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Abstract. Floating offshore wind turbines (FOWTs) experience complex hydrodynamic and aerodynamic load-
ing influenced by substructure types and stochastic environmental conditions. Accurately estimating the lifetime
fatigue loads requires the analysis of thousands of operational scenarios, leading to high computational costs.
Moreover, choosing the right input features driving fatigue in floating wind systems and appropriately binning
them still remains an open question. We present a fast probabilistic surrogate that maps the site conditions to
the loads on the wind turbine. The probabilistic aspect allows the propagation and quantification of statistical
uncertainties from the stochastic input quantities to the resulting loads. A fast surrogate eliminates the need to
fit a distribution to the site conditions or bin the input data. Rather, all available metocean data can be directly
used as input, which automatically accounts for the joint distribution in the calculations. The surrogate model
in this study uses the mixture density network (MDN) to predict the conditional distribution of the 10 min dam-
age equivalent loads (DELs) for a 6 MW spar-type floating wind turbine. The MDN achieves high accuracy
(R2 > 0.99) in capturing DEL means while efficiently propagating the statistical uncertainties. Furthermore, the
surrogate enables quick estimation of 25-year lifetime fatigue damage across a range of potential floating wind
farm sites, demonstrating its capability to facilitate rapid decision-making during preliminary site analysis.

1 Introduction

1.1 Background

Floating offshore wind turbine (FOWT) technology has wit-
nessed a surge in research interest in recent years following
the rapidly increasing demand for renewable power produc-
tion. The structural response of an FOWT is a crucial indica-
tor of its performance, safety, and reliability. During its op-
erational lifetime, an FOWT accumulates fatigue damage as
it undergoes time-variable loading in response to the com-
plex and stochastic offshore environment. The nature, mag-
nitude, and extent of fatigue are unique to the type of floating
foundation, mooring line configuration, wind turbine mate-
rial, control algorithms, and site conditions.

To ensure a safe and reliable operational life, the FOWT
undergoes a certification process involving a rigorous anal-
ysis of various design load cases (DLCs) defined by the In-

ternational Electrotechnical Commission (IEC, 2024a). The
first step involves simulating the DLCs on a type-certified
rotor-nacelle assembly with a reference tower and floating
foundation. More detailed information about the site is in-
cluded while defining the DLCs as the project progresses.
Subsequently, a site-specific tower, foundation, and mooring
line configuration are defined, and a site-specific certifica-
tion study is performed. The calculations are typically made
using time-domain multi-physics engineering tools, such as
OpenFAST (Jonkman, 2013), HAWC2 (Larsen and Hansen,
2007), and BHawC (Couturier and Skjoldan, 2018; Skjoldan,
2011), throughout this process.

Fatigue is a multi-scale phenomenon that depends on the
material composition, composite structure, geometry, and in-
flow dynamics. The estimation of the fatigue damage for
FOWTs, in particular, is computationally intense. The life-
time fatigue load assessment entails calculating the 10 min
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damage equivalent loads (DELs) on multivariate bins of typ-
ical variables characterizing the site and scaling them to the
observed probability of occurrence. Not all site variables can
be practically included in fatigue load analysis, as the re-
quired number of simulations increases exponentially with
each additional variable. The choice of the variables in the
offshore environment that have the most impact on FOWT
fatigue is currently an active area of research (Papi and Bian-
chini, 2024). The total computational cost of the simulations
also constrains the lower limit of the bin size. While industry-
standard engineering tools are necessary for certification, the
preliminary site analysis can benefit from data-driven sur-
rogate models to provide quick load estimates. Data-driven
surrogates can infer complex relationships from data obser-
vations alone and do not require prior knowledge of the un-
derlying physics. Fatigue, which is difficult to model using
lower-fidelity physics-based approaches, can benefit from
such data-driven methods. Using surrogates that can accu-
rately predict DELs can potentially eliminate the need to bin
the site data, fit a multivariate joint distribution to it, or limit
the total number of parameters. Once trained, surrogate mod-
els can directly use all the available site information to esti-
mate the site-specific DELs quickly. In addition, probabilistic
surrogates can also propagate the statistical uncertainty from
the stochastic input variables to the loads.

Data-driven surrogates for wind turbine or wind farm level
loads are often designed with deterministic models. Given a
training dataset with d-dimensional input parameters x ∈ Rd ,
the deterministic surrogate maps them to the corresponding
output observations y ∈ R. However, the assumption of a de-
terministic relationship between inputs and outputs does not
hold in our case. For instance, keeping every other input con-
stant, a single value of 10 min mean wind speed can cor-
respond to an infinite number of turbulent inflow patterns,
resulting in an infinite number of DEL values with a cer-
tain probability distribution conditioned on that wind speed.
Probabilistic surrogates model the statistical uncertainty in
the input variables by representing them as a random variable
X with a joint probability density function (PDF). The corre-
sponding output is, therefore, also a random variable denoted
as Y .

This study is focused on using a probabilistic data-driven
surrogate to map 10 min statistics of the environmental con-
ditions to the corresponding conditional probability distri-
bution of the DEL on the floating spar buoy with a 6 MW
Siemens Gamesa wind turbine. The DEL values are calcu-
lated using the Siemens Gamesa in-house tool that couples
the aeroelastic code, BHawC (Skjoldan, 2011), with the hy-
drodynamic solver, OrcaFlex (Arramounet et al., 2019). A
schematic of this mapping is shown in Fig. 1. A highly flex-
ible probabilistic machine learning approach for the surro-
gate, the mixture density network (MDN) (Bishop, 1994), is
used in this study. The probabilistic estimates of DELs are
used to subsequently calculate the lifetime fatigue loads at
various potential floating wind sites.

1.2 Previous work on probabilistic data-driven modeling
for wind turbine load estimation

The standard Gaussian process regression (GPR) (Ras-
mussen and Williams, 2006) is one such probabilistic sur-
rogate that is capable of uncertainty quantification. However,
in its standard form, it is restricted to normally distributed
homoscedastic responses. Nevertheless, due to its flexibility
and ease of implementation, it is widely used as a surrogate to
estimate the fatigue load response in wind turbines (Teixeira
et al., 2017; Avendaño-Valencia et al., 2021; Li and Zhang,
2019, 2020; Gasparis et al., 2020; Dimitrov et al., 2018a; Slot
et al., 2020).

