c

p(c|t)(1− p(c|t)) (3-74)

iH(t) = −
∑
c

p(c|t) log2(p(c|t)) (3-75)
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The impurity decrease ∆i(st, t) of a binary split st dividing node t into a left node tL and
a right node tR is therefore given by Equation 3-76 where mt,L and mt,R are the number of
observations going from node t to tL and tR respectively. In other words, mt,L = card (XtL)
and mt,R = card (XtR). Figure 3-10 illustrates how node t is split into two children node by
performing a test on feature xj of all observations xi, for i = 1, 2...m.

∆i(st, t) = i(t)− mt,L

mt
i(tL)− mt,R

mt
i(tR) (3-76)

Decision trees are built by iteratively splitting nodes into purer nodes. Greedily growing
decision trees implies solving a local optimization problem at each node. That is to say, the
recursive binary splitting algorithm does not look ahead of the current node. For each node
t, subset Xt is divided using the threshold s that locally maximizes the decrease in overall
impurity ∆i(st, t) of the child nodes with respect to the parent node [69]. The rationale
behind the greedy assumption is twofold: to limit computational costs and to favor simple
and small solutions that are easy to interpret and generalize well [69].

Figure 3-10: Diagram of a decision tree’s node t being split into a left child node tL and a right
child node tR by performing a binary split, with a threshold st, on feature xj

The stopping criterion is a heuristic method to determine when to stop splitting a node and
declare it as a leaf of the decision tree. Determining an adequate stopping criterion for the
problem under study is important to avoid overfitting [70]. Not growing full trees has re-
peatedly been demonstrated to have positive effects in terms of generalization [71]. Different
hyper-parameters may be used as stopping criteria: the most common approach consists of
setting a maximum allowed tree depth D, in which case we make any node whose depth (i.e.
number of edges from the root to the node) is D a leaf [70]. Another approach is to define a
minimum splitsize mmin that stops the further splitting of any node whose number of obser-
vations (i.e. cardinality) is less than the minimum splitsize. Yet another approach consists
in declaring a node a leaf if the decrease in impurity at that node is less than a user-defined
threshold ∆i,min [69].

At the decision tree’s terminal nodes t?, we consider the subset Xt? . The estimated probability
of class c is defined as the proportion of training observation in Xt? that belong to class c:
p(c|t?) = p(yi = c|xi ∈ Xt?) = mc

t?/mt? wheremt? is the size of terminal node t?. The decision
tree’s terminal nodes are labeled as per Equation 3-77. The class label assigned to a given
terminal node t? is obtained by majority vote of the training observations that fall into Xt? :
ŷi(t?) = c? is the class to which most observations in Xt belong.

ŷi(t?) = argmax
c∈Y

p(c|t?) (3-77)
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Predictions are made by propagating a test observation xi through the decision tree and
assigning it the class label characterizing the terminal node t? in which xi falls: ∀xi ∈
Xt? , φ(xi) = ŷi(t?). Classification of new observations is done by assignment to the most
commonly occurring class in the feature space partition to which the observation belongs.

(a) Binary decision tree (b) Partition of two dimensional feature space

Figure 3-11: Recursive binary decision tree and two-dimensional feature space partition

A simple example of recursive binary splitting is illustrated in Figure 3-11. The root t0
partitions the two-dimensional feature space X into left and right subspaces Xt0,L and Xt0,R
depending on whether x1 ≤ s′ or x1 > s′. The process is repeated for internal nodes t1, t2, t3:
we look for the feature (either x1 or x2) and the threshold that minimize the cost function at
each split of the previously obtained subspaces. For example, at node t2, subspace Xt2 = Xt0,R
is partitioned depending on whether x1 ≤ s′′′ or x1 > s′′′, yielding subspaces Xt2,L = R3 and
Xt1,R = Xt3 . The leaves of the decision tree are the regions R1, R2, R3, R4 and R5. Once each
of these five leaves are either assigned to the positive or negative class, the predicted response
for a given test observation is determined by the majority vote of the training observations
in the region to which the test observation is assigned.

The aim of supervised machine learning is not only to accurately model the response, but also
to identify which of the input variables are most important in making the predictions [69].
The graphical representation of decision trees enables the user to easily visualize the process:
the influence of a feature on the output directly corresponds to its position in the tree [72].
Intuitively, features that appear at the top of the tree or those that appear at multiple nodes
will be more important than features appearing at the bottom of the tree or not at all.

Using decision trees for classification has two noteworthy weaknesses: average predictive
performance and model instability [69]. Indeed, the performance of trees suffers when the
output cannot be defined using hyper-rectangular partitions of the feature space - a situation
which is frequent in practice [69]. Furthermore, decision trees are low bias, high variance
classifiers whose structure, and performance, strongly depend on the training data they are
built upon: a small change in the training set will produce a radically different tree [70]. The
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propensity of decision trees for overfitting implies they are robust to neither noise nor outliers,
and do not generalize well. A simple and efficient solution to this problem is to use decision
trees in the context of randomization-based ensemble methods [73]. The idea is to introduce
random perturbations into the learning process in order to produce several different decision
trees from a single training dataset and to use some aggregation technique to combine the
predictions of all these trees [73].

3-3-2 From Bagging to Random Forests

Bagging is an ensemble method for improving the predictive performance of unstable ma-
chine learning algorithms. Originally proposed by Breiman in 1996 [72], bagging stands for
bootstrap aggregation. Assume a training set L of m pairs of input observations and output
class labels (x1, y1), (x2, y2)...(xm, ym) where xi ∈ X and yi ∈ Y. A bootstrapped dataset Lk,
where k = 1, 2...B, is one created by randomly drawing m observations from the training set
with replacement [70]. Sampling with replacement means that when an observation is copied
to the bootstrap set, it is not removed from the training set and is considered as a candidate
in the next sampling. As a result, duplicates will appear within a bootstrapped set and some
observations will be left out. The left-out observations L\Lk are called the out-of-bag (OOB)
observations of the kth bootstrapped set [70]. Note that although card

(
Lk
)

= card (L) = m,
37% of observations from L are on average missing in each of the bootstrap replicates [69].
Indeed, Equation 3-78 states that the probability of never been selected after m draws with
replacement is 37%. (

1− 1
m

)m
≈ 1
e
≈ 0.37 (3-78)

Repeating this sampling process B times yields B bootstrap sets, which are treated as in-
dependent datasets. Bagging uses these B bootstrapped versions of the training dataset to
build B different component classifiers φk where k = 1, 2...B. Assuming we chose the com-
ponent classifiers to be decision trees, one tree is grown per bootstrap set and the ensemble
of decision trees is called a forest. Each component classifier generates a prediction for a test
observation and a majority vote determines the bagged classifier’s prediction [72]. As demon-
strated by Equation 3-79, the overall prediction Φ(xi) is the most commonly predicted class
for observation xi among the B predictors. For component classifiers that suffer from high
variance, such as decision trees, aggregating over multiple bootstrap sets reduces variance and
stabilizes the prediction [72].

ŷi = Φ(xi) = argmax
c∈Y

B∑
k=1

I(φk(xi) = c) (3-79)

After Breiman introduced bagging, several authors, namely Dietterich (1998), Amit and Ge-
man (1997), tweaked the algorithm by adding randomness to the learning process in order to
decorrelate the decision trees and reduce variance [74]. The underlying rationale is to avoid
the presence of a few dominant features in the data leading to several similarly structured,
hence highly correlated, trees. The problem is that aggregating highly correlated component
classifiers seriously limits the variance reduction achieved by the ensemble [70]. Based on the
work of Dietterich, Amit and Geman, Breiman developed in 2001 the random forest (RF)
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algorithm [74]. The difference with bagging lies in the way the decision trees are grown: un-
like CART, the feature to split in each node is selected as the best among a set of randomly
chosen features. By implementing bagging in tandem with random feature selection, the RF
algorithm operates a two-step randomization procedure. In addition to the randomization
inherent to growing the decision trees on bootstrapped version of the training data, the node-
splitting is also randomized [75]. Injecting randomness into the tree-growing process has been
proven to decorrelate the decision trees making up the random forest, resulting in improved
robustness, computational efficiency and predictive accuracy [74].

The RF algorithm requires the two following user-defined hyperparameters, in addition to the
stopping criteria of its decision trees (either a maximum allowed tree depth D, or a minimum
allowed splitsize mmin, or a minimum decrease in impurity ∆i,min).

• The number n? of randomly selected features considered to split each tree’s nodes.
Random feature selection performs the following: at each node of each decision tree, a
random subset of n? < n features is selected and the one yielding the maximum decrease
in impurity is chosen for the split [69]. When selecting the best split, the RF algorithm
is therefore only allowed to consider these n? features as splitting candidates. A new
subset of n? features is taken at each new split of the tree. Usually, n? is chosen to be
approximately equal to the square root of the total number of features: n? ≈

√
n [76].

Building a random forest such that n? = n would be equivalent to bagging.

• The number B of decision trees making up the forest. As in bagging, the RF algorithm
grows one decision tree per bootstrapped version of the training dataset. Since random
forests are not prone to overfitting, choosing a large B will not adversely affected the
classifier’s generalization performance [72]. A large B will however increase computa-
tional costs and memory requirements. It is worth mentioning that the RF algorithm is
easy to parallelize since the trees corresponding to the different bootstrapped sets are
independent from each other [72]: they can be grown separately and then aggregated
to vote on the final prediction.

• The maximum tree depth D, or any other stopping criterion that limits the depth of
decision trees (i.e. minimum splitsize mmin or minimum decrease in impurity ∆i,min).
Although Breiman argued that in an ensemble each individual tree should be grown as
deep as possible, Stobl recommends limiting the tree depth when dealing with datasets
that have many more observations than features [77]. On the other hand, there are
more features than observations, Strobl is in favor of growing deep trees [77].

A key advantage of the RF algorithm is that it provides an internal estimate of predictive
performance. Unlike the supervised learning algorithms studied previously, the generalization
error of a random forest can be estimated without resorting to validation. We consider the kth
decision tree φk and its corresponding bootstrapped set Lk. As demonstrated by Equation
3-78, 37% of all observations are left out of Lk. Since these OOB observations were not used
to grow tree φk, they can be used to asses its generalization error [72]. Hence every tree in
the forest generates an error estimate using its respective OOB observations. The average of
all OOB metrics, referred to as the OOB error estimate ÊOOB, is used to gauge the predictive
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performance of the ensemble classifier [72]. In practice, ÊOOB is a computationally efficient
alternative to k-fold cross-validation [69].

ÊOOB = 1
m

∑
(xi,yi)∈L

L

argmax
c∈Y

B−i∑
l=1

I(φl(xi) = c)

 where L(ŷi) =
{

0 if ŷi = yi
1 if ŷi 6= yi

(3-80)

In Equation 3-80, the class label yi of the ith observation is predicted by majority vote of all
B−i trees grown from bootstrapped replicates that exclude (xi, yi). The trees for which xi
is OOB are denoted φl, where l = 1, 2...B−i. The classification error is computed using the
zero-one loss function L: L assigns a loss of zero for a correct classification and a loss of one
for an incorrect classification. Finally, the OOB error estimate ÊOOB is the average of the
OOB errors of all m observations in L.

3-3-3 Measuring Feature Importance

Improving classification accuracy by aggregating randomized decision trees comes at the ex-
pense of a loss in interpretability: unlike individual trees, random forests do not have a simple
graphical representation. In order to understand which of the features have the most influ-
ence on the random forest’s prediction, Breiman developed the mean decrease impurity (MDI)
approach to measuring feature importance in RF classifiers [74]. The MDI importance of a
feature xj , for j = 1, 2...n, measures how effectively the feature reduces uncertainty. MDI(xj)
is defined as the total decrease in node impurity achieved by splitting on xj , averaged over all
decision trees making up the random forest. At each split of each tree, the improvement in
node purity, weighted by the probability of an observation reaching that node, is the impor-
tance attributed to the splitting variable [78]. When using the Gini index iG(t) - as defined
in Equation 3-74 - to quantify node impurity, MDI feature importance is referred to as the
Gini importance [69].

The MDI importance of feature xj is evaluated by summing the weighted impurity decreases
p(t)∆i(st, t) for all nodes t that are split using xj , averaged over all trees φk, where k =
1, 2...B, in the random forest [69]. In Equation 3-81, the probability p(t) of reaching node
t is approximated by the proportion mt/m of observations reaching node t [69]. Index jt
denotes the variable used for splitting node t, st denotes the threshold of the split and I is
the indicator function such that I(jt = j) = 1 if jt = j and I(jt = j) = 0 otherwise.

MDI
(
xj
)

= 1
B

B∑
k=1

∑
t∈φk

I (jt = j)
(
mt

m
∆i(st, t)

)
(3-81)

MDI tends to overestimate the importance of categorical features with high cardinality (i.e.
features that take on a larger number of different values) [79]. The so-called variable selection
bias stems from an unfair advantage given to high cardinality features that is inherent to
the node impurity reduction algorithm: according to Breiman, "variable selection is biased
in favor of those variables having more values and thus offering more splits" [77]. Low car-
dinality features are therefore less likely to be selected for splitting tree nodes because they
are offer fewer potential cut-points [69]. When studying categorical variables, the variable
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selection bias may cause MDI to produce misleading feature rankings [77]. However, as long
as only continuous predictor variables, or only categorical variables with the same cardinality
are considered, Strobl claims that the MDI feature importance measure of random forests is
not affected by variable selection bias [77]. Variable selection bias should therefore not be a
problem when analyzing IMS data.

