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An Empirical Analysis to Assess the Operational
Design Domain of Lane Keeping System

Equipped Vehicles Combining
Objective and Subjective

Risk Measures
Haneen Farah , Shubham Bhusari , Paul van Gent, Freddy Antony Mullakkal Babu ,

Peter Morsink, Riender Happee , and Bart van Arem

Abstract— Lower levels of automation are designed to work in
specific conditions referred to as the Operational Design Domain
(ODD). Beyond these conditions, the human driver is expected to
take control. A mismatch between a driver’s understanding and
expectations of the automated vehicle capabilities and its actual
capabilities as prescribed in the Original Equipment Manufac-
turers (OEMs) manual, could affect their safety and trust in
automation. The main aim of this study is to develop a method
for assessing the ODD of lane keeping system equipped vehicles.
The analysis method is composed of an objective driving risk
measure based on the Probabilistic Driving Risk Field (PDRF),
and a subjective risk measure based on driver behavior, trust and
situation awareness. We demonstrate the method applicability
using the Automated Lane Keeping system of the Tesla Model S.
A field test was conducted with 19 participants on public roads
in the Netherlands including situations within and outside the
defined ODD by the OEM. Across all test situations, a mismatch
was observed between the ODD specified by the OEM and by
the driver. Situations outside the ODD (i.e. no-lane markings
and on/off-ramp) were often regarded as within the ODD by the
participants. Situations inside the ODD (i.e. tunnel and curve)
were mostly correctly classified by the participants. This analysis
method has the potential to aid OEMs and road operators in
defining more clearly the ODD while taking into account the
driver’s safety and awareness of the system capabilities.
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I. INTRODUCTION

THE Society of Automotive Engineers (SAE) catego-
rizes vehicle automation into six levels ranging from

no-automation (level 0), where the human driver has full
control of the vehicle, to full automation (level 5) where
the vehicle controls all the driving tasks [1]. Each level of
automation is designed to work in specific conditions referred
to as the Operational Design Domain (ODD). The ODD is
defined as ‘the specific conditions under which a given driving
automation system or feature thereof is designed to function,
including, but not limited to, driving modes. An ODD may
include geographic, roadway, environmental, traffic, speed,
and/or temporal limitations’ [1]. The ODD for all levels of
automation, except for full automation, is limited. Currently,
SAE level 2 of vehicle automation (i.e. partial automation) is
available in several commercial vehicles. Partial automation,
refers to ‘sustained and ODD specific execution by a driving
automation system of both the lateral and longitudinal vehicle
motion control subtasks of the Dynamic Driving Task (DDT)
with the expectation that the driver completes the Object and
Event Detection and Ranging (OEDR) subtask and supervises
the driving automation system’. This means that with partial
automation, the driver may be requested to take over control of
the vehicle in certain conditions that are not part of the ODD.
As each Original Equipment Manufacturer (OEM) specifies
their own specific ODD, this could result in uncertainties about
the capabilities of different vehicles within the same level of
automation, and to mode confusion. A mismatch between a
driver’s understanding and expectations of the capabilities of
the automated vehicle and its actual capabilities as prescribed
in the OEM’s manual, could affect drivers’ trust in automation
and their perceived risks.

There is ample research, at level 2 automation, on the impact
of the longitudinal automation function (such as Adaptive
Cruise Control (ACC) and Cooperative ACC) on driver behav-
ior, traffic safety and traffic flow [2]–[4], but limited research
on the impacts of Lane Keeping Assistance System (LKAS)
on driver behavior and traffic flow [5].
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A. Lane Keeping Assistance System (LKAS)

There are three, commonly known, types of LKAS [6]:
Warning, Intervention and Control based systems. Warning
based systems, do not directly alter the vehicle trajectory
and require that the driver acts on the warning to have any
effect. Drivers are warned by the system if they are swaying
away from their current lane and the lane change indicator is
not turned on by the driver. The principle of an Intervention
based system is to provide a steering wheel torque to avoid
unintended lane departures. This torque is related to the
vehicle’s lateral position and speed. The system has limited
authority and is meant to only augment driver commands
but not to replace them continuously. Finally, the Control
based system, which keeps track of potential unintended lane
departures, and continuously steers the vehicle to ensure that
it is ideally positioned at the center of the lane (with a small
allowable buffer). These systems, not requiring active human
steering inputs, are the focus of this paper, combined with
ACC and a collision avoidance function to provide SAE level
2 automation.