Further interest in quantifying the uncertainty of the short-
term fatigue loads as a function of the input parameters
has initiated research into heteroscedastic surrogates. Het-
eroscedasticity refers to the heterogeneity in the response
variance as a function of the inputs. The variance observed
in DEL at the tower bottom, for instance, for very large
values of significant wave height, is generally larger than
that in calm ocean conditions. It is, therefore, an important
consideration when choosing the appropriate surrogate mod-
eling approach for load uncertainty quantification. Murcia
et al. (2018) use 100 turbulent inflow realizations at each
sample point to obtain the first two moments of the fa-
tigue response. Thereafter, they create two independent sur-
rogates using polynomial chaos expansion (PCE) to model
the mean and standard deviation of the fatigue loads on the
DTU 10 MW reference wind turbine. Even though they use
only 140 training samples for their model, the replications
scale the computational cost by 100, eventually leading to a
costly training database. Another replication-based approach
is taken by Zhu and Sudret (2020) to model the load response
using generalized lambda distributions. In this study, 50 in-
flow wind field realizations are used at each input sample to
estimate the four lambda parameters. Four PCE surrogates
are then used to model the parameters independently. The
main drawback of replication-based methods is the cost of
generating the training database, which makes it challeng-
ing to apply them to computationally demanding applications
such as floating wind turbines. Secondly, the goodness of fit
relies heavily on estimating the statistical parameters in the
first step.

Heteroscedasticity can also be modeled using statistical
methods. Zhu and Sudret (2021) extend the replication-based
approach to derive a statistical method combining general-
ized least-squares with maximum conditional likelihood to
estimate the lambda parameters without replications. The
main advantage of this method is that it does not assume
a Gaussian distribution. However, it cannot handle multi-
modality.

Abdallah et al. (2019) use parametric hierarchical Kriging
to predict blade-root-bending-moment extreme loads that are
heteroscedastic on a 2 MW onshore wind turbine. Their ap-
proach combines low- and high-fidelity observations, where
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Figure 1. Schematic of the surrogate modeling objective.

the low-fidelity model informs the high-fidelity GPR. They
show that introducing hierarchy helps make the model selec-
tion process more robust than the manual tuning of GPR pa-
rameters. Singh et al. (2022) apply chained GPR that uses
variational inference within a Bayesian framework to ac-
count for heteroscedasticity in the data and make predic-
tions of site-specific load statistics on a more complex case
of offshore wind turbines. The model can capture the het-
eroscedasticity in a small dataset but is not scalable to high-
dimensional problems. To address the scalability constraints,
the authors extend the study to use mixture density networks
on the same dataset to quantify the uncertainty in the load
response (Singh et al., 2024a). The application of probabilis-
tic surrogates to floating wind turbines has only been stud-
ied to a limited extent in the literature. Li and Zhang (2019)
model the uncertainty in the site conditions using a C-vine
copula combined with artificial neural networks and GPR.
Heteroscedastic probabilistic data-driven modeling has been
further explored using Bayesian neural networks (BNNs) for
estimating loads on non-instrumented wind turbines using
information from fully instrumented counterparts (Hlaing
et al., 2024). Preliminary studies on fatigue load prediction
using BNNs show promising results in onshore wind turbines
(Omole et al., 2021). BNNs are a powerful class of neural
network architectures that assign probability distributions to
the network weights and biases, effectively allowing the sep-
aration of aleatoric and epistemic uncertainties.

In summary, only a few approaches attempt to model the
uncertainty in the load response of the turbine and the tower.
Of those that do, only some consider complex offshore float-
ing systems. This presents a key research gap as the dynamic
behavior of floating platforms introduces additional com-
plexity not present in fixed-bottom systems. Following the
promising performance of mixture density networks (MDNs)
for fixed-bottom wind turbines (Singh et al., 2024a), in this

study, we aim to extend the framework to a more complex ap-
plication of a spar-buoy-type wind turbine case. In the case of
MDN, the target is modeled as a mixture of m ∈ N Gaussian
kernels of varying proportions, capable of generating com-
plex distributions when combined. MDN uses feed-forward
networks to learn the parameters of the mixture model.

1.3 Research objectives

The objectives of this work are 3-fold:

– To apply and evaluate a probabilistic machine learning
model (MDN) for predicting short-term fatigue loads in
floating offshore wind turbines.

Not only are FOWT loads affected by the nonlinear dy-
namic behavior of the floating wind turbine, but the un-
derlying simulations are also much more complex, the
stochastic hydrodynamic parameters have a bigger im-
pact on the tower, the data is “noisier”, the parameter
space is larger, and thereby, the number of simulations
is large. This necessitates investigations into robust sur-
rogates. Probabilistic data-driven models are often val-
idated on simpler cases. Complex cases are modeled
using deterministic approaches or with the assumption
that the response is Gaussian or homoscedastic. Using
a mixture model effectively solves many of the gaps in
the literature by propagating uncertainty, including het-
eroscedasticity, and modeling higher-order moments.

– To demonstrate that such a model can provide insights
into probabilistic long-term fatigue estimation, espe-
cially in high-dimensional spaces where traditional bin-
ning approaches become computationally restrictive.

The lifetime fatigue estimation for FOWTs involves ad-
ditional complexity, including the joint distribution of
metocean conditions and sensitivity to bin sizing. These
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issues are exacerbated by the exponential growth in sim-
ulation cost with each added dimension. A surrogate
model enables direct use of historical site condition
data, bypassing the need for parametric joint distribu-
tion assumptions.

– To investigate the impact of stochastic variability in site
conditions on fatigue prediction over long time spans.

We select four potential floating wind sites with simi-
lar water depths and use the surrogate model to estimate
probabilistic lifetime fatigue loads. We investigate the
effect of accounting for the stochastic variability in the
10 min loads relative to the variation in site conditions.
It is demonstrated that, due to the law of large num-
bers, the influence of random seeds on long-term tower
load estimation diminishes significantly over a 25-year
period, even with 500 seeds (from the probabilistic sur-
rogate). This indicates that stochastic inflow conditions
contribute minimally to uncertainty in long-term fatigue
predictions.

By addressing these points, this work contributes a vali-
dated, flexible surrogate modeling framework that accounts
for the complexities of floating wind systems, advancing the
state of probabilistic load modeling in floating offshore wind
research.

