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Abstract: Osteoarthritis is a degenerative joint disease which is hard to diagnose objectively
and may vary based on the surgeon. This disease is usually diagnosed by measuring several
characteristic features of Hip X-rays mainly the joint distance between the femoral head and
acetabular cup. Hip joint distance reduction is a clear symptom of Osteoarthritis as it suggest
cartilage disappearance. Hip joint distance metric involves segmentation of the femur and pelvis
in X-rays, which is a challenging task because of contrast variations as well as external factors
like anatomical and pose-variation.
A multiscale approach based on Machine Learning is presented in this work for the segmentation
of multiple bone structures. This technique uses landmark detection via data-driven joint
estimation of image displacements and introduces a unique refinement step for improving the
accuracy of detection. The detection is based on supervised learning using manually annotated
landmarks. Therefore, the landmark placement along the edge of the bone has been covered in
detail. The detected landmarks are then used to determine the joint distance in several locations
along the hip joint. Aside from the segmentation technique, this work also introduces novel joint
distance metrics which can be used to detect joint space narrowing. A detailed quantitative
evaluation proved this work to be superior to the current state-of-the-art segmentation that
handles multiple bone structures and is the first in evaluating the joint space width metric. We
have also considered and discussed in brief the impact of such a system for diagnostic purposes.

Keywords:
Joint space, Landmark detection, Active Shape Models, 2D gradient profiling, X-ray image,
Automatic segmentation, Supervised learning, Osteoarthritis

1. INTRODUCTION

Conventional radiographs remain the primary examina-
tion for detecting signs of degenerative disease in hip
and knee joints, although MRI is a superior technique
for revealing degenerative changes in smaller areas. Os-
teoarthritis(OA) in hip is commonly diagnosed using Hip
Anter-Posterior(AP) X-rays. The radiological hallmarks
of OA in Hip-AP X-rays are osteophyte formation, joint
space narrowing, sclerosis and cyst formation as shown in
Fig. 1. The severity of the disease can vary and there are
different grading system to score the severity, all based on
these hallmarks and other clinical symptoms. Joint space
width (JSW) measurement remains the major criterion in
the diagnosis of OA from radiographs and for monitoring
progression of the disease.

The JSW is generally measured by a trained physician
using a graduated magnifying lens and is prone to the
subjectivity and variation associated with observer mea-
surement as well as being time consuming. There are
computerized methods for measuring the JSW but requires
manual pre-processing like cropping, centering, etc. of the
X-rays [12]. They also require standardized radiographs
and is usually constrained by the pose and shape variation

1 http://www.drwolgin.com/Pages/Osteoarthritis.aspx

Fig. 1. Radiological Hallmarks of Osteoarthritis 1

of the bone which requires more interactions from the user
leading to a non-reproducible subjective metric.

X-rays also make it more challenging to diagnose OA. This
is mainly due to the characteristics of the X-ray images
like overlapping of the bones with organs, tissues, etc. and
the noise in the image due to the discrete nature of the
X-ray photon source. There are also the factors like the



inhomogeneity of the X-ray due to varying bone density
among different patients and absence of definitive edge
between organs as the neighboring organs have similar X-
ray absorption rates. The shape of the bone differs among
patients as well especially the pelvic bone varies between
men and women. Also the patient pose may vary which
makes the bone to be located at different parts in different
images.

These reasons lead to the need for an advanced automatic
technique for extracting the joint distance from the X-
rays for diagnosing OA. Most of the available research
have been focused on automatic segmentation of bones in
radiographs, mainly single bone [10][14][1], or classification
of OA based on manually classified X-rays [12]. This
paper tries to bridge the gap between these two as a
first step to developing a fully automatic diagnostic tool
for detecting OA. The paper is based on state-of-the-art
method to segment multiple bones - femur and pelvis
- in radiographs and shows an improved accuracy and
robustness in segmentation than the current methods
along with providing a joint distance metric. The method
discussed here is robust to work with shape, pose and
contrast variations in X-rays. The method has been refined
to provide improved segmentation accuracy along the joint
gap rather than in segmentation of the bones itself.

This thesis has been structured to briefly introduce the
current front runners in bone segmentation which is mainly
landmark detection followed by shape regularization. The
paper proposes a multi-scale machine learning approach
for this purpose [1]. The necessary background to under-
stand the paper is described in the Background section.
The training data set plays a major role in machine learn-
ing and hence the process in obtaining this is explained
in detail. The pipeline, landmark detection based on su-
pervised learning and shape refinement technique which
constitutes a classic ASM followed by two dimensional gra-
dient profiling in each scale has been described in Method
section. Implementation details including the hardware
specifications, the parameters and software requirements
have been added to aid in analyzing the performance. The
method is evaluated for its accuracy in segmentation as
well as in obtaining the joint space width(JSW) metric
using leave one out cross validation with the manually
segmented contours as the ground truth. Even though the
aim of the method is to provide an accurate JSW metric,
the method has also been evaluated for its accuracy in
the segmentation of femur and pelvis. The possible tuning
and improvements of the method are discussed in the
Conclusion and Future Work.

2. RELATED WORK

There is no article that addresses the automatic extraction
of JSW metric from X-rays but there are several research
focused on segmentation of bones. This section briefly
explains the state-of-the-art segmentation techniques for
bones in X-rays and other modalities. The section gives
an overview of the conventional segmentation methods as
well and explains the constraints of these methods.

Classic image segmentation algorithms are mainly based
on edge detection and deformable model-based techniques.
There have been a lot of research done on medical image

segmentation, but the accuracy and robustness of most
of these algorithms do not extend to pose, contrast and
shape variation of the X-rays usually. And the error from
these methods is not acceptable for the JSW metric as the
joint distance for a normal hip is usually in the range of 11
to 13mm and these methods generates segmentation error
in the range of 4mm or more making it highly unreliable
[11]. Several research has been done in extracting bone
structures from the images where the success rate is
based on whether the bone has been extracted or not
but the segmentation accuracy has not been studied in
detail. Recent research has focused segmentation of bones
in medical images on landmark detection with improved
accuracy and this is the basis of our work.

2.1 Segmentation based on Landmark Detection

Most of the existing methods make assumptions about the
femur pose and are tested on X-ray images with similar
quality. They do not correct the orientation variation
which occurs due to the varying patient postures as
described in [11]. A new approach based on Random
Forest(RF) regression voting in a sliding window was
proposed to handle wide range of image quality and
femur poses [10]. The approach falls into the category
of deformable models although the Random Forest is
an ensemble learning method. The method is based on
using multiple decision trees trained on random subset
of features to predict the position of a point(landmark)
relative to the sampled region. The features can be any
descriptive features of the images, Lindner et al. uses
Haar features. Since multiple decision trees are used, the
prediction of the position of the landmark is a weighted
average from all the trees. This in general is more accurate
than using a single tree and this is the main advantage of
Random Forests.

Lindner et al. presents a two stage process - a global search
followed by a local search. Since both stages are based on
machine learning, they both require training and testing.
In the global search, the aim is to find the global position
and alignment of the femur by predicting the center of a
reference frame as shown in Fig. 2b. The reference frame
is a patch enclosing the 16 and 43 landmark since they
are relatively stable and remain constant with respect to
each other in most femur shapes as shown in Fig. 2a. For
detecting the reference frame center, the training is done
by sampling the Haar features of reference frame in all the
training data and the decision trees are trained on this to
detect the frame center. During testing, multiple random
patches are sampled in the test image and each of these
patches is tested on the decision trees to vote for the frame
center.

After these two landmarks are detected in the global
search, the local search uses Constrained Local Model(CLM)
to detect the rest of the landmarks. In the CLM frame-
work, the aim is to generate a response image or a point
cloud for each landmark independently. For this, the train-
ing is done by sampling random patches around each land-
mark and the Haar features of these patches are trained
on multiple decision trees to predict the displacement of
the patch center to the landmark. In the testing part, the
global search is used for initialization of all the landmarks



(a) (b)
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Fig. 2. RF landmark Detection (a) Manually Annotated Contours
(b) Reference Frame Detection (c) Segmentation Result [10].

and then random patches are sampled around each initial-
ized landmark in the test image. These patch features are
tested on the decision trees to vote for the displacement
and the votes generate a point cloud for each landmark
independent of other landmarks. A statistical shape model
is fitted into the point cloud of all the landmarks to find
the best combination of points and a result is shown in
Fig. 2c. The system reported an accuracy of an overall
mean point-to-curve error of less than 0.9 mm for 99% of
the images from an 839 images of mixed quality making it
the most accurate fully automatic system for segmenting
the proximal femur in AP pelvic radiographs.