B. Factors Influencing the LKAS

There are several factors that can affect the performance of
the LKAS as described in different vehicle owners’ manuals
and can be classified into the following categories [7]:

Road Infrastructure and Traffic: This includes the type of
road (i.e. highway, city road or rural road), and whether the
road section includes discontinuities such as weaving sections,
on-ramps and off-ramps. The road surface quality, in terms of
smoothness, wetness or dust/slush are also important factors.
The LKAS performance is also affected by the presence of
lane-markings and their clarity, consistency and quality [8].
Finally, the traffic state of surrounding vehicles on the road
has impact on the vehicle dynamics in both the longitudinal
and lateral direction. In high traffic intensities vehicle cut-in
situations are more probable, which could impact the LKAS
performance.

Road Sensing: The first step for an automated vehicle is
to sense, process and interpret its surroundings. This step
may employ several different types of sensors (such as cam-
era or LIDAR based), either individually or in combination
(i.e. sensor fusion). Irrespective of the method there are
a few common factors determining their functioning, and
as a result the LKAS performance. These factors include:
(1) nearby vehicles creating severe occlusions; (2) shadows
from nearby trees, noise barriers and buildings creating mis-
leading edges and texture on the road; and (3) abrupt changes
in the illumination level, such as when exiting a tunnel, which
impact the clarity of images gathered by the sensors and
thereby affecting the accuracy and precision. In addition to
this, for vision based systems, glare, bright sunlight, oncoming
headlights and improper illumination hampers the detection
capabilities of the cameras (such as detection of lane-marking).

Vehicle and LKAS: LKAS are designed to function only
under certain speed ranges and this varies between different
OEMs and depends on the type of LKAS. For all speeds
outside the specified ranges, the LKAS either stops functioning
or its performance reduces.

Driver: The driver’s behavior and interaction with the vehi-
cle also affects the LKAS performance. Factors like, whether
the driver has his/her hands on the steering wheel and the
driving style could affect decisions such as taking back control
and disconnecting the system.

C. Assessment of the LKAS Performance

Research regarding lateral driving performance dates back
to 1982, when most studies in this domain focused on the
effect of pharmaceutical drugs on driving performance by real-
road driving tests [9]. Since then primary parameters were
used to assess the lateral driving performance including the
Mean Lane Position (MLP), the Standard Deviation of Lateral
Position (SDLP), and the Steering Reversal Rates (SRR). For
example, recently Das et al. [10] examined the effect of
fog conditions on the lane keeping performance of manual
driving, using ‘lane offset’ as an indicator. Chu, et al. [11]
applied this measure as an indicator to evaluate the lane
keeping performance of the designed controller responsible
for the lateral movement of the vehicle. The SDLP was as
well applied in several research studies for evaluating manual
driving behavior [12], [13]. It is important to indicate that the
SDLP, even though used in several studies frequently, by itself
cannot adequately describe the lane keeping performance. This
is because a low SDLP could also mean that the vehicle
is travelling to the left or right of the lane center without
much variations. The SRR is generally defined as ‘the number,
per minute, of steering wheel reversals larger than a certain
minimum angular value, referred to here as the gap size’,
[14]. Other measures used to assess the risk of lane-keeping
performance include the Time to Lane Departure (TLD)/ Time
to Lane Crossing (TLC), see for example Tarko [15] and
Li et al. [12]. Another recently newly developed and applied
risk measure is the Probabilistic Driving Risk Field (PDRF),
[16], [17]. This is based on the concept that safety, or rather,
‘unsafety’ can be regarded as a combination of risk and its
consequence. The PDRF aims to model the objective risk on
the road, identifying the ‘potential risk’ from static objects
such as lane markings and curb edge, and the ‘kinetic risk’
from moving objects, mainly other vehicles.