The rest of the paper is structured as follows. In Sect. 2,
we introduce the floating wind turbine model, describe the
simulation tools used, and outline the input features, includ-
ing their ranges and the sampling strategy. Section 3 then
presents the theoretical foundation of the mixture density
network (MDN), discusses the chosen hyperparameters, and
explains the criteria for evaluating model performance. The
results, presented in Sect. 4, are divided into three subsec-
tions. First, we analyze how the model’s performance con-
verges across a range of training samples. Next, we validate
the selected MDN model’s 10 min conditional distribution
estimates under randomly chosen operating conditions, com-
paring them with those generated by BHawC. Finally, we
demonstrate how the probabilistic 10 min estimates can be
used to propagate the statistical uncertainty to the lifetime
fatigue damage. Concluding remarks are provided in Sect. 5.

2 Setup

2.1 Definition of the floating wind turbine

The floating wind turbine in this study is based on a modi-
fied geometry of the Hywind Scotland spar buoy foundation
(Equinor ASA, 2022). It comprises a 6 MW Siemens Gamesa
Renewable Energy direct drive wind turbine assembly, SWT-
6.0-154, mounted on a spar buoy. The characteristic wind tur-
bine parameters are listed in Table 1. The simulations use a
tower with a larger diameter than the tower designed for the
Hywind Scotland site. It is, therefore, stiffer and has a higher

Table 1. Parameters of 6 MW Siemens Gamesa wind turbine.

Parameter Property

Rated power 6000 kW
Configuration Three-bladed
Power control Pitch
Drivetrain Direct drive
Rotor diameter 154 m
Hub height 96 m
Rated wind speed 12 m s−1

Rated tip speed 89 m s−1

Nacelle mass 360 te

Table 2. Wind turbine tower and foundation properties (Bussemak-
ers, 2020; Equinor ASA, 2022; Equinor, 2024).

Parameter Value

Tower bottom outer diameter 9.45 m
Tower bottom thickness 0.08 m
Tower top outer diameter 4.89 m
Tower top thickness 0.029 m
Tower bottom elevation above SWL 13 m
Draft 78 m
Platform top geometry – length 12 m
Platform top geometry – diameter 9.4 m
Platform taper length 15 m
Platform bottom geometry – length 58 m
Platform bottom geometry – diameter 14.4 m

natural frequency than its installed counterpart. The geome-
try details of the tower and the floating platform used in the
simulation are provided in Table 2. The floating substructure
is attached to the ocean floor using catenary mooring lines,
equally spaced at 120° in crowfoot configuration using bridle
lines as shown in Fig. 2 (Equinor ASA, 2022). The structural
properties of the main mooring lines and the bridle lines are
listed in Table 3.

2.2 Numerical model

The damage equivalent loads are obtained through time-
domain hydro-servo-aeroelastic simulations performed us-
ing BHawC–OrcaFlex-coupled implementation. BHawC has
been used for several years at Siemens Gamesa for wind tur-
bine load calculations and is continuously validated against
turbine prototypes and the entire operational fleet. Similar
analysis may be performed with OpenFAST (NREL, 2022;
Jonkman, 2013) coupled with OrcaFlex (Masciola et al.,
2011) via FASTLink for reproducibility. Arramounet et al.
(2019) present the mathematical background for the software
coupling. In short, the tower, the rotor nacelle assembly, and
the blade elements are dynamically modeled in BHawC. The
BHawCLink module acts as a communication channel with
the dynamic link library, connecting it to the OrcaFlex API.

Wind Energ. Sci., 10, 2865–2888, 2025 https://doi.org/10.5194/wes-10-2865-2025
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Figure 2. Hywind Scotland spar buoy with crowfoot mooring line configuration (Equinor ASA, 2022).

Table 3. Catenary mooring line properties.

Parameter Value

Number of mooring lines 3
Angle between mooring lines 120°
Mooring bridle line length 50 m
Mooring bridle line mass per unit length 0.348 t m−1

Mooring main line length 610 m
Mooring main line mass per unit length 0.4322 t m−1

Mooring line anchor radius 640 m

OrcaFlex simulates the hydrodynamic response of the floater
element. Time integration is performed individually on both
elements while accounting for the response of the other struc-
ture per iteration (Arramounet et al., 2019).

The inflow turbulence is modeled using a spatially vary-
ing frozen wind field based on the Mann model (Mann,
1998). The tangential and axial induced velocities are calcu-
lated on several aerodynamic nodes on the blades using the
blade element momentum theory coupled with Prandtl’s tip
loss correction and thrust correction at high induction values.
Skewed and unsteady inflow is modeled using the method in-
troduced by Björck (2000).

The structural elements are modeled using the co-
rotational formulation, providing geometric nonlinearity
(Rubak and Petersen, 2005). The tower, shaft, and blade sub-
structures are modeled using beam elements (Couturier and
Skjoldan, 2018). The Torsethaugen two-peak wave spectrum
generates swell and local wind-driven waves (Torsethaugen
and Haver, 2004). The various elements of the OrcaFlex
model are shown in Fig. 3. A 6-DOF rigid buoy in OrcaFlex

represents the floating substructure. The mooring lines are
modeled in OrcaFlex. Each line is divided into several mass-
less spring segments, joined by elements with lumped prop-
erties such as mass, damping, added mass, buoyancy, and
material properties.

The simulations are initialized in BHawC with a quasi-
static approach where the environmental loads (wind) and
inertial loads (gravity and buoyancy) are ramped up in small
steps. For every load step, OrcaFlex determines the moor-
ing line static equilibrium based on the floater position de-
termined by BHawC. BHawC calculates the global equilib-
rium position based on the stiffness matrices and interface
loads provided by OrcaFlex. Once the global equilibrium is
calculated, the next load step is applied. The dynamic part
of the simulations consists of an initialization phase of 300 s
to eliminate any initial transients as the wave dynamics, tur-
bulence, and substructure motion build up as the artificial
structural damping is slowly ramped down. The final post-
processing is performed on 600 s dynamic simulations that
follow the initialization phase. The simulations for training
the surrogate may be performed for a longer duration if nec-
essary, mainly to estimate mooring line fatigue correctly due
to its long natural period. The effect on the tower and blade
fatigue is shown not to change significantly with larger sim-
ulation windows but rather with the fatigue calculation algo-
rithm used to account for the unclosed cycles (Stewart et al.,
2013).