The advantage of MDI is that it covers the impact of each feature individually as well as
in multivariate interactions with other predictor variables [77]. MDI therefore verifies our
definition of feature importance. It is however important to note that MDI is severely affected
by correlation between features [69] and that correlation bias is problematic for the analysis of
IMS data. For example, MDI risks overestimating the importance of uninformative features
that are highly correlated with informative features: Strobl reported that, when growing
CART, a feature that is only weakly associated with the class label, but is highly correlated
with another influential feature, may appear equally well suited for node splitting as the
truly influential predictor variable [77]. MDI is also prone to underestimating the importance
of equally informative features that are correlated among themselves because once one of
these features has been selected for node splitting, the others become redundant and loose
importance.

3-4 Post-hoc Model-agnostic Interpretability Methods

3-4-1 Permutation Importance

Permutation importance is a global post-hoc model-agnostic interpretability method. The
permutation importance (PI) of a feature is the average decrease in model accuracy when
its values are randomly permuted [80]. Permutation importance was originally developed by
Breiman, under the name of mean decrease accuracy, for measuring feature importance in
random forests [74]. PI measures the degree to which a trained supervised machine learning
model relies on a specific feature [81]. Randomly permuting the values of a predictor variable
across all data instances is supposed to mimic the absence of the variable from the model [82].
The underlying rationale is the following: randomly permuting xj will break its association
with the model prediction y and effectively cancel its predictive power. Therefore, if feature
xj is strongly associated to y, permuting its values should result in a large drop in predictive
performance [69]. Conversely, if xj is weakly associated to y, permuting it should have little
to no impact on performance. Two alternative definitions of PI are given by Equation 3-82
and 3-83, where Êref and Êj are the estimated classification error, before and after random
permutation of variable xj . The more xj is important, the larger the drop in classification
performance due to permuting xj , hence Êref < Êj [79]. Although using the ratio, rather
than the difference, is considered better for comparing different models [81], it risks yielding
numerically unstable estimations when Êref ≈ 0 [83]. We therefore prefer implementing
PI as defined in Equation 3-82. Since PI quantifies each feature’s influence on the classifier’s
prediction by considering both its individual impact and its interrelations with other features,
PI verifies our definition of feature importance, as per subsection 1-2-2.

PI
(
xj
)

= Êj − Êref (3-82)
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PI
(
xj
)

= Êj

Êref
(3-83)

The problem with permutation importance is that it severely overestimates the importance
of correlated features [77]. Ranking features with respect to their PI score may therefore
not be reliable when analyzing IMS data. When investigating how correlation bias affects
PI of random forests, Strobl observed that features that appear important may actually be
independent of the prediction when considered conditional on another variable [77]. According
to Strobl, correlation bias is due to the fact that the null hypothesis of PI assumes the predictor
variables to be independent from each other. The original permutation importance, where
one predictor variable xj is permuted against both the response y and the remaining predictor
variables X\{j} = x1, x2...xj−1, xj+1, ..., xn, corresponds to a null hypothesis of independence
between xj and both y and X\{j} [82]:

H0 : xj ⊥ y,X\{j} ⇐⇒ xj ⊥ y ∧ xj ⊥ X\{j} (3-84)

The reason why correlated features are preferred by PI is that a positive PI importance score
corresponds to a deviation from the null hypothesis of Equation 3-84 that can be caused by
a violation of either the independence of xj and y, or of the independence of xj and X\{j}
[82]. The latter violation of H0 is not of interest: whether xj is independent from the other
features should not affect the PI importance score of xj , and yet it does [82]. Since our aim is
to assess the impact of xj on the model prediction y, rather than its correlations with other
features, the only question of interest is whether xj and y are independent.

Figure 3-12: Diagram explaining how to compute the permutation importance PI
(
x4) of feature

x4, as per Equation 3-82, on a data whose 5 features are color-coded. We compare the error
made by the classifier on a data matrix whose 4th column has been randomly permuted to the
error made by the classifier on an unperturbed data matrix.
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3-4-2 Shapley Importance

The Shapley approach to measuring feature importance is based on the assumption that each
feature is a player in a coalitional game where the model prediction is the payout [34]. We
start by introducing Shapley values as defined in cooperative game theory and then present
Shapley importance (SI). SI is a global post-hoc model-agnostic interpretability method that
ranks features by estimating their respective contributions to a black-box model’s prediction.
SI is a novel method that was developed as part of this thesis. Note the difference between our
SI and the Shapley additive explanations (SHAP) approach to providing local explanations
for black-box machine learning models. SHAP was developed by Lundberg and Lee, in 2017
based on the work of Strumbelj and Kononenko [84].

3-4-2-1 Shapley Values from Cooperative Game Theory

According to cooperative game theory, a coalitional game is a tuple 〈F, v〉, where F =
{1, 2, ..., n} is a finite set of n players, and function v : 2n → R meets v(∅) = 0 [85]. Subsets
of players S ⊆ F form coalitions and the set of all players F is called the grand coalition.
Function v describes the payoff, or worth, of each coalition. The objective of cooperative
game theory is to calculate the contribution of each player to game 〈F, v〉 by fairly splitting
the grand coalition’s worth among the |F | = n players [86]. The payout assigned to the jth
feature, for j = 1, 2...n, is written φj and is termed the Shapley value of xj . The method
for calculating the contribution of each player was developed by Shapley in 1953 [86]. The
Shapley value is the unique solution of game 〈F, v〉 that fairly distributes the payout among
players and consequently verifies all four axioms. The four following axioms formally define
the notion of fairness in game theory [85]:

• Axiom 1: Efficiency property
For any game 〈F, v〉 it holds that

∑
j∈F φj(v) = v(F ).

• Axiom 2: Symmetry property
For any game 〈F, v〉 with two players i and j, if v(S ∈ {i}) = v(S ∈ {j}) holds for every
subset of players S where S ∈ F and i, j 6∈ S, it holds that φi(v) = φj(v).

• Axiom 3: Dummy property
For any game 〈F, v〉 such that v(S∪{j}) = v(S) for every S ⊆ N , it holds that φj(v) = 0.

• Axiom 4: Additivity property
For any two games 〈F, v〉 and 〈F,w〉, it holds that φj(v + w) = φj(v) + φj(w) where,
for all coalitions S, (v + w)(S) = v(S) + w(S).

The importance of player j to a coalition S, with j /∈ S, is written ∆j(S) [86]. In Equation
3-85, v(S) is the payoff when all players upto j are known, excluding player j, and v(S ∪{j})
is the payoff when all players upto j are known, including j. So, ∆j(S) represents the change
in payoff resulting from adding player j to coalition S.

∆j(S) = v(S ∪ {j})− v(S) (3-85)
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The Shapley value of player j, joining coalition S, is defined by the payoff φj in Equation 3-86
where Π is the set of permutations over F and Sj(π) is the set of players appearing before
the jth player in permutation π [86]. Hence, the Shapley value of player j is its average
contribution to the payoff across all possible subsets of players [86].

φj = 1
n!
∑
π∈Π

∆j(Sj(π)) (3-86)

An equivalent expression of the Shapley value is given by Equation 3-87 [85]. |F | = n is
the total number of players in the grand coalition and S is a coalition that does not include
player j and whose cardinality is |S|. Therefore |F | − |S| − 1 is the number of players left
to be added after player j. Hence |F |!, |S|! and (|F | − |S| − 1)! are the number of possible
permutations of players belonging to these respective sets.

φj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!
|F |! (v(S ∪ {j})− v(S))︸ ︷︷ ︸

∆j(S)

(3-87)

The Shapley approach to model interpretability regards the features as players
that form coalitions S (i.e. ordered subsets) to achieve the classifier’s prediction
f(xi) given a specific observation xi = X(i,:). The idea is to explain the behavior
of a black-box supervised learning model near xi by assigning a Shapley value φj
to each feature xj = X(:,j), for j ∈ {1, 2...n}: φj is the contribution of xj to the dif-
ference between the classifier’s actual prediction f(xi) and its mean prediction [34].

Equation 3-88 defines the classifier’s prediction conditional to only a subset S of features
being known [87]. The payoff v(S) is the contribution of the subset of feature values S for a
particular instance xi, such that i ∈ {1, 2...m}. This contribution is defined in Equation 3-89
as being equal to the change in the classifier’s output expectation caused by observing the
feature values belonging to set S [87]: fS(xS) is the expected prediction when we know only
those values of features in S, and f∅(xS) is the expected prediction when no feature values
are known. In other words, the worth of each coalition is the change in the model’s prediction
v(S) and our aim is to fairly distribute v(S) among its features [85].

fS(xS) = E[f |xj = xji ,∀j ∈ S] (3-88)

v(S) = fS(xS)− f∅(xS) = E[f |xj = xji ,∀j ∈ S]− E[f ] (3-89)

Computing Shapley values requires testing the classifier f on all feature subsets S ⊆ F .
The Shapley value φj represents the effect of including feature xj in the model prediction.
It is the difference between the model’s prediction and the expected prediction if the value
of xj is unknown [87]. In order to compute φj , a model fS∪{j} is trained with xj , and
another model fS\j is trained without xj [84]. The difference between the predictions of
fS∪{j} and fS\j represents the contribution ∆j(S) of feature xj . The effect of withholding a
feature depends on its interactions with other features in the model. Reviewing all possible
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feature permutations S ⊆ F\{j} is key to taking all potential dependencies and interactions
into account when measuring feature importance [84]. Finally, the Shapley value φj is the
weighted average of the jth feature’s contributions over all possible feature permutations.
Equation 3-90 is therefore equivalent to Equation 3-87 [84].

φj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!
|F |!

(
fS∪{j}

(
xS∪{j}

)
− fS (xS)

)
︸ ︷︷ ︸

∆j(S)

(3-90)

The four Shapley axioms have important implications for black-box classifier explainability
[87]. The efficiency property guarantees that the payout is fully divided among the features
and that the contributions of each feature are implicitly normalized, which makes them easier
to interpret and compare [87]. The symmetry property ensures that features that have a
symmetrical impact across all subsets, that is equal contribution to all possible coalitions,
will be assigned equal contributions [87]. It also implies that feature scores are not altered by
arbitrarily reordering the features [86]. As for the dummy property, it states that a feature
that does not influence the classifier’s performance is assigned zero contribution [87]. The
additivity property states that the Shapley value of a combination of different payoffs (i.e.
different predictions) based on the same set of features is the sum of the corresponding Shap-
ley values [86].

In practice, the main challenge posed by Shapley values is computational cost [34]. Computing
the Shapley value of one feature xj requires evaluating the performance of classifier f for all
possible coalitions of features with and without xj . The number of possible coalitions, and
hence the computational time complexity increases exponentially with the number of features.
As a result, SI is computationally unfeasible for some high-dimensional classification problems.
Strumbelj and Kononenko therefore proposed an approximation with Monte-Carlo sampling
that efficiently reduces the computational time complexity [87]. An approximation φ̂j of the
Shapley value φj of feature xj is presented in Equation 3-91 [34].

φ̂j = 1
K

K∑
k=1

f(x+j
k )− f(x−jk )︸ ︷︷ ︸

φj
k

(3-91)

x+j
k =

(
x1
k, x

2
k, ..., x

j−1
k , xjk, x

j+1
i , xj+2

i , ..., xni

)
x−jk =

(
x1
k, x

2
k, ..., x

j−1
k , xji , x

j+1
i , xj+2

i , ..., xni

) (3-92)

For each iteration, a random instance xk, where k 6= i, is selected from the data and a random
feature ordering is generated [34]. Two new instances, x+j

k and x−jk , are created by combining
values from the instance of interest xi and the sample xk. As shown in Equation 3-92, both
randomized instances x+j

k and x−jk have a number of feature values xji replaced by feature
values xjk taken from sample xk [34]. The difference between x+j

k and x−jk is the following: x+j
k

has all feature values before and including j replaced by the respective feature values of xk,
whereas x−jk has all feature values before but excluding j replaced by the respective feature
values of xk [34]. The difference in prediction from the black-box classifier φjk is averaged over
all K iterations to obtain the estimated Shapley value of feature xj .
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Var
(
φ̂j
)

=
σ2
j

m
(3-93)

Approximation φ̂j is an unbiased and consistent estimate of φj whose variance is defined in
Equation 3-93 where σ2

j is the population variance [87]. Since K is the number of iterations,
reducing K will reduce computational time. However, since Var(φ̂j) is inversely proportional
to K, reducing K will also increase the Shapley value estimate’s variance. Hyperparameter
K should be chosen large enough to accurately estimate the feature contributions, but small
enough to complete the computation in a reasonable time [34]. Since the population variance
σ2
j varies from one feature to the next, it has been suggested to adapt the number K of

samples drawn to the feature xj whose Shapley value needs to be estimated [87].

3-4-2-2 A Novel Global Measure of Feature Importance

Shapley importance (SI) is a global approach to machine learning model interpretability
based on the computation of Shapley values. Rather than focus on one specific observation
xi, for i ∈ {1, 2...m}, we consider all m observations of data matrix X. In order to limit
computational cost, we use the approximation proposed by Strumbelj and Kononenko in
Equation 3-91. Our approach to computing a global estimate SI(xj) of the importance of a
feature xj consists in averaging the approximate Shapley values φ̂j across all observations xi,
as in Equation 3-94. Unlike PI, the importance score SI(xj) of feature xj does not quantify the
difference in prediction due to removing feature xj , but rather the contribution of xj to the
classifier’s prediction, averaged over all possible feature permutations and all data instances.

SI(xj) = Φ̂j =
∑m
i=1 φ̂j
m

(3-94)

Figure 3-13 illustrates our global implementation of Shapley feature importance, considering
a simple 5-by-5 data matrix and K = 3 iterations. Assuming our aim is to compute SI(xj)
where xj = X(:, j) and j ∈ {1 : n}, one iteration produces ∆j

k: ∆j
k measures the global

contribution of feature xj to the classifier’s prediction ŷ = f(X) for one random permutation
of the features (i.e. columns) and one random permutation of the observations (i.e. rows).
In Equation 3-95, K is the number of iterations, X∗∪j is obtained by randomly permuting the
rows of each column after xj , including the column of xj , and X∗\j is obtained by randomly
permuting the rows of each column after xj , excluding the column of xj . Assuming knowledge
of all features before xj (i.e. the coalition), ∆j

k measures by how much the classifier’s error
increases due to canceling the predictive power of xj and effectively removing it from the
coalition.