In the literature, there are limited studies on the interaction
of drivers with LKAS. Most studies focused on drivers’
interaction with the longitudinal assistance system such as
Adaptive Cruise Control (ACC) [2], [18], [19]. Nevertheless,
there are few studies like Navarro et al. [20], Rudin-Brown and
Ian Noy [21], Pohl and Ekmark [22] investigating the influence
of LKAS on driver’s behavior, behavioral adaptation, and
the interaction between the driver and the system. However,
these studies, only consider the ‘warning’ type LKAS and
not the more sophisticated ‘control’ type LKAS. Therefore,
there is a knowledge gap regarding the factors determining
drivers’ interaction with more sophisticated ‘control’ type
LKAS. Furthermore, most studies are either questionnaire-
based or simulator-based. In other words, the participant does
not experience real direct risk in case of automation failure.
In questionnaire-based studies, the participants may say that
they would trust an automated system, yet act in a way that
demonstrates that they do not trust it [23]. From a design
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standpoint, it is important to design systems that individuals
will trust [24]. The assessment of driving behavior in automa-
tion includes understanding the factors that affect drivers’ trust
and awareness of the capabilities and functionality (ODD)
of the system. Therefore, this raises the need for a method
that combines a real-road test with a questionnaire-based
approach. Developing such a method could be useful for
vehicle manufacturers to assess the ODD of their vehicles
equipped with LKAS and for road operators to assess the
needed changes in the infrastructure.

D. Research Objective, Research Questions, and Main
Contributions

The main objective of this study is to develop an analysis
method that combines objective and subjective risk measures
for the assessment of the ODD of vehicles equipped with
LKAS. To do that the following research questions were
defined:

• How does the LKAS perform when it is within and when
it is exceeding its pre-defined ODD?

• To what extent can the proposed risk measurement metric
be used to determine the objective driving risk across
different test situations?

• Is there a mismatch between the ODD specified by the
OEM and the one specified by the drivers? and which
factors contribute to this mismatch?

The main contributions of this paper are as following:
• Development of a method for assessing the ODD of

LKAS equipped vehicles considering objective and sub-
jective risk measures;

• Data collection in real driving environment overcoming
the limitations of previous studies based on data from a
simulated environment or surveys;

• Focusing on ‘control’ type LKAS while most previous
studies focused on studying drivers’ interactions with the
‘warning’ type LKAS.

II. RESEARCH APPROACH & EXPERIMENTAL SETUP

To answer the research questions in this study, a research
approach composed of a field test (including a pilot test) and a
set of questionnaires was developed. As illustrated in Figure 1,
we first conducted a literature review on LKAS, the factors
that influence their performance, methods to assess their per-
formance and as well the defined ODD in the vehicle owner’s
manual. This was followed by the experiment setup which
consisted of the selection of test situations of interest, vehicle
instrumentation and the preparation of the questionnaires. The
test situations were selected so that some are classified within
the ODD, some out of the ODD, and the remaining as ODD
not in or out. Based on that the test route was selected. After
the research plan was approved by the human research ethical
committee of the TU Delft, we started with the participants
recruitment procedure and test scheduling. This was followed
by the pilot test, field test, and data processing. The final step
included the data analysis which consisted of the lane keeping
performance assessment and the objective and subjective risk
assessment. These components of the approach are further
detailed in the following sub-sections.

Fig. 1. Procedure of the research.

Fig. 2. Map of the selected testing route with notation of specific road
elements/ situations.

A. Field Test Including a Pilot Test

For the field test several routes were considered taking
into consideration several factors for determining the final test
route. These factors included: the variation in road curvature,
road width, presence and quality of lane marking, number of
lanes, presence of on-ramps, off-ramps, tunnels, and bridges,
and non-highway route sections. Based on these considered
factors the final chosen test route consisted of the A5,
Zwanenburg to A4 (E19) Schiphol as illustrated in Figure 2.

A pilot test was conducted prior to the main experiment to
examine the appropriateness of the proposed test route with
respect to the different ODD classified situations. A test map
indicating possible locations that fall within and outside the
ODD was made prior to the pilot test. During the pilot test the
vehicle instrumentation, such as the sensors and cameras, were
tested to make sure they function appropriately. The pilot test
was conducted on the 9th of May, 2018 with three participants
who were part of the research team. Furthermore, a safety
driver from the Tesla car rental organization was present during
all the test drives to ensure the safety of the participants
and the other road users. The safety driver also explained
to the participants how to use the automated system of the
car.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 12:31:00 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Illustration of the vehicle instrumentation and collected data.

B. Vehicle Instrumentation

A Tesla Model S was used as the test vehicle. The LKAS
function of the Tesla referred to as the Autosteer function
v8.1 (218.18.2.301aeee), was therefore the system whose
performance across different test situations, was assessed. The
vehicle was instrumented with a LIDAR (LIDAR Lite v3),
Go Pro’s video cameras, a combined Inertial Measurement
Unit (IMU), and a GPS unit. The location of the different
sensors and equipment installed on the vehicle are illustrated
in Figure 3 together with an explanation of the type of data
collected. The synchronization of the data was done using beep
sounds coming from the IMU at a specific frequency for 5 s
at the beginning of every drive.