In Chen et al. paper, both femur and pelvis segmentation
are studied based on similar concept as the Lindner et al.
method [1]. Both Lindner et al. and Chen et al. work is
based on the assumption that the displacement of a test
patch should be similar to those of training patches with
similar visual features. Chen et al. also uses random subset
of features to predict the position of a landmark relative to
the sampled patch but introduces a multi-scale approach.
The patch features used in this method are Histogram
of Orientated Gradients(HoG). The method does not in-
corporate the decision trees and Lindner et al. method
predicts the position independent of the other landmarks
and other patches, whereas Chen estimate the position
jointly from all the patches together in a data-driven way.
The method also incorporates geometric constraints into
its equations to provide better accuracy. The geometric
constraint is based on the assumption that if two patches
are predicting the same landmark position, then there
should be a relation between the patch centers and the
displacement. This is explained in detail in the Background
section. After landmark detection, the predicted landmark
positions are regularized by a statistical shape model to get
the final segmented shape contour. The sparse shape com-

position is used for the shape regularization which keeps
the local shape information and is shown to have better
performance than the general shape models [1]. Chen et al.
method was evaluated with 100 training images, 188 test
images for proximal femur, 100 training images and 163
test images for pelvis and provided a success rate of 98.4%
with 1.3mm mean error and 98.8% with 2.0mm mean error
for proximal femur and pelvis respectively.

There are many other landmark detection methods as well.
One of the other related works in landmark detection that
is interesting for our work is based on gradient profiling
and shape model [14]. This is not a fully automated seg-
mentation method. It needs 8 initialization points in the
pelvis which is then registered to the mean model of the
SSM. The main step we are interested in is the statisti-
cal appearance model(SAM) generated for the refinement
step. The SAM is similar to gradient profiling. The prin-
ciple behind SAM is that for each landmark, a gradient
profile along the normal of that landmark is computed for
each training image. From the gradient profiles of all the
training images, a statistical model can be constructed for
the gradient profile. Thus, we can generalize the appear-
ance variations of that landmark and use this to refine the
position of the detected landmark position iteratively. In
this paper, instead of taking a 1D gradient profile along the
normal, a rectangular patch along the normal is considered
for generating the gradient profile as shown in Fig. 3. For
each landmark, the mean of the rectangular patch is used
for constructing the SAM. This provides more information
about the gradient at that landmark than considering just
one direction.

Fig. 3. Sampling Regions for Gradient Profiling [14]

Most of the landmark detection methods incorporate the
statistical shape model which is typically used to regularize
the detected landmark positions using global topological
information. There has been a lot of new shape models pro-
posed, most of them inspired by Cootes et al. Active Shape
Model [5]. In this paper, we base our work on Chen et al.
as it works on multiple bones - femur and pelvis - with
competent accuracy. For the refinement step, the general
Active Shape Model followed by 2D gradient profiling is
used and provided accurate results. The shape information
already encoded in Chen et al. method through their use
of multiple landmarks(subshapes) already provide a good
local topological information. The refinement step which



includes ASM followed by gradient profiling in each scale
provides improved accuracy in each scale.

3. BACKGROUND

This section will provide the necessary background knowl-
edge to understand the technical context of this work.
It will briefly explain the ASM from Cootes et al [5].
The section also explains the feature vectors which are
extensively used throughout this work, feature matching
based on geometric constraints from Chen et al [1] and
feature selection for reducing dimensionality [2]. For more
in-depth understanding on these topics, we refer to the
literature.

3.1 Active Shape Models

Active Shape Models is a model based segmentation
method introduced by Cootes and Taylor [5]. The method
is based on the principle that a shape can be represented
by a mean shape and its variations. The mean shape and
the variances constitutes the statistical shape model(SSM)
which contains all the parameters that are needed to define
that shape. The SSM is used to find a shape of the Shape
model in a new image. Initially, a set of landmarks in
the new image are defined and then the shape defined
by these landmarks is deformed according to the SSM to
provide the best fit possible within SSM. The deformation
is based on finding correspondences between the new shape
and the shape defined by different SSM components and
iteratively minimization a cost function for the fit. Thus
the deformation is constrained by the variations defined in
the SSM. The overview of the method is briefly explained
below. A more detailed explanation can be found in the
Cootes et al. paper [5][4].

There are two main phases in ASM - constructing the
SSM and finding a shape of the SSM in a new image. For
constructing the SSM, all the shapes in the training data
have to be aligned to the same shape as a reference which
is the first shape in the training data initially. The simplest
way to do alignment is using Procrustes Analysis [7]. The
reference shape is then updated to the mean shape of the
new aligned shapes. All the shapes are then aligned to the
new reference and this step is repeated until convergence.
After the shapes have been aligned, Principal Component
Analysis(PCA) is applied to find the principal components
or modes that explains as much of the shapes as possible,
the variances in each of these components and the mean
shape. The SSM components are the eigen vectors of the
centered shapes in the training data and the variances are
the eigen values of these shapes. If we apply PCA to the
data, we can approximate any of the training set, x which
is an n-dimensional shape with L points using equation( 1).

x ≈ x̄ + Pb. (1)

where x̄ is the SSM mean shape having point correspon-
dences with x and same dimension, P is the SSM principal
components and the b is the shape parameters correspond-
ing to the SSM components that deforms the shape, x [4].
This is the basis for fitting a new set of landmarks to the
SSM. The steps for the fitting are explained in the Method
section.

3.2 Histogram of Orientated Gradients

Feature vectors are a common terminology that is used
throughout this paper. A feature vector of an image is an
n-dimensional vector of numerical features that represent
the image and distinguishes images that are different for a
given purpose. Histogram of Orientated Gradients(HoG)
is a feature descriptor and is based on the principle that
local patch appearance or the shape can be described by
the gradient intensities and directions [6].

HoG is described for a local patch of the image and is
computed by dividing this patch into cells. Each of the
cells of the patch contains pixels and for each pixel, the
dominant gradient in n-directions are computed and then
the histogram of these gradients are added together for all
pixels in the cells as shown in Fig. 4. The number of bins
in the histogram is the number of gradient orientations
which is known. These histogram bins per each cell is
concatenated together to generate the feature descriptor.
Fig. 4 shows an 8×8 patch with cell size (2,2) and assuming
the number of orientations is 9. Then each cell is 4×4
which gives 16 pixels per cell. This leads to 9 orientated
gradients for each pixel and these are added across one cell,
so there are 18 histogram bins for each cell. Since there are
4 cells and the histograms from each cell is concatenated
together to form a HoG vector of a patch, the feature
vector dimension for the patch is 36. The dimension is
obtained by multiplying the number of orientations and
total number of cells in the patch.

Fig. 4. Sample HoG Descriptors - 4 HoG descriptors, 1 per each
cell(right) is computed from accumulating the gradient magni-
tude and direction of 16 pixels/cell(left)

3.3 Feature Matching with Geometric Constraints

The basis of machine learning methods is to match feature
vectors from a new test image to the training feature
vectors. Once they are matched, use the known parameters
of that matched training patch to predict the unknown test
patch parameters. One of the major contributions of Chen
et al.’s paper [1] was predicting the displacement of the
patch from the landmark, by using geometric constraints
which provide information about inter-patch dependence.
The feature matching based on this geometric constraint
is explained with a simple example.

The basic principle of feature detection is that the dis-
placement of a test patch should be similar to those of
training patches with similar features, i.e. HoG. From the
Fig. 5, this can be seen as the test patch feature f1 is
similar to f̃1 and f̃6 features from the training data, so
the assumption is that displacement vector d̃1 and d̃6 are



Fig. 5. A Simple Scenario of Feature Matching with Geometric Constraints for Landmark Position Prediction [1]

similar or their difference must be minimized, the same for
feature patch 2. f2 is similar to f̃4 and f̃7. In Chen et al.’s
paper, the displacement is also constrained based on the
assumption that if two patches vote for the same landmark
position, ideally the voted position should be similar as
they are voting for the same landmark. The landmark
position, x is found from the patch centre of the test
patch and the displacement predicted from the training
data for that patch. The landmark position predicted by
patch 1 is c1 + d1 and patch 2 is c2 + d2. So, here the
patches with features f1 and f2 are predicting the same
landmark x, therefore the assumption is that c1 + d1 =
c2 + d2. However this is not true, therefore for an optimal
prediction the (c2 − c1) and (d1 − d2) must be minimum.
This is the geometric constraint imposed on the prediction.
Thus, both feature matching and geometric constraint are
considered for predicting the displacements.

