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Closed-form analytic time-domain expressions are obtained for the acoustic pressure associated
with the reflection of a monopole point-source excited impulsive acoustic wave by a planar
boundary with absorptive and dispersive properties. The acoustic properties of the boundary are
modeled as a local admittance transfer function between the normal component of the particle
velocity and the acoustic pressure. The transfer function is to meet the conditions for linear,
time-invariant, causal, passive behavior. A parametrization of the admittance function is put forward
that has the property of showing up explicitly, and in a relatively simple manner, in the expression
for the reflected acoustic pressure. The partial fraction representation of the complex frequency
domain admittance is shown to have such a property. The result opens the possibility of constructing
inversion algorithms that enable the extraction of the relevant parameters from the measured time
traces of the acoustic pressure at different offsets, parallel as well as normal to the boundary,
between source and receiver. Illustrative theoretical numerical examples are presented. © 2005
Acoustical Society of America. �DOI: 10.1121/1.1954567�
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I. INTRODUCTION

In a variety of applications in acoustics �for example, in
outdoor sound propagation, traffic noise analysis, jet-engine
sound absorption in aircraft engineering and architectural
acoustics�, the analysis of the point-source excited reflection
of sound waves by a boundary surface with certain absorp-
tive and dispersive properties is of interest. In all these cases,
the absorptive and dispersive properties of the boundary
need characterization by a judiciously chosen set of param-
eters. Following the pioneering paper by Ingard �1951�, such
a characterization goes via a local acoustic admittance, i.e.,
via a linear, time-invariant, causal, passive transfer function
that links the normal component of the particle velocity on
the boundary to the local acoustic pressure. For the canonical
configuration consisting of a planar boundary, a monopole
acoustic �volume injection� source and a monopole acoustic
�pressure� point receiver, we derive closed-form time-domain
expressions for the received signal. For the same configura-
tion and along similar lines, a recent paper �Lam et al., 2004�
discusses some ad-hoc cases, where the boundary’s proper-
ties are expressed via a complex-frequency domain Padé rep-
resentation, the coefficients in which are matched to experi-
mental data available in the literature. The approach via the
Padé representation appears, however, to be limited to at
most the Padé �2,2� one. In the present paper, a more sys-
tematic approach is followed where the complex-frequency
domain characterization of the boundary admittance goes via
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a partial-fraction representation that allows the incorporation
of an arbitrary number of terms, each of them with an inter-
pretable influence on the received signal. Amongst others, it
is shown that, when source and receiver are both close to the
boundary and the terms in the partial-fraction admittance
representation meet a certain condition, large-amplitude os-
cillatory surface effects can occur. Their amplitudes can even
exceed the acoustic pressure values associated with the re-
flection against a perfectly rigid boundary, a phenomenon
that has also been reported elsewhere in the literature �Wen-
zel, 1974; Thomasson, 1976; Donato, 1976a, 1976b� and is
confirmed by pertaining experiments �Daigle et al., 1996� as
well as by computational finite-difference time-domain and
finite element method studies �Ju and Fung; 2002; Van den
Nieuwenhoff and Coyette, 2001�.

The analysis is carried out with the aid of an extension
�De Hoop, 2002� of the senior �first� author’s modification of
the Cagniard method �Cagniard, 1962; De Hoop, 1960; De
Hoop and Van der Hijden, 1984�. It yields closed-form ana-
lytic expressions for the time-domain acoustic pressure in the
model configuration under investigation. Not only do these
expressions reveal how the parameters governing the absorp-
tion and dispersion properties of the reflecting boundary
show up in the measured acoustic pressure, but they can also
serve as benchmarks in further computational studies based
on the numerical discretization of the acoustic wave equa-
tions.

The methodology leans heavily on the use of the
Schouten–Van der Pol theorem of the unilateral Laplace
transformation �Schouten, 1934, 1961; Van der Pol, 1934;
Van der Pol and Bremmer, 1950�. This theorem interrelates

two �causal� functions of time whose �unilateral� Laplace
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transforms are related such that the Laplace transform of the
latter arises out of the Laplace transform of the former upon
replacing the transform parameter s with a certain function
��s�, where ��s� belongs to the class of functions for which
a causal time function corresponding to exp�−��s���, with
��0, exists.