2.3 Definition of relevant site features and responses

Having a large feature space can lead to a very expensive
surrogate training process, as the number of training samples

https://doi.org/10.5194/wes-10-2865-2025 Wind Energ. Sci., 10, 2865–2888, 2025
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Figure 3. Schematic of the OrcaFlex simulation elements.

required grows rapidly with the number of input variables
due to the curse of dimensionality. It is, therefore, important
to identify which variables have the most significant impact
on fatigue to reduce the input space effectively.

Several studies in the past have focused on addressing the
sensitivity of wind turbine loads to environmental conditions
(Robertson et al., 2018, 2019; Teixeira et al., 2019; Shaler
et al., 2023; Singh et al., 2024c). The combined effect of en-
vironmental and structural parameters has been analyzed on
fixed-bottom (Hübler et al., 2017; Velarde et al., 2019; Dim-
itrov et al., 2018b) and floating wind turbines (Wang et al.,
2023; Wiley et al., 2023; Lin et al., 2021; Reddy et al., 2024;
Singh et al., 2024c).

Wiley et al. (2023) demonstrate that, for the OC4-
DeepCwind semi-submersible platform, the standard devia-
tion of wind speed in the inflow is the most influential pa-
rameter affecting the fatigue and ultimate loads on the tower
and blades. Secondary drivers of fatigue on the tower bot-
tom moment include both turbulence coherence parameters
and wave characteristics, such as significant wave height and
peak spectral period. For blade pitching fatigue, secondary
factors include the yaw misalignment angle and geometric
features like the blade twist angle, whereas the wind–wave
misalignment and the current speed and direction seem to
have a secondary effect on the blade-root-bending-moment
fatigue. Reddy et al. (2024) perform elementary effects anal-
ysis to determine the most significant parameters affecting
tower bottom fatigue on the OC3-Hywind Spar platform
and the OC4-DeepCwind semi-submersible design. In both
cases, the significant wave height is found to be the pri-
mary driver. Current-related parameters are shown to have a
strong effect, mainly on the mooring line fatigue. Singh et al.
(2024c) use measurement data from the TetraSpar demon-
strator to find that the tower and blade fatigue are most highly

Table 4. The list of input features provided to the surrogate model
and their corresponding notation.

Feature Label

Wind speed (m s−1) Uref
Shear exponent (–) α

Turbulence intensity (%) TI
Significant wave height (m) Hs
Spectral peak period (s) Tp
Wave direction (°) Wdir
Yaw error/misalignment (°) Yaw

Table 5. The list of output channels that the surrogate models are
trained to predict.

Response

Tower bottom fore–aft DEL (–)
Tower top fore–aft DEL (–)
Blade root edgewise DEL (–)
Blade root flapwise DEL (–)

correlated with the wind speed mean and standard deviation
and with significant wave height values.

As observed, although current has a big impact on the
mooring line loads, its effect is found to not be as signifi-
cant on the tower and blades in the literature. Therefore, it is
not included as a variable feature in the training of the surro-
gate. A variation in the water depth was also not considered
because the mooring line system must be redesigned for any
new value of water depth. A framework for automating this
process is non-trivial. Furthermore, for slack mooring lines,
Lin et al. (2021) show a negligible impact on the tower fa-
tigue with an increase in water depth.

Wind Energ. Sci., 10, 2865–2888, 2025 https://doi.org/10.5194/wes-10-2865-2025
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The targets the surrogates are trained on are listed in Ta-
ble 5. Each target is trained with a separate surrogate model.
This study only calculates the short-term DELs in the local
coordinate system of the component. DELs result from the
conversion of the irregular load time series to a constant am-
plitude and frequency signal that produces an equivalent fa-
tigue damage. The Rainflow counting (Matsuishi and Endo,
1968) algorithm is used to obtain the load ranges Si and the
number of load cycles ni needed to calculate the DEL as

DEL :=
(∑

niS
m
i

nref

)1/m

, (1)

where nref is 600 for 1 Hz DELs over 10 min. m is the Wöh-
ler coefficient with values of 3.5 for the tower, 10 for blade
flapwise moments, and 8 for blade edgewise moments. Fi-
nally, Z-score normalization is used to scale the DEL to its
dimensionless form.

2.4 Feature bounds

The feature bounds are defined based on the observations of
data on sites where floating wind farms could potentially ex-
ist (Creane et al., 2024) and where data were readily avail-
able. Table A1 in Appendix A lists the selected sites with
their location and water depth values. The ERA5 reanal-
ysis data, produced by the European Center for Medium-
Range Weather Forecasts (ECMWF) on behalf of the Euro-
pean Union’s Copernicus Climate Change Service (C3S), is
used for the analysis in this section.

2.4.1 Average wind speed at hub height

The wind speed at hub height (Uref) varies between 3 and
28 m s−1, which is the operational range of the wind turbine
investigated in this study.

2.4.2 Shear exponent

The shear exponent α is defined according to the wind profile
power law as

U

Uref
=

(
z

zref

)α
, (2)

where U is the wind speed at height z and Uref is the known
wind speed at height zref. We used the ERA5 reanalysis data
to obtain wind speed values at 10 and 100 m for the sites
listed in Table A1. Assuming the wind profile follows the
power law, the shear exponent is calculated using Eq. (2).
The distribution of the shear exponent is shown in Fig. 4a,
with values primarily ranging between 0 and 0.2. It is also
plotted against wind speed in Fig. 4b. In our database, the
shear exponent is uniformly distributed in the region corre-
sponding to the dashed box in Fig. 4b.

2.4.3 Turbulence intensity

The lower range of turbulence intensity is 0.1 %, and the up-
per limit is designed to be 20 % greater than the prescribed
IEC Class C standard (IEC, 2010) for the Normal Turbulence
Model (NTM). The function for class C turbulence intensity
(in percent) is given by

TI= 100×
Iref(0.75Vhub+ 5.6)

Vhub
, (3)

where Iref = 0.12 is the expected value of turbulence inten-
sity at 15 m s−1. The upper limit of turbulence intensity for
sampling is, therefore, 1.2×TI. Figure 5 shows the chosen
range, with the IEC class C turbulence and the measured tur-
bulence at the FINO 3 metmast, which is referenced in the
Buchanan deep metocean report (Equinor ASA, 2022).

