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Symbolic Method for Deriving Policy in Reinforcement Learning*

Eduard Alibekov and Jiřı́ Kubalı́k and Robert Babuška

Abstract— This paper addresses the problem of deriving a
policy from the value function in the context of reinforcement
learning in continuous state and input spaces. We propose
a novel method based on genetic programming to construct
a symbolic function, which serves as a proxy to the value
function and from which a continuous policy is derived. The
symbolic proxy function is constructed such that it maximizes
the number of correct choices of the control input for a set
of selected states. Maximization methods can then be used to
derive a control policy that performs better than the policy
derived from the original approximate value function. The
method was experimentally evaluated on two control problems
with continuous spaces, pendulum swing-up and magnetic
manipulation, and compared to a standard policy derivation
method using the value function approximation. The results
show that the proposed method and its variants outperform
the standard method.

I. INTRODUCTION

Reinforcement Learning (RL) algorithms provide a way
to optimally solve decision-making and control problems
involving dynamic systems [1]. An RL agent interacts with
the system by measuring the states and applying actions
according to a certain policy. The agent receives a scalar
reward signal as an evaluation of its immediate performance.
The goal is to find an optimal policy which maximizes the
long-term cumulative reward.

In this paper, we consider the critic-only, model-based
variant of RL in continuous spaces. Critic-only methods first
find the optimal value function (abbreviated as V-function)
and then derive an optimal policy from this value function.
The typical learning process consists of three steps:

1) Data collection – using a model of the system or the
system itself, samples in the form (xk, uk, xk+1, rk+1)
are collected. Here, xk is the system state, uk is the
control input (action), xk+1 is the state that the system
reaches from state xk after applying action uk, and
rk+1 is the immediate reward for that transition.

2) Computation of the optimal V-function – based on the
samples, an approximation of the V-function is found,
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R. Babuška is with the Delft Center for Systems and Control, Delft 
University of Technology, the Netherlands and also with the Czech Institute 
of Informatics, Robotics, and Cybernetics, Czech Technical University in 
Prague, Czech Republic, r.babuska@tudelft.nl

which for each system state predicts the cumulative
long-term reward obtained under the optimal policy.

3) Policy derivation – based on the computed V-function,
the policy is derived at each sampling time instant, so
that the system can be controlled in a closed loop.

The policy derivation step can be understood as a hill
climbing process. At each step, the agent applies the control
input that leads toward a higher point on the V-function
surface. An advantage of this control law is its inherent
stability – the value function is analogous to the control Lya-
punov function [2], [3]. However, the hill climbing process
is affected by the approximate nature of the V-function. A
typical approximation by means of basis functions exhibits
artifacts, which lead to the chattering of the control input and
even to limit cycles. This problem is illustrated in Fig. 1.

Fig. 1: A sample state trajectory obtained via hill-climbing on
the approximate V-function surface for the pendulum swing-
up task (see section IV-A). Left: the state trajectory on the
V-function surface. Right: the state trajectory in the vicinity
of the goal state in [0,0].

This undesired behavior typically occurs in the vicinity of
the goal state and leads not only to suboptimal performance,
but it can also render the goal state unreachable. An obvious
approach to alleviate these problems would be to use a
smooth approximation of the V-function. An ideal choice
for such a purpose is a symbolic approximator, which can
be constructed, e.g., by means of genetic programming.
However, we cannot rely on minimizing an error measure
between the given V-function data and the resulting symbolic
function. Genetic programming has no information about
the purpose of the function and can, therefore, ignore small
but important parts of the V-function while still achieving
the least possible error. Consequently, the resulting smooth
approximation can have virtually the same shape as the V-
function, but it can yield a completely different, sub-optimal
policy.
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In this paper we present a novel method that uses genetic
programming, in particular, a variant of a Single Node
Genetic Programming [12], to evolve a smooth proxy to the
V-function, which is then used for a continuous policy deriva-
tion. A concept similar to advantage updating [5] is used.
The genetic programming algorithm evolves the symbolic
proxy-function that maximizes the number of correct choices
of the control action for a set of training states. In this way,
the search is biased toward a symbolic proxy-function that
would be suited for the policy derivation than a symbolic V-
function evolved by minimizing an error measure between
the V-function data and the symbolic V-function.