C. Questionnaires

The participants completed two sets of questionnaires:
pre-drive and during the field test.

Pre-Drive Questionnaire: included questions regarding
the participants’ personal demographics, their initial trust,
confidence, attitudes, and prior experience (such as: usage
frequency, satisfaction, perceived risk) with semi-automated
vehicles and LKAS systems in general. The participants were
also asked whether they are familiar with the term ‘Operational
Design Domain’ and they were asked to explain it in their
own words. Prior to this, explanations regarding what semi-
automated vehicles are, and the different types of LKAS
(warning versus control) were given.

During the Field Test: This part captures the real-time trust
of the participants during their drive, and more specifically just
after they drove through each of the selected testing situations
on a scale ranging from 1 to 5 (with score 5 meaning a very
high trust). Following this, they were asked to report if they
thought the situation was inside, outside or maybe in/out of
the ODD of the LKAS.
D. Participants

The participants for the test route were recruited through
various channels depending on the targeted driver group.

TABLE I

SELECTED TEST SITUATIONS AND THEIR CATEGORIZATION

The Tesla experienced drivers were recruited via online adver-
tisements on the Tesla Motors Club forum, while the non-Tesla
drivers were recruited via social media and digital mailing
lists. All participants were compensated for their time with
either a gift voucher of e50 or a dinner invitation.

A total of 19 participants (16 males; 3 females) were
recruited with age ranging from 24 to 59 years old
(mean=41.32; Std.=12.24), and with a driving license ranging
from 3 to 41 years (mean=21.05; Std.=12.77). On aver-
age, the vehicle kilometers driven by the participants in the
past 6 months was between 1,000 and 60,000 kilometers
(mean=15,657; Std.=13,268), and vehicle kilometers in a
semi-automated vehicle between 100 and 100,000 kilometers
(mean=24,74; Std.=30,74).

E. Selected Test Situations

To test the ODD of the Autosteer function the selected
situations were classified into three main categories:
(1) ODD-In: i.e. situations where the Autosteer is designed to
work properly according to the manufacturer; (2) ODD-Out:
i.e. situations where the Autosteer is not intended to work;
(3) ODD-Not In Or Out: i.e. situations where the Autosteer
may or may not function adequately. The selected situations
and their categorization based on the OEM manual of the
Autosteer are described in TABLE I:

F. Procedure

The test procedure involved the following steps:
(1) signing the informed consent form and completing the

pre-drive online questionnaire: In order to conduct the field
tests on public roads within the Netherlands, an approval
from the Delft University of Technology ethical committee
was obtained. In addition to this, all participants had to sign
an informed consent form prior to their participation in the
field test. The form provided the participants with information
about the general purpose of the research, its procedure, and
about the presence of the on-board safety driver during the
field test. The participants were informed about all possible
risks and discomforts that they could face during the field
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test, and that the collected data is confidential, and also about
their rights to refuse or withdraw from the field test at any
time and with no positive or negative consequences.

(2) introduction by the Tesla safety driver about the
Autosteer system and familiarization with the Tesla Model S
vehicle: A participant instructions protocol was developed and
used by the on-board safety driver to provide instructions to
the participants before the commencement of the test drives.
The protocol was developed based on the driver manual of the
Tesla Model S and in consultation with the safety driver.

(3) participation in the field test and completion of the
real-time questionnaire: drivers were asked about their trust
levels just after they drove through each of the selected testing
situations and also if they thought the situation was inside,
outside or not in or out of the ODD of the LKAS.

III. ANALYSIS METHOD

The analysis method was composed of an objective and
subjective driving risk assessment. The objective driving
risk assessment was based on the Probabilistic Driving Risk
Field (PDRF) method [16], [17], while the subjective risk
assessment was based on driver behavior, trust and situation
awareness when driving with the LKAS.