The analysis can be carried out for an arbitrary number
of terms in the partial-fraction characterization of the bound-
ary’s acoustic admittance, each of them provided with its
associated two parameters. This implies that a rather accurate
tuning of the parameters to match the measured values of the
admittance �a procedure that is usually carried out in the
frequency domain� can be achieved by incorporating a suffi-
cient number of terms.

Some theoretical numerical examples illustrate how
some physical phenomena can be attributed to certain ranges
of the values of the parameters involved.

II. FORMULATION OF THE PROBLEM

Position in the configuration is specified by the coordi-
nates �x ,y ,z� with respect to an orthogonal, Cartesian refer-
ence frame with the origin O and the three mutually perpen-
dicular base vectors �ix , iy , iz� of unit length each; they form,
in the indicated order, a right-handed system. The position
vector is r=xix+yiy +ziz. The vectorial spatial differentiation
operator is �= ix�x+ iy�y + iz�z. The time coordinate is t; dif-
ferentiation with respect to time is denoted by �t.

The acoustic wave motion is studied in the half-space
D= �−��x�� ,−��y�� ,0�z���, which is filled with
a fluid with volume density of mass �0 and compressibility
�0. The speed of sound waves in it is c0= ��0�0�−1/2. The
acoustic wave motion is excited by an acoustic monopole
point source with volume injection rate Q0�t� and located at
r0= �0,0 ,h�, with h�0. We assume that Q0�t�=0 for t�0.
The acoustic pressure p�r , t� and the particle velocity v�r , t�
then satisfy the first-order acoustic wave equations �De
Hoop, 1995, p. 44�

�p + �0�tv = 0 , �1�

� · v + �0�tp = Q0�t���r − r0� . �2�

Causality entails that p�r , t�=0 and v�r , t�=0 for t�0 and all
r�D. The acoustic properties of the planar boundary are
modeled via the local, linear, time-invariant, causal, passive
acoustic admittance relation

vz�x,y,0,t� = − ��0c0�−1Y�t��
�t�

p�x,y,0,t� , �3�

where �

�t�

denotes time convolution and Y�t� is the boundary’s
acoustic time-domain admittance transfer function, normal-
ized with respect to the acoustic plane-wave admittance
��0c0�−1 of the fluid. Figure 1 shows the configuration.

The acoustic wave field in the fluid is written as the
superposition of the incident wave field to be denoted by the
superscript i and the reflected wave field to be denoted by the

superscript r. The incident wave field is the wave field that is
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generated by the source and would be the total wave field in
the absence of the boundary. Its acoustic pressure satisfies
the scalar wave equation

�2pi − c0
−2�t

2pi = − �0�tQ0�t���x,y,z − h� . �4�

From this equation we obtain �see, for example, De Hoop,
1995, pp. 93–97�

pi�r,t� = �0�t
2Q0�t��

�t�

Gi�r,t� , �5�

in which the incident-wave Green’s function is

Gi�r,t� =
H�t − T0�

4	D0
for D0 
 0, �6�

with

D0 = �x2 + y2 + �z − h�2�1/2 � 0 �7�

as the distance from the source to the receiver,

T0 = D0/c0 �8�

as the travel time from source to receiver and H�t� as the
Heaviside unit step function.

III. THE COMPLEX SLOWNESS REPRESENTATION
FOR THE ACOUSTIC WAVE FIELDS

The time invariance of the configuration and the causal-
ity of the sound waves are taken into account by the use of
the unilateral Laplace transform:

�p̂,v̂��r,s� = �
t=0

�

exp�− st��p,v��r,t�dt . �9�

The Laplace transform parameter s is taken positive and real.
Then, according to Lerch’s theorem �Widder, 1946� a one-
to-one mapping exists between �p ,v��r , t� and their time-
Laplace transformed counterparts �p̂ , v̂��r ,s�. The fluid is
initially at rest, which has the consequence that the transfor-
mation property �t→s holds. Next, the complex slowness