SI(xj) = φ̂j =
∑K
k=1 ∆j

k

K
=
∑K
k=1 E

(
X∗∪j

)
− E

(
X∗\j

)
K

(3-95)
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To conclude, Shapley values were originally developed to assign payouts to players of a co-
operative game depending on their contribution towards the total payout. SI is a post-hoc
model-agnostic interpretability method that considers the features as players and the model
prediction as its total payout. Note that our implementation of SI as a global measure of fea-
ture importance is new, and differs from the popular local explanation scheme, called SHAP,
that was proposed by Lundberg and Lee [84]. We argue that SI is the only model-agnostic
explanation method with a strong theoretical foundation, which is based on the efficiency,
symmetry, dummy, and additivity axioms of Shapley values [88]. Shapley values provide a
fair and efficient way to estimate the importance of features, by quantifying their respective
contributions to the classifier’s prediction [30]. By accounting for the interrelations among
features, SI verifies our definition of feature importance, as per subsection 1-2-2. According
to Molnar [34], in situations where machine learning explainability is legally required - like
the European Union’s General Data Protection Regulation (GDPR) - Shapley values might
be the only legally compliant method. The reason why Shapley importance is more likely
than permutation importance to fulfill legal requirements is that the efficiency, symmetry,
dummy, and additivity axioms of Shapley values guarantee that the model’s prediction is
fairly distributed among the features [34]. Note however that, similarly to the interpretability
methods studied previously, SI may provide misleading importance estimates if there is a high
degree of dependence and correlation among some or all the features [88].
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Figure 3-13: Diagram explaining how to compute the (global) Shapley importance SI
(
x4) of

feature x4, as per Equation 3-94, on data whose 5 features are color-coded. The feature of interest
is black-and-white. We arbitrarily choose K = 3 iterations. At each iteration k = 1, 2, 3, the
columns of the data matrix are randomly reordered and we compute the difference ∆k between
the error made by the classifier with and without knowledge of x4, assuming knowledge of the
features to its left. ∆k effectively measures the contribution of feature x4 to the predictive power
of the coalition of features to its left. SI

(
x4) is the average of ∆1, ∆2 and ∆3.



Chapter 4

Experiments

4-1 Two Imaging Mass Spectrometry Datasets

Sample IMS method Classification task

Dataset no1 Coronal section of
a rat brain MALDI-FTICR

Binary classification of the
diseased left brain hemisphere
versus the healthy right brain
hemisphere

Dataset no2 Sagittal whole-body
section of a mouse MALDI-TOF

Classification of different organs:
brain, heart, lungs, liver,
adipose tissue

Table 4-1: Differences between our two imaging mass spectrometry datasets.

Table 4-1 presents the two imaging mass spectrometry (IMS) datasets that we worked on in
the course of this thesis. Please refer to subsection 1-1-1 for an explanation of matrix assisted
laser desorption ionization (MALDI), and for an explanation of the mode of operation of the
Fourier transform ion cyclotron resonance (FTICR) and time-of-flight (TOF) mass analyzers.
What follows is an overview of the main differences between these two datasets.

Dataset no1, obtained by MALDI-FTICR IMS from the coronal section of a rat brain, was
acquired for the purpose of a study on Parkinson’s disease jointly conducted by the Delft
University of Technology and Vanderbilt University [89]. Parkinson’s disease is a slowly
progressing neurodegenerative disorder whose symptoms include tremors, muscle stiffness,
slowness of movement and imbalance [90]. It is characterized by a degeneration of dopamin-
ergic neurons (i.e. neurons that synthesize dopamine) and the formation of Lewy bodies (i.e.
protein aggregates) in the substantia nigra [90]. The substantia nigra is a region of the basal
ganglia. The basal ganglia is a group of nuclei (i.e. clusters of neurons) located beneath
the cerebral cortex that is in charge of regulating movement [91]. Dopamine is the primary
neurotransmitter (i.e. chemical messenger) of the basal ganglia [91]. The loss of dopaminergic
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neurons severely impairs the brain’s motor function, leading to movement disorders [91]. The
dopaminergic neurons of a rat’s left brain hemisphere were destroyed to make it resemble a
diseased brain [89]. The right hemisphere was used as a control [89]. We therefore have two
classes: the dopamine depleted left brain hemisphere is labeled as positive, and the healthy
right brain hemisphere is labeled as negative. Our aim is to study the biomolecular differences
between the two hemispheres. Hence a binary classification problem with balanced classes.
Dataset no1 is annotated as illustrated in Figure 4-1. Since card(C+) ≈ card(C−), we use
accuracy to measure classification performance. Dataset no1 is divided into a training set
(70%) on which we train the classifier, a validation set (10%) on which we tune the classifier’s
hyper-parameters, and a testing set (20%) on which we evaluate the classifier’s generalization
performance. Dataset no1 consists of 17964 pixels (i.e. observations) and 2003 m/z bins (i.e.
features).

Figure 4-1: Diagram of the positive class in yellow (i.e. left diseased brain hemisphere) and
negative class in red (i.e. right healthy brain hemisphere) in dataset no1.

Dataset no2, obtained by MALDI-TOF IMS from the sagittal whole-body section of a mouse-
pup, was acquired for the purpose of a study on ion mobility IMS jointly conducted by the
Delft University of Technology and Vanderbilt University [19]. Our aim is to classify five or-
gans, namely the brain, heart, liver, lungs, and adipose tissue. In section 4-2, we explain how
to manually define the organ masks using the parts-based representation provided by non-
negative matrix factorization (NNMF). Unlike for dataset no1, which is a binary classification
problem, analyzing dataset no2 is a matter of solving a classification problem with multiple
classes. We use the one-versus-all (OVA) approach to decompose the problem into five binary
classification problems, each of which consists in recognizing one of the five classes. The OVA
approach therefore requires training five binary classifiers. Before training each classifier,
dataset no2 is labeled such that the target organ is the positive class C+ and all other organs
make up the negative class C−. Each one of these binary classification problems is severely im-
balanced since card(C+) << card(C−). The brain represents approximately 8% of all acquired
pixels, the liver represents 4% of all acquired pixels, the dorsal adipose tissue represents 3% of
all acquired pixels, and the heart and lungs only amount to approximately 1% of all acquired
pixels. In order to treat each organ equally, we choose to downsample the negative class so
that the positive class, for every one of the five binary classification problems, represents 40%
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of the total dataset. Downsampling also speeds up classifier training, limits overfitting, and
reduces memory requirements. We choose not to further downsample the negative class to
ensure that the learning algorithm considers the wide range of anatomical structures that
our classifier must distinguish from the organ of interest. Further downsampling the negative
class was observed to worsen classifier performance. We now have five binary classification
problems where the ratio of C+ to C− is 2 : 3. We use precision, recall, and the F-score, as
well as accuracy, to measure classification performance. These measures are, as discussed in
subsection 1-2-1, recommended for evaluating classifier predictive performance when dealing
with imbalanced classes. Since the organ masks we define in section 4-2 do not exhaustively
account for all the pixels belonging to each organ, we evaluate the generalization performance
of our trained classifiers primarily by visual inspection of the anatomical distribution. Dataset
no2 consists of 164808 pixels (i.e. observations) and 321 m/z bins (i.e. features).

4-2 Definition of Organ Masks for Dataset no2

Figure 4-2: Sagittal whole-body section of a rat useful for annotating the brain, liver, heart,
lungs, and dorsal adipose tissue in dataset no2. Figure copied from [10]. Copyright © 2008, 2009
InvivoPharm Inc.



78 Experiments

We manually annotate dataset no2 by means of the latent features provided by NNMF.
As discussed in section 2-2, non-negative matrix factorization (NNMF) yields a parts-based
representation of dataset no2. Annotating the five organs under study, namely the brain,
heart, liver, lungs, and dorsal adipose tissue, is required for generating the anatomical class
labels needed by supervised learning algorithms.

We use the anatomical atlas of a rat presented in Figure 4-2 to recognize our five target organs
in the images obtained by plotting the NNMF latent features’ degree of expression across the
sample surface. We assume that the mouse-pup from whom dataset no2 was acquired has a
similar anatomy as the rat in Figure 4-2. In Figures 4-3, 4-4, 4-5, 4-6, and 4-7, we define the
masks corresponding to the brain, liver, heart, lungs, and dorsal adipose tissue respectively.

In Figures 4-3a, 4-4a, 4-5a, 4-6a, and 4-7a the red mask indicates which pixels were annotated
as belonging to the brain, heart, liver, lungs, and dorsal adipose tissue respectively. The red
mask corresponds to the region circled in white in the NNMF latent features of Figures 4-3b,
4-4b, 4-5b, 4-6b, and 4-7b. The orange mask indicates which pixels might belong to the
organ under study but could not be annotated with absolute certainty. The blue region was
annotated as mouse-pup tissue that does not belong to the organ under study. The dark blue
region is the background. For each binary classification problem supposed to recognize one
organ, the training dataset is made up of the red region (i.e. positive class) and the blue region
(i.e. negative class). The orange region is excluded from the training set in order to avoid
providing wrongly labeled pixels to the supervised learning algorithm. The testing set is made
up of the red, orange, and blue regions, effectively evaluating the classifier’s generalization
performance across the entire tissue section. The dark blue background is excluded from both
the training and testing sets since it does not correspond to mouse-pup tissue. Reliably and
exhaustively annotating pixels is difficult to do manually, so rather than quantify the trained
classifier’s performance on the testing set, its performance is qualitatively evaluated by visual
inspection.

(a) Diagram of the mask used for training the binary
classifier used to recognize the brain: the red pixels be-
long to the brain and are therefore labeled positive, the
blue pixels do not belong to the brain and are therefore
labeled negative, the orange pixels cannot be reliably
annotated so they are excluded from the training set.
The dark blue pixels are non-tissue background.

(b) Spatial distribution and relative degree of expres-
sion of the latent feature obtained by non-negative ma-
trix factorization that highlights the brain. The region
circled in white is the region manually annotated as be-
longing to the brain.

Figure 4-3: Manual annotation of the brain in dataset no2
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(a) Diagram of the mask used for training the binary
classifier used to recognize the liver: the red pixels be-
long to the liver and are therefore labeled positive, the
blue pixels do not belong to the liver and are therefore
labeled negative, the orange pixels cannot be reliably
annotated so they are excluded from the training set.
The dark blue pixels are non-tissue background.

(b) Spatial distribution and relative degree of expression
of the latent feature obtained by non-negative matrix
factorization that highlights the liver. The region circled
in white is the region manually annotated as belonging
to the liver.

Figure 4-4: Manual annotation of the liver in dataset no2

(a) Diagram of the mask used for training the binary
classifier used to recognize the heart: the red pixels be-
long to the heart and are therefore labeled positive, the
blue pixels do not belong to the heart and are therefore
labeled negative, the orange pixels cannot be reliably
annotated so they are excluded from the training set.
The dark blue pixels are non-tissue background.

(b) Spatial distribution and relative degree of expres-
sion of the latent feature obtained by non-negative ma-
trix factorization that highlights the heart. The region
circled in white is the region manually annotated as be-
longing to the heart.

Figure 4-5: Manual annotation of the heart in dataset no2

(a) Diagram of the mask used for training the binary
classifier used to recognize the lungs: the red pixels be-
long to the lungs and are therefore labeled positive, the
blue pixels do not belong to the lungs and are therefore
labeled negative, the orange pixels cannot be reliably
annotated so they are excluded from the training set.
The dark blue pixels are non-tissue background.

(b) Spatial distribution and relative degree of expres-
sion of the latent feature obtained by non-negative ma-
trix factorization that highlights the lungs. The region
circled in white is the region manually annotated as be-
longing to the lungs.

Figure 4-6: Manual annotation of the lungs in dataset no2
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(a) Diagram of the mask used for training the binary
classifier used to recognize dorsal adipose tissue: the red
pixels correspond to dorsal adipose tissue and are there-
fore labeled positive, the blue pixels do not correspond
to dorsal adipose tissue and are therefore labeled nega-
tive, the orange pixels cannot be reliably annotated so
they are excluded from the training set. The dark blue
pixels are non-tissue background.

(b) Spatial distribution and relative degree of expres-
sion of the latent feature obtained by non-negative ma-
trix factorization that highlights the dorsal adipose tis-
sue. The region circled in white is the region manually
annotated as belonging to the dorsal adipose tissue.

Figure 4-7: Manual annotation of the dorsal adipose tissue in dataset no2

4-3 Workflow for Biomarker Discovery

As discussed in subsection 1-2-1 of Chapter 1 and in Chapter 3, our aim is biomarker discovery
in high-dimensional, large-scale imaging mass spectrometry (IMS) data. A biomarker is an
objectively measurable molecular indicator of a specific biological state. We use interpretable
supervised machine learning algorithms to identify the predictor variables, or features, that
are most important for classifying data instances, or observations. When dealing with IMS
data, each feature is the m/z bin corresponding to an ionized molecular species and each
observation is the mass spectrum of one of the pixels making up the sample’s surface. Each
dataset is represented by an m-by-n matrix X whose m rows are observations and whose n
columns are features. We use the superscript j, ranging from 1 to n, to denote a particular
feature xj = X(:,j) and we use subscript i, ranging from 1 to m, to denote a particular obser-
vation xi = X(i,:). In our work, biomarker discovery is essentially a matter of identifying a list
of highly discriminative features, and thus molecular species, that may be used to differentiate
between two or more classes of data instances.