This distinguishes our approach from several works in
the literature dealing with a use of genetic programming
for V-function fitting. For instance, in [6] a method called
Value Function Discovery is proposed that uses GP to evolve
algebraic description of the V-function. In [7] an evolutionary
algorithm is used to accelerate the convergence of Q-tables.
However, both approaches use an error measure between the
given V-function data and the resulting symbolic function as
an optimization criterion.

The paper is organized as follows. Section II provides
a brief introduction to reinforcement learning and genetic
programming. The proposed method for finding the proxy-
function and four policy derivation methods used in this pa-
per are described in Section III. The benefits of the proposed
method are experimentally demonstrated in Section IV and
discussed in detail in Section V. Section VI concludes the
paper.

II. PRELIMINARIES

A. Reinforcement learning

Define an n-dimensional state space X ⊂ Rn, and m-
dimensional action space U ⊂ Rm. The system to be con-
trolled is described by the state transition function xk+1 =
f(xk, uk), with xk, xk+1 ∈ X and uk ∈ U . The reward
function assigns a scalar reward rk+1 ∈ R to the state
transition from xk to xk+1:

xk+1 = f(xk, uk)

rk+1 = ρ(xk, uk)
(1)

Define a finite set of discrete control input values U ={
u1, u2, . . . , uM

}
drawn from U . An approximate V-

function denoted by V̂ (x) can be computed by solving the
Bellman equation:

V̂ (x) = max
u∈U

[r(x, u) + γV̂ (f(x, u))] (2)

where γ is the discount factor, a user-defined parameter. We
employ the fuzzy V-iteration algorithm [4] to find V̂ (x).
The policy is the mapping:

h : X → U (3)

and the optimal discrete-valued policy corresponding to V̂ (x)
is:

ĥ(x) ∈ argmax
u∈U

[
r(x, u) + γV̂ (f(x, u))

]
,∀x (4)

In the sequel we use RHS(x, u) to refer to the[
r(x, u) + γV̂ (f(x, u))

]
part of (4).

B. Genetic programming

Genetic programming (GP) belongs to methods frequently
used to solve the symbolic regression problem. Besides the
standard Koza’s tree-based GP [11], many other variants
have been proposed such as Grammatical Evolution [15]
which evolves programs whose syntax is defined by a user-
specified grammar, Gene Expression Programming [8] that
evolves linear chromosomes that are expressed as tree struc-
tures through a genotype-phenotype mapping or graph-based
Cartesian GP (CGP) that uses a linear integer representation
for expressing programs of the form of a directed graph [14].

A Single Node Genetic Programming (SNGP) [9], [10],
used in this work, is a graph-based GP method that evolves a
population of individuals, each consisting of a single program
node. The node can be either terminal, i.e. a constant or
a variable in case of the symbolic regression problem, or
a function chosen from a set of functions defined for the
problem at hand. Importantly, the individuals are not entirely
distinct, they are interlinked in a graph structure similar to
that of CGP, so some individuals act as input operands of
other individuals.

Formally, a SNGP population is a set of L individ-
uals M = {m0,m1, . . . ,mL−1}, with each individual
mi being a single node represented by the tuple mi =
〈ei, fi, Succi, P redi, Oi〉, where
• ei ∈ T ∪F is either an element chosen from a function

set F or a terminal set T defined for the problem;
• fi is the fitness of the individual, with the fitness

function used in this work described in Section III-B.2;
• Succi is a set of successors of this node, i.e. the nodes

whose output serves as the input to the node;
• Predi is a set of predecessors of this node, i.e. the

nodes that use this node as an operand;
• Oi is a vector of outputs produced by this node.