ˆ ˆ

FIG. 1. Fluid-filled half-space with volume injection point source, acoustic
pressure point receiver, and reflecting absorptive and dispersive boundary.
representations for �p ,v��r ,s� are introduced as
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�p̂,v̂��x,y,z,s� =
s2

4	2�
�=−�

�

d��
�=−�

�

�p̃,ṽ���,�,z,s�

exp�− is��x + �y��d� , �10�

where � and � are the wave slownesses in the x and y direc-
tions, respectively. This representation entails the properties
�x→−is�, �y→−is�. Use of the transforms in Eqs. �1�–�4�
yields for the incident wave

p̃i��,�,z,s� =
�0Q̂0�s�

2�0
exp�− s�0�z − h�� , �11�

while for the reflected wave we write

p̃r��,�,z,s� =
�0Q̂0�s�

2�0
R̃ exp�− s�0�z + h�� , �12�

in which

�0��,�� = �c0
−2 + �2 + �2�1/2 with Re��0� � 0 �13�

is the wave slowness normal to the boundary and R̃ denotes
the slowness-domain reflection coefficient. Use of Eqs. �11�
and �12� in the complex slowness domain counterpart of the
admittance boundary condition �3�, together with the prop-
erty �cf. Eq. �1��

ṽz = − �s�0�−1�zp̃ , �14�

Eqs. �11�, �12�, and �14� lead to

��0/�0��1 − R̃� = ��0c0�−1Ŷ�s��1 + R̃� , �15�

from which it follows that

R̃ =
c0�0 − Ŷ�s�

c0�0 + Ŷ�s�
= 1 −

2Ŷ�s�

c0�0 + Ŷ�s�
. �16�

IV. SPACE-TIME EXPRESSIONS FOR THE ACOUSTIC
WAVE FIELD CONSTITUENTS

The expressions for the time Laplace transformed re-
flected wave field quantities are written as

p̂r�r,s� = �0s2Q̂0�s�Ĝr�r,s� , �17�

v̂r�r,s� = − sQ̂0�s� � Ĝr�r,s� , �18�

in which

Ĝr�r,s� =
1

4	2�
�=−�

�

d��
�=−�

�

R̃
1

2�0
exp�− s�i��x + �y�

+ �0�z + h���d� �19�

is the time Laplace transformed reflected-wave Green’s
function. The time-domain counterparts of Eqs. �17�–�19� are
determined with the aid of an extension �De Hoop, 2002� of
the standard modified Cagniard method �De Hoop, 1960; De
Hoop and Van der Hijden, 1984�. First, upon writing x
=r cos���, y=r sin���, the transformation
� = ip cos��� − q sin��� ,
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� = ip sin��� + q cos��� , �20�

is carried out, which for the slowness normal to the boundary
leads to �̄0�q , p�= ���q�2− p2�1/2, with ��q�= �c0

−2+q2�1/2.
Next, the integrand in the integration with respect to p is
continued analytically into the complex p plane, away from
the imaginary axis and, under the application of Cauchy’s
theorem and Jordan’s lemma, the integration along the
imaginary p axis is replaced by one along the hyperbolic
path �modified Cagniard path� consisting of pr+ �̄0�q , p��z
+h�=�, together with its complex conjugate, for T1�q���
��, where T1�q�=��q�D1 and D1= �x2+y2+ �z+h�2�1/2
0
is the distance from the image of the source to the receiver,
while � is introduced as the variable of integration. In the
relevant Jacobian, the relation �p /��= i�̄0 / ��2−T1

2�q��1/2 is
used. Next, Schwarz’s reflection principle of complex func-
tion theory is used to combine the integrations in the upper
and lower halves of the complex p plane, the orders of inte-
gration with respect to � and q are interchanged, and in the
resulting integration with repect to q, that extends over the
interval 0�q� ��2 /D1