2.4.4 Significant wave height

Waves in deep water primarily originate from two sources:
wind-induced waves and swell waves. It is useful to con-
sider the correlation between wind speed and significant
wave height while training the surrogate to avoid including
non-physical wind–wave combinations. Figure 6a illustrates
a scatter plot of significant wave height (Hs) versus wind
speed, based on ERA5 reanalysis data for the selected sites.
The sampling domain is also a function of wind speed, high-
lighted with the dashed lines.

The upper and lower ranges of sampling for the significant
wave height are defined empirically based on these observa-
tions. In this case, the functions are rather conservative and
subject to modification based on the kinds of sites the user
would want to use the surrogate model on. The equations for
the upper and lower limits for Hs are listed in Appendix B1.

2.4.5 Peak spectral period

The empirical functions are defined for the spectral period
range based on the significant wave height. Figure 6b illus-
trates the sampling domain with dashed lines, overlaid on
observational data from the ERA5 reanalysis. This plot also
includesHs−Tp values corresponding to wind speeds below
the cut-in speed and above the cut-out speed. The functions
defining this range are detailed in Appendix B2. As with the
significant wave height, these bounding functions can be ad-
justed based on the region of primary interest to the user.

2.4.6 Wave direction

The wind turbine is always assumed to face the inflowing
wind. Therefore, only the wave direction is varied to intro-
duce wind–wave misalignment. Wave direction is considered
to be an independent variable and is sampled uniformly be-
tween 0 and 360°. For asymmetric floating foundations, how-
ever, wind directions would also need to be considered as an
independent parameter.

https://doi.org/10.5194/wes-10-2865-2025 Wind Energ. Sci., 10, 2865–2888, 2025
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Figure 4. (a) Histograms of the shear exponent α for selected sites for ERA5 reanalysis data from 1990 to 2019. (b) Shear exponent shown
as a function of wind speed, marked by a box denoting the selected sampling domain.

Figure 5. Chosen turbulence intensity range in dashed lines, along
with the IEC class C turbulence profile for NTM and measured tur-
bulence at FINO 3 (German Bight) from the metocean analysis re-
port on the Hywind Scotland project (Equinor ASA, 2022).

2.4.7 Initial yaw misalignment

The effect of the initial yaw misalignment is chosen to be
evaluated at −5.6, 0, and 5.6° while fatigue calculations are
performed. Therefore, we selected the sampling bounds be-
tween 1.1×−5.6° and 1.1× 5.6°.

2.5 Training and testing database generation

2.5.1 Training database

Sobol’ sampling (Sobol, 1967) is used to jointly sample
uniformly in seven dimensions to generate the training
dataset. The samples lying outside the aforementioned fea-
ture bounds are discarded, resulting in a total of 9041 train-
ing samples. Alternatively, a multivariate distribution fitting
the available data can be used to define the sampling space
bounds. Each sample corresponds to a unique wave seed in
OrcaFlex and a single inflow turbulence seed in BHawC.
This approach is designed to emulate the inherent stochas-
ticity of real-world inflow variables. Note that the statisti-
cal variation in the flow field is constrained by the BHawC
implementation to only 45 turbulence seeds. Consequently,

these seeds had to be reused, and the inflow turbulence box
could not be uniquely defined for every case.

2.5.2 Testing database

The values of the shear exponent, turbulence intensity, and
yaw misalignment are not randomly assigned to the test
cases. Instead, they take the values used commonly while
performing fatigue design load case evaluations. The shear
exponent was fixed at 0.08, with yaw misalignment values of
−5.6, 0, and 5.6° and turbulence intensity corresponding to
IEC Class C values. Hs, Tp, TI, and Uref were jointly sam-
pled in a random manner, without being tied to any specific
location but constrained within the defined feature bounds.
For future studies, jointly sampling the test points across all
variables is recommended for a fairer evaluation of the sur-
rogate’s performance.

In total, ntest = 47 test samples were used in this study.
Each test sample simulation was repeated with nseeds = 44
random seeds for turbulence and waves to capture the sta-
tistical variation in the DEL values from the variation in the
wind and wave fields. The seed repetition establishes a refer-
ence conditional distribution for each sample, which is used
to compare against the probabilistic predictions of the surro-
gate model in Sect. 4.2. The samples used for training and
testing the surrogate models are shown in Fig. 7.

3 Methodology

This section briefly describes the theoretical basis of the mix-
ture density network models investigated in this study, along
with the accuracy metrics considered to evaluate the surro-
gate’s goodness of fit. The database {xq ,yq}q=1...n consists
of n pairs of inputs x ∈ Rd and the corresponding output
y ∈ R. The surrogate is calibrated separately for each target.
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Figure 6. Scatter plots of (a) the significant wave height (Hs) vs. the wind speed (Uref) at 100 m and (b) peak spectral period (Tp) vs.
significant wave height (Hs) for the selected sites (Table A1) based on the ERA5 reanalysis data from 1990 to 2019.

Figure 7. Paired scatter plots and marginal distributions of the training and testing datasets.
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3.1 Mixture density networks

A mixture density network is a probabilistic regression
method that combines Gaussian mixture models with arti-
ficial neural networks (Bishop, 1994). The conditional distri-
bution of the target is represented as a linear combination of
m ∈ N Gaussian kernel functions,

p(y | x)=
m∑
i=1

αi(x)N (y | µi(x),σ 2
i (x)), (4)

where αi(x) is the weights or mixing coefficients assigned to
the ith mixture component. A schematic of MDN is shown
in Fig. 8. N (y | µi(x),σ 2

i (x)) is a Gaussian kernel represent-
ing the conditional density of the ih component of the tar-
get distribution, with parameters µi(x) and σi(x). Instead of
mapping the inflow features x to the load statistics y directly,
the neural network is trained to predict the parameter vector,
z ∈ R, consisting of αi(x),µi(x), and σi(x) for 1< i < m
(Singh et al., 2024b).

The mixing coefficients αi(x) must sum up to exactly 1.
A softmax function is used to handle this constraint. Positive
values of the standard deviation are ensured by their repre-
sentation as exponential functions of the corresponding net-
work outputs, zσi . The means are not constrained.

The error function Eq is defined as the negative log of the
likelihood. For pattern q, it is given by

Eq =− ln

(
m∑
i=1

αi(xq )N (yq | µi(xq ),σ 2
i (xq ))

)
. (5)

The likelihood of the dataset is the product of the likelihoods
of the individual data samples.