3.4 Feature Selection

The feature vectors are an important part of the de-
tection process. Usually these feature vectors are high
dimensional(for example, 72 dimensions if there are 18
orientations as explained for HoG before). This leads to
high processing time during testing as feature matching is
performed during testing. This makes it the highest com-
putational bottle neck. A simple way to optimize this is by
feature selection. The concept behind it is that a subset
of the features is sufficient to represent the entire feature
space. One such dimensionality reduction method is based
on similarity and dissimilarity measure between multiple
feature vector pairs from the training data introduced by
Chen et al [2].

Their method selects features such that the data similar in
the displacement corresponds to similarity in the feature
space [2]. The steps involved in reducing the dimension of
the feature vectors from m to n are as follows:

(1) Create N pairs of feature vectors and the corresponding dis-
placement pairs

(2) A similarity and dissimilarity weight is computed using the
euclidean distance between the displacement pair, the variance
and maximum of these distances.

(3) A similarity and dissimilarity measure in feature space is
computed using the difference between the feature pair, the
similarity and dissimilarity weight.

(4) Randomly select n indices from m
(5) A transform matrix is constructed that selects the features at

the chosen indices.
(6) A score is calculated using the similarity, dissimilarity metric

and the transform matrix for each m
(7) Sort the values of m according to descending order of the score.
(8) The first n indices of the sorted m are the new updated indices.
(9) Repeat from (5) until convergence.

For a more detailed explanation and equations, Chen et
al. paper can be referred [2]. The output of the method
is a transform matrix that selects the n features from the
m-dimensional feature vector.

4. DATA

As training data is a major part of learning algorithms,
this section describes the preprocessing step required to
prepare the data for creating the training data. As the
segmentation is based on landmark detection, the pre-
processed data corresponds to the landmarks along the
edge of femur and pelvis bone. This section describes the
process of obtaining these landmarks from the input which
is DICOM X-ray datasets.

The data for this project has been obtained from the
Reiner de Graaf Hospital at Delft in Netherlands. We
obtained around 400 DICOM files containing the X-ray
image and additional information like pixel spacing, image
size, etc. The X-ray image have high resolution with most
of their size in the range of 2048 × 2500 or more with
pixel spacing around 0.168mm in x and y directions or
0.143mm. Since the images have different spacing, they
have been normalized to have the same spacing which is
0.1mm/pixel in our case. This standardizes the process
for computing the joint space width. Out of the 400 X-ray
images obtained, 114 femur and 72 pelvis including both
left and right bone structures were manually segmented
for the training data.

The accuracy of the result depends on the reliability and
robustness of the training data. The more variation in
the training data, better the detection, as the detector
can detect as many variations as available in the training
data. So, we tried to include as much training data as
possible and as many variation as possible. The basis of
the training data is the manually annotated contours of



femur and pelvis. One of the main drawback of Chen et
al. [1] is that the X-ray images for the training data were
homogeneous with all of them containing full femur and
pelvis. But this is an ideal case. In practice, the femoral
shaft might be too small and top part of pelvis might be
cut off due to the pose variance of the patient. This will
lead to manual segmentation as shown in Fig. 6.

(a) (b)

Fig. 6. Manual Segmentation (a) Missing Top Part of Pelvis (b)
Small Femoral Shaft

This will lead to error in the detection of landmarks at
these parts of the femur and pelvis which will compound
to more error. Therefore, the manual segmentation was
redefined so that it only segments the part that is common
in all X-ray images as shown in Fig. 7.

(a) (b)

Fig. 7. Redefined Manual Segmentation

The segmentations are based on guidelines provided by
experts in hip anatomy. The masks are created using
Adobe Illustrator with the help of gradient images to aid in
better edge visualization and each bone structure is labeled
by distinct primary colors. The contours are extracted
from the mask as shown in Fig. 8b. The contours contain
around 300 to 400 points but these are not landmarks.
Landmarks need to have distinct features like corners
or unique edges. Also, the landmarks of all the training
data have to be aligned with each other. This implies
the nth landmark in one image must correspond to the
same landmark at similar position in all the other images.
Point-set registration is a common solution for finding such
correspondences. The iterative closest point(ICP) based on
least square differences[3] and the Gaussian mixture model
based registration[8] was implemented, but did not yield
satisfactory results. The main reason was that the shapes
varied from X-ray to X-ray ranging from bigger to rounder
femoral head, missing lesser trochanter and for the pelvis,
it ranged from being wide to narrow. These registration
methods could not account for these variations.

(a) (b)

(c) (d)

Fig. 8. Complete Pre-processing Pipeline (a) Create Mask using
Illustrator (b) Extract Contours (c) Femur Landmark Distri-
bution (d) Pelvis Landmark Distribution

Therefore, a tool has been used with which the X-ray
image and the contour extracted from the mask can be
imported and experts can place dominant landmarks in
femur and pelvis manually. Once these landmarks are
placed, a defined number of points are distributed evenly
between these landmarks to generate the complete land-
mark set. There were 8 landmarks identified as significant
for femur and 7 for pelvis. The defined landmarks and their
position is explained in the Appendix A. Considering the
evenly spaced points between these dominant landmarks,
the landmark count for femur is 69 and for pelvis is 95. The
full landmark set for femur and pelvis is shown in Fig. 8.
This landmark set is used to create the training data as
explained in the next section.

5. METHOD

This section explains the stages of the pipeline needed
to get from the DICOM dataset to the final joint space
width(JSW) metric. The pipeline starts with the pre-
processing of the X-ray datasets into landmarks which was
explained in the section 4. These landmarks are then used
to create the training data for the three main stages of the
method - landmark detection, Active Shape Model(ASM)
and gradient profiling. Next, in the testing stage, the
training data is used for detecting the landmarks in femur
and pelvis in the initialization scale and in the other scales,
the landmark detection is followed by refinement using
ASM and gradient profiling to get the final segmentation.
The segmentation of the femur and pelvis is used to define
the JSW. These different stages of the pipeline are shown
in Fig 9 with descriptive images and detailed explanation
of each stage is covered in this section.



Fig. 9. The global pipeline of this work to get from a DICOM X-ray dataset to a JSW metric given a new X-ray image. The corresponding
visual pipeline of each stage is also shown.

5.1 Training

Since all the three main stages of the method - landmark
detection, ASM and gradient profiling - are learning based,
they need training and testing. For all the methods, the
registered landmarks obtained as explained in section
4 and the X-ray image is the basis for creating the
training data. There are 114 femurs and 72 pelvis manually
annotated contours for creating the training data. The
training data needed for these methods are extracted as
explained below.

LANDMARK DETECTION For a given shape, there
are Ñ number of landmarks. If the shape is complex, it
is divided into subshapes where each subshape contains
L landmarks as shown in Fig 10a where the femur shape
with Ñ landmarks is divided into several subshapes(each
subshape is denoted by a color) containing L landmarks.
The number of subshapes for a given shape is given by
Ñ/L. The landmark detection is done independently for
each subshape. The principle behind landmark detection is
to approximate the position of a landmark in a given sub-
shape based on the image features of the area surrounding
that subshape. The image features are usually defined for
a patch extracted from the image and the area is defined
by two parameters - patch size and sampling radius.

The patch size defines the dimension of the patch which
can be square or rectangular and sampling radius defines

how far the patches are sampled from the subshape as
shown in Fig 10d where a patch is sampled for a sub-
shape at (cx, cy) where d<sampling radius. The image
features used here are multilevel Histogram of Orientated
Gradients(HoG) as per Chen et al. paper. A multilevel
HoG of a patch is obtained by computing the HoG of the
patch at different cell sizes and concatenating the obtained
feature vectors. Since the concatenated feature vector is
high dimensional, the feature selection method explained
in section 3.4 is used to compute a transform matrix to
reduce the dimension. The generation of training data for
each subshape and also the multiscale system are explained
below.

Per Subshape

The HoG feature vectors for patches are sampled for a
subshape, the patch centres of these patches and the
displacements of the patch centre to the landmarks in
the subshape constitute the training data for landmark
detection. This is done for all subshapes for a given shape
in an X-ray image and for all X-ray images in the dataset.
The overview of the steps involved in creating training
data for a subshape with L landmarks of a shape with N
landmarks in an X-ray image is as follows:

(1) Randomly sample k patches around the subshape with the
given patch size and sampling radius

(2) Find displacement in x and y direction from each patch center
to the L landmarks in the subshape



(a) (b) (c) (d)

Fig. 10. Training Pipeline for a Subshape (a) A Subshape with L Landmarks (b) Sampling Patches around the Subshape (c) Computing
Displacement from Patch Center to Each Landmark in the Subshape (d) Training Data for Each Patch and for a Given Landmark in
the Subshape - Feature Vector f, Patch Centre (cx, cy) and Displacement Vector (dx, dy)

(3) Extract multilevel HoG feature vectors for all the sampled
patches

(4) The patch centers, displacements and feature vectors for all the
sampled patches for a given subshape is stored.