2−c0
−2�1/2, the variable of integration q

is replaced with � defined through q= ��2 /D1
2−c0

−2�1/2 sin���,
with 0���	 /2. This procedure leads to

Ĝr�r,s� =
1

4	D1
�

�=T1

�

exp�− s��K̂r�r,�,s�d� , �21�

in which

K̂r�r,�,s� =
2

	
�

�=0

	/2

Re	1 −
2Ŷ�s�

c0�̄0 + Ŷ�s�

d� , �22�

with

c0�̄0 = �1�r,�� − i�2�r,��cos��� , �23�

�1�r,�� = c0��z + h�/D1
2, �24�

�2�r,�� = c0��2 − T1
2�1/2r/D1

2, �25�

is the reflected-wave kernel function and

T1 = T1�0� = D1/c0 �26�

is the travel time from the image of the source to the re-
ceiver. Evaluation of the integral in the right-hand side of
Eq. �22� yields �see the Appendix�

K̂r�r,�,s� = 1 −
2Ŷ�s�

���1�r,�� + Ŷ�s��2 + �2
2�r,���1/2

. �27�

Since the right-hand side of Eq. �27� is an analytic function
of s in the right half �Re�s�
0� of the complex s plane, it
has a causal time-domain counterpart Kr�r ,� , t� that van-
ishes for t�0. In terms of the latter, Eq. �21� leads to the
time-domain expression

Gr�r,t� = 	 1

4	D1
�

�=T1

t

Kr�r,�,t − ��d�
H�t − T1� . �28�

To further separate in the second term on the right-hand side
of Eq. �27� the influence of the configurational parameters of

the measurement setup from the influence of the parameters
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associated with the boundary’s acoustic admittance on the
reflected field acoustic pressure, we make use of the
Schouten–Van der Pol theorem of the unilateral Laplace
transformation �Schouten, 1934, 1961; Van der Pol, 1934;
Van der Pol and Bremmer, 1950� and employ the Laplace-
transform integral Formula �29.3.55� from Abramowitz and
Stegun �1968, p. 1024�, together with some elementary rules
of the Laplace transformation to obtain

Ŷ�s�

���1�r,�� + Ŷ�s��2 + �2
2�r,���1/2

= 1 − �
w=0

�

KF�r,�,w�K̂Y�w,s�dw , �29�

in which

K̂Y�w,s� = exp�− Ŷ�s�w�H�w� �30�

and

KF�r,�,w� = exp�− �1�r,��w���1�r,��J0��2�r,��w�

+ �2�r,��J1��2�r,��w��H�w� , �31�

where J0 and J1 are the Bessel functions of the first kind and
orders zero and one, respectively. Use of this result in Eq.
�27� yields

K̂r�r,�,s� = − 1 + 2�
w=0

�

KF�r,�,w�K̂Y�w,s�dw . �32�

In terms of the �causal� time-domain counterpart KY�w , t� of

K̂Y�w ,s� we end up with

Kr�r,�,t� = − ��t� + 2	�
w=0

�

KF�r,�,w�KY�w,t�dw
H�t� .

�33�

Note that in this expression the space-time configurational
parameters of the fluid only occur in the kernel function
KF�r ,� ,w�, while the parameters of Y�t� only occur in the
kernel function KY�w , t�. The space-time expressions for the
reflected acoustic wave field quantities are from Eqs. �17�
and �18� finally obtained as

pr�r,t� = �0�t
2Q0�t��

�t�

Gr�r,t� , �34�

vr�r,t� = − �tQ0�t��
�t�

� Gr�r,t� . �35�

In Sec. V, an expression for KY�w , t� is obtained for the case
where a partial fraction parametrization of the complex fre-

quency domain acoustic admittance Ŷ�s� is used to specify

the boundary’s acoustic dispersion and absorption properties.
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V. PARTIAL-FRACTION PARAMETRIZATION OF THE
COMPLEX FREQUENCY DOMAIN ACOUSTIC
ADMITTANCE AND ITS COROLLARIES