A. Objective Risk Assessment (Potential Risk Field)

In the PDRF method, risk is defined by the magnitude of the
consequences of a collision and the chance of its occurrence.
The Potential Risk Field (PRF) first proposed and defined by
Wang, et al. [25] and later by Mullakkal-Babu et al. [17] is
composed of the risks experienced due to the non-moving road
entities such as lane marking, guard rails, road medians. Lane-
marking, in this case is a virtual obstacle that does not involve
in a collision but impose a behavioral constraints on driving.
The crash severity is then based on the crash energy transferred
during a possible collision between the subject vehicle and a
road entity. Accordingly, the risk taken by vehicle s due to
fixed road boundary object is formulated as:

Rb,s = 0.5kM
�
Vs,b

�2 · max

⎛
⎝e

� −|rs,b|
D

�
, 0.001

⎞
⎠ (1)

where Rb,s denotes the risk to subject vehicle s due to road
boundary b, and rs,b is a vector that denotes the shortest
distance between s and b. The first part of the equation
0.5kM

�
Vs,b

�2 describes the physical crash energy in case of
an inelastic collision between s and b. M denotes the mass
of s, and Vs,b denotes the velocity of s along rs,b. k is a
parameter to scale the expected crash energy with respect to
the type of road boundary object. This parameter has a range
[0-1], representing the level of rigidity of the road boundary
object. For further information on how to scale this parameter
please refer to [17].

The second term in the formulation, e

� −|rs,b|
D

�
, constitutes

the probability of the crash, and receives values between [0-1].
This term equals 1 when rs,b = 0. As the distance between
s and b increases the probability of the crash decreases.
Intuitively, a road object further away offers more possibility

for the driver to avoid the collision. D is the coefficient that
determines the steepness of descent of the potential risk field.
The risk due to a road boundary decreases as one moves
away from the road boundary object. In this study we have
chosen a value of D = W/14, where W is the lane width,
indicating that the collision probability term attains a marginal
value (0.00091) at the lane center. However, crashes are not
always perfectly inelastic and roadside objects allow finite
deformation thereby absorbing some amount of crash energy
and decreasing the inflicted crash severity. This assumption is
consistent with the empirical studies by Zou, et al. [26] where
it was shown that the odds of injury due to collisions with a
guard rail is lower than that with a concrete median barrier
and a concrete wall.

Being based on artificial field theory, the PDRF method
possess several benefits in comparison to other surrogate safety
measures ([16]). First, the PDRF accounts for the combined
risk in both the longitudinal and the lateral directions, while
other risk measures, such as the Time to Collision and
the Time to Lane Crossing account for the longitudinal or
the lateral risk, respectively. Secondly, the PDRF method
is applicable to a wider range of evaluation scenarios and
driving conditions. This could result in a more informative
and realistic representation of driving risk.

The objective risk measure could be very useful for OEMs
and road authorities to assess the implications of different
mismatches on safety and based on that prioritize their actions
and interventions to reduce the mismatches that lead to the
highest objective risks.

B. Subjective Risk Assessment

It is important to examine if the objective risk significantly
affects drivers’ perceived risk and trust in vehicles equipped
with LKAS. This is important especially for the situations in
which it is safe for the LKAS to function [27], [28].

Several questionnaire-based studies have identified various
factors that affect driver’s trust in automation. Jian et al. [23]
identified factors such as predictability, reliability and depend-
ability which impact trust in automation. Drivers’ trust varies
dynamically, changing over time [29]. Past experiences and
knowledge about the system influence the initial trust while
drivers’ interaction with the system influences their dynamic
trust. Therefore, in the underlying research, drivers’ trust and
awareness about system’s capabilities were measured/reported
before and during driving in the Tesla Model S on the test
route. The trust questionnaire used in this study was designed
based on the three layers of variability in human–automation
trust (dispositional trust, situational trust, and learned trust)
defined by.Hoff and Bashir [30].

IV. RESULTS

We first present the characteristics of the recruited
participants for this experiment, followed by the results of
the LKAS performance, the objective and subjective risk
measurements and finally the ODD assessment.

A. Participants

Out of the 19 participants, 17 participants had previously
used a control/intervention type LKAS and all of them had
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Fig. 4. (a) Mean relative position from lane center in each situation;
(b) Standard deviation of relative position from lane center in each situation.

prior experience in the warning type of LKAS as this was
a recruitment criterion. Furthermore, 9 participants reported
that they always use the LKAS while they drive, 4 usually
use it, 2 sometimes use it, and the remaining 4 reported that
this question was not applicable to them. 5 participants took
part in prior on-road test experiments, and 7 participants were
aware of the term ‘Operational Design Domain’.