The detailed visual explanation of generating the training
data for an X-ray image for a given subshape is shown
in Fig 10. This is done for all the X-ray images with
manually annotated landmarks for a given subshape. The
training data of the k patches for an X-ray image for a
given subshape in matrix form is as follows:

D̃ =


d̃x11 d̃x12 . . . d̃x1k
d̃y11 d̃y12 . . . d̃y1k

...
...

. . .
...

d̃xL1 d̃xL2 . . . d̃xLk

d̃yL1 d̃yL2 . . . d̃yLk

 F̃ =


f̃11 f̃12 . . . f̃1k
f̃21 f̃22 . . . f̃2k

...
...

. . .
...

f̃m1 f̃m2 . . . f̃mk


C̃ =

[
c̃x1 c̃x2 . . . c̃xk
c̃y1 c̃y2 . . . c̃yk

]

D̃ is the displacement matrix where d̃x and d̃y are the
displacement in the x and y direction for one landmark
and D̃ ∈ R2L×k). F̃ is the feature vector matrix where m is
the dimension of a HoG feature vectors and F̃ ∈ Rm×k. C̃
is the patch centres matrix where c̃x and c̃y are the patch
centre position in the x and y position for one patch and
C̃ ∈ R2×k. As the feature vectors are high dimensional,
dimensionality reduction is done to reduce the feature
vector dimension from m to n are computed as follows:

(1) Accumulate HoG feature vectors for all X-ray images for a
given subshape

(2) Compute tranform matrix using feature selection method ex-
plained in section 3.4 for dimensionality reduction[2]

(3) Compute the dimension reduced feature vector by multiplying
the feature vector with the computed transform matrix. This
is done for all X-ray images.

The transform matrix and the dimension reduced feature
vectors are also included in the training data. The new
feature vectors are stored as matrix F̃ ∈ Rn×k. All the

steps mentioned above are repeated for all subshapes of a
given shape to obtain the complete training dataset.

Multiscale System

The method proposed is multiscale with the whole pipeline
being executed N times sequentially where the output of
the first scale is the input of the second. The first scale
is the initialization scale which aims at finding the global
position of the bone in the X-ray image. For the other N-
1 scales, the training data for the landmark detection is
obtained as explained above.

For all the N scales, the patch size and the sampling radius
in pixels remains the same and only the resolution differs.
Thus, the information contained in each patch becomes
more detailed as the resolution increases. Fig 11 shows an
X-ray images with increasing resolution and a patch size
of 40×40 is shown for all the scales. The lower scale covers
more area of the image but contains less detail. Thus, the
training data for landmark detection is created for N scales
with the patch size and sampling radius remains the same.

Fig. 11. Same Patch Size in 2%, 12%, 25% and 100% Resolution of
the X-ray Image with the Same Patch Centre



In the initialization scale or the first scale, the concept
of subshape is not used. A patch stores the displacement
to all the landmarks in the shape thus L = Ñ where L is
the number of landmarks in the subshape/subshape length

and Ñ is the number of landmarks in the shape. Also, in
the initial scale, the patches are sampled all around the
X-ray image and not around the landmarks of the shape.
Apart from the patch sampling and the subshape, the
training data is created the same way as for other scales.

REFINEMENT The refinement step consists of 2 stages
- ASM and gradient profiling. This step is mainly for
regularizing the shape approximated by the detected land-
marks. The refinement step is also multiscale and uses the
same N number of scales as for the landmark detection.
However, there is no refinement step in the initial scale as
the goal of this scale is approximation rather than preci-
sion and the edges are not distinctive at that resolution.
So refinement step is skipped for this scale. In the next
section, creating the training data for ASM and gradient
profiling is explained.

Active Shape Models

The principle behind ASM has been explained in section
3.1. The data needed for creating the training data is the
set of registered landmarks of femur and pelvis. The steps
for creating the training data for the ASM are as follows:

• Align the shapes to the first shape in the dataset
• Generate the mean shape from the aligned dataset
• Align the shapes to the mean shape and generate the new mean

shape from the newly aligned shapes
• Generate the eigen vectors and eigen values of the aligned

shapes which is the SSM components and SSM standard
deviations respectively.

(a) (b)

(c) (d)

Fig. 12. ASM Training Data - Blue Line Indicates the Mean
Shape (a) Femur SSM Mean Shape with Aligned Shapes (b)
Pelvis SSM Mean Shape with Aligned Shapes (c) Femur SSM
Component 1 - Explains 31.27% Shape Variance (d) Femur
SSM Component 2 - Explains 21.78% Shape Variance

The training data for ASM is the same for all the scales.
However, an SSM model for the femur and pelvis has to be
created separately. Fig 12 shows the femur and pelvis SSM
mean shapes and also show the first 2 SSM components
of femur. This is later used for ASM fitting in the testing
stage.

Gradient Profiling

The 2D gradient profiling is based on the assumption
that each landmark is on a distinct edge of the whole
contour. The edge is usually defined using gradients and
there are different methods for computing 2D gradient of
an image. Some of methods that have been tried are sobel
gradient, morphological gradient with structuring element
and gradient magnitude using Gaussian derivative. The
Gaussian derivative gradient was found to be less sensitive
to noise and edges were visually better as shown in Fig 13.
Hence this was used for computing the gradients of the
X-ray image.

(a) (b)

Fig. 13. Gradient Image (a) Original Image (b) Gradient Magnitude
using Gaussian Derivative

Gradient can be 1D or 2D and usually in gradient profiling,
gradient is considered along a single direction, mainly the
normal as shown in Fig 14 [5]. However, since the normal
depends on the neighboring points and the curvature
created by these points, for a single landmark, the normal
direction differs a lot which leads to incorrect predictions.
Xie et al. refined this step by considering more than one
direction - a rectangular patch along the normal [14].
However, intuitively it seemed that the more direction
information there is, the better the prediction. So, in
our method, we considers all the directions around the
landmark which is equivalent to considering a patch with
the landmark as the patch centre as shown in Fig 14.
This is similar to template matching - matching the edge
containing the landmark in the test image to the edges in
the training image for the same landmark.

For each X-ray image, the gradient using the Gaussian
derivative is estimated. From the gradient image, a patch
is extracted with the patch size according to the scale
for each landmark as shown in Fig 14b. This patch size
differs from the patch size for landmark detection. The
standard deviation of the Gaussian filter, σ for finding the
gradients differs for each scale. For each landmark, the
gradient profiles are created by extracting the patch from
the gradient image around that landmark in all the X-
ray images. These gradient patches constitute the training
data for the gradient profiling. The patches are extracted



(a) (b) (c) (d)

Fig. 15. Testing Pipeline for Initialization Scale (a) Sampling Patches around the Whole Image (b) Positions Voted by all the Test Patches
for the Landmarks in the Shape (c) Response Image for Each Landmark with the High Density Value Highlighted (d) Landmark
Detection Result for Initialization Scale

(a) (b)

Fig. 14. 1D and 2D Gradient Profiling (a) Gradient Profiles along
the Normal of the Landmark (b) 2D Gradient Profiles with the
Landmark as the Centre

for all landmarks in all bone structures(femur and pelvis)
and all scales.

5.2 Testing

This section explains the segmentation of femur and pelvis
given a new X-ray image using the training data. Since it
is a multiscale system with the initial scale for approxima-
tion, this section is divided according to that. In the initial
scale, there is no refinement step as explained in section
5.1. The overview of the testing step is as follows:

(1) Sample randomly all around the test image scaled and approx-
imate the position of the bone structure using landmark detec-
tion for the initial scale. The result is the detected landmarks.

(2) Upsample the resulting landmarks from the previous scale so
as to resize them to the next scale.

(3) Use the upsampled landmarks as the intialization for the next
scale.

(4) Sample randomly around the subshapes of the upsampled
landmarks and do the landmark detection.

(5) Scale the SSM mean shape according to the scale and fit this
SSM through the landmarks detected.

(6) Update the fitted landmarks by snapping to the gradients using
gradient profiling. The result is the refined landmarks.

(7) Repeat from (2) for all scales in the pipeline.

These steps are explained in detail in this section.