In this section an expression for the kernel function
KY�w , t�, introduced via Eq. �30�, is constructed for the case

where Ŷ�s� is parametrized through a partial fraction repre-
sentation. Let

Ŷ�s� = �
n=0

N

Ŷ�n��s� , �36�

with

Ŷ�0��s� = Y�, �37�

Ŷ�n��s� =
An

s + �n
for n = 1,…,N . �38�

Since the underlying assumption of such a representation is

that Ŷ�s� arises as the causal response from a rational time
differentiation operator with real-valued coefficients and a
finite number of degrees of freedom, a number of properties

hold �Kwakernaak and Sivan, 1991�. First, Ŷ�s� has to be real
and positive for s real and positive, which entails that Y� is

real and �0. Furthermore, Ŷ�s� has, in general, simple poles
at s=−�n �n=1,… ,N� that should be located in the left half

of the complex s-plane. As to the terms Ŷ�n� �n=1,… ,N�
two possibilities arise: either �n �n=1,… ,N� is real and �0
and the residues An �n=1,… ,N� at the poles s=−�n �n
=1,… ,N� are real, or pairs of �n �n=1,… ,N� are complex
conjugate with positive real parts and the residues An �n
=1,… ,N� at such pair of poles s=−�n �n=1,… ,N� are each
other’s complex conjugate. �The case of higher-order poles is
most easily handled by a limiting confluence procedure.�
Equation �36� entails a representation of K̂Y�w ,s� of the form

K̂Y�w,s� = �
n=0

N

K̂Y
�n��w,s� , �39�

with

K̂Y
�0��w,s� = exp�− Y�w�H�w� , �40�

K̂Y
�n��w,s� = exp�− Y�n��s�w�H�w� for n = 1,…,N . �41�

The time-domain counterpart of Eq. �40� is

KY
�0��w,t� = exp�− Y�w�H�w���t� . �42�

To construct the time-domain counterpart of Eq. �41� we
again use the Schouten–Van der Pol theorem and employ
Formula �29.3.75� of Abramowitz and Stegun �1968, p.
1026�, together with some elementary rules of the time
Laplace transformation to obtain

KY
�n��w,t� = H�w���t� − exp�− �nt�

�Anw/t�1/2J1�2�Anwt�1/2�H�w�H�t�

for n = 1,…,N . �43�
In terms of Eq. �43� �that also holds for complex values of
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the parameters�, the time-domain counterpart of Eq. �39� fol-
lows as

KY�w,t� = KY
�0��w,t��

�t�

KY
�1��w,t��

�t�

¯ �
�t�

KY
�N��w,t� . �44�

In this expression each of the factors contains only two pa-
rameters, a property that can facilitate the parameter sensi-
tivity analysis of the reflection measurement setup.

VI. PLANE-WAVE ADMITTANCE PARAMETRIZATION
OF THE COMPLEX FREQUENCY DOMAIN
ACOUSTIC ADMITTANCE AND ITS COROLLARIES

In this section an expression for the kernel function
KY�w , t�, introduced via Eq. �30�, is constructed for the case

where Ŷ�s� is parametrized through a plane-wave admittance
expression, applying to a fluid with volume density of mass
�1, compressibility �1, normalized inertia relaxation function
�̂1�s�, and normalized compressibility relaxation function

�̂1�s�. Accordingly, we write �De Hoop, 1995, p. 42�

ŶW�s� = Y1
��X̂�s��1/2, �45�

in which

Y1
� = �0c0�1

�1
�1/2

=
�0c0

�1c1
, �46�

with c1= ��1�1�−1/2 as the corresponding wave speed, is rep-
resentative for the instantaneous response and

X̂�s� =
s + �̂1�s�

s + �̂1�s�
�47�

is representative for the absorptive and dispersive properties.
To construct the time-domain counterpart KW�w , t� of the
corresponding kernel function

K̂W�w,s� = exp�− ŶW�s�w� �48�

we again use the Schouten–Van der Pol theorem and employ
Formula �29.3.82� of Abramowitz and Stegun �1968, p.
1026� to obtain:

K̂W�w,s� = �
u=0

�

exp�− X̂�s�u���w,u�du , �49�

where

��w,u� =
Y1

�w

�4	u3�1/2exp	−
�Y1

�w�2

4u

H�w�H�u� . �50�

Since �̂1�s� and �̂1�s� are system’s response functions of the

linear, time-invariant, causal, passive type, X̂�s� admits a
partial-fraction parametrization of the type �36�–�38� and the

time-domain counterpart of exp�−X̂�s�u� follows from Eq.
�44�.