In the case of dataset no1, we have a balanced binary classification problem whose positive
class is diseased rat brain tissue and whose negative class is healthy rat brain tissue. The
masks used to label the positive and negative classes of dataset no1 are given by Figure
4-1. In the case of dataset no2, we have an imbalanced classification problem with five
classes corresponding to five organs of a mouse-pup: the brain, the liver, the heart, the
lungs, and the dorsal adipose tissue. According to the OVA method, we decompose the task
of analyzing dataset no2 into five imbalanced binary classification problems, each of which
involves recognizing one of the five organs. The masks used to label each organ were manually
defined in Figures 4-3a, 4-4a, 4-5a, 4-6a, and 4-7a. The main challenge posed by dataset no1
was the large number of features, whereas the main challenge posed by dataset no2 was the
large number of observations.
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Our preprocessing pipeline involves noise removal by principal component analysis (PCA)
and feature centering. Referring back to Chapter 2, we use Equation 2-26 to remove low-
variance instrumental and chemical noise from our two IMS datasets. Note that PCA cannot
remove the high-variance instrumental noise that affects dataset no1. Figures 4-8a and 4-8b
illustrate which proportion of the original variance of dataset no1 and no2 is explained by
each principal component (PC). According to Jolliffe, the required number of PCs should
be chosen according to the cumulative percentage of total variance we wish the selected PCs
to retain [42]. Since dataset no1 is more noisy than dataset no2, we choose to retain 90%
of its original variance: we therefore select the first 361 PCs, out of a total of 2003 PCs
and omit the remaining low-variance, noisy PCs. As for dataset no2, we choose to retain
99% of the original variance and therefore keep 21 out of 321 PCs. The score images and
loading pseudo-scores of the two first PCs of datasets no1 and no2 are given by Figures 2-3
and 2-4 respectively. Noise removal is followed by feature zero-centering, which consists in
subtracting the column-wise mean from the data, as per Equation 2-1, to set the mean of
each feature to zero. Centering is recommended for speeding up the training of our supervised
learning algorithms without altering the relationship among features and observations [21].
Zero-centering is followed by unit-variance scaling, which refers to the division of each column
by its standard deviation so that each variable has unit variance. Zero-centering followed by
unit-variance scaling is termed standardization because standardized features have a mean
of zero and a standard deviation of one. Since IMS features are all ionized molecules mea-
sured by their respective mass-to-charge ratios and intensities (i.e. same unit), scaling should
not be necessary. It may even have undesirable consequences, such as artificially boosting
the predictive power of low-variance extraneous noise. Yet, in practice, we observed that
logistic regression (LR) and especially support vector machine (SVM) are sensitive to feature
scaling and that their performance benefits considerably from unit-variance scaling the fea-
tures prior to classifier training. As discussed in 3-1-1, we use gradient descent to estimate
the feature weights of LR models: without standardization, the weights of features with a
greater numeric range will update faster than those of features with a smaller numeric range,
resulting in the weights of features with a smaller numeric range not properly converging.
Standardization is recommended to avoid penalizing features with a smaller numeric range
when performing logistic regression with regularization [92]. As discussed in subsection 3-2-1,
training and testing linear SVM models requires the computation of a kernel, which relies on
taking the inner-product of observations in feature-space. Standardization is recommended to
avoid numerical difficulties during the calculation of SVM kernels [93]. Since the training of
random forests does not rely on measuring distances between data instances in feature space,
random forest (RF) is insensitive to feature scaling. Nevertheless, in order to guarantee a fair
comparison of the different classifiers, we standardize the IMS features before training LR,
SVM, and RF models. To conclude on the question of pre-processing IMS data, we perform
noise removal by PCA followed by standardization.

As discussed in Chapter 3, we use three types of supervised learning models for the binary
classification of IMS data: logistic regression (LR), support vector machines (SVM) and
random forests (RF). After having tuned each model’s hyper-parameters, we compare their
performance on a total of six binary classification problems: differentiating the left brain
hemisphere from the right brain hemisphere of dataset no1, and recognizing five organs (one by
one), namely the brain, liver, heart, lungs, dorsal adipose tissue, in dataset no2. Classification
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performance is measured in terms of accuracy, precision and recall, as per subsection 1-2-1.
Since dataset no2 is imbalanced, we also use the F-score. As discussed in subsection 1-2-2,
identifying the most important features is key to machine learning model interpretability and
biomarker discovery. Feature ranking refers to the task of ordering the features by descending
order of discriminative importance. In order to guarantee that our classifiers rely primarily
on biologically-relevant features, rather than noise, we verify that the ion images of top-
ranking features represent histological patterns. We rank molecular features using the five
following interpretability methods, which are discussed in Chapter 3. Note that the model-
specific interpretability methods of LR and linear SVM models do not account for feature
inter-dependencies, whereas the model-specific interpretability method of RF does. We argue
that the model-specific interpretability method of RF is therefore more reliable.

• A model-specific method intrinsic to LR defined by Equation 3-16 of subsection 3-1-2.
Relative weights analysis is an interesting alternative to the method of subsection 3-1-2.
Yet, since relative weights analysis involves decorrelating the data before training the
classifier, it cannot easily be compared to the other interpretability methods.

• A model-specific method intrinsic to linear SVM defined by Equation 3-50 of subsub-
section 3-2-1-3.

• A model-specific method intrinsic to RF, called mean decrease impurity (MDI), defined
by Equation 3-81 of subsection 3-3-3.

• A model-agnostic post-hoc method, called permutation importance (PI), defined by
Equation 3-82 of subsection 3-4-1.

• A model-agnostic post-hoc method, called Shapley importance (SI), defined by Equation
3-95 of subsection 3-4-2.

(a) Dataset no1: Pareto chart of the variance explained
for by the first 10 principal components

(b) Dataset no2: Pareto chart of the variance explained
for by the first 7 principal components

Figure 4-8: Pareto charts indicating the percentage of variance explained by the first principal
components (PCs) in the case of dataset no1 and dataset no2.
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The measure we propose to compare the feature rankings obtained by these four interpretabil-
ity methods on IMS data is termed the percentage of overlapping molecules (POM). The POM
is adapted from the percentage of overlapping genes (POG) frequently used in genomics to
evaluate the consistency between two lists of differentially expressed genes [94]. We define
the POM as the rate of agreement between the top 10% of two feature rankings: the POM is
obtained by counting how many features both rankings have in common. It essentially defines
the consistency between two lists of highly discriminative features as their intersection. In
Equation 4-1, we consider one of two IMS datasets under study and compute the POM be-
tween feature rankings R1 and R2 obtained by two of the five interpretability methods listed
above. Depending on its predictive importance score, feature xj = X(:,j) with j ∈ {1, 2...n},
is assigned a rank rj1 = R1(xj) in list R1 and rank rj2 = R2(xj) in list R2. I denotes the
indicator function such that I(rj1 ≤ ntop) = 1 if and only if rj1 ≤ ntop, otherwise I returns 0.
The number of important features ntop is set to 200 for dataset no1 (i.e. 10% of n=2003) and
32 for dataset no2 (i.e. 10% of n=321).

POM(R1, R2, ntop) =
n∑
j=1

I
(
rj1 ≤ ntop ∧ rj2 ≤ ntop

)
(4-1)

Biomarker discovery is done for all six following classification problems. We provide a list
of highly discriminative features for each task, as agreed upon by our four interpretability
methods.

1. Recognizing the left brain hemisphere from the right brain hemisphere in dataset no1.

2. Recognizing the brain, liver, heart, lungs and adipose tissue from the other mouse organs
in dataset no2.

Note that dataset no2 has more than one hundred thousand pixels, which makes the training
of support vector machines (SVMs) computationally very costly. Storing the kernel of IMS
dataset no2, which is a 164808-by-164808 matrix of data instances, in double precision format
requires 202 gigabytes of memory. Although sequential minimal optimization (SMO) reduces
memory requirements to O (m), its required computational time scales along O

(
m2.3) [6].

This poses a problem for training SVM classifiers on very large datasets like IMS dataset no2.
It has been pointed out that the use of a single threshold to verify optimality is an important
source of inefficiency in Platt’s SMO algorithm [95]. Unfortunately, our approach to training
SVM classifiers for IMS data uses Platt’s SMO algorithm, as explained in subsection 3-2-
3. Furthermore, we observe that the time complexity of our implementation of SMO is
very sensitive to the box constraint tolerance that enforces 0 < λ < C, where C is the
regularization parameter, and to the Lagrange multiplier convergence precision. We therefore
recommend thoroughly tuning these two hyper-parameters. Our results were obtained with a
box constraint tolerance of 0.01 and a Lagrange multiplier convergence precision of ε = 0.001.
Although we successfully trained a linear SVM classifier on dataset no1 in subsubsection
5-1-1-3, training SVMs on dataset no2 turned out to be too computationally expensive to
be practical for all five organs. We nevertheless present the result obtained by a linear
SVM classifier that is trained to recognize the mouse-pup’s liver from its other organs in
subsubsection 5-1-2-3.
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4-4 Code contributions

Every unsupervised and supervised machine learning algorithm, and every model-specific
and model-agnostic interpretability method used in the course of our work on IMS data was
implemented from scratch in MATLAB. What follows is a brief description of our MATLAB
functions:

• Non-negative matrix factorization (NNMF) using either the multiplicative update al-
gorithm, the alternating least squares (ALS) algorithm, or the hierarchical alternating
least squares (HALS) algorithm: NNMF.m

• Choice of the reduced dimension k for NNMF using either the dispersion coefficient, the
average silhouette index, or the proportion of ambiguous clustering: chooseK_NNMF.m

• Computation of the NNMF consensus matrix required by chooseK_NNMF.m for estimat-
ing the dispersion coefficient and the proportion of ambiguous clustering given a target
rank k: consensus_NNMF.m

• Computation of the silhouette score for a given target rank k of NNMF, required by
chooseK_NNMF.m to choose k: silhouette_NNMF.m

• Principal component analysis (PCA) using the singular value decomposition (SVD)
approach: PrincipalComponentAnalysis.m

• Perform decorrelation by whitening, also termed sphering, using either the zero-phase
component analysis (ZCA), ZCA-cor, PCA, PCA-cor or the Cholesky decomposition
methods: Sphering.m

• Training of the logistic regression model with a choice of regularization parameter:
LogisticRegressionTrain.m

• Testing of the logistic regression model: LogisticRegressionTest.m

• Relative weights analysis of logistic regression: ComputeRelativeWeights.m

• Training of the support vector machine model by SMO with a choice between a linear,
polynomial, sigmoid, or Gaussian radial basis function kernel: SupportVectorMachineTrain.m

• Computation of the linear, polynomial, sigmoid, or Gaussian radial basis function kernel
matrix: KernelSVM.m

• Search for data instances whose Lagrange multipliers violate the Karush-Kuhn-Tucker
(KKT) conditions, as required by SMO: ExamineExample.m

• Perform one step of SMO by solving a quadratic programming (QP) problem involving
two Lagrange multipliers: TakeStep.m

• Testing of the support vector machine model: SupportVectorMachineTest.m

• Training of a decision stump by choosing which feature to split on, and which threshold
to use for a given internal node: DecisionStumpTrain.m
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• Testing of the decision stump: DecisionStumpTest.m

• Training of the decision tree according to the recursive binary splitting approach, with
a choice of node impurity measure (either the Shannon entropy of the Gini index):
DecisionTreeTrain.m

• Testing of the decision tree: DecisionTreeTest.m

• Training of the random forest model: RandomForestTrain.m

• Testing of the random forest model: RandomForestTest.m

• Computation of permutation importance for all features of a data matrix given a trained
classifier, either a logistic regression, support vector machine or random forest model:
PermutationImportance.m

• Computation of the Shapley importance of all features of a data matrix given a trained
classifier, either a logistic regression, support vector machine or random forest model:
ShapleyImportance.m
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Chapter 5

Results & discussion

5-1 Classification & feature ranking

5-1-1 Dataset no1

5-1-1-1 Logistic regression

Logistic regression performs well on dataset no1, both for the purposes of classification and
feature ranking. Figure 5-1 shows the results of binary classification with an logistic regression
(LR) classifier whose regularization parameter is set to λ = 8000. A large regularization
parameter was necessary to account for LR’s tendency to overfit the training data. In Figure
5-1, the white pixels are labeled positive, whereas the black pixels are labeled negative. Note
that 70% of the pixels represented in Figure 5-1 made up the LR classifier’s training set, and
that 30% made up its testing set. Figure 4-1 is the benchmark by which we evaluate the
LR classifier’s performance. The training accuracy achieved by our LR classifier is 93.24%
and its testing accuracy is 92.90%. The precision and recall obtained on the testing set
are 92.85% and 92.98%. We rank the features of LR according to their decreasing order of
predictive importance using the interpretability method presented in subsection 3-1-2. The
importance score attributed to each feature is equal to the magnitude of the feature’s weight
in the LR classifier’s decision boundary. This feature importance measure does not account
for correlated features. The ion images of the twenty top-ranking features are presented in
Figures 5-2, 5-3 and 5-4. These ion images are displayed using a pseudo-color scale whose
brightness is indicative of the signal intensity measured at a given pixel: signal intensity
correlates with the relative molecular concentration at that location. We observe that logistic
regression is sensitive to noise: the top first four features, whose ions images are displayed
in Figure 5-2, are high-variance instrumental noise. In Figure 5-3, we observe that features
no6, no7, no8, no16 and no17 are instrumental noise. All other features in Figures 5-3 and
5-4 encode biological information. We also observe that many of the top-ranking features
correspond to ionized molecules with very similar mass-to-charge ratios (i.e. m/z bins) and
very similar spatial distributions: for example, features no5 and no9, or features no12 and
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no15, or no11, no19 and no20. We assume these features to be isotopes. Isotopes are chemical
species with the same number of protons but different numbers of neutrons.