INITIALIZATION As explained in section 5.1, there is
only landmark detection in the initial scale. The training

data for landmark detection comprises of patch feature
vectors, patch centres and displacement vectors. Given
a new X-ray image, patches are sampled randomly all
around the image. The only unknown here is the displace-
ment vectors as the landmarks in the bone structure are
unknown. Thus the aim of the landmark detection is to
find the landmark position given the training data and
the feature vectors and patch centres from the test X-ray
image.

The test data have to be constructed into matrices the
same way as explained in the section 5.1. Given a new X-
ray image, the image is rescaled to the initial scale and K
patches are sampled randomly all around the test image
as shown in Fig 15a. Then the multilevel HoG vectors are
computed for the patches. The transform matrix for the
given scale and the given subshape from the training data
is used to reduce the feature vector dimension from m to
n. This feature vectors and patch centres are the known
data for the test X-ray image and can be formulated into
matrix F similar to F̃ and C similar to C̃ respectively
where F ∈ Rn×K and C ∈ R2×K .

Since the training data F̃, C̃ and D̃ is saved per X-
ray image, compound matrices which consists of all the
X-ray images have to be created for the training data.
Given that K̃ is the total number of training patches and
the number of training images are known, equal number
of random patches are selected from the training data
of each image to construct the new compound matrix

F̃ ∈ Rn×K̃ , C̃ ∈ R2×K̃ and D̃ ∈ R2L×K̃ .

These matrices are used to predict the displacement ma-
trix of the test patches, D using the equation (2) from
Chen et al. work which incorporates the feature matching
explained in section 3.3 and the derivation is explained in
Chen et al. paper [1].

D = −GA−1 (2)

The D corresponds to the displacement from the test
patch centres to the unknown landmarks and D ∈ R2L×K

where L is the subshape length. For the initialization
scale, subshape length is the number of landmarks in the
femur and pelvis shape. The computation of G and A is
explained in detail in the Appendix B.



The A corresponds to the patch feature matching ex-
plained in section 3.3. For patch matching, a compound
matrix with feature vectors of training and test patches
concatenated together is obtained as follows:

F̂ = [F̃ F] =


f̃11 . . . f̃1K̃ f11 . . . f1K
f̃21 . . . f̃2K̃ f21 . . . f2K

...
. . .

...
...

. . .
...

f̃n1 . . . f̃nK̃ fn1 . . . fnK


where F̂ ∈ Rn×(K̃+K), n is the reduced feature dimension,
K̃ is the total number of training data patches and K is
the number of test patches.

Matrix A have two main variables, M and α that relates
to the matching. The F̂ matrix is used for finding a
match where one column corresponds to a patch feature. A
match for a single patch can be a train or test patch. The
matching is done by first computing the affinity matrix
S which is obtained by calculating s nearest neighbor for
each patch. Therefore, for each patch, s nearest neighbor in
feature proximity is found based on the minimum L2 norm
between the corresponding feature vectors. For example,
for finding a match for the ith patch, the L2 distance
between the ith column and all other columns in F̂ is
computed and the s least distances in these is the best
matches for the ith patch. Si,j is set to 1 for the ith

patch if the jth is one of its s nearest neighbor for S

∈R(K̃+K)×(K̃+K) where K̃ is the total number of training
patches and K is the number of test patches. The M
matrix is computed by first estimating the Laplacian of
the S matrix. Then the resultant matrix is normalized by

dividing it by its trace to obtain M ∈R(K̃+K)×(K̃+K). M
is the feature similarity measure and α corresponds to the
weight of this measure and is set arbitrarily between 0 and
1.

The G matrix enforces the geometric constraint explained
in section 3.3. According to the geometric constraint illus-
trated in the Fig 16, for two patches i and j, the assumption
is that both the patches votes the same landmark position,
x as shown in Fig 16a. But reality is similar to Fig 16b,
when both the patch votes for the same landmark position
x, the predictions are different. So, the constraint is to
minimize the distance d so that the predictions are similar
as possible. The d1i in Fig 16 corresponds to the dx1i and
dy1i and the geometric constraint can be restructured from
dx1i− dx1j = dx2i− dx2j = . . . = dxLi− dxLj = cxj − cxi
as dx = (cxi + dxki) - (cxj + dxkj), where k ∈ [1,L] and
L is the number of landmarks in the subshape. This is the
same for the displacement and centre in the y direction as
well. The aim is to minimize the dx and dy.

Matrix G have two main variables, C̄ and β that relates
to the geometric constraint. Ideally all combination of
patches that votes for the same landmark should be
considered but due to efficiency reasons, only neighboring
pair of patches are considered, i.e, (i,j) are the patch pairs,
they have values such as (1,2), (2,3), ..., (K-1,K) where K is
the number of test patches. Thus C̄ is the matrix obtained
by vertically replicating L times the difference between the

(a) (b)

Fig. 16. Geometric Constraint for Feature Matching (a) Assump-
tion: Both patches predict the same position for landmark x (b)
Reality: Both patch predicts different positions and the aim is
to reduce d, the difference between the predicted positions

ith and jth patch centre difference. This can be written in
matrix form as follows:

C̄ = [c2 − c1, c3 − c2, . . . , cK−1 − cK]

where cj − ci =


cx1j − cx1i
cy1j − cy1i

...
cxLj − cxLi
cyLj − cyLi

 and C̄ ∈R2L×(K−1)

Thus the C̄ matrix is obtained which is used to estimate
the G matrix and the β is the weight for the geometric
constraint and is set arbitrarily between 0 and 1 as well.
However the matching weight,α is always set higher than
the weight for the geometric constraint, > β.

The complete formulation of the equation( 2) is given in
Appendix B and is used to obtain the predicted displace-
ment D. After the D matrix is computed, each test patch
votes for the landmark position where each column of D
corresponds to a test patch. The votes for the landmark are
computed by using the formula C+D which corresponds
to the patch centre of the test patches vertically replicated
L times added to the predicted displacements. Each patch
gives a landmark position. Thus for each landmark, there
are K predicted positions as shown in Fig 15b. To estimate
the true position of the landmark from this, kernel density
estimation(KDE) of the positions is computed for each
landmark giving a response image. The response images
of all the landmarks are shown in Fig 15c. The position
with the highest density in the response image is the
estimated landmark. The high density point of all the
response images forms the segmented shape as shown in
Fig 15d. This is the result of the initialization scale.

OTHER SCALES The initialization scale only provides
an approximate position of the bone structure in the X-ray
image. For a more accurate landmark detection, the test
patches have to be sampled nearer to the bone and hence
the system is multiscale where the accuracy increases for
different scales. After the initialization scale, the landmark
detection is done by sampling in a smaller region, i.e.
around the subshapes with L landmarks and then the
detected landmarks are refined using ASM and gradient



profiling. The pipeline is same for all scales other than
the initial scale and is explained below. The sequential
results for each scale shows increasing accuracy as shown
in Fig 20.

Landmark Detection

The concept of landmark detection for the new scale
works similar to that of the initialization scale. The only
difference is that instead of randomly sampling all around
the test X-ray image, the patches are sampled around
subshapes similar to the sampling done in the training
data as shown in Fig 10b. In the initialization scale, the
subshape length was the number of landmarks in the bone
shape whereas here it is L. The subshape is obtained
from the landmarks detected from the previous scale. The
overview of the steps for landmark detection for scales
other than the initial scale is as follows:

(1) Upsample the resulting landmarks from the previous scale so as
to resize them to the next scale by multiplying the landmarks
by (newscalefactor/previousscalefactor).

(2) Extract a subshape containing L landmarks from the upsam-
pled shape.

(3) For a given subshape, randomly sample patches around the
subshape and compute the multilevel HoG feature vectors for
these patches.

(4) Compute the reduced feature vectors using the transform
matrix for the given scale and the given subshape.

(5) Estimate the test displacement matrix, D and the updated
landmarks in the subshape for the test image as explained in
the Initialization section before using the training data.

(6) Repeat from (3) for all subshapes and estimates the landmarks
in the shape.

The result are the detected landmarks for that scale.

Active Shape Models

An initial shape is obtained from the landmark detection
and this shape is regularized using the ASM. Given a
new shape, Y for testing and the SSM model of the bone
which is obtained from the training part, the aim of ASM
fitting is to find the model points, x that best fit the
detected landmarks, Y to the SSM mean shape, x̄ based
on correspondences where x , Y and x̄ ∈ R2×L. The steps
for ASM fitting are as follows:

(1) Rescale the SSM mean shape to the corresponding scale.
(2) Initialize the shape parameter, b to 0, implies model points =

mean shape, i.e. x = x̄
(3) Generate the model points positions using x =x̄ + Pb, where

P is the SSM principal components.
(4) Find the pose parameters transform which best align the model

points x to the new set of landmarks Y using Procrustes
Analysis [7].