Typically, the population is partitioned so that the first Lterm

nodes, at positions 0 to Lterm − 1, are terminals, followed
by function nodes. Importantly, a function node at position
i can use as its successor (i.e. the operand) any node that is
positioned lower down in the population relative to the node
i. This means that for each s ∈ Succi we have 0 ≤ s < i.
Similarly, predecessors of individual i must occupy higher
positions in the population, i.e. for each p ∈ Predi we have
i < p < L. The population model used in this work is
described in Section III-B.1

In [9], a single evolutionary operator called successor
mutate (smut) has been proposed. It picks one individual
of the population at random and then one of its successors
is replaced by a reference to another individual of the popu-
lation making sure that the constraint imposed on successors
is satisfied. Predecessor lists of all affected individuals are
updated accordingly. Moreover, all individuals affected by
this action must be reevaluated as well. In this work, nodes to
be mutated are chosen using a depthwise selection proposed



in [12], which takes into account both the quality and depth
of nodes.

The evolution is carried out via a hill-climbing mechanism
using the smut operator and an acceptance rule, which can
have various forms. Here, the new population is accepted
if and only if the best fitness in the population has not
been worsened by the mutation operation. Otherwise, the
modifications made by the mutation are reversed.

III. PROPOSED METHOD

A. V-function proxy

Define a set of samples X = {x1, x2, . . . , xN} ∈ X .
The genetic programming algorithm searches for a symbolic
function P (·) that satisfies the following condition:

argmax
u∈U

[P (f(x, u))] = argmax
u∈U

[RHS(x, u)] ,∀x ∈ X
(5)

Observe by comparing (4) and (5) that for the set U of
discrete inputs, P (·) yields the same optimal policy as the V-
function. Note, that P (·) does not have to satisfy the Bellman
equation. Its purpose is to merely provide at each state the
same preferred control action. This, however, works under
the assumption, that P (f(x, u)) has the same distinguishing
properties as RHS(x, u). It is only possible when r(·) part
of RHS(x, u) does not explicitly depend on u (rather than
on f(x, u)). Otherwise P (·) will not be capable to robustly
work in situations where several different control inputs lead
to the same state.

To improve the robustness of the genetic search, we
strengthen condition (5) by replacing the argmax operator
by the order operator. The order operator produces a
partially ordered set of the control input indices so that the
corresponding control actions are ordered with respect to
their evaluation by the given function. The purpose of this
modification is to make sure that if the genetic search finds
a suboptimal solution, a high-ranked sub-optimal action is
chosen instead of the optimal one.

When P (·) is found, the policy can be derived by using
(4), where RHS(x, u) is replaced with P (f(x, u)). The
overall setting is schematically depicted in Fig. 2.

Fig. 2: Standard policy derivation and the proposed method.

The order operator can be formalized as follows:

order
u∈U

(RHS(x, u)) = {i, j, ..., `} (6)

with

RHS(x, ui) ≥ RHS(x, uj) ≥ · · · ≥ RHS(x, u`) (7)

B. SNGP for evolving the proxy function

We propose a variant of SNGP using a population model
and fitness function as described in the following paragraphs.

1) Population model: Typically, the function set contains
functions that might produce invalid output values such as
a division by zero. In order to avoid such cases, protected
versions of these functions are used instead. These functions
are forced to produce a valid output for any input. For
example, the protected division outputs a predefined value
whenever the denominator is zero. Thus, the output of
any candidate expression is ensured to be a valid num-
ber. However, due to such hard-coded irregular behavior
of the protected functions, expressions making use of the
protected functions can still exhibit undesired behavior, e.g.,
the expressions might become non-differentiable at some
data points or can contain local approximation artifacts. Such
a symbolic function, even it has a very small error on the
training data, can be effectively useless when applied to new
previously unseen data.

Here, we propose a partitioned population that is divided
into two parts – head and tail. The head part contains nodes
that are roots of constant-valued expressions only. It uses
extended function set Fe including the protected functions.
Each head node can use other head nodes and constant
terminal nodes as its input. The tail part contains nodes that
can only be chosen from a set Fs of simple non-conflicting
functions (i.e. no protected functions). Tail nodes can use
all preceding head and tail nodes and both constants and
variables as their input. In this way, a “reasonable” behavior
of expressions rooted in tail nodes is ensured, since the
protected functions are used only for produce constants.