Figure 5-1: Classification of dataset no1 achieved by a logistic regression (LR) classifier whose
regularization parameter is λ = 8000: the positive class (white) is the diseased left brain hemi-
sphere, whereas the negative class (black) is the healthy right brain hemisphere. The accuracy,
precision and recall measured on the test set are 92.90%, 92.85% and 92.98% respectively.

(a) Ion image of feature no1 with m/z ratio 4060.2 (b) Ion image of feature no2 with m/z ratio 4051.6

(c) Ion image of feature no3 with m/z ratio 4043.1 (d) Ion image of feature no4 with m/z ratio 4068.8

Figure 5-2: Ion images of the top-ranking features, from no1 to no4, according to the logistic
regression classifier trained on imaging mass spectrometry dataset no1.
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(a) Ion image of feature no5 with m/z ratio 1824.0 (b) Ion image of feature no6 with m/z ratio 4060.7

(c) Ion image of feature no7 with m/z ratio 4052.1 (d) Ion image of feature no8 with m/z ratio 4069.2

(e) Ion image of feature no9 with m/z ratio 1823.0 (f) Ion image of feature no10 with m/z ratio 5610.9

(g) Ion image of feature no11 with m/z ratio 1828.7 (h) Ion image of feature no12 with m/z ratio 2441.0

Figure 5-3: Ion images of the top-ranking features, from no5 to no12, according to the logistic
regression classifier trained on imaging mass spectrometry dataset no1.
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(a) Ion image of feature no13 with m/z ratio 1756.0 (b) Ion image of feature no14 with m/z ratio 1927.9

(c) Ion image of feature no15 with m/z ratio 2440.0 (d) Ion image of feature no16 with m/z ratio 4052.6

(e) Ion image of feature no17 with m/z ratio 4061.2 (f) Ion image of feature no18 with m/z ratio 1929.9

(g) Ion image of feature no19 with m/z ratio 1829.3 (h) Ion image of feature no20 with m/z ratio 1829.0

Figure 5-4: Ion images of the top-ranking features, from no13 to no20, according to the logistic
regression classifier trained on imaging mass spectrometry dataset no1.
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5-1-1-2 Random forest

Hyper-parameter tuning on dataset no1 yielded the following settings for our random forest
(RF) classifier: the number of trees making up the random forest was set to 500, the maximum
tree depth was set to 20, the number of features to consider as splitting candidates at each
node was set to 500, the maximum terminal node cardinality was set to 10 data instances,
and the node impurity measure was defined as the Gini index. The classification results are
presented in Figure 5-5: the white pixels are labeled positive, whereas the black pixels are
labeled negative. The partition between positive and negative classes achieved in Figure 5-5
is very similar to that of Figure 4-1. The training accuracy of the RF classifier is 99.33%
and its testing accuracy is 93.57%. The recall and precision measured on the testing set are
92.45% and 94.74% respectively. The nonlinear decision boundary gives RF the ability to
model complex high-dimensional biochemical processes. The classification boundary between
the left and right brain hemispheres that is displayed in Figure 5-5 is visibly less noisy than
that of Figure 5-1, which was obtained using LR. The features are ranked in decreasing order
of mean decrease impurity (MDI), which is a feature importance measure specific to random
forests. Since we choose to measure node impurity by the Gini index, MDI may also be termed
Gini importance. As discussed in subsection 3-3-3, MDI covers the impact of each feature on
the RF classifier’s prediction individually as well as in interaction with other features. We
believe that, since MDI accounts for correlation between features, it produces a more reliable
ranking than LR. The ion images that map the spatial distribution and relative abundance
of the sixteen top-ranking features are presented in Figures 5-6 and 5-7. These ion images
are displayed using a pseudo-color scale whose brightness is indicative of the signal intensity
measured at a given pixel: signal intensity correlates with the relative molecular concentration
at that location. We observe that the two top-ranking features are instrumental noise and
that the following fourteen top-ranking features all encode relevant biochemical information.
We observe that features no3, no4, and no8, as well as features no10 and no15, have very
similar mass-to-charge ratios and spatial distributions, indicating they may be isotopes.

Figure 5-5: Classification of dataset no1 achieved by a random forest (RF) classifier whose
number of trees is 500, whose maximum tree depth is 20, whose number of splitting candidates
per node is 500, whose maximum terminal node cardinality is 10, and whose measure of node
impurity is the Gini index: the positive class (white) is the diseased left brain hemisphere, whereas
the negative class (black) is the healthy right brain hemisphere. The accuracy, precision and recall
measured on the test set are 93.57%, 92.45% and 94.74%.
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(a) Ion image of feature no1 with m/z ratio 4060.2 (b) Ion image of feature no2 with m/z ratio 4051.6

(c) Ion image of feature no3 with m/z ratio 1828.7 (d) Ion image of feature no4 with m/z ratio 1829.0

(e) Ion image of feature no5 with m/z ratio 5610.9 (f) Ion image of feature no6 with m/z ratio 1824.0

(g) Ion image of feature no7 with m/z ratio 5487.0 (h) Ion image of feature no8 with m/z ratio 1829.3

Figure 5-6: Ion images of the top-ranking features, from no1 to no8, according to the random
forest classifier trained on imaging mass spectrometry dataset no1.
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(a) Ion image of feature no9 with m/z ratio 1823.0 (b) Ion image of feature no10 with m/z ratio 1756.0

(c) Ion image of feature no11 with m/z ratio 5612.9 (d) Ion image of feature no12 with m/z ratio 5485.0

(e) Ion image of feature no13 with m/z ratio 5486.0 (f) Ion image of feature no14 with m/z ratio 6711.5

(g) Ion image of feature no15 with m/z ratio 1755.0 (h) Ion image of feature no16 with m/z ratio 5547.8

Figure 5-7: Ion images of the top-ranking features, from no9 to no16, according to the random
forest classifier trained on imaging mass spectrometry dataset no1.
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5-1-1-3 Support Vector Machines

Figure 5-8 presents the results of classifying dataset no1 with a linear support vector machine
whose regularization parameter is C = 0.01, box constraint tolerance is 0.01 and whose
Lagrange multiplier convergence precision is ε = 0.001. The positively labeled pixels are shown
in white, whereas the negatively labeled pixels are shown in black. As mentioned in subsection
3-2-3, our approach to training support vector machine (SVM) classifiers uses sequential
minimal optimization (SMO). The training accuracy of the SVM classifier corresponding to
Figure 5-8 is 94.92% and its testing accuracy is 92.68%. The precision and recall achieved
on the testing set are 93.69% and 91.85% respectively. The ion maps of the twenty top-
ranking features, as per the predictive importance measure of subsubsection 3-2-1-3, are given
in Figures 5-9 and 5-10. These ion images are displayed using a pseudo-color scale whose
brightness is indicative of the signal intensity measured at a given pixel: signal intensity
correlates with the relative molecular concentration at that location. Unlike the two top-
ranking features provided by LR and RF classifiers, the two top-ranking features according
to our linear SVM classifier encode biological information. Ions no5 and no7 correspond to
instrumental noise. We observe several isotopes in Figures 5-9 and 5-10: ions no1, no4 and
no16; ions no3 and no9; ions no6, no11 and no14; ions no10 and no13. Note that, although
we expected non-linear SVM classifiers to perform far better on complex high-dimensional
imaging mass spectrometry (IMS) data than linear SVM classifiers, we observed that linear
SVMs performed very well, both in terms of classification and biomarker discovery. Linear
SVMs do not require extensive tuning of the kernel and its hyper-parameters: tuning non-
linear SVM models on IMS data would be computationally expensive, especially since our
implementation of SMO has a long computational time.

Figure 5-8: Classification of dataset no1 achieved by a linear support vector machine (SVM)
classifier whose regularization parameter is C = 0.01: the positive class (white) is the diseased
left brain hemisphere, whereas the negative class (black) is the healthy right brain hemisphere.
The accuracy, precision and recall measured on the test set are 92.68%, 93.69% and 91.85%.
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(a) Ion image of feature no1 with m/z ratio 1828.7 (b) Ion image of feature no2 with m/z ratio 7650.5

(c) Ion image of feature no3 with m/z ratio 6711.5 (d) Ion image of feature no4 with m/z ratio 1829.3

(e) Ion image of feature no5 with m/z ratio 4060.2 (f) Ion image of feature no6 with m/z ratio 1756.0

(g) Ion image of feature no7 with m/z ratio 4051.6 (h) Ion image of feature no8 with m/z ratio 1816.9

Figure 5-9: Ion images of the top-ranking features, from no1 to no8, according to the linear
support vector machine classifier trained on imaging mass spectrometry dataset no1.
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(a) Ion image of feature no9 with m/z ratio 6712.5 (b) Ion image of feature no10 with m/z ratio 1824.0

(c) Ion image of feature no11 with m/z ratio 1755.0 (d) Ion image of feature no12 with m/z ratio 4043.1

(e) Ion image of feature no13 with m/z ratio 1823.0 (f) Ion image of feature no14 with m/z ratio 1757.0

(g) Ion image of feature no15 with m/z ratio 5612.9 (h) Ion image of feature no16 with m/z ratio 1829.0

Figure 5-10: Ion images of the top-ranking features, from no9 to no16, according to the linear
support vector machine classifier trained on imaging mass spectrometry dataset no1.
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5-1-1-4 Feature Ranking for Dataset no1

To summarize, Table 5-1 lists the mass-to-charge ratios of the sixteen top-ranking features,
according to the model-specific interpretability methods of the LR, linear SVM, and RF clas-
sifiers presented in subsubsections 5-1-1-1, 5-1-1-3, and 5-1-1-2.

Mass-to-charge ratios of the sixteen top-ranking features

Logistic regression 4060.2 ; 4051.6 ; 4043.1 ; 4068.8 ; 1824.0 ; 4060.7 ; 4052.1 ; 4069.2 ;
1823.0 ; 5610.9 ; 1828.7; 2441.0 ; 1756.0 ; 1927.9 ; 2440.0 ; 4052.6

Linear support
vector machine

1828.7 ; 7650.5 ; 6711.5 ; 1829.3 ; 4060.2 ; 1756.0 ; 4051.6 ; 1816.9 ;
6712.5 ; 1824.0 ; 1755.0 ; 4043.1 ; 1823.0 ; 1757.0 ; 5612.9 ; 1829.0

Random forest 4060.2 ; 4051.6 ; 1828.7 ; 1829.0 ; 5610.9 ; 1824.0 ; 5487.0 ; 1829.3 ;
1823.0 ; 1756.0 ; 5612.9 ; 5485.0 ; 5486.0 ; 6711.5 ; 1755.0 ; 5547.8

Table 5-1: Mass-to-charge ratios of the sixteen top-ranking features for recognizing the diseased
left brain hemisphere from the healthy right brain hemisphere in dataset no1, using a logistic
regression, a linear support vector machine, and a random forest classifier.
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5-1-2 Dataset no2

5-1-2-1 Logistic regression

Five LR classifiers were developed to recognize each target organ of the mouse-pup in dataset
no2. Figure 5-11 shows the results of classifying the brain from the other organs using the
masks of Figure 4-3. Figure 5-13 shows the results of classifying the liver from the other or-
gans using the masks of Figure 4-4. Figure 5-15 shows the results of classifying the heart from
the other organs using the masks of Figure 4-5. Figure 5-17 shows the results of classifying
the adipose tissue using the masks of Figure 4-7. Finally, Figure 5-19 shows the results of
classifying the lungs from the other organs using the masks of Figure 4-6.

Validating the classification output was primarily done by visual inspection because we believe
that the reported classification accuracy, precision, recall, and F-score may slightly overesti-
mate classifier performance because of how the training and testing sets were defined. Indeed,
our orange masks, from which is taken the positive class of the training and testing sets, do
not exhaustively cover all pixels of each target organ. Pixels that are located on the bound-
aries of the target organs are not included in the training and testing sets because they are
difficult to label manually. Yet it is precisely on the boundary pixels that a classifier is most
at risk of making erroneous predictions.

In order to verify the decision-making process of the LR classifiers, we also present the ion
maps of the eight top-ranking features. The features are ranked according to their respective
predictive importance using the MDI measure that we discussed in subsubsection 3-1-2-1.
Each ion image maps the spatial distribution and relative concentration of a specific bio-
molecule across the surface of the mouse-pup’s full-body section. Ion images are displayed
using a pseudo-color scale whose brightness is indicative of the signal intensity measured at
a given pixel: signal intensity correlates with the relative molecular concentration at that
location. We observe that our LR classifiers base their predictions on relevant biochemical
patterns inherent to dataset no2. We also observe that LR classifiers are more sensitive to
noise than RF classifiers, presented in subsubsection 5-1-2-2.
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Recognition of the brain

Figure 5-11: Classification of dataset no2 achieved by a logistic regression classifier whose
regularization parameter is λ = 900. The positive class (white) is the predicted mouse brain,
whereas the negative class (black) is predicted to be made up of the other organs. The accuracy,
precision, recall, and F-score measured on the testing set are 98.83%, 98.23%, 98.89%, and
0.9856 respectively.