(5) Project Y into the model co-ordinate frame, Y’ by using the
inverse transform from (4)

(6) Update the shape parameters, b to match to Y’ by finding
least squared solution of Ax’ = B, where A is P, x’ is b and
B = Y’ - x̄

(7) Repeat from (3) until convergence

This provides the new fitted shape for that scale as shown
in Fig 17. The concept behind ASM is briefly explained in
section 3.1. For more detailed explanation, see Cootes et
al. paper [5].

Gradient Profiling

Fig. 17. Active Shape Model Fitting Result

After the shape has been regularized by the ASM, the
gradient profiling is used to snap the points to the gra-
dients. This is done by taking a patch from the gradient
image with the patch centre as the landmark similar to
the gradient profiling training and using a windowing ap-
proach to do template matching. The template matching
is based on fast normalized cross-correlation [9]. A match
for the training patch for that landmark is found by win-
dowing through the test patch and computing a similarity
measure. The highest similarity measure provides the best
match for that training patch. The centre of the sub-patch
in the test patch that provides the highest similarity is
the new updated landmark position voted by that training
patch.

Fig. 18. Gradient Profiling Testing Pipeline for a Given Landmark
with a Sample Train Patch

The overview of extracting the gradient patch for a given
landmark and the result of template matching of the test
patch with a sample train patch for the same landmark
is shown in Fig 18. The matching is done for all the
training patches available for that landmark and a sim-
ilarity measure is computed for each training patch. Thus
each training patch votes for a position and a weight is
computed as well. A weighted sum of these positions is
used to predict the new landmark position. The whole
process is repeated for all the landmarks for that scale.
The test patch size differs for different scale. The updated
landmarks are the final result for the given scale and this
is the initialization for the next scale if there is any. The
whole pipeline of training and testing are done for femur
and pelvis independently.



5.3 Joint Space Width Metric

After the femur and pelvis has been segmented and refined
through all scales, the JSW metric is extracted by consid-
ering the necessary subshapes from femur which contains
the joint space between femur and acetabular cup. Then,
for each landmark in the subshape, the closest point in the
pelvis contour that has been segmented is found and the
distance to that point is considered as the joint distance
at that landmark. Thus, depending on the number of
landmarks in the subshapes, l distances are found as shown
in Fig 25. The individual distances of the landmarks to the
contour, the mean distance and the median distance has
been evaluated for the JSW metric.

Fig. 19. Joint Space Width Distances

6. IMPLEMENTATION

The parameters needed for the implementation of the
method is explained in this section. The method proposed
is multiscale where the number of scales, N considered in
this method is 6. The scales used in this paper are 2%,
5%, 12%, 25%, 50% and 100% of the X-ray resolution.
The number of landmarks, Ñ in femur shape is 69 and in
pelvis shape is 95.

Some of the important parameters chosen for each scale
in the training and testing part of landmark detection
is shown in table 1. The subshape length, L used in
this paper is 4. Since L=4 and Ñ=69 for femur, there
are 17 subshapes and for pelvis Ñ=95, hence number of
subshapes is 24.

Table 1. Landmark Detection Parameters

Scale Patch
Size

Radius Number of
Subshapes

Subshapes

Initial
scale

40 Whole
Image

1 Femur:(0,69)
Pelvis:(0,95)

Other
scales

40 30 Femur:17
Pelvis:24

Femur:(0,4),(4,8),..
Pelvis:(0, 4),(4,8),..

A major part of landmark detection is the multilevel HoG
vectors which have various parameters as explained in the
section 3.2. Since it is multilevel, we use 2 levels with cell
size (2,2) and (4,4) with 18 orientations which is applied
on a 40×40 patch giving 72 and 288 dimensional feature
vectors respectively as explained in section 5.1. Thus, the

HoG dimension, m of a single patch is 360. To reduce
this high dimensional vector, the feature selection method
explained in the section 3.4 is used to compute a transform
matrix which reduce the dimension from 360 to 100(n).

Some of the other parameters in the landmark detection
is the number of train patches per image, k which is 200
in this paper, the total number of training patches during
testing, K̃ is 2000 and the number of test patches, K is
500. For feature matching, s nearest neighbors are used. In
this paper, s is 5. Other parameters for feature matching
is α and β which is set to 0.05 and 0.005 respectively as
default. The values are arbitrary.

The training and testing patch size for the 2D gradient
profiling step for all scales except the initial scale are given
in the table 2. The initial scale is excluded as there is no
refinement step at this scale. The standard deviation of the
Gaussian filter, σ for finding the gradients for each scale
is also given in the table 2.

Table 2. Gradient Profiling Parameters

Parameter Scale
0.05

Scale
0.12

Scale
0.25

Scale
0.5

Scale
1.0

Training
Patch Size

10 20 30 40 60

Testing
Patch Size

20 40 60 80 120

σx = σy = σ 0.5 0.5 1 2 4

For the JSW metric, 3 subshapes from femur are consid-
ered which contains 12 landmarks in total. Thus, l is 12
as there are 12 individual distances for the JSW metric.

7. RESULTS AND DISCUSSION

The datasets consists of 114 femur and 72 pelvis with
manual annotations. These are used as the ground truth
for the evaluation throughout this work. To improve the
evaluation generalization of our approach, we use leave
one out testing strategy. Using leave one out strategy,
the entire dataset except the test X-ray is used for the
training data. For estimating the joint space width(JSW),
the ground truth JSW for the 72 femur and pelvis set
are used. The image spacing for all X-rays is fixed at
0.1mm/pixel and this is used for computing the JSW
metric.

The complete pipeline result for a single scan has been
shown in Fig. 20. It can be seen that the results improves
in each scale. There is a big offset in the first scale but
since this is an intialization scale, this is to be expected.
From the final result, Fig. 20f, it can be seen that there
are some error according to the ground truth but the
algorithm actually follows the gradients and is accurate.
More importantly, the landmarks near the joint space show
negligible error.

In this section, the time taken for training and testing
has been evaluated. The error rate for the segmentation of
femur and pelvis and the JSW metric has been assessed as
well. Some of the main parameters in the landmark detec-
tion has been studied and evaluated for their performance.



(a) (b) (c)

(d) (e) (f)

Fig. 20. Complete Pipeline Results (a) Scale 2% Results (b) Scale 5% Results (c) Scale 12% Results (d) Scale 25% Results (e) Scale 50%
Results (f) Scale 100% Results

7.1 Computation Time

The testing and training is performed on a system with a
Intel Core i5 2.80 Ghz quad-core processor, 8GB internal
memory and NVIDIA GeForce GTS 250 graphics card
with 256MB GDDR3 graphics memory and 128 CUDA
cores. The performance is tested for the main component
of the pipeline - the training and test part.

The time taken for creating the training data depends
on number of training patches per subshape per scale. In
our paper, we use 200 training patches for each subshape
for each X-ray image and for each scale. The training
also includes the speed for creating the training data for
gradient profiling training. The SSM training data time
is negligible compared to the others, therefore it is not
considered. The testing speed is evaluated per scale for a
X-ray image. The number of test patches per image for
each scale and per subshape is 500. From the second scale,
the gradient profiling and ASM fitting time is included in
this time as well. The computation time for both training
and testing of femur is given in table 3 and for pelvis in
table 4. The training time is for the whole dataset and
the testing time is the average time for each X-ray image.
Femur has 17 subshapes and pelvis has 24 subshapes
except for the first scale 0.02.

The time taken to create the complete training data is
approximately 3 hours 30 minutes. Since the training data
is generic, adding a new X-ray does not require re-creating

Table 3. Computation Time in Minutes: Femur

Step Scale
0.02

Scale
0.05

Scale
0.12

Scale
0.25

Scale
0.5

Scale
1.0

Training 0.85 15 15.2 17.6 25 57.3
Testing 0.09 1.5 1.6 1.7 2 2.8

Table 4. Computation Time in Minutes: Pelvis

Step Scale
0.02

Scale
0.05

Scale
0.12

Scale
0.25

Scale
0.5

Scale
1.0

Training 0.45 10.8 11.2 12.6 16.5 35.2
Testing 0.08 1.9 2 2.1 2.2 2.7

the entire training data once again. The addition of new
data improves the accuracy of the system and without too
much overhead as its generic. The average computation
time taken for processing a new scan, i.e. femur and pelvis
is approximately 21 minutes for one side(left/right).