VII. SOME ILLUSTRATIVE NUMERICAL EXAMPLES

In the following, some illustrative numerical examples
are presented. The source is placed at the boundary �h=0�.
Two receiver positions are considered, viz. one at the bound-

ary �r
0, z=0�, i.e., the propagation takes place parallel to
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the boundary, and one at the normal to the boundary through
the source �r=0, z
0�, i.e., the propagation takes place nor-
mal to the boundary. With regard to the boundary’s acoustic
admittance, two examples are discussed: �A� the zero-order
�single-term� admittance and �B� the first-order �two-terms�
admittance. Figure 2 shows the normalized incident-wave
Green’s function as a function of normalized time �cf. Eq.
�6��.

A. Zero-order boundary admittance

For the zero-order boundary admittance we have

Ŷ�s� = Y�, �51�

which corresponds to the time-domain acoustic admittance

Y�t� = Y���t� �52�

and the time-domain boundary condition �cf. Eq.�3��

vz�x,y,0,t� = − ��0c0�−1Y�p�x,y,0,t� . �53�

This section mainly serves to illustrate the influence of Y� on
the reflection problem. Figure 3 shows the normalized
reflected-wave Green’s function as a function of normalized
time �cf. Eqs. �27� and �28�� at �a� r=10 m, z=0 �propaga-
tion parallel to the boundary� and �b� r=0, z=1 m �propa-
gation normal to the boundary�, for three different values
of Y�. Note that for propagation parallel to the boundary
the normalized Green’s function always starts at the value
−1, irrespective of the value of Y�, while for propagation
normal to the boundary the starting value is positive for
Y�
1, zero for Y�=1 �admittance matched to the plane-
wave value at normal incidence�, and negative for Y��1.

B. First-order boundary admittance

For the first-order boundary admittance we have �cf.
Eqs. �36�–�38��

Ŷ�s� = Y� +
A1

s + �1
, �54�

FIG. 2. Normalized incident-wave Green’s function 4	D0Gi as a function of
normalized time t /T0.
which we rewrite as
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Ŷ�s� = Y�
s + z1

s + p1
, �55�

where −p1=−�1 is the pole of Ŷ�s� and −z1 is the zero of

Ŷ�s�, both located in the left half of the complex s plane, and

A1 = Y��z1 − p1� �56�

is the residue at the pole. Equations �54� and �55� correspond
to the time-domain acoustic admittance

Y�t� = Y���t� + A1 exp�− �1t�H�t� �57�

and the time-domain boundary condition �cf. Eq.�3��

��t + 1/�v�vz�x,y,0,t� = − ��0c0�−1Y���t + 1/�p�p�x,y,0,t� ,

�58�

where �v=1/ p1 is the velocity relaxation time and �p=1/z1 is
the pressure relaxation time �Christensen, 2003, pp. 17–19;
Meinardi, 2002, p. 105�. This section mainly serves to illus-
trate the influence of �v and �p on the reflection problem.
Therefore, we take Y�=1, which implies matching to the
plane-wave admittance at normal incidence.

Figure 4 shows the normalized reflected-wave Green’s
function as a function of normalized time �cf. Eqs. �28� and

FIG. 3. Normalized reflected-wave Green’s function 4	D1Gr as a function
of normalized time t /T1. Zero-order acoustic boundary admittance Y =Y�.
Source at boundary �h=0�; c0=330 m/s. �a� Propagation parallel to bound-
ary �r=10 m, z=0�, �b� propagation normal to boundary �r=0, z=1 m�.
Curves: �- . -� Y�=2.0, �- .. -� Y�=1.0 �matched to plane-wave value at
normal incidence�, �- ... -� Y�=0.5.
�33�� at �a� r=10 m, z=0 �propagation parallel to the bound-
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ary� and �b� r=0, z=1 m �propagation normal to the bound-
ary�, for four different values of �v, with �p fixed. As Fig.
4�a� shows, strong oscillations occur at propagation parallel
to the boundary, which phenomenon has been referred to in
Sec. I. No such oscillations show up in the propagation nor-
mal to the boundary, as Fig. 4�b� shows. It can be argued that
this behavior can be inferred from Eq. �31�, where �1 is
related to the offset normal to the boundary and occurs in the
damping exponential function, while �2 is related to the off-
set parallel to the boundary and occurs in the oscillating
Bessel functions. Apparently, such an easy interpretation
does not apply to Eq. �43�, where for An
0 the Bessel func-
tions are oscillatory, while for An�0 they change into modi-
fied Bessel functions of the first kind that show a monotonic
behavior.