B. LKAS Performance

To assess the performance of the LKAS the lane position
data, extracted from the processed images, were ana-
lyzed across the different selected situations (S1-No-LM
(no lane-marking on road boundaries in the city), S2-tunnel,
S3-off-ramp, and S4-curve). The objective was to understand
how the system performs inside and/or outside the OEM
specified ODD, and where the vehicle aligns itself (with
respect to the lane center). Data corresponding to the first
15 seconds in each situation of each drive was selected for
the assessment. The comparison of the LKAS performance
between different test situations was first done using boxplots
(see Figure 4). This was followed by pairwise comparisons.

C. Objective Risk Measurement

As expected, for the situations ODD-In, i.e. situations
S2-Tunnel and S4-Curve, the vehicle was closer to the lane
center as compared to the other situations (Figure 4(a)).
Between these two situations, the relative positions from lane
center were more skewed to the right in S2-Tunnel than
in S4-Curve. This could be explained by the fact that in
S2-Tunnel there were walls on both sides of the tunnel, with
the wall on the left side being closer to the lane compared to

Fig. 5. Maximum objective risk derived with potential risk fields.

the wall on the right side. This could explain why the LKAS
positioned the vehicle away from the wall on the left side. The
slight left skew in the curve situation could be explained by
the presence of the guard rail on the right side of the lane.

Driving close to the off-ramp (S3-Off-ramp, ODD-Not In Or
Out) resulted in the highest variance of the relative positions
from lane center compared to the other situations (Figure 4(b)).
Furthermore, the relative positions are slightly skewed to the
left which can be explained by the unrecognized changes in
the lane marking type close to the off-ramp.

While driving inside the city with no lane marking on the
road boundaries (S1-No-LM, ODD-Out), it was observed that
the LKAS positioned the vehicle closer to the road center. This
can be explained by the fact that when the LKAS recognises
that there is no lane marking on the right side of the lane,
it positions the vehicle closer to the road center.

The Probabilistic Driving Risk Field (PDRF) metric was
used to determine the objective driving risks across all the
different test situations. In this study we have only considered
the Potential Risk Field (i.e. the risks due to non-moving fixed
road entities) and a duration of 15 seconds of each test drive.
The front left wheel of the subject vehicle was considered as
the reference point to determine distances between the subject
vehicle and the road entity. The features of the road boundary
determine the level of risk it poses to road users [26]. The
parameter, k in Equation 1 is used to differentiate the risk
posed by each road entity. Four types of road boundaries
(non-moving road entities) were considered in the calculation
of the risk, with the following values of ‘k’: k=0.1 for a lane
marking strip; k=0.2 for a curb stone in the city; k=0.5 for
a concrete median on the highway; k=0.7 for a concrete wall
inside the tunnel. Accordingly, lane marking strips pose the
least and concrete walls pose the highest risk to driving.

The potential driving risk field for any time instance of
a situation, is the sum of the risks due to all the boundary
types surrounding the subject vehicle at that time instance.
The maximum risk during the 15s in each situation was used
as the representative value. The average risk values were not
used because in general, for the test duration of 15s, these
were equal to zero in most situations. The results are shown
in Figure 5.

The objective risk is expressed in Joules and a higher value
represents a higher risk. As shown in Figure 5 the mean
objective risk is the highest in S1-No-LM and decreases in the
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order S1-No-LM > S2-Tunnel > S3-Off-ramp > S4-Curve.
The corresponding median values also show a similar trend
but with lower magnitudes. This also means that there is
deviation in the median and mean values in all the situations
and thereby an asymmetry in the objective risk values within
each situation. The asymmetry is also observed in the unequal
whisker lengths in all situations except for S4-Curve. This
means that the risk values are more asymmetric towards values
larger than the median. The non-parametric Friedman’s test
showed a statistically significant difference in the means of
the Objective Risk values, χ2(3)=17.925, p < 0.001. Post-
hoc analysis with Wilcoxon signed-rank test with a Bonferroni
correction showed a statistically significant difference between
S1-No-LM and S4-Curve (Z = -3.206, p = 0.001), between
S2-Tunnel and S4-Curve (Z = -2.534, p = 0.011), and
between S3-Off-ramp and S4-Curve (Z = -2.482, p = 0.013).

D. Subjective Safety Evaluation

The main aim of this analysis was to investigate if there is
a mismatch between the awareness of drivers about the ODD
of the LKAS (i.e., inside ODD, outside ODD, or not sure) and
the ODD functionality as defined by the OEM.