The derivative of the error function is calculated at the out-
put layer and is back-propagated to obtain its gradient with
respect to the network weights. The values of the network
parameters are adjusted to minimize the error function using
a gradient descent optimization. This study uses the Adam
optimizer (Kingma and Ba, 2017) to perform stochastic gra-
dient descent. The model is initialized 10 times for any given
case in order to choose the best initial conditions for the op-
timizer. The hidden layers in our network use the rectified
linear unit (ReLU). The output layer of the network does not
have an activation function; therefore, the outputs are just
linear combinations of the inputs from the previous layer.

Minimizing the error function is an ill-posed problem, as
there is a conflict between learning the function that fits the
data perfectly and remaining robust under varying sets of
training data. As the network size grows, the function space
increases and the neural network tends to overfit. The MDN
model training especially seemed susceptible to it. Among
several ways to avoid overfitting (Montavon et al., 2012), in
this study, we implemented a combination of early stopping
(Yao et al., 2007) and L1 and L2 regularization (Ng, 2004).

We implement MDNs using the Python-based TensorFlow
Probability library (Dillon et al., 2017), with the output layer

represented as a mixture of Gaussians via TensorFlow’s mix-
ture normal distribution (TensorFlow, 2025). The main hy-
perparameters used in this study to train the models to obtain
the results in Sect. 4 are summarized in Table 6. In subse-
quent sections, we test the performance of the MDN model
with various architectures. The features and targets are scaled
with the standard scaler before training.

3.2 Accuracy metric

The qualitative assessment of the performance of the surro-
gate model is based on two criteria: the coefficient of de-
termination (R2) and the Wasserstein distance (dW2 ), as de-
scribed hereafter.

3.2.1 Coefficient of determination R2

The coefficient of determination, also known as the R2, is
a common measure of the goodness of fit of a model. It is
defined as

R2
= 1−

∑
(yi − ŷi)2∑
(yi − y)2 , (6)

where ŷi is the predicted output, yi is the observed value,
and y is the mean of the observed values. R2 is interpreted
as the linear correlation between the predicted and observed
values of the output vector. To assess the accuracy of the
predicted conditional distribution of the response compared
to the BHawC reference, we calculate the R2 value for the
mean and standard deviation of the conditional probability
density functions (PDFs). These two quantities are derived
empirically by obtaining 5000 samples from the surrogate-
predicted conditional distribution and nseeds seed (turbulence
and wave) repetitions per test case.

3.2.2 Wasserstein distance

The Wasserstein metric is a distance function that compares
the difference between the PDFs of two random variables. It
is symmetric and non-negative, and it satisfies the triangle in-
equality, making it a proper distance metric. In the case of 1D
distributions, the Wasserstein-2 distance between a reference
empirical measure Y and predicted measure Ŷ is defined as
(Villani, 2009; Peyré and Cuturi, 2019; Ramdas et al., 2015)

W2(Y, Ŷ )=

 1∫
0

|F−1(t)−G−1(t)|2dt

1/2

, (7)

where F−1 and G−1 are the quantile functions of Y and Ŷ ,
respectively. The individual quantile functions are obtained
from the samples of the empirical distributions and then in-
tegrated. In this paper, we calculate the Wasserstein distance
between the conditional distribution predicted for each sam-
ple (Ŷ ) and the conditional distribution obtained as a ref-
erence through seed repetitions in BHawC/OrcaFlex (Y ). Ŷ
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Figure 8. Schematic representation of mixture density networks.

Table 6. Summary of the network hyperparameters.

Network hyperparameter Value

Number of mixture components 4
Activation function (hidden layers) ReLU
Activation function (output layer) None
Learning rate 5× 10−3

Maximum epochs 5000
Mini-batch size 100
Optimizer Adam

Regularization

λ for L1 regularization 1× 10−3

λ for L2 regularization 1× 10−3

Early stopping

Early stopping patience 100
Early stopping monitor Validation loss
Number of early stopping validation samples 600
Steps per epoch Number of training samples/batch size

consists of 5000 samples from the surrogate’s estimate, and
Y is obtained from nseeds turbulence and wave seed repeti-
tions in BHawC/OrcaFlex. The distance metric is normalized
by the standard deviation of the reference conditional distri-
bution, Y . Therefore, a value of W2

σ (Y ) = 1 is the distance be-
tween a distribution with mean µ(Y ), scale σ (Y ), and a de-
generate distribution with the same mean. We calculate the
global performance of the model by averaging the normal-
ized Wasserstein distance over ntest test samples as

dW2 = Entest

(
W2

σ (Y )

)
. (8)

4 Results

This section is divided into three parts. The first part presents
a convergence study on the number of training samples, high-
lighting the model’s robustness and demonstrating a clear
trade-off between the computational cost of data generation
and the resulting accuracy. A related hyperparameter study
to determine the network architecture is presented in Ap-

pendix C. The second part validates the performance of the
surrogate on the test dataset. The validated model is used
to make lifetime fatigue damage estimates on the wind tur-
bine components in response to different site conditions in
the third section.

4.1 Choice of training data size

This section shows the convergence study with respect to the
number of training samples for the tower bottom fore–aft
DEL. It is assumed that the same architecture can be used
to predict the remaining channels. Three networks for the
mixture density networks are compared to test the robust-
ness of the approach, as listed in Table 7. The MDNs contain
four mixture elements. The rest of the hyperparameters are as
specified in Table 6. In Fig. 9, at each Ntrain value, the mod-
els are trained on 25 different subsets of the total training data
space to capture the sensitivity of the model’s fit to the choice
of the training samples. The boxes reflect the variation in the
R2 values as a result of the choice of training data points.
The boxes extend between the data’s first (Q1) and third
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Table 7. The MDN architectures considered for the convergence
study.

Notation Number of layers Number of nodes per layer

MDN[10,10] 2 10
MDN[30,30] 2 30
MDN[50,50] 2 50

(Q3) quartile, and the horizontal line across the box indi-
cates the median. The difference betweenQ1 andQ3 defines
the interquartile range (IQR). The upper whisker extends to
the largest data values within 1.5 IQR above Q3. The lower
whisker, similarly, extends to the lowest data point within
1.5 IQR below Q1. Outliers are visible as dots beyond the
whisker boundaries. Figure 9a is the R2 value obtained from
predicting the mean of the conditional PDF of the tower bot-
tom fore–aft DEL, averaged over the test dataset. The mean
in the BHawC reference is calculated using 44 realizations
of the wind and wave fields. The diminishing size of the IQR
as the number of samples grows is a combination of the in-
creasing robustness of the model and the smaller variability
in the test samples as fewer untrained samples remain in the
dataset.