VIII. DISCUSSION OF THE RESULTS

Via the combined applications of the modified Cagniard
method and the Schouten–Van der Pol theorem of the unilat-
eral Laplace transformation the time-domain acoustic pres-
sure of the monopole �volume injection� point-source excited

FIG. 4. Normalized reflected-wave Green’s function 4	D1Gr as a function
of normalized time t /T1. First-order acoustic boundary admittance: ��t

+1/�v�v=−��0c0�−1Y���t+1/�p�p at boundary. Source at boundary �h=0�;
Y�=1.0 �matched to plane-wave value at normal incidence�, c0=330 m/s.
�a� Propagation parallel to boundary �r=10 m, z=0�, �b� propagation normal
to boundary �r=0, z=1 m�. Curves: �- . -� �v=1.010−3 s, �p=5.0
10−2 s, A1=−9.8102 s−1; �- .. -� �v=2.010−3 s, �p=5.010−2 s, A1

=−4.8102 s−1; �- ... -� �v=5.010−3 s, �p=5.010−2 s, A1=−1.8
102 s−1; �- - -� �v=1.010−1 s, �p=5.010−2 s, A1=1.0101 s−1.
wave reflected against a locally reacting, absorptive and dis-
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persive boundary has been expressed as a multiple sequence
of operations acting on the source signature. Each of the
kernel functions in the expression contains separately the
configurational parameters of the measurement setup �loca-
tion of source, receiver and boundary, and propagation
through the fluid� and the parameters by which the absorp-
tive and dispersive properties of the boundary can be char-
acterized. Two parametrizations of the boundary’s complex
frequency domain acoustic admittance have been discussed
in detail: the partial-fraction parametrization and the plane-
wave admittance parametrization. The explicit attribution of
a sequence of parameters to their corresponding kernel func-
tions is conjectured to play an illuminating role in the use of
the reflection measurement setup to characterize �via an ap-
propriate inversion algorithm applied to the measured values
of the acoustic pressure� the absorption and dispersion prop-
erties of the boundary, while the obtained expression itself is
directly amenable to carry out the relevant parameter sensi-
tivity analysis. It is noted that the multiple time convolutions
that occur in the final expression for the acoustic pressure
can numerically most profitably be evaluated through the use
of the FFT algorithm.
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APPENDIX: EVALUATION OF THE INTEGRAL IN
EQ. „22…

In this Appendix the integral occurring in Eq. �22�

I =
2

	
Re	�

�=0

	/2 1

c0�̄0 + Ŷ�s�
d�


=
2

	
Re	�

�=0

	/2 1

�1 − i�2 cos��� + Ŷ�s�
d�


=
2

	
�

�=0

	/2 �1 + Ŷ�s�

��1 + Ŷ�s��2 + �2
2 cos2 ���

d� , �A1�

with �cf. Eqs. �24� and �25��

�1 = c0��z + h�/D1
2, �A2�

�2 = c0��2 − T1
2�1/2r/D1

2, �A3�

is evaluated. Using the standard integral

2

	
�

�=0

	/2 A

A2 + B2 cos2 ���
d� =

1

�A2 + B2�1/2 , �A4�
we obtain
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I =
1

���1 + Ŷ�s��2 + �2
2�1/2

. �A5�

This result is used in the main text.

Abramowitz, M. and Stegun, I. A. �1968�. Handbook of Mathematical Func-
tions �Dover, Mineola, NY�.