2) Fitness function: When fitting the symbolic proxy-
function P (·), a set of M distinct actions U = {u1, . . . , uM}
sampled from the original continuous action space U is used
to generate a set of N training samples. A training sample
generated for each state xi ∈ X , has the following structure
ti = [xi, f(xi, u1), . . . , f(xi, uM ), o1, . . . , oM ] where oj

denotes the order class to which the next state obtained by
applying the action uj to the state xi is assigned according to
RHS(xi, uj). The best next state is assigned to order class
0, the second best next state is assigned to order class 1, and
so on. Note that multiple states can be assigned to the same
order class.

A candidate function P (·) produces values P (f(xi, u1)),
. . . , P (f(xi, uM )) for each xi in the training set. Denote by
o′1, . . . , o′M the order classes derived from these values. The
SNGP searches for the proxy-function P (·) that is optimal
according to the following fitness function

fitness(P (f(x, u))) =

N∑
i=0

w(xi)

M∑
j=0

(fn(j) + fp(j)) (8)

where

fn(j) =

{
1 + 0.1 dist(j), if oj = 0 and o′j 6= 0

0, otherwise
(9)

and

fp(j) =

{
1, if oj 6= 0 and o′j = 0

0, otherwise
(10)



The function false positive, fp(j), penalizes with penalty 1
the cases where the state f(xi, uj) should not belong to the
best order class according to oj 6= 0, but it does belong to it
(i.e., o′j = 0).

Similarly, the function false negative, fn(j), penalizes
with penalty 1 the cases where the state f(xi, uj) should be
the best one according to oj = 0, but it is not (i.e., o′j 6= 0).
In order to refine the fitness function, each false negative case
is further penalized with the term dist(j) that is calculated as
the absolute difference between the P (f(xi, uk)) of actually
the best next state achieved with action uk applied to the
state xi, and the P (f(xi, uj)). This way the fitness can
distinguish between candidate proxy-function producing the
same number of false negative and false positive cases. The
value of dist(j) is bounded from above by 1.0. By weighting
the dist(j) with the factor 0.1, we make sure that it plays a
secondary role in the fitness.

As mentioned in Section I not all states are equally
important. The effect of chattering is much stronger in the
vicinity of the goal state. Thus, it can be beneficial to weight
the overall penalty calculated for a given state with respect to
its distance to the goal state. To avoid negative effects, caused
by magnitudes of different variables in a state space, each
variable of the state space must be mapped into the same
range [0, 1]. The weight function w(xi) returns a square of
the reciprocal of the Euclidean distance between the state xi

and the goal state. Thus, the errors made in states far from
the goal state are penalized less than the errors made in states
close to the goal state. When xi is the goal state, the w(xi)
returns a weight of the state nearest to the goal state.

Since the fitness function expresses how far the candidate
proxy-function is from the ideal, the resulting fitness function
is to be minimized.

C. Policy derivation using raw function

The first algorithm we consider is a direct usage of
the computed proxy-function P (f(x, u)), as stated in (4).
Algorithm 1 formalizes this procedure.

Algorithm 1: Policy derivation from the raw symbolic
function (in the sequel denoted as Raw)

Input: f(x, u), P (f(x, u)), U, x0
k ← 0
while control experiment not terminated do

uk ← argmax
u′∈U

P (f(xk, u
′))

xk+1 ← f(xk, uk);
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

D. Policy derivation using hybrid symbolic function

The main purpose of this method is to provide a robust
policy. Due to the stochastic nature of genetic program-
ming, successful finding of the optimal proxy-function is
not guaranteed. Therefore, all areas, for which P (f(x, u))

provides non-optimal policy, should be covered by another
approximation. The computed V̂ is used for this purpose.
Define a vector C = [c1, c2, ..., cN ]T of boolean flags, where
N is a number of training samples. Each flag ci is true if
the corresponding training sample ti is successfully fitted
by the proxy-function P (f(x, u)), otherwise it is false. At a
policy derivation step k, a training sample tj with its state
xj nearest to the current state xk is found among all N
training samples. This can be easily done by using k-d tree
for the nearest neighbor search. Then, the optimal input to
be applied in state xk is derived using the P (f(x, u)) if
the corresponding cj is true. Otherwise, the policy in state
xk is derived using the RHS(x, u). A pseudo-code for this
policy derivation method is shown in Algorithm 2 where the
function NN(x) provides the nearest neighbor state to the
state x.