(a) Ion image of feature no1 with m/z ratio 560.3 (b) Ion image of feature no2 with m/z ratio 729.6

(c) Ion image of feature no3 with m/z ratio 769.5 (d) Ion image of feature no4 with m/z ratio 710.5

(e) Ion image of feature no5 with m/z ratio 771.5 (f) Ion image of feature no6 with m/z ratio 770.5

(g) Ion image of feature no7 with m/z ratio 711.4 (h) Ion image of feature no8 with m/z ratio 771.5

Figure 5-12: Ion images of the top-ranking features, from no1 to no8, according to a logistic
regression classifier trained to recognize the mouse brain from the other organs in imaging mass
spectrometry dataset no2.
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Recognition of the liver

Figure 5-13: Classification of dataset no2 achieved by a logistic regression classifier a regulariza-
tion parameter of λ = 900. The positive class (white) is the predicted mouse liver, whereas the
negative class (black) is predicted to be made up of the other organs. The accuracy, precision,
recall, and F-score measured on the testing set are 98.49%, 99.01%, 97.20%, and 0.9810.

(a) Ion image of feature no1 with m/z ratio 720.4 (b) Ion image of feature no2 with m/z ratio 569.3

(c) Ion image of feature no3 with m/z ratio 568.3 (d) Ion image of feature no4 with m/z ratio 820.6

(e) Ion image of feature no5 with m/z ratio 821.6 (f) Ion image of feature no6 with m/z ratio 891.6

(g) Ion image of feature no7 with m/z ratio 892.6 (h) Ion image of feature no8 with m/z ratio 806.5

Figure 5-14: Ion images of the top-ranking features, from no1 to no8, according to a logistic
regression classifier trained to recognize the mouse liver from the other organs in imaging mass
spectrometry dataset no2.
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Recognition of the heart

Figure 5-15: Classification of dataset no2 achieved by a logistic regression classifier with regu-
larization parameter λ = 1000. The positive class (white) is the predicted mouse heart, whereas
the negative class (black) is predicted to be made up of the other organs. The accuracy, preci-
sion, recall, and F-score measured on the testing set are 99.24%, 99.47%, 98.60%, and 0.9904
respectively.

(a) Ion image of feature no1 with m/z ratio 856.6 (b) Ion image of feature no2 with m/z ratio 857.6

(c) Ion image of feature no3 with m/z ratio 858.6 (d) Ion image of feature no4 with m/z ratio 859.6

(e) Ion image of feature no5 with m/z ratio 818.6 (f) Ion image of feature no6 with m/z ratio 791.5

(g) Ion image of feature no7 with m/z ratio 790.5 (h) Ion image of feature no8 with m/z ratio 769.4

Figure 5-16: Ion images of the top-ranking features, from no1 to no8, according to a logistic
regression classifier trained to recognize the mouse heart from the other organs in imaging mass
spectrometry dataset no2.
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Recognition of the dorsal adipose tissue

Figure 5-17: Classification of dataset no2 achieved by a logistic regression classifier with regu-
larization parameter λ = 900. The positive class (white) is the predicted mouse’s dorsal adipose
tissue, whereas the negative class (black) is predicted to be made up of the other organs. The
accuracy, precision, recall, and F-score measured on the testing set are 98.16%, 97.58%, 97.58%,
and 0.9758 respectively.

(a) Ion image of feature no1 with m/z ratio 812.6 (b) Ion image of feature no2 with m/z ratio 813.6

(c) Ion image of feature no3 with m/z ratio 731.5 (d) Ion image of feature no4 with m/z ratio 811.6

(e) Ion image of feature no5 with m/z ratio 730.5 (f) Ion image of feature no6 with m/z ratio 810.6

(g) Ion image of feature no7 with m/z ratio 896.7 (h) Ion image of feature no8 with m/z ratio 897.7

Figure 5-18: Ion images of the top-ranking features, from no1 to no8, according to a logistic
regression classifier trained to recognize the mouse’s dorsal adipose tissue from the other organs
in imaging mass spectrometry dataset no2.
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Recognition of the lungs

Figure 5-19: Classification of dataset no2 achieved by a logistic regression with regularization
parameter λ = 800. The positive class (white) is the predicted mouse lungs, whereas the negative
class (black) is predicted to be made up of the other organs. The accuracy, precision, recall, and
F-score measured on the testing set are 98.49%, 98.80%, 97.39%, and 0.9809 respectively.

(a) Ion image of feature no1 with m/z ratio 704.5 (b) Ion image of feature no2 with m/z ratio 732.5

(c) Ion image of feature no3 with m/z ratio 733.5 (d) Ion image of feature no4 with m/z ratio 728.5

(e) Ion image of feature no5 with m/z ratio 729.5 (f) Ion image of feature no6 with m/z ratio 718.5

(g) Ion image of feature no7 with m/z ratio 754.5 (h) Ion image of feature no8 with m/z ratio 817.6

Figure 5-20: Ion images of the top-ranking features, from no1 to no8, according to a logistic
regression classifier trained to recognize the mouse lungs from the other organs in imaging mass
spectrometry dataset no2.
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5-1-2-2 Random forest

Five RF classifiers were developed to recognize each target organ of the mouse-pup in dataset
no2. Figure 5-21 shows the results of classifying the brain from the other organs using the
masks of Figure 4-3. Figure 5-23 shows the results of classifying the liver from the other or-
gans using the masks of Figure 4-4. Figure 5-25 shows the results of classifying the heart from
the other organs using the masks of Figure 4-5. Figure 5-27 shows the results of classifying
the adipose tissue using the masks of Figure 4-7. Finally, Figure 5-29 shows the results of
classifying the lungs from the other organs using the masks of Figure 4-6.

Validating the classification output was primarily done by visual inspection because we believe
that the reported classification accuracy, precision, recall, and F-score may slightly overesti-
mate classifier performance because of how the training and testing sets were defined. Indeed,
our orange masks, from which is taken the positive class of the training and testing sets, do
not exhaustively cover all pixels of each target organ. Pixels that are located on the bound-
aries of the target organs are not included in the training and testing sets because they are
difficult to label manually. Yet it is precisely on the boundary pixels that a classifier is most
a risk of making erroneous predictions.

In order to verify the decision-making process of the RF classifiers, we also present the ion
maps of the eight top-ranking features. The features are ranked according to their respective
predictive importance using the MDI measure that we discussed in subsection 3-3-3. Each
ion image maps the spatial distribution and relative concentration of a specific bio-molecule
across the surface of the mouse-pup’s full-body section. Ion images are displayed using a
pseudo-color scale whose brightness is indicative of the signal intensity measured at a given
pixel: signal intensity correlates with the relative molecular concentration at that location.
We observe that our RF classifiers base their predictions on relevant biochemical patterns
inherent to dataset no2. We also observe that RF models are less prone to overfitting than
LR models, whose classification results are presented in subsubsection 5-1-2-1.
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Recognition of the brain

Figure 5-21: Classification of dataset no2 by a random forest classifier whose number of trees
is 300, whose maximum tree depth is 10, whose number of splitting candidates per node is 60,
whose maximum terminal node cardinality is 10, and whose measure of node impurity is the Gini
index. The positive class (white) is the predicted mouse brain, whereas the negative class (black)
is predicted to be made up of the other organs. The accuracy, precision, recall, and F-score
measured on the testing set are 99.59%, 99.42%, 99.54%, and 0.9948 respectively.

(a) Ion image of feature no1 with m/z ratio 801.5 (b) Ion image of feature no2 with m/z ratio 740.4

(c) Ion image of feature no3 with m/z ratio 764.6 (d) Ion image of feature no4 with m/z ratio 729.6

(e) Ion image of feature no5 with m/z ratio 739.4 (f) Ion image of feature no6 with m/z ratio 798.5

(g) Ion image of feature no7 with m/z ratio 714.4 (h) Ion image of feature no8 with m/z ratio 800.5

Figure 5-22: Ion images of the top-ranking features, from no1 to no8, according to a random
forest classifier trained to recognize the mouse brain from the other organs in dataset no2.
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Recognition of the liver

Figure 5-23: Classification of dataset no2 achieved by a random forest classifier whose number
of trees is 300, whose maximum tree depth is 10, whose number of splitting candidates per node
is 60, whose maximum terminal node cardinality is 10, and whose measure of node impurity is
the Gini index. The positive class (white) is the predicted mouse liver, whereas the negative
class (black) is predicted to be made up of the other organs. The accuracy, precision, recall, and
F-score measured on the testing set are 99.48%, 99.33%, 99.33%, and 0.9933 respectively.

(a) Ion image of feature no1 with m/z ratio 820.6 (b) Ion image of feature no2 with m/z ratio 821.6

(c) Ion image of feature no3 with m/z ratio 891.6 (d) Ion image of feature no4 with m/z ratio 892.6

(e) Ion image of feature no5 with m/z ratio 744.6 (f) Ion image of feature no6 with m/z ratio 807.5

(g) Ion image of feature no7 with m/z ratio 768.6 (h) Ion image of feature no8 with m/z ratio 806.5

Figure 5-24: Ion images of the top-ranking features, from no1 to no8, according to a random
forest classifier trained to recognize the mouse liver from the other organs in imaging mass
spectrometry dataset no2.
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Recognition of the heart

Figure 5-25: Classification of dataset no2 achieved by a random forest classifier whose number
of trees is 300, whose maximum tree depth is 10, whose number of splitting candidates per node
is 60, whose maximum terminal node cardinality is 10, and whose measure of node impurity is
the Gini index. The positive class (white) is the predicted mouse heart, whereas the negative
class (black) is predicted to be made up of the other organs. The accuracy, precision, recall, and
F-score measured on the testing set are 99.24%, 99.64%, 98.38%, and 0.9900 respectively.

(a) Ion image of feature no1 with m/z ratio 856.6 (b) Ion image of feature no2 with m/z ratio 857.6

(c) Ion image of feature no3 with m/z ratio 858.6 (d) Ion image of feature no4 with m/z ratio 859.6

(e) Ion image of feature no5 with m/z ratio 828.5 (f) Ion image of feature no6 with m/z ratio 829.5

(g) Ion image of feature no7 with m/z ratio 790.5 (h) Ion image of feature no8 with m/z ratio 791.5

Figure 5-26: Ion images of the top-ranking features, from no1 to no8, according to a random
forest classifier trained to recognize the mouse heart from the other organs in imaging mass
spectrometry dataset no2.
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Recognition of the dorsal adipose tissue

Figure 5-27: Classification of dataset no2 achieved by a random forest classifier whose number
of trees is 300, whose maximum tree depth is 10, whose number of splitting candidates per node
is 60, whose maximum terminal node cardinality is 10, and whose measure of node impurity
is the Gini index. The positive class (white) is the predicted mouse’s dorsal adipose tissue,
whereas the negative class (black) is predicted to be made up of the other organs. The accuracy,
precision, recall, and F-score measured on the testing set are 98.99%, 98.84%, 98.61%, and
0.9873 respectively.

(a) Ion image of feature no1 with m/z ratio 812.6 (b) Ion image of feature no2 with m/z ratio 813.6

(c) Ion image of feature no3 with m/z ratio 787.6 (d) Ion image of feature no4 with m/z ratio 897.7

(e) Ion image of feature no5 with m/z ratio 810.6 (f) Ion image of feature no6 with m/z ratio 831.5

(g) Ion image of feature no7 with m/z ratio 811.6 (h) Ion image of feature no8 with m/z ratio 895.7

Figure 5-28: Ion images of the top-ranking features, from no1 to no8, according to a random
forest classifier trained to recognize the mouse’s dorsal adipose tissue from the other organs in
imaging mass spectrometry dataset no2.



5-1 Classification & feature ranking 109

Recognition of the lungs

Figure 5-29: Classification of dataset no2 achieved by a random forest classifier whose number
of trees is 300, whose maximum tree depth is 10, whose number of splitting candidates per node
is 60, whose maximum terminal node cardinality is 10, and whose measure of node impurity is
the Gini index. The positive class (white) is the predicted mouse lungs, whereas the negative
class (black) is predicted to be made up of the other organs. The accuracy, precision, recall, and
F-score measured on the testing set are 99.53%, 99.08%, 99.77%, and 0.9942 respectively.

(a) Ion image of feature no1 with m/z ratio 704.5 (b) Ion image of feature no2 with m/z ratio 732.5

(c) Ion image of feature no3 with m/z ratio 728.5 (d) Ion image of feature no4 with m/z ratio 733.5

(e) Ion image of feature no5 with m/z ratio 718.5 (f) Ion image of feature no6 with m/z ratio 706.5

(g) Ion image of feature no7 with m/z ratio 708.5 (h) Ion image of feature no8 with m/z ratio 817.6

Figure 5-30: Ion images of the top-ranking features, from no1 to no8, according to a random
forest classifier trained to recognize the mouse lungs from the other organs in imaging mass
spectrometry dataset no2.
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5-1-2-3 Support Vector Machines

Figure 5-31: Classification of dataset no2 achieved by a linear support vector machine (SVM)
classifier whose regularization parameter is C = 0.01: the positive class (white) is the predicted
mouse liver, whereas the negative class (black) is predicted to be made of the other organs. The
accuracy, precision, recall, and F-score measured on the test set are 98.38%, 98.86%, 97.11% and
0.9798 respectively.

(a) Ion image of feature no1 with m/z ratio 568.3 (b) Ion image of feature no2 with m/z ratio 569.3

(c) Ion image of feature no3 with m/z ratio 820.6 (d) Ion image of feature no4 with m/z ratio 821.6

(e) Ion image of feature no5 with m/z ratio 720.4 (f) Ion image of feature no6 with m/z ratio 892.6

(g) Ion image of feature no7 with m/z ratio 891.6 (h) Ion image of feature no8 with m/z ratio 807.5

Figure 5-32: Ion images of the top-ranking features, from no1 to no8, according to a linear
support vector machine classifier trained to recognize the mouse liver from the other organs in
imaging mass spectrometry dataset no2.
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As explained in section 4-3, the computational cost of training support vector machines makes
it impractical to train SVM classifiers to recognize all five target organs of the mouse-pup in
dataset no2. We nevertheless present the results of using a linear SVM classifier to recognize
the liver from the other organs.