MDN uses a neural network framework capable of infer-
ring extremely complex underlying functions given sufficient
data. In this case, MDN converges to consistent values of
both R2 of the conditional mean and dW2 above 4250 sam-
ples. We also see that MDN estimates are closer to the ground
truth with larger networks of 30 or 50 nodes per layer. The
performance of MDN[30,30] and MDN[50,50] is almost
identical in this region, indicating good model robustness
with respect to the size of the layer.

Figure 9b shows the normalized 2-Wasserstein distance
between the predicted and reference PDF. The Wasserstein
distance quantifies the similarities between the predictions
and the reference. It is, thus, a good indicator of whether
or not the surrogate can correctly estimate the variation in
the target resulting from a combination of epistemic and
aleatoric sources. The predicted PDF is based on 5000 real-
izations from the estimated Gaussian mixture in MDN. The
reference is based on nseeds = 44 BHawC/OrcaFlex realiza-
tions. Since 44 samples are insufficient to characterize the
reference PDF fully, there is certainly an error associated
with the dW2 values; therefore, dW2 cannot be expected to
be zero in practice. Beyond 4250 samples, there is a small
but marginal improvement in the dW2 values from MDN[30,
30] and MDN[50, 50].

In conclusion, the two-layered MDN surrogates
(MDN[30, 30] and MDN[50, 50]) reach convergence
in terms of dW2 at 4250 samples. For subsequent sections,
the MDN models will be trained with a dataset of 8250
points, as this provides marginally better predictions with
only a slight increase in model fitting cost.

Table 8. List of hyperparameters used for training the MDN model
for the final load prediction.

MDN hyperparameter Value

Number of hidden layers 3
Width layer 1 30
Width layer 2 30
Width layer 3 50
Number of mixture components 4
Number of training samples 8250

Table 9. Quantitative analysis of the MDN model’s predictions us-
ing dW2 and R2 as evaluation metrics.

Model Tower Tower Blade root Blade root
bottom FA top FA edgewise flapwise

dW2 0.86 0.35 0.36 0.36
R2µ 0.99 0.99 0.99 0.99

The choice of the number of layers and nodes in the neural
network, along with the number of mixture components, is
based on a hyperparameter study, presented in Appendix C.

4.2 Surrogate model validation

In this section, the performance of the MDN model is eval-
uated for the load channels listed in Table 5, on the se-
lected test dataset presented in Sect. 2.5.2. Based on studies
in Sect. 4.1 and Appendix C, the values of hyperparameters
used in training the models, in addition to Table 6, are listed
in Table 8.

Table 9 provides a quantitative analysis of the model per-
formance in terms of the average R2 and dW2 values. The
conditional mean is accurately captured by the MDN model,
with R2 exceeding 0.99 on the test dataset. The goodness
of fit on the conditional distribution is evaluated using dW2 .
Lower dW2 values indicate a smaller difference between the
predicted and reference conditional distributions across the
test database. As the dW2 values are normalized by the lo-
cal reference standard deviation, we can compare the perfor-
mance of the models across different load channels. MDN’s
performance remains consistently good on the tower top and
blade targets. The tower bottom channel shows a larger de-
viation in the dW2 values, which is investigated further in
Fig. 10.

Figure 10 shows the statistics of the conditional distribu-
tion of the DEL variation at the tower bottom fore–aft direc-
tion. Since 44 seeds is a relatively small sample size to de-
termine the true mean and standard deviation of the popula-
tion, a gray area is highlighted in Fig. 10a and b to reflect the
uncertainty in the reference values. For the mean, the 95 %
confidence interval (CIt ) is calculated with the t distribution
(Rouaud, 2013), assuming the response is normal. It is de-
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Figure 9. Convergence plots for the tower bottom fore–aft DEL channel. Panel (a) shows the convergence of the R2 values of the predicted
mean as a function of the number of training samples for three MDN architectures. Panel (b) shows the average normalized Wasserstein
distance between the reference and predicted conditional PDFs as a function of the training samples.

Figure 10. Load predictions using MDN for the tower bottom fore–aft DEL (normalized). Panel (a) shows the surrogate predicted conditional
mean (µsurrogate) at the test locations vs. the conditional mean calculated using BHawC (µreference). Panel (b) shows the predicted (σsurrogate)
and reference (σreference) standard deviations of the conditional PDF. Panels (c) and (d) compare the conditional PDF plots between the surro-
gate and the simulation at below-rated and near-rated conditions, respectively. The values in vector x denote [Uref,α,TI,Hs,Tp,Wdir,Yaw],
with units specified in Table 4.

fined as

CIt = µreference± t ·
σreference
√
nseeds

, (9)

where µreference is the mean and σreference is the standard de-
viation calculated from the simulation samples. nseeds = 44
is the number of seeds with which the simulations were re-
peated. t is the t score for 95 % confidence, given nseeds sam-
ples from a normally distributed population. The bounds are
similarly calculated using the χ2 distribution for the standard
deviation. The bounds are asymmetric as the χ2 distribution
is skewed. χL and χR are based on 5 % and 95 % tails of the

χ2 distribution. The true standard deviation, σ , is expected
to lie between the bounds,√

(nseeds− 1)
χ2
L

σreference ≤ σ ≤

√
(nseeds− 1)

χ2
R

σreference. (10)

The individual PDFs are shown in Fig. 10 for two site con-
ditions. The reference BHawC realizations are plotted as his-
tograms overlaid with kernel density estimate (KDE) plots
generated from 5000 samples from the conditional PDF pre-
dicted by the surrogate model. The estimates include two
sources of uncertainty. The first is the epistemic uncertainty
of inferring a function from limited data. The second is due
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to the irreducible noise term (aleatoric), which is a part of the
observed stochastic process. The subsequent plots assume
the standard deviation of the combined uncertainty.