Algorithm 2: Policy derivation from the hybrid approx-
imation (in the sequel denoted as Hybrid)

Input: f(x, u), r(x, u), C, P (f(x, u)), γ, V̂ , U, x0
k ← 0
while control experiment not terminated do

if C[NN(xk)] then
uk ← argmax

u′∈U
P (f(xk, u

′))

else
uk ← argmax

u′∈U
[r(xk, u

′) + γV̂ (f(xk, u
′))]

end
xk+1 ← f(xk, uk);
k ← k + 1

end
Output: trajectory [x0, x1, ...], [u0, u1, ...]

E. Policy derivation using hybrid symbolic function and a
fine grid of actions

This method combines the previous method with a fine-
sampled set of actions (see [13] for further details).

Define a set of actions A as

A = Ū1 × Ū2 × · · · × Ūm, A ⊆ U (11)

where each set Ūi contains points equidistantly distributed
along the ith dimension of the action space. The set A
contains the control inputs that will be considered in the
policy derivation using the P (f(x, u)) and RHS(x, u),
respectively. The policy derivation algorithm is essentially
equal to the Algorithm 2 with the action set U being
replaced with the set A. In the sequel we call this algorithm
HybridGrid.

The size of the set A is given by a vector As =
[a1, a2, . . . , am]T where each ai corresponds to the number
of points along the ith dimension of the action space. By
default we have selected a1 = a2 = · · · = am = 11.



F. Classical policy derivation

The classical policy derivation uses equation (4) at every
policy derivation step k, where the maximization is computed
over the same discrete action set U on which V̂ (x) has been
learned. Formally, this can be described by Algorithm 1 with
RHS(x, u) substituted for P (f(x, u)). In the sequel we call
this algorithm Baseline.

IV. EXPERIMENTAL STUDY

A. Pendulum swing-up

The inverted pendulum consists of a weight of mass m
attached to an actuated link that rotates in a vertical plane
(see Fig. 3). The available torque is taken insufficient to
push the pendulum up in a single rotation from every initial
state. Instead, from certain state (e.g., pointing down), the
pendulum needs to be swung back and forth to gather energy,
prior to being pushed up and stabilized.

The continuous-time model of the pendulum dynamics is:

α̈ =
1

J
·
[
mgl sin(α)− bα̇− K2

R
α̇+

K

R
u

]
(12)

where J = 1.91 · 10−4 (kgm2), m = 0.055 (kg),
g = 9.81 (ms−2), l = 0.042 (m), b = 3 · 10−6 (Nms/rad),
K = 0.0536 (Nm/A), R = 9.5 Ω. The angle α varies
in the interval [−π, π], with α = 0 pointing up, and
‘wraps around’ so that e.g. a rotation of 3π/2 corresponds
to α = −π/2. The state is x = [α, α̇]. The sampling
period is Ts = 0.01 (s), and the discrete-time transitions
are obtained by numerically integrating the continuous-time
dynamics between consecutive time steps. The control action
u is limited to [−2, 2] (V), which is insufficient to push up
the pendulum in one go. The set of discrete control inputs
is U = {−2,−1,−0.05, 0, 0.05, 1, 2}.

The control goal is to stabilize the pendulum in the
unstable equilibrium α = α̇ = 0, which is expressed by
the following quadratic reward function:

r(x, u) = −fT (x, u)Qf(x, u), where Q = diag[5, 0] (13)

B. Magnetic manipulation

Magnetic manipulation (abbreviated as Magman) has sev-
eral advantages compared to traditional robotic manipulation
approaches. First of all, it is contactless, which opens new
possibilities for actuation on a micro scale and in environ-
ments where it is not possible to use traditional actuators.
In addition, magnetic manipulation is not constrained by the
robot arm morphology, and it is less constrained by obstacles.