Figure 5-31 presents the results of classifying dataset no2 with a linear support vector machine
whose regularization parameter is C = 0.01, box constraint tolerance is 0.01 and whose
Lagrange multiplier convergence precision is ε = 0.001. The positively labeled pixels are shown
in white, whereas the negatively labeled pixels are shown in black. The training accuracy of
the SVM classifier corresponding to Figure 5-8 is 98.43% and its testing accuracy is 98.38%.
The precision and recall achieved on the testing set are 98.86% and 97.11% respectively.
The ion maps of the eight top-ranking features, as per the predictive importance measure
of subsubsection 3-2-1-3, are given in Figure 5-32. These ion images are displayed using a
pseudo-color scale whose brightness is indicative of the signal intensity measured at a given
pixel: signal intensity correlates with the relative molecular concentration at that location.

5-1-2-4 Feature Ranking for Dataset no2

The following tables list the mass-to-charge ratios of the eight top-ranking features, accord-
ing to the model-specific interpretability methods of the LR and RF classifiers developed
in subsubsections 5-1-2-1 and 5-1-2-2 respectively. We observe a slight variability between
interpretability methods. Table 5-2 corresponds to the recognition of the mouse-pup’s brain
from its other organs. Table 5-3 corresponds to the recognition of the mouse-pup’s liver from
its other organs. Table 5-4 corresponds to the recognition of the mouse-pup’s heart from its
other organs. Table 5-5 corresponds to the recognition of the mouse-pup’s dorsal adipose
tissue from its other organs. Table 5-6 corresponds to the recognition of the mouse-pup’s
lungs from its other organs.

Mass-to-charge ratios of the eight top-ranking features
Logistic regression 560.3 ; 729.6; 769.5 ; 710.5 ; 771.5 ; 770.5 ; 711.4 ; 771.5
Random forest 801.5 ; 740.4 ; 764.6 ; 729.6 ; 739.4 ; 798.5 ; 714.4 ; 800.5

Table 5-2: Mass-to-charge ratios of the eight top-ranking features for recognizing the mouse-
pup’s brain from its other organs in dataset no2, using a logistic regression and a random forest
classifier.

Mass-to-charge ratios of the eight top-ranking features
Logistic regression 720.4 ; 569.3 ; 568.3 ; 820.6 ; 821.6 ; 891.6 ; 892.6 ; 806.5
Random forest 820.6 ; 821.6 ; 891.6 ; 892.6 ; 744.6 ; 807.5 ; 768.6 ; 806.5

Table 5-3: Mass-to-charge ratios of the eight top-ranking features for recognizing the mouse-
pup’s liver from its other organs in dataset no2, using a logistic regression and a random forest
classifier.
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Mass-to-charge ratios of the eight top-ranking features
Logistic regression 856.6 ; 857.6 ; 858.6 ; 859.6 ; 818.6 ; 791.5 ; 790.5 ; 769.4
Random forest 856.6 ; 857.6 ; 858.6 ; 859.6 ; 828.5 ; 829.5 ; 790.5 ; 791.5

Table 5-4: Mass-to-charge ratios of the eight top-ranking features for recognizing the mouse-
pup’s heart from its other organs in dataset no2, using a logistic regression and a random forest
classifier.

Mass-to-charge ratios of the eight top-ranking features
Logistic regression 812.6 ; 813.6 ; 731.5 ; 811.6 ; 730.5 ; 810.6 ; 896.7 ; 897.7
Random forest 812.6 ; 813.6 ; 787.6 ; 897.7 ; 810.6 ; 831.5 ; 811.6 ; 895.7

Table 5-5: Mass-to-charge ratios of the eight top-ranking features for recognizing the mouse-
pup’s dorsal adipose tissue from its other organs in dataset no2, using a logistic regression and a
random forest classifier.

Mass-to-charge ratios of the eight top-ranking features
Logistic regression 704.5 ; 732.5 ; 733.5 ; 728.5 ; 729.5 ; 718.5 ; 754.5 ; 817.6
Random forest 704.5 ; 732.5 ; 728.5 ; 733.5 ; 718.5 ; 706.5 ; 708.5 ; 817.6

Table 5-6: Mass-to-charge ratios of the eight top-ranking features for recognizing the mouse-
pup’s lungs from its other organs in dataset no2, using a logistic regression and a random forest
classifier.
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5-1-3 Classifier Comparison

Table 5-7 summarizes some of the advantages and disadvantages of using LR, linear and non-
linear SVM and RF models for the classification and feature ranking of IMS data. Note that
the following observations were made on datasets no1 and no2 using our MATLAB imple-
mentations of the four different supervised machine learning algorithms. We conclude that
RF models are better than LR and SVM models for classifying IMS data. As discussed in
section 3-3, RF models are non-linear, non-parametric, intrinsically interpretable models that
perform accurate classification of IMS data. We observe that training an RF model on large
datasets is far less computationally costly than training an SVM model: our implementation
of RF parallelizes the training of decision trees on bootstrapped datasets. Our implementa-
tion of RF is less prone to overfitting high-dimensionality data than LR. Unlike LR and SVM,
random forests are scale-invariant so unit-variance scaling of the features prior to training is
not necessary. As mentioned in section 4-3, we would prefer not having to scale the features of
IMS data. Finally, RF classifiers provide an estimate of feature predictive importance thanks
to the MDI measure, which is presented in subsection 3-3-3. In addition to demonstrating
high predictive performance, random forests provide the user with insight into the biochemi-
cal phenomena being modeled by reporting which molecular features have the most influence
on the classification of IMS pixels.

Advantages Disadvantages

Logistic regression

Intrinsically interpretable
Only one hyper-parameter
(i.e. regularization)
Computationally efficient
Probabilistic predictions

Low capacity model
Sensitive to outliers and noise
Sensitive to feature scaling

Linear support
vector machine

Intrinsically interpretable
Robust to outliers and noise

Low capacity model
Linear decision boundary
Sensitive to feature scaling
Computationally costly

Nonlinear
support vector
machine

High capacity model
Robust to outliers and noise

Several hyper-parameters
(i.e. kernel & regularization)
Not intrinsically interpretable
Sensitive to feature scaling
Computationally costly

Random forests

High capacity model
Nonlinear decision boundary
Intrinsically interpretable
Robust to outliers and noise
Scale invariant
Computationally efficient
through parallelization

Several hyper-parameters
(i.e. number & depth of
decision trees)

Table 5-7: Comparison of logistic regression, linear support vector machine, nonlinear support
vector machine, and random forest models for the classification of imaging mass spectrometry
data.



114 Results & discussion

Having observed that inherently interpretable models, like LR, RF, and linear SVM, achieve
high predictive performance on IMS data, we argue that - despite the large size and high-
dimensionality of IMS data - there is no need for black-box models for the classification tasks
presented in this thesis. Our results suggest that interpretability does not necessarily come at
the expense of accuracy. Contrarily to widespread belief [37], having to choose between model
interpretability and predictive performance is arguably a false dichotomy [96]. We therefore
strongly recommend using intrinsically interpretable supervised machine learning models for
the classification of IMS data. Note that although post-hoc model-agnostic interpretability
methods are not necessary for explaining the predictions of inherently interpretable models,
they provide a way of measuring the impact of each feature on the model’s generalization
performance. Furthermore, the fact that model-agnostic methods are non-parametric makes
the comparison of different models and model types easier.

5-2 Biomarker Discovery

5-2-1 Feature Ranking Variability

We observe that different feature ranking methods partially disagree regarding which features
(i.e. m/z bins) make up the top 10%. We measure the rate of agreement between pairs of
feature ranking methods using the percentage of overlapping molecules (POM), as defined in
Equation 4-1. Dataset no1 has 2003 features, and we consider the top-ranking 200 features
for computing the POM. Dataset no2 has 321 features, and we consider the top-ranking 32
features for computing the POM. Linear SVM models, LR, and RF models have model-
intrinsic interpretability methods that provide us with an estimate of the relative predictive
importance of features. We would have to resort to model-agnostic interpretability methods,
namely permutation importance (PI) and Shapley importance (SI), to estimate the relative
predictive importance of the features of black-box models like non-linear SVMs or deep neu-
ral networks. Note that, unlike model-specific methods that can only be applied to
a classifier’s training set, post-hoc model-agnostic interpretability methods can
also be applied to the testing set and can therefore measure the impact of each
feature on the classifier’s generalization performance. However, in order to facilitate
the comparison of different interpretability methods, all feature rankings discussed in section
5-2 were obtained from the training sets of our respective classifiers. The classifiers we study
in subsection 5-2-1 are those that were trained in section 5-1. Regarding dataset no1 (i.e.
coronal section of a rat brain), our aim is to recognize the diseased left brain hemisphere from
the right brain hemisphere. As for dataset no2 (i.e. sagittal section of a mouse-pup), the five
classification tasks we consider involve recognizing the brain, liver, heart, lungs, and adipose
tissue from the other organs.

In practice, the variability between feature ranking methods poses a problem for biomarker
discovery. Indeed, consistency is the key to reproducible research and clinical applicability
[97]. Ranking variability, also referred to as ranking instability or inconsistency, is known to
impact the reliability of high-throughput genomic and proteomic studies [33]. In the following
subsubsections, we investigate the causes for the observed feature ranking variability.
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5-2-1-1 Feature Ranking Variability between Models

We observe a variability in feature rankings obtained by model-specific methods applied to
different models. For example, the LR model of subsubsection 5-1-1-1 and the RF model
of subsubsection 5-1-1-2 have a POM of 72% according to their respective model-specific
interpretability methods: the LR and RF classifiers agree on 144 out of 200 top-ranking
features. The reason why their POM score is not 100% is that their respective model-specific
interpretability methods have a different way of quantifying feature predictive importance. In
the case of LR, the importance of a feature is equal to the magnitude of the feature’s coefficient
in the LR classifier’s decision boundary (refer to subsubsection 3-1-2-1). In the case of RF,
the MDI importance of a feature is calculated by summing the weighted impurity decrease
for all nodes that are split using that feature, averaged over all decision trees making up the
random forest (refer to subsection 3-3-3). The feature ranking method intrinsic to LR does
not account for feature inter-dependencies, whereas the MDI measure intrinsic to RF, also
termed Gini importance, does. Table 5-8 presents the POM scores obtained by comparing the
top-ranking (i.e. top 10%) features according to the model-specific interpretability methods
intrinsic to LR and RF classifiers, on all six classification problems.

Percentage of overlapping molecules
Diseased rat brain 72%
Mouse-pup brain 70%
Mouse-pup liver 79%
Mouse-pup heart 85%
Mouse-pup lungs 78%
Mouse-pup adipose tissue 82%

Table 5-8: Percentage of overlapping molecules obtained by comparing the lists of top-raking
features provided by logistic regression and random forest classifiers, trained for six different
classification tasks.

Another reason for the feature ranking variability observed between different models is the fact
that training a supervised learning model involves a certain degree of stochasticity, especially
when handling high-dimensionality IMS data whose features are correlated. For every group
of highly correlated features, one or a few features will be randomly selected as representa-
tives of the correlated group during training, whereas the others will be considered redundant
by the supervised learning algorithm and will therefore be assigned little importance in the
resulting classifier [33]. The problem is that, although we assume that statistically important
features are biologically relevant, the inverse is not necessarily true: a feature that is not
assigned a high importance within a machine learning model due to redundancy is not nec-
essarily biologically irrelevant. Feature redundancy may therefore yield misleading estimates
of the predictive importance of correlated features. It could also cause slight feature ranking
variability if the machine learning algorithm used to train the classifier selects different rep-
resentatives of each group of correlated features from one run to the next.

We address the issue of feature ranking variability due to differences between classifiers in
subsection 5-2-3 by taking an ensemble approach for estimating the predictive importance of
features.
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5-2-1-2 Feature Ranking Variability between Interpretability Methods

For a given classifier, we observe a variability in the ranking provided by its intrinsic inter-
pretability method to the rankings provided by PI and SI. PI and SI are model-agnostic
interpretability methods to be used after having trained the classifier, whereas model-specific
methods perform feature ranking during training. Post-hoc model-agnostic interpretability
methods are non-parametric methods that evaluate feature importance by observing how per-
turbing the predictor variables impacts the predictive performance of the classifier. We argue
that the difference between lists of top-ranking features returned by different interpretability
methods is primarily due to how these methods account for correlation between features. We
address the issue of feature variability due to differences between interpretability methods in
subsection 5-2-2.

5-2-2 Post-whitening Feature Ranking

In order to demonstrate that the differences between feature rankings, for a given classifier,
are primarily due to how different interpretability methods account for correlation between
features, we apply whitening as a prepossessing step. As discussed in section 2-3, whitening,
or sphering, is a linear transformation that decorrelates the features of IMS data by imposing
an identity covariance matrix to the data. We choose to perform whitening by ZCA-cor,
which is a scale-invariant version of whitening by zero-phase component analysis (ZCA).
Since the uncorrelated features obtained by ZCA-cor are maximally correlated to the original
features, they maintain their original interpretation. Note that whitening by ZCA-cor also
involves standardization, that is zero-centering and unit-variance scaling of the features, prior
to decorrelation.