Figure 10a shows the predicted conditional mean
(µsurrogate) of the normalized tower bottom fore–aft DEL
as a function of the reference conditional mean (µreference)
derived from BHawC/Orcaflex simulations. As already in-
dicated in Table 9, the R2 values are greater than 0.99 for
MDN, indicating an excellent fit. Similarly, the standard
deviation derived from the surrogates (σsurrogate) is plotted
against the ground truth reference (σreference) in Fig. 10b.
Despite the slight over-prediction of the standard deviation,
MDN is able to capture the heteroscedastic trend in the
data. Figure 10c corresponds to a below-rated velocity of
9.8 m s−1 and a wind–wave misalignment of 105◦. Under
these conditions, the BHawC reference is a short-tailed con-
ditional PDF. Since MDN assumes a medium-tailed Gaus-
sian mixture conditional, there is a tendency for the surrogate
model to overestimate the standard deviation (Fig. 10b). The
reason for the tower bottom fore–aft DELs to be restricted
between a very small range resulting in such a short-tailed
distribution is not obvious and demands a deeper investiga-
tion into the behavior of the tower structure and control laws,
which is beyond the scope of this paper. A similar pattern
is not observed in the other three load channels. Figure 10d
corresponds to an example of a near-rated wind speed case,
where the MDN predictions show a closer match to the ref-
erence conditional distribution.

A similar analysis is performed for the tower top fore–aft
DEL channel in Fig. 11. The conditional standard deviation
estimated from the MDN surrogate is within the error bounds
of the small population assumption, indicating a very good
fit.

Figures 12 and 13 show the surrogate models’ perfor-
mance on the blade root flapwise and edgewise DEL, re-
spectively. Similar to the tower top, the standard deviation
and mean estimates from the MDN surrogate agree very well
with the BHawC reference in both blade channels.

These results indicate that the surrogate model demon-
strates a good level of reliability in accurately predicting the
DELs with respect to the BHawC/OrcaFlex reference. Con-
sequently, we assume that the model can be extended to other
operating conditions without necessitating further verifica-
tion.

4.3 Lifetime damage equivalent loads

The calculation of aggregated fatigue loads in onshore wind
cases consists of binning the wind speed and scaling the loads
at each bin by the probability of occurrence of the wind speed
during the operating lifetime of the wind turbine. Floating
wind turbine fatigue evaluations are more complex because,
firstly, many more environmental parameters must be con-
sidered to characterize the site. Secondly, the bins need to be
defined on a joint probability space. The process of choos-

ing the right variables for the fatigue analysis and the size
of the bins is not yet standardized and is a topic of ongo-
ing research (Papi and Bianchini, 2024). With a fast surro-
gate model, however, it is possible to account for every sin-
gle observation in the previous years, without the need to
lump probabilities or limit the number of variables. The joint
probabilities of the sea states are, therefore, automatically ac-
counted for.

In this section, we use the validated surrogate model from
Sect. 4.2 to make probabilistic estimates of the equivalent
loads (Meq) for 10 million reference load cycles on the float-
ing wind turbine structure. The site data are obtained from
the ERA5 database for four sites with an approximate wa-
ter depth of 100 m, namely Sud de la Bretagne II, Emerald,
Hywind Scotland, and HIP Atlantic (Table A1). Figure 14
provides an overview of the site conditions observed at the
four selected sites. For simplicity, the foundation and moor-
ing line design are assumed to be the same across the four
sites. It is assumed that the difference in the load distribu-
tions between the design in use and the site-optimized foun-
dation will not be significant. The ERA5 hourly conditions
are converted to 10 min inputs by repeating each set of val-
ues six times. An alternative approach could be to draw the
10 min values from a normal distribution with the hourly val-
ues as the mean and an assumed standard deviation. The ob-
servations below cut-in and above the cut-out wind speed are
excluded from the calculations. The site data consist of the
average wind speed at 100 m, the significant wave height,
the peak spectral period, the wind–wave misalignment (con-
verted to wave direction in OrcaFlex coordinates), and the
shear exponent. The yaw misalignment values are sampled
from a normal distribution with zero mean and a standard de-
viation of 2°. The turbulence intensity is calculated for each
case based on the wind speed, assuming the IEC 61400-1
turbulence class C classification.

The value Meq represents the cyclic load amplitude which
produces the equivalent lifetime damage given neq cycles of
oscillation over L= 25 years. In Eq. (11), Mi is the DEL for
the ith 10 min of operation, and nref is the reference number
of cycles per 10 min, set to 600. m is the Wöhler coefficient,
with part-specific values listed in Sect. 2.3. nL is the num-
ber of 10 min periods in L years. The loads do not have to
be scaled, as the probability of occurrence of each condition
is equal. Since the surrogate has been validated in previous
sections, we assume here that its predictions are accurate, and
we can treat eachMi as a probabilistic output from the MDN
model. From each Mi PDF, we draw 500 samples, resulting
in a probabilistic estimation of Meq. Meq is defined as

Meq =

(
nref

neq

nL∑
Mm
i

)1/m

, (11)

where neq is 106 and nref is fixed to 600 oscillations per
10 min period. The probabilistic Meq value can be further
used to calculate the stress reserve factor when re-designing

Wind Energ. Sci., 10, 2865–2888, 2025 https://doi.org/10.5194/wes-10-2865-2025



D. Singh et al.: Probabilistic surrogate for floating wind turbine DEL prediction 2879

Figure 11. Load predictions using MDN for the tower top fore–aft DEL (normalized). Panel (a) shows the surrogate predicted conditional
mean (µsurrogate) at the test locations vs. the conditional mean calculated using BHawC (µreference). Panel (b) shows the predicted (σsurrogate)
and reference (σreference) standard deviations of the conditional PDF. Panels (c) and (d) compare the conditional PDF plots between the surro-
gate and the simulation at below-rated and near-rated conditions, respectively. The values in vector x denote [Uref,α,TI,Hs,Tp,Wdir,Yaw],
with units specified in Table 4.

Figure 12. Load predictions using MDN for the blade root flapwise DEL (normalized). Panel (a) shows the surrogate predicted conditional
mean at the test locations vs. the conditional mean calculated using BHawC. Panel (b) shows the predicted and reference standard deviations
of the conditional PDF.

the tower or to calculate the fatigue damage during the struc-
ture’s operating lifetime.

Figure 15 shows the kernel density estimate of the normal-
izedMeq values from the surrogate for the four selected sites.