1) Pre-Drive Subjective Safety: 10 of the 19 participants
reported that they had prior negative experiences while driving
with their LKAS ON. A moderate positive correlation was
found between ‘Awareness of the conditions in which LKAS
can function’ with ‘Having prior knowledge about ODD of
LKAS equipped vehicles’, (rs(16)=0.59, p=0.016); and with
prior negative experiences, (rs(16)=0.60, p=0.014). These
correlations should be treated with caution because of the
relatively small sample size.

2) Real-Time Trust and ODD Awareness: The average trust
across all the four situations was found to be relatively high,
4 on a scale from 1 (very low trust) to 5 (very high trust),
with a std.=0.88. A Friedman test showed that there is no
significant influence of the time spent in the vehicle on
the real-time trust of drivers across the different situations
(χ2(3)=3.418, p=0.332). No statistically significant correla-
tion was found between the real-time trust ratings of drivers
and their ODD state awareness. Furthermore, no statistically
significant correlation was found between the real-time trust
across all test situations and the participant’s experience of
driving in a Tesla.

The analysis of the mismatch between ODD state awareness
of driver and ODD specified by OEM revealed that the highest
percentage of mismatch was in S3-Off-ramp (81.2% mis-
match), followed by S1-No-LM (68.7%), S2-Tunnel (12.5%),
and S4-Curve (6.25%). Interestingly, none of the drivers had
a correct ODD state awareness in all of the four situations.
A Cochran’s Q test [31] with Bonferroni correction revealed
that the ODD mismatch of drivers is significantly differ-
ent between the four different test situations (Q(3)=24.6,
p<0.0001). It is important to avoid such mismatches as this
could lead to risky situations.

E. ODD Assessment

The ODD of the LKAS was assessed in the different
selected situations based on the objective risk measurement

TABLE II

ODD ASSESSMENT OF THE SELECTED SITUATIONS

(i.e. potential risk field), and based on the subjective risk
measurement (i.e., drivers’ questionnaires). The results are
summarized in TABLE II.

1) Inside the ODD Situations: The lane keeping perfor-
mance was best in S4-Curve followed by S2-Tunnel. S4-Curve
also had the smallest variation in the lateral position. The
relative distances of the concrete tunnel walls from the lane
boundaries affected the vehicle location within the lane. The
vehicle drifts away from the closest wall, in our situation that
was the left wall. Drivers’ real-time trust in the system in this
situation was negatively correlated with their perceived risk
of the situation. This might explain the relatively low ODD
mismatches (12.5%).

2) Neither Inside Nor Outside the ODD Situation: The
vehicle lane positions had the highest variation and deviations
relative to the lane center with a slight bias to the left
(away from the off-ramp). The lane keeping performance
was therefore considered the poorest in this situation. The
mismatch was also the highest (82.8%) and the majority
of drivers (77%) believed that the vehicle was inside its
ODD.

3) Outside the ODD Situation: This situation (S1-No-LM),
as TABLE II shows, had the highest bias in the lane position
towards the left of the lane center, and with considerable
variation. Therefore, the lateral objective risk of driving in this
situation was the highest. The majority of drivers believed that
this situation was inside the ODD of the vehicle, and therefore,
the second highest mismatch between drivers’ perception of
ODD and OEM specified ODD (68.7%). One possible expla-
nation for this result is the fact that the system could always
be switched ON. Therefore, to ensure that drivers understand
the capabilities of the system better, the OEMs must either not
allow for the system to be activated in these situations, or have
a better form of communication with drivers regarding the
system possible decrease in performance. 62.5% of the drivers
reported that they would have trusted and used the system
more if timely information about its capabilities was provided
to them.
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V. CONCLUSION AND FUTURE RESEARCH

We first present a summary and main conclusions from
this study followed by the limitations and future research
directions.

A. Summary and Conclusions

In this research, an analysis method to assess the
Operational Design Domain (ODD) of Lane Keeping Assis-
tance System (LKAS) equipped vehicles was developed. The
performance of the LKAS across different ODD-classification
types (ODD-In, ODD-Out, ODD-Not In Or Out) was first
assessed based on the mean and standard deviation of the vehi-
cle position from the lane center, followed by the calculation of
the lateral driving risk based on the Probabilistic Driver Risk
Field (PDRF) metric. The results are based on data collected
from a field test on a public road under real traffic conditions
of which 19 drivers took part, each driving 55 km (about 75
minutes) covering different road types and situations. The main
conclusions from this study are as following:

• For ODD-In situations the deviation from the lane center
was the smallest, while for ODD-Out, it was the biggest
among the three categories. For ODD-Not In Or Out
(in this situation off-ramp), even though the mean
deviation from the lane center was relatively small,
the variation of the deviation was the highest. This can
be attributed to the variation in lane marking types on
the right side of the lane center.