In order to be able to fairly compare the classifiers trained on whitened and non-whitened IMS
datasets, we must ensure that the features of both the whitened and non-whitened datasets
have been standardized. We use two classifiers (one LR and one RF) that have been trained
on IMS data to which we apply noise removal by principal component analysis (PCA), fea-
ture zero-centering, and feature unit-variance scaling (i.e. same pre-processing as in section
5-1). Note that SVM classifiers are not considered in subsection 5-2-2 because training several
SVMs would have been computationally unfeasible within a practical time frame. We compare
these classifiers to two other classifiers (one LR and one RF) that have been trained on IMS
data to which we apply noise removal by PCA, feature zero-centering, feature unit-variance
scaling, and feature decorrelation by ZCA-cor whitening. In Table 5-9, we compute the POM
between different interpretability methods, for each classifier. We observe far more overlap
(i.e. higher POM scores) between lists of differentially expressed molecules when the features
are decorrelated prior to LR and RF classifier training. For each RF and LR classifier in Table
5-9, we compare the POM obtained by three different interpretability methods: one model-
specific method, which is the magnitude of the feature weights for LR (refer to subsection
3-1-2) and the Gini importance for RF (refer to subsection 3-3-3), and two model-agnostic
methods, namely PI (refer to subsection 3-4-1) and SI (refer to subsection 3-4-2). Since the
only difference in preprocessing is whitening, we conclude that the variability between feature
rankings is primarily due to how the different interpretability methods account for correlation
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between features. Decorrelating features seems to reduce the inconsistency we observe be-
tween lists of highly discriminative features, as provided by different interpretability methods.
We argue that whitening is a partial solution to the problem of feature ranking inconsistency
between different interpretability methods.

Measures of feature importance Pre-processing POM

Logistic regression

Magnitude of feature weights Without withening 66%
&
Permutation importance With withening 83%
Magnitude of feature weights Without whitening 33%
&
Shapley importance With whitening 50%
Permutation importance Without whitening 50%
&
Shapley importance With whitening 66%

Random forest

Gini importance Without whitening 50%
&
Permutation importance With whitening 83%
Gini importance Without whitening 50%
&
Shapley importance With whitening 66%
Permutation importance Without whitening 50%
&
Shapley importance With whitening 66%

Table 5-9: Percentage of overlapping molecules obtained by logistic regression and random forest
classifiers, according to different model-specific and model-agnostic interpretability methods. We
observe that decorrelating the features of imaging mass spectrometry data by whitening prior to
training classifiers increases the percentage of overlapping molecules (POM) between different
interpretability methods. Each interpretability method has a slightly different way of measuring
the predictive importance of features. We compare the top 10% of features and consider one
target classes: the liver of a mouse-pup in dataset no2. Forty iterations were used to compute the
permutation and Shapley importance scores of features. Note that we obtain higher percentage
of overlapping molecules by considering more iterations per feature.

The classification task we consider for the experiment of Table 5-9 is the recognition of the
liver of the mouse-pup in dataset no2 from the mouse-pup’s other organs. In order to limit
computational costs, we perform the decorrelation experiment on a version of dataset no2 that
has fewer molecular features. We choose a version of dataset no2 that has only 49 features,
hence a data matrix of 164808 rows and 49 columns. Note that, although the model-intrinsic
interpretability methods of LR and RF classifiers are very efficient on high-dimensional data,
the model-agnostic methods are computationally costly. Although we initially had a pref-
erence for SI over PI because of its rigorous mathematical foundations, SI only returns a
reliable estimate of feature predictive importance if it is able to consider the contribution of
each feature to many coalitions. We recommend setting the number of feature coalitions to
consider for calculating the SI importance of each feature to at least 50% of the total num-
ber of features n. Yet, considering many feature coalitions is computationally very costly in
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practice. For example, computing the SI importance of the n = 2003 features of dataset no1
would have involved testing the classifier 2 · 106 times (i.e. 1000 feature coalitions to consider
per feature). By contrast, a reliable PI score can be achieved by averaging the decrease in
classifier predictive performance over but a few iterations, as a result of which computing the
permutation importance of all n features of dataset no1 would require testing the classifier
approximately 2 · 103 times. We therefore conclude, in terms of practical use, that PI is
actually preferable to SI for the analysis of high-dimensional IMS data.

5-2-3 Ensemble Approach to Feature Ranking

We believe that ensemble feature ranking is also a promising way of solving feature ranking
variability. Aggregating lists of top-ranking features provided by different interpretability
methods improves the robustness and reliability of the resulting feature ranking [94]. Our
approach to ensemble feature ranking consists in averaging the importance scores of each fea-
ture, as provided by different model-specific interpretability methods, and then ranking the
molecules based on the aggregated predictive importance criterion. The reason why we choose
to aggregate the rankings produced by model-specific interpretability methods, rather than
model-agnostic methods, is that the model-specific methods are far more computationally
efficient. Ensemble feature ranking is adapted from a method referred to in scientific litera-
ture as "ensemble feature selection with function perturbation", which consists in aggregating
different ranking criteria to select a reduced set of important features [97]. As mentioned in
subsection 1-2-2, feature selection is feature ranking followed by the omission of features with
low predictive ability (i.e. features whose importance scores fall bellow an arbitrarily defined
threshold). We choose not to discard features because it is not necessary for improving the
explainability of our supervised learning models.

What follows is the list of top-ranking features obtained by computing the mean importance
score of each feature and reordering the features as per the aggregated criterion. We focus
on the same three classification tasks as in 5-2-2 and use the same LR and RF classifiers
that were trained on standardized (non-whitened) IMS datasets no1 and no2. The aggregated
feature importance criterion therefore combines the magnitude of the features weights in the
decision boundary of the LR classifier with the MDI score, also termed Gini importance,
provided by the RF classifier. Table 5-10, lists the mass-to-charge ratios of the top-ranking
2% of features, per classification task, according to the ensemble feature ranking approach.
Dataset no1 has 2003 features so we present the most important 40 features, whereas dataset
no2 has 321 features so we present the most important 6 features.
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Target class Mass-to-charge ratios of top-ranking features

Diseased rat brain

4060.2; 4051.6; 4043.1; 4068.8; 1824.0; 4060.7; 4052.1; 4069.2;
1823.0; 4043.6; 1828.7; 2441.0; 4086.1; 1927.9; 2440.0; 4052.6;
4061.2; 1929.9; 1829.3; 1829.0; 3940.8; 1756.0; 4069.8; 5564.9;
5610.9; 6711.5; 1757.0; 6712.5; 4044.1; 7670.4; 1755.0; 3939.8;
5612.9; 1353.1; 1884.9; 1353.0; 4272.2; 1353.1; 3938.8; 6713.5

Mouse-pup brain 729.6; 560.3; 801.5; 800.5; 710.5; 769.5
Mouse-pup liver 720.4; 569.3; 568.3; 820.6; 821.6; 891.6
Mouse-pup heart 856.6; 857.6; 858.6; 859.6; 791.5; 818.62
Mouse-pup lungs 704.5; 732.5; 733.5; 728.5; 729.5; 718.5
Mouse-pup adipose tissue 812.6; 813.6; 731.5; 811.6; 730.5; 810.6

Table 5-10: Table listing the top-ranking 2% of features obtained for each classification task
using the ensemble approach to feature ranking. We consider six different target classes: the
diseased left brain hemisphere of a rat brain (i.e. dataset no1) and the brain, liver, heart, lungs
and adipose tissue of a mouse-pup (i.e. dataset no2). The ensemble approach combines the
estimates of feature importance obtained by a logistic regression and a random forest classifier.
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Chapter 6

Conclusion and Future Work

6-1 Conclusion

In this thesis, we developed a machine learning workflow for discovering biomarkers in imaging
mass spectrometry data with a focus on interpretability, reproducibility, and computational
efficiency. Biomarker discovery is the empirical identification of molecular markers that en-
able the recognition of a specific biological state. Identifying a panel of biomarkers can help
generate insight into the underlying mechanism of disease and drug action. Our data-driven
workflow encompasses unsupervised and supervised machine learning algorithms. Unsuper-
vised machine learning algorithms, namely principal component analysis and non-negative
matrix factorization, are used for exploratory analysis and dimensionality reduction. Super-
vised machine learning algorithms, namely logistic regression, random forests, and support
vector machines, are used for classification. All algorithms were implemented from scratch
in MATLAB. Having compared logistic regression, random forests, and support vector ma-
chines in terms of predictive performance (i.e. accuracy, precision, recall), scale invariance,
sensitivity to noise, and computational efficiency, we strongly recommend random forests for
the classification of imaging mass spectrometry data. Furthermore, our results suggest that,
despite the large size and high-dimensionality of imaging mass spectrometry data, there is
no need for black-box models. We argue that having to choose between interpretability and
predictive performance for the classification of imaging mass spectrometry data is a false di-
chotomy.

Traditionally, the focus has been on maximizing the predictive performance of supervised ma-
chine learning models, without necessarily examining the models’ decision-making processes.
Yet, in order to identify which features, and thus which molecular species, drive physiological
and pathophysiological processes, it is necessary to go beyond the scope of predictive mod-
eling and learn from our models by investigating the relationship between the features and
the model’s predictions. We define machine learning model interpretability as the ability to
explain a model’s predictions by explicitly reporting the relative predictive importance of the
features it uses as inputs. In the context of imaging mass spectrometry, interpretability is
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crucial for understanding how the spatial distribution and relative concentration of certain
molecular features relate to the assignment of pixels to different biological, anatomical or
pathological classes. We translate the problem of biomarker discovery into a feature rank-
ing problem: the molecular features of supervised machine learning models are ranked in
descending order of relative predictive importance in order to narrow the scope of further
clinical investigation from thousands of candidates down to a short list of top-ranking, thus
highly discriminative, features. We presented one model-specific interpretability method for
each inherently interpretable classifier, namely logistic regression, linear support vector ma-
chines and random forests. The feature importance measure inherent to random forests, called
mean decrease impurity, is the only model-specific method that accounts for feature inter-
dependencies. We discuss the potentially misleading effect that correlation between features
may have on their estimated predictive importance scores. We also presented two model-
agnostic interpretability methods: permutation importance and Shapley importance, whose
implementation as a global interpretability method, based on Shapley values from coopera-
tive game theory, is novel. These model-agnostic methods provide post-hoc explanations by
treating the original model as a black-box: the importance of a feature is determined by how
much the model’s predictive performance is degraded by randomly perturbing that feature.
Permutation importance is observed to be computationally less costly than Shapley impor-
tance and is therefore preferred for applications to imaging mass spectrometry data.

Regarding the reproducibility of biomarker discovery, we proposed to measure the consistency
of two lists of features by computing the percentage of overlapping molecules on the top-
ranking 10% of features belonging to each list. Having observed a small variability between the
rankings provided by interpretability methods, we proposed a robust ensemble approach that
aggregates the importance scores attributed to each feature by different model-specific inter-
pretability methods. Model-specific interpretability methods are chosen over model-agnostic
methods because of their superior computational efficiency. Two imaging mass spectrometry
datasets were used to demonstrate our methodology: dataset no1 is a MALDI-FTICR IMS
dataset taken from the coronal section of a rat brain, dataset no2 is a MALDI-TOF IMS
dataset taken from the sagittal whole-body section of a mouse-pup. We finally presented a
list of candidate biomarkers, according to our ensemble feature ranking method, for the six
following binary classification problems: the classification of diseased versus healthy brain
tissue in dataset no1 and the classification of the mouse pup’s brain, liver, heart, lungs and
dorsal adipose tissue versus its other organs in dataset no2.

To conclude, this thesis lays the foundations for the application of state-of-the-art explainable
artificial intelligence methods to the analysis of imaging mass spectrometry data. We believe
that our machine learning workflow for discovering biomarkers in imaging mass spectrometry
data will help researchers identify biomarker candidates. The methodology developed in this
thesis is furthermore generalizable to other imaging methods, such as spectroscopic imaging.
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• Improve the computational efficiency of post-hoc model-agnostic interpretability meth-
ods: Permutation importance and Shapley importance are post-hoc interpretability
methods that can explain the decision-making process of black-box models, such as
deep neural networks. However, in order to produce reliable estimates of features’ pre-
dictive importance, permutation importance and Shapley importance must average the
predictive importance estimates of each feature over a large number of observation per-
mutations and feature permutations, respectively. As a result, permutation importance
and Shapley importance are impractical for high-dimensional classification problems.
We therefore recommend improving the time complexity of permutation importance
and Shapley importance.

• Develop new ways of evaluating the rate of agreement between two lists of top-ranking
features: Measuring the consistency of two lists by simply counting features that ap-
pear in both lists may give the misleading impression that two lists are very different,
whereas they are actually highly correlated. We would like to investigate alternatives to
the percentage of overlapping molecules that take feature correlation into account: for
example, by counting both the features shared by two lists, and the features belonging
to one of the lists that are highly correlated with at least one feature from the other
list.

• Improve the computational efficiency of the sequential minimal optimization algorithm:
Our choice to train support vector machine classifiers using the sequential minimal opti-
mization algorithm was largely motivated by its relatively small memory requirements.
However, the time complexity of sequential minimal optimization is very large for large
datasets like imaging mass spectrometry datasets. We therefore suggest improving the
stopping condition, and perhaps implementing a parallel version of sequential minimal
optimization.
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Glossary

AI artificial intelligence

ALS alternating least squares

CART classification and regression trees

DESI desorption electrospray ionization

FPR false positive rate

FTICR Fourier transform ion cyclotron
resonance

GDPR General Data Protection
Regulation

GLM generalized linear model

HALS hierarchical alternating least
squares

IMS imaging mass spectrometry

KKT Karush-Kuhn-Tucker

LR logistic regression

MALDI matrix assisted laser desorption
ionization

MDI mean decrease impurity

MS mass spectrometry

NNMF non-negative matrix factorization

OOB out-of-bag

OVA one-versus-all

PC principal component

PCA principal component analysis

PDS positive definite symmetric

PI permutation importance

POM percentage of overlapping
molecules

QP quadratic programming

RBF radial basis function

RF random forest

SHAP Shapley additive explanations

SI Shapley importance

SIMS secondary ion mass spectrometry

SMO sequential minimal optimization

SVD singular value decomposition

SVM support vector machine

TOF time-of-flight

TPR true positive rate

VC Vapnik–Chervonenkis

XAI explainable artificial intelligence

ZCA zero-phase component analysis
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