Fig. 3: Inverted pendulum schematic.

Fig. 4: Magman schematic.

Our magnetic manipulation setup (see Fig. 4) has four
electromagnets in a line, but for the experiments presented
in this work first two coils, at the positions 0 (m) and
0.025 (m), respectively, have been used. The current through
the electromagnet coils is controlled to dynamically shape
the magnetic field above the magnets and so to position a
steel ball accurately and quickly to a desired set point. The
horizontal acceleration of the ball is given by:

ÿ = − b

m
ẏ +

1

m

1∑
i=0

g(y, i)ui (14)

with
g(y, i) =

−c1 (y − 0.025i)(
(y − 0.025i)

2
+ c2

)3 . (15)

Here, y denotes the position of the ball, ẏ its velocity and ÿ
the acceleration. With ui the current through coil i = 0, 1,
g(y, i) is the nonlinear magnetic force equation, m (kg) the
ball mass, and b (Ns

m ) the viscous friction of the ball on the
rail. The model parameters are listed in Table I.

TABLE I: Magnetic manipulation system parameters

Model parameter Symbol Value Unit
Ball mass m 3.200 · 10−2 kg
Viscous damping b 1.613 · 10−2 Nms
Empirical parameter c1 5.520 · 10−10 Nm5A−1

Empirical parameter c2 1.750 · 10−4 m2

Sampling period Ts 0.005 s

Set of control inputs U

{[
0
0

]
,

[
0.6
0

]
,

[
0
0.6

]}
V

State x is given by the position and velocity of the ball.
The control input u is defined as the vector of currents
[u1u2] ∈ [0, 0.6] to the coils. The reward function is defined
as:

r(x, u) = |(xd−f(x, u))| Q, where Q = diag[100, 5] (16)

The desired position xd is set to xd = 0.01 (m).

C. V-function learning algorithm

To compute V̂ (x), the fuzzy V-iteration algorithm [4]
is used. The learning process can be briefly described as
follows. Define a set of samples S = {s1, s2, . . . , sN}
on an equidistant grid in X . The number of samples per
dimension is described by vector B = [b1, b2, . . . , bn]T

with the total number of samples N =
∏n

i=1 bi. Further
define a vector of fixed triangular basis functions φ =
[φ1(x), φ2(x), . . . , φN (x)]T where each φi(x) is centered
in si, i.e., φi(si) = 1 and φj(s

i) = 0, ∀j 6= i. The basis
functions are normalized so that

∑N
j=1 φj(x) = 1, ∀x ∈ X .



Fig. 5: The performance ratio in percents for 50 simulations of policy derivation. Simulations are performed with randomly
chosen initial conditions. The upper and lower plots show the pendulum swing-up benchmark and the magnetic manipulation
benchmark, respectively. For both figures the horizontal axis displays separate simulations, which are connected by lines for
better visualization.

Finally, define a parameter vector θ = [θ1, θ2, . . . , θN ]T , θ ∈
RN . The V-function approximation is defined as:

V̂ (x) = θTφ(x) (17)

The fuzzy value iteration is:

θi ← max
u∈U

[
r(si, u) + γ (θ)T φ (f(si, u))

]
, i = 1, ..., N

(18)
The iteration terminates when the following convergence
criterion has been satisfied:

ε ≥ ||θ − θ−||∞ (19)

where θ− represents the parameter vector in the previous
iteration and ε is a convergence threshold.

The learning parameters used for both benchmarks are
listed in Table II.

D. Complexity of the proxy-function computation

The complexity of proxy-function computation can be
estimated only approximately due to the stochastic nature
of the genetic programming. The whole evolution process is
running for a limited number I of iterations. In each iteration
L candidate solutions (see II-B) are evaluated on every given
sample point. The total number of samples is denoted as N .
Therefore, the complexity linearly depends on the parameters
I , L and N .