Cagniard, L. �1962�. Reflection and Refraction of Progressive Seismic Waves
�McGraw-Hill, New York�, pp. 47–50 and p. 244. �Translation and revi-
sion of Cagniard, L. �1939�. Réflexion et Réfraction des Ondes Séismiques
Progressives edited by E. A. Flinn and C. H. Dix �Gauthier-Villars,
Paris��.

Christensen, R. M. �2003�. Theory of Viscoelasticity, 2nd ed. �Dover, Mine-
ola, NY�.

Daigle, G. A., Stinson, M. R., and Havelock, D. I. �1996�. “Experiments on
surface waves over a model impedance plane using acoustical pulses,” J.
Acoust. Soc. Am. 99, 1993–2005.

De Hoop, A. T. �1960�. “A modification of Cagniard’s method for solving
seismic pulse problems,” Appl. Sci. Res., Sect. B 8, 349–356.

De Hoop, A. T. �1995�. Handbook of Radiation and Scattering of Waves
�Academic, London�.

De Hoop, A. T. �2002�. “Reflection and transmission of a transient, elastic
line-source excited SH-wave by a planar, elastic bounding surface in a
solid,” Int. J. Solids Struct. 39, 5379–5391.

De Hoop, A. T. and Van der Hijden, J. H. M. T. �1984�. “Generation of
acoustic waves by an impulsive point source in a fluid/solid configuration
with a plane boundary,” J. Acoust. Soc. Am. 75, 1709–1715.

Donato, R. J. �1976a�. “Propagation of a spherical wave near a plane bound-
ary with a complex impedance,” J. Acoust. Soc. Am. 60, 34–39.

Donato, R. J. �1976b�. “Spherical-wave reflection from a boundary of reac-
tive impedance using a modification of Cagniard’s method,” J. Acoust.
Soc. Am. 60, 999–1002.

Ingard, K. U. �1951�. “On the reflection of a spherical sound wave from an
infinite plane,” J. Acoust. Soc. Am. 23, 329–335.

Ju, H. B. and Fung, K. Y. �2002�. “Time-domain simulation of acoustic
sources over an impedance plane,” J. Comput. Acoust. 10, 311–329.

Kwakernaak, H. and Sivan, R. �1991�. Modern Signals and Systems
�Prentice–Hall, Englewood Cliffs, NJ�, pp. 463–466.

Lam, C. H., Kooij, B. J., and De Hoop, A. T. �2004�. “Impulsive sound
reflection from an absorptive and dispersive planar boundary,” J. Acoust.
Soc. Am. 118, 677–685.

Meinardi, F. �2002�. “Linear viscoelasticity”, in Acoustic Interactions with
Submerged Elastic Structures, edited by A. Uran, A. Boström, O. Leroy,
and G. Maze, �World Scientific, Englewood Cliffs, NJ�, pp. 97–126.

Schouten, J. P. �1934�. “A new theorem in operational calculus together with
an application of it,” Physica �Amsterdam� 1, 75–80.

Schouten, J. P. �1961�. Operatorenrechnung �Springer, Berlin�, pp. 124–126.
Thomasson, S. I. �1976�. “Reflection of waves from a point source by an

impedance boundary,” J. Acoust. Soc. Am. 59, 780–785.
Van den Nieuwenhof, B. and Coyette, J. P. �2001�. “Treatment of frequency-

dependent admittance boundary conditions in transient acoustic finite/
infinite-element models,” J. Acoust. Soc. Am. 110, 1743–1751.

Van der Pol, B. �1934�. “A theorem on electrical networks with an applica-
tion to filters,” Physica �Amsterdam� 1, 521–530.

Van der Pol, B. and Bremmer, H. �1950�. Operational Calculus Based on
the Two-sided Laplace Transform �Cambridge University Press, Cam-
bridge, UK�, pp. 232–236.

Wenzel, S. R. �1974�. “Propagation of waves along an impedance bound-
ary,” J. Acoust. Soc. Am. 55, 956–963.

Widder, D. V. �1946�. The Laplace Transform �Princeton University Press,
Princeton, NJ�, pp. 63–65.
de Hoop et al.: Parametrization of an acoustic admittance-boundary

e or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