7.2 Error Rate

The main error metric used in this paper is point-to-
curve distance. The curve is the ground truth which is
the manually segmented landmarks of the bone and the
point is the detected landmark in the case of segmentation.
For the JSW metric, the absolute error between the 12
distances in the ground truth and distances obtained from
the corresponding 12 detected landmarks is considered as
the error metric. Both the segmentation error and JSW



error is evaluated on the 100% scale. The error is calculated
according to the spacing 0.1mm/pixel.

FEMUR SEGMENTATION The femur segmentation
error rate is shown in Fig 21 which is obtained by con-
sidering the error distribution for each subshape for 114
femurs assessed with leave-one out validation . There are
17 subshapes for femur as shown in the Fig 21. Thus, for
each subshape, the closest distance between the detected
landmarks to the ground truth contour is computed as
the error. From the Fig 21, it can be seen that the mean
error is 0.946mm. However, the area around the femoral
head which is mainly interesting here (subshape 8-10) have
segmentation error approximately in the range of 0.2mm
which is relatively negligible.

Fig. 21. Femur Segmentation Error Rate Per Subshape

From the Fig 21, it can be seen that highest error are for
subshape 1 and 7 for the femur. The error at subshape
1 as shown in Fig 22a is mainly because in some of
the X-ray images, the trocanter minor is invisible due to
patient pose variation. There is not enough similar X-rays
where trocanter minor is invisible in the training data,
hence this couldn’t be generalized enough to be detected.
As for subshape 7 error, this is mainly due to complex
shape of femur and as shown in Fig 22b, the femoral
head in this X-ray image is a bit less rounder than the
other femurs. However in both the cases in Fig 22, the
area of the femur near the acetabular cup have negligible
segmentation error.

PELVIS SEGMENTATION The pelvis segmentation
error is computed similar to the femur error by considering
the distance between the detected landmark points to the
ground truth curve. The error is assessed per subshape
as well. There are 24 subshapes for pelvis and the error
rate for all the subshapes are shown in Fig 23. The mean
segmentation error is approximately 1.09mm. The error
around the subshapes 2 to 5 are negligibly less which is
the acetabular cup area where the JSW is computed. We

(a) (b)

Fig. 22. Incorrect Femur Segmentation Results (a) Subshape 1
Error (b) Subshape 7 Error

can intuitively assume that the accuracy can be further
increased for pelvis by having more training data.

Fig. 23. Pelvis Segmentation Error Rate Per Subshape

The highest error in the pelvis segmentation is around the
subshape 1, 16 and 17 according to Fig 23. Some results
which shows these error are shown in Fig 24 and the error
is mainly due to shape variation of pelvis. Some pelvises
are wider than others. In Fig 24b, the pelvis is not as
wide as the usual pelvis and hence shows an around the
subshape 16. The training data for pelvis is not rich enough
to detect all the minute changes. However the area of the
pelvis near the acetabular cup has negligible segmentation
error which is the joint space area.

JOINT SPACE WIDTH The error rate of the femur and
pelvis segmentation near the acetabular cup is negligible.
This is mainly because the landmarks are distributed in
such a way that there are more landmarks around the area
we are interested in, in this case the acetabular cup, so
that accuracy near that area is more. The joint space is
the area near the femur and acetabular cup and the joint
space width(JSW) can be measured in many ways.

One of the metric for joint space is the landmark distances
computed as explained in section 5.3. The distance is
computed as the distance from the landmarks in femur to



(a) (b)

Fig. 24. Incorrect Pelvis Segmentation Results (a) Subshape 1 Error
(b) Subshape 16 Error

the pelvis contour. The femur landmarks are considered as
the femur segmentation error rate for the subshapes near
the acetabular cup area is less than the error rate of the
pelvis subshape around that area. The femur subshapes
considered for JSW are subshape 8,9 and 10 and each
of them containing 4 landmarks and hence there are
12 distances. The ground truth for this JSW metric is
computed from the manually annotated femur and pelvis
the same way as shown in Fig 25. The result of the
landmark distance as the JSW metric is shown in Fig 25.

Fig. 25. Landmark Distance as JSW Metric - Ground Truth JSW
Metric and JSW Metric from the Segmenation Result

The error rate for these 12 distances is calculated by taking
the absolute difference of the landmark distance obtained
from the segmentation result and the landmark distance
from the ground truth landmarks. An example of the
landmark distance is shown in Fig 25 and the absolute

difference between each of the distance is the error. The
error rate for the 12 distances is given in Fig 26.

Fig. 26. JSW Error Rate - Landmark Distances as Metric

From the Fig 26, it can be seen that the distance 1 and dis-
tance 12 have the highest error. However, these landmarks
do not define the joint space. They were considered as they
were a part of the subshape that contains the landmarks
in the joint space. The mean error of these distances is
approximately 1.1mm which is reduced if the distances 1,
2, 11 and 12 are not considered as they are not part of the
joint space.

Some of the other metrics that can be considered as
the JSW metric are the mean of these 12 distances,
their median, minimum and maximum. The maximum
of these 12 landmark distances does not provide much
information about the joint space as they are tainted by
the 4 outlier distances. However, the mean and minimum
of these distances provides an interesting insight into the
joint space. As the aim of the JSW is to check if there
is joint space narrowing, if the minimum distance JSW
metric is found for both left and right hip, it can provide
insight into which side is affected depending on how big
the difference is between the metric of both sides. This
is because osteoarthritis(OA) is usually only on one side
of the body. So, if one side has a relatively smaller JSW
metric than the other, this could indicate joint space
narrowing based on the assumption that healthy hip have
approximately symmetrical joint space. The error rate for
these JSW metric are shown in Fig 27.

The mean error for these JSW metrics is 1.1mm for mean
measure, 0.8mm for median, 1.2mm for minimum and
3.3mm for maximum. Median metric has the smallest error
as this defines the actual joint space which is the middle
distances of the 12 and is more accurate as the outlier
distances are not that relevant for this metric.



Fig. 27. JSW Error Rate - Other Metrics

7.3 Parameter Evaluation

There is lot of parameters that needs to be tuned for
the complete pipeline. Most of the parameters were set
based on qualitative performance. This is because there
are too many combinations to be considered between
the parameters and as creating the training data is time
consuming, it was not plausible to estimate the best
combination of parameters. Some of the major parameters
for the landmark detection is evaluated and discussed to
inspect the parameter sensitivity.

NUMBER OF TRAINING PATCHES The total num-
ber of training patches considered for the testing affects
the system mainly for the computation time. The assump-
tion was that more the training data, more accurate the
system would be. Therefore, this parameter was evaluated
to observe if the system is sensitive to the increase in the
number of images. Fig 28 shows the result of the leave
one out validation with varying number of patches. The
minimum number of patches possible is 113 for femur as
each image contributes to the training data and there are
114 manually annotated femurs.

Fig. 28. Parameter Sensitivity - Number of Training Patches

It can be seen that the segmentation accuracy increases
as the scale increases. However regarding the sensitivity to
the number of patches, no solid conclusion could be drawn.

This is because even though the point-to-curve error
decreases as the number of patches increases, it increases
when the number of patches is 3000 for some scales.
However, for the scale 1.0, the error remains constant
irrespective of the number of patches. As the JSW is
extracted in this scale, this is the relevant scale. Therefore,
the number of training patches is set to 2000 in this work
as it shows good performance in all scales.

NUMBER OF SUBSHAPES Subshape length plays a
major role in the accuracy as well as the computation
speed of the algorithm. The detection of a landmark in
the subshape is affected by the other landmarks in the
same subshape. Therefore, landmark detection accuracy
decreases if the number of landmarks in the subshape
increases. This is because a single patch votes for all
the landmarks in the subshape which is erroneous as the
shape is too complex to be generalized by a single patch.
Therefore, if the number of landmarks in the subshape
decreases, the accuracy increases. But smaller subshapes
means more processing time, therefore, a balance have to
be made between both and a subshape with 4 landmarks
was considered ideal in our case.

PATCH SIZE & SAMPLING RADIUS Another main
parameter for the landmark detection is the patch size
and the sampling radius. The patch size affects the com-
putation time and the accuracy of the segmentation and
the sampling radius affects the accuracy. The sensitivity
of each of these parameters for the landmark detection is
evaluated here. The refinement step was not included in
the result while accessing this parameter.

The error rate for different patch size for all scales is
shown in Fig 29. It can be seen that the error decreases
when the patch size increases. However, if the patch size
increases, the computation time increases as it takes longer
to compute the HoG of the patch. And the declining rate
of the error from using patch size 40 to 60 is lesser than
from 30 to 40. Hence, the patch size used in this work is
40 × 40 pixels as the computation time is acceptable for
this patch size.