E. Results

SNGP with a population of size 200 equally di-
vided into the head and tail parts and function sets
Fe = {+,−, ∗, /, square, cube, sqrt, exp, sin, ln} and Fs =
{+,−, ∗, square, cube, sqrt, sin} were used in this work.
Evolution of the proxy-function was run for 5000 iterations,
with a maximum time limit of 300 (s).

TABLE II: Fuzzy V-iteration parameters

Parameter Pendulum swing-up Magman
Discount factor, γ 0.99999 0.999999
Samples per dimension, B [21, 21]T [21, 27]T

Convergence threshold, ε 10−5 10−8

To measure the performance of the proxy-function the
coverage ratio between correctly fitted samples and the total
number of training samples N was used. The coverage map
of the pendulum swing-up task is depicted in Fig. 6. Several
proxy-functions were fitted for each benchmark. The policy
derivation methods were tested 50 times on each proxy-
function using the same set of randomly chosen initial states.
Using that proxy-functions the policy derivation methods
have been tested 50 times with randomly chosen initial
conditions. Simulation time was set to 3 (s) for the pen-
dulum swing-up and to 1 (s) for the magnetic manipulator,
respectively. To measure the performance of the algorithms
the following criteria are defined:

• Average return Ra =
∑50

j=1

∑K
i=0 r(xi,u)

50 , where K de-
notes the number of time steps in a control experiment.

• Performance ratio Pr – the ratio between returns ob-
tained by classical policy derivation and the tested
algorithm.

• Average performance ratio in percents (denoted as Av-
erage Pr) – a mean of Pr values over 50 simulations.

The results obtained with the best-performing proxy-function
with respect to the average Pr for each benchmark are
presented in Tables III and IV, respectively. The performance
ratios for both benchmarks are depicted in Fig. 5.

TABLE III: Pendulum swing-up simulation results

Criterion Baseline Raw Hybrid HybridGrid
Average return -642.09 -2452.10 -601.83 -588.45
Average Pr 100% 31.52% 114.75% 117.64%
Coverage — 88.8% 88.8% 88.8%

TABLE IV: Magnetic manipulation simulation results

Criterion Baseline Raw Hybrid HybridGrid
Average return -106.61 -79.86 -77.98 -71.02
Average Pr 100% 162.47% 163.91% 193.81%
Coverage — 89.7% 89.7% 89.7%
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Fig. 6: Coverage map of the pendulum swing-up task. The
green dots represent the samples in which the proxy-function
is fitted correctly and the red dots otherwise.

V. DISCUSSION

The Hybrid and HybridGrid algorithms significantly out-
perform the Baseline algorithm as shown in Fig. 5 and
Tables III and IV. Fig. 5-top shows poor results for the
Raw algorithm on the Pendulum swing-up problem. The
reason is quite straightforward. As stated in Section I, states
are not equally important and genetic programming cannot
guarantee finding the optimal proxy-function, as illustrated
in Fig. 6. It shows the coverage map in which green and
red dots represent correctly and incorrectly fitted samples,
respectively. An incorrectly fitted sample is a sample, in
which proxy-function choses a different control input than
the V-function. We have empirically found that the regions
in the vicinity of the two red dots, nearest to the state space
center, must be fitted correctly in order to reach the goal
state. Hybrid and HybridGrid algorithms successfully use
RHS(x, u) in those regions, while the Raw algorithm failed
since it had no ability to do so.

Fig. 7 shows typical simulations of Baseline and Hybrid-
Grid algorithms on the magnetic manipulation task. It can
be seen that the chattering in the state space is significantly
suppressed, but chattering in the control inputs is still present.
Input chattering can usually be reduced by penalizing the
control input in the reward function, which is, however,
not possible here due to the choice of the proxy function
structure as P (f(x, u)). One way to overcome this limitation
is to reformulate the proxy function as P (x, u) and then use
it in policy derivation in the same way as a Q-function. This
will be a part of our future work.

VI. CONCLUSION

The proposed method offers an alternative way to the pol-
icy derivation. The simulation results show that the proposed
approach improves upon the policy derived from the original
value function approximation. Moreover, when hybridized
with the original value function approximation even better
policy has been derived. This approach can be used with
any kind of value function approximation.
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