• Based on the PDRF metric clear differences in the
risk of driving between the different situations could
be identified and possible explanations for these were
given. For example, the maximum risk was measured to
be the highest in the situation that was ODD-Out(driving
in the city with no lane marking on the road boundaries).
On the other hand, even though driving inside the tunnel
was considered ODD-In, the lateral risk in this situation
was the second highest. This can be attributed to the type
of road barrier, i.e. the concrete tunnel wall. In compar-
ison to guardrails, the consequence of a crash with the
concrete wall is relatively higher. However, it should be
noted that these differences in risk might change if the
conflicts with adjacent vehicles are considered.

• Across all test situations, a mismatch was observed
between the ODD specified by the OEM and by
the drivers. This mismatch can negatively affect the
establishment of a correct mental model which is crucial
for effective and safe interaction of the drivers with
automated systems, such as the LKAS [32]. A higher
mismatch was observed in both situations ODD-Out
(i.e. no-lane markings) and ODD-Not In Or Out
(i.e. off-ramp). Drivers mostly reported these situa-
tions to be inside the ODD. This type of mismatch
(false-positive ODD ) is more dangerous intuitively and
also as observed by the PDRF. Therefore OEMs may
be recommended to minimize such mismatches by
proactively informing/warning the driver. On the other
hand, the mismatch in situations that were ODD-In (i.e.
tunnel and curve) were found to be minimal. In such

situations, the OEMs may focus on improving the LKAS
performance.

• Driving experience in a Tesla did not have significant
impact on the mismatch. This indicates that regard-
less of having experience of driving in semi-automated
vehicles, increasing drivers’ awareness of the automated
system capabilities is still very important. Therefore,
training and increasing drivers’ knowledge and under-
standing of the LKAS capabilities and in which con-
ditions it works appropriately could support drivers
in building correct mental models and well-calibrated
trust [33], [34]. Using this assessment method, it was
only possible to compare the test situations with each
other, and not make decisions regarding the inclu-
sion/exclusion of situations from the LKAS’s ODD.
This is because, acceptable threshold values for each
assessment component (i.e. maximum acceptable risk)
vary between vehicle manufacturers and is confidential
information. Therefore, this method has the potential
to aid OEMs in deciding if a situation should remain
inside or moved outside the lane keeping system’s ODD
while keeping the drivers’ safety and awareness of the
system capabilities at the core of the decision-making
process.

B. Limitations & Future Research Directions

This study has several limitations:
• The first limitation concerns the sample size, with

19 participating drivers of which only 3 were female.
Therefore, we could not analyze differences in trust and
ODD perceptions as a function of gender. Due to the
relatively small sample size also the impact of age was
not examined.

• A second limitation is the consideration of only static
road entities in the determination of the risk, i.e. the
potential risk field. The kinetic field risk due to other
moving objects (such as adjacent moving vehicles) also
plays a very important role in the determination of total
lateral risk assessment. Especially for the case of driving
close to off-ramps and on-ramps, adding the kinetic field
risk could result in different ranking of the risk level
for the different situations. It is recommended in future
studies to account for the kinetic field risk to increase
the realism of the risk measurement.

• A third limitation is the potential errors in lane position
stemmed from image processing. Average errors of 3.5%
(highway) and 4% (city) were identified in the values of
the lane positions. This largely depends on the camera’s
image resolution, their calibrations and the applied algo-
rithms. Future research could explore ways to reduce
these errors.

• A fourth limitation relates to other factors that might
affect the definition of the ODD such as weather and
time of day which are important to be considered in
future studies.

This assessment method could also be used to study varia-
tions among different vehicles’ LKAS performance within the
same SAE level 2. The results could accelerate harmonization

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2021 at 12:31:00 UTC from IEEE Xplore.  Restrictions apply. 



FARAH et al.: EMPIRICAL ANALYSIS TO ASSESS ODD OF LANE KEEPING SYSTEM EQUIPPED VEHICLES 2597

among different vehicles manufacturers with respect to a more
detailed definition of the ODD of each automated system.
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