Fig. 29. Parameter Sensitivity - Patch Size

From Fig 30, it can be seen that the error is directly
proportional to the sampling radius. So, the accuracy



increases when the sampling radius is low. However, if the
sampling radius is too low, it gives an incorrect landmark
prediction especially if the initialization result has a huge
error. This is because the system can only correct the
landmark upto the sampling radius. So, if the prediction
from the initialization scale has an error that is more
than the sampling radius, then the landmark detection
fails especially without the refinement step. Therefore a
sampling radius of 30pixels is used in this work.

Fig. 30. Parameter Sensitivity - Random Sampling

These are the parameters that have been evaluated to
investigate their sensitivity to the landmark detection.

8. CONCLUSION AND FUTURE WORK

In this work, we have presented a multiscale supervised
learning method for measuring the joint space in X-ray im-
ages. This technique uses a data driven strategy proposed
by Chen et al. to estimate the image displacements for
landmark detection [1]. The multiscale approach increases
the accuracy of detection. The segmentation accuracy was
further enhanced using the unique refinement step intro-
duced in this work which includes a classic ASM and 2D
gradient profiling.

A quantitative performance evaluation showed that this
technique provides an accurate segmentation of both femur
and pelvis with a mean error of 0.946mm and 1.09mm
respectively. This is superior to the performance exhibited
by the state-of-the-art methods since the method works for
multiple bone structures, X-rays with varying intensities
and different patient posture.

The purpose of segmentation was to extract the joint
space width(JSW) automatically. Only the area around
the joint space is relevant where the segmentation error
is less than 0.5mm. This segmentation error is viable to
define a JSW metric for diagnostic purposes. The JSW
metric introduced and discussed in the work shows a mean
error of less than 1.2mm which is acceptable.

The highest computational bottleneck while implementing
this technique was creating the training data. Even though
some optimization techniques was implemented for train-
ing data in this work like feature vector dimensionality
reduction, there are numerous possibilities to speed up this

process for example, by using parallel processing. Further
research is needed to identify the processes that could be
made parallel efficiently.

Further investigation is also needed to find the best combi-
nation of parameters for the system to improve the accu-
racy. One solution is to use hyperparameter optimization
to choose the parameters which will also ensure that the
model does not overfit its data by tuning.

Likewise, other superior metrics could be explored for JSW
metric to make it anatomically more precise. If there are
X-ray images that have been classified into healthy hip
and hip with osteoarthritis(OA), then their JSW metric
can be analyzed to detect if there is any pattern emerging.
It can be used to see if there is a common joint space
width for healthy hip and OA hip. Another possibility
that could be interesting is to classify the X-rays images
based on presence or absence of joint space narrowing.
This can be used to find an approximate minimum JSW
to indicate joint space narrowing. These values could
be insightful while building a full automated system for
detecting osteoarthritis.

Considering the scope for future work, we can be sure
that this work have significant role in the world of clinical
research pertaining to measurement of joint space narrow-
ing in Hip X-ray images. This is an initial step towards a
developing a technique capable of automatic diagnosis of
osteoarthritis.
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Appendix A. LANDMARK DEFINITIONS

The tool has been constructed in Javascript by Clinical
Graphics B.V, Delft for providing accurate registration of
the landmarks for all the training data. With the tool,
an image can be uploaded along with the contours and
desired number of landmarks can be placed manually
on the contour. The landmark can also be placed near
the desired place and it will be snapped to the nearest
position in the contour. For femur, 8 landmarks were
placed manually whose description is given in table A.1
and the corresponding landmarks are shown in Fig A.1.

Table A.1. Femur Landmark Definitions

Index Landmark Definition

(1) Inferior end point of lesser trochanter
(2) Superior end point of lesser trochanter
(3) Inferior edge of femoral head
(4) Inferior edge of fovea capitis
(5) Superior edge of femoral head
(6) Proximal point of greater trochanter
(7) Lowest tipping point of lateral edge
(8) Lateral point opposite the inferior point of the lesser

trochanter
Note: For a more detailed explanation of the terminology of the
anatomy, the Sobotta’s book on ”Atlas of Human Anatomy” can
be referred [13].

For pelvis, there are 7 landmarks manually placed which
are defined in table A.2 and shown in Fig A.2.

The tool distributes n number of landmarks between these
manually placed landmark. The n is the number of land-
marks that have to be distributed between 2 neighboring
manually placed landmarks. The n can be different for each
pair of landmarks. The fully landmark dataset is shown in
Fig A.1 for femur and Fig A.2 for pelvis.

Fig. A.1. Femur Landmarks

Table A.2. Pelvis Landmark Definitions

Index Landmark Definition

(1) Top medial edge near the spine
(2) Top lateral edge - mirror of medial edge
(3) Labrum near the acetabular cup/Superior acetabulum
(4) Bottom of the tear
(5) Inferior acetabulum
(6) Inferior point of pubic
(7) Superior point of pubic

Fig. A.2. Pelvis Landmarks

The entire work was constructed to be used as a Python
library and is completely done in Python. The database is
stored in the HDF5 format and uses pytables to interact
with it. Although python have lot of image processing
libraries like Scipy and Sklearn for nearest neighbor algo-
rithms, template matching and gradient operations, all the
basis functions like the registration algorithms, preprocess-



ing, landmark detection and refinement algorithms had to
be implemented from scratch. The Ipython Notebook is
used as the interactive environment and the Matplotlib
library is used for visualization.

Appendix B. LANDMARK DETECTION EQUATION

The training data is constructed as explained in section
5.1 and the compound matrices D̃, F̃ and C̃. For the
test image, patch centre matrix C and the feature vector
matrix F is extracted according to the scale similar to
training data. Assuming K patches are sampled randomly
from the test image, the dimension of C is (2, K) and
F is (k, K). In our case, K is 500. Compound matrices
which are needed later containing the training and test
data jointly can be constructed as follows:

D̂ = [D̃ D] =


d̃x11 . . . d̃x1K̃ dx11 . . . dx1K
d̃y11 . . . d̃y1K̃ dy11 . . . dy1K

...
. . .

...
...

. . .
...

d̃xL1 . . . d̃xLK̃ dxL1 . . . dxLK

d̃yL1 . . . d̃yLK̃ dyL1 . . . dyLK



F̂ = [F̃ F] =


f̃11 . . . f̃1K̃ f11 . . . f1K
f̃21 . . . f̃2K̃ f21 . . . f2K

...
. . .

...
...

. . .
...

f̃k1 . . . f̃kK̃ fk1 . . . fkK


where D̂ ∈ R2L×(K̃+K) and F̂ ∈ Rk×(K̃+K)

After the matrices D̃, F̂, Ĉ are constructed, the D matrix
is found using the equation (B.1).

D = −GA−1 , where

G = −D̃P
T

LK̃
− βC̄UTQT

LK

A =
1

LK̃
PPT +

2α

L
M +

β

LK
QUUTQT

(B.1)

The P and Q matrices are defined as D̃ = D̂P and D =
D̂Q. P and Q are made up of identity matrices IM×N and
zeros matrices 0M×N to extract the corresponding training
and test displacement matrices respectively.

P = [IK̃×K̃ ; 0K×K̃ ] ∈ R(K̃+K)×K̃

Q = [0K̃×K ; IK×K ] ∈ R(K̃+K)×K

The C̄ and U corresponds to the geometric constraint
in the matrix form. Ideally all combination of patches
should be considered but due to efficiency reasons, only
consecutive pair of patches are considered, i.e, (i,j) have
values such as (1,2), (2,3), ..., (K-1,K). U is the matrix
[e1 − e2, e2 − e3, ..., eK−1 − eK] which is obtained from

D(ei − ej) =


dx1i − dx1j
dy1i − dy1j

...
dxLi − dxLj

dyLi − dyLj

 where ei is a K dimensional

column vector with the ith elements as 1 and all the
other elements 0s. Thus U is a matrix of 1, -1 and 0s
and U ∈RK×(K−1). The C̄ is the matrix obtained by
vertically replicating L times the difference between the
ith and jth patch centre difference. This can be written
in matrix form as C̄ = [c2 − c1, c3 − c2, . . . , cK−1 − cK]

where cj − ci =


cx1j − cx1i
cy1j − cy1i

...
cxLj − cxLi
cyLj − cyLi

 and C ∈RL×(K−1)

All the matrices used to solve equation(B.1) is explained
here. For the derivation of these equation, Chen et al.
paper can be referred [1].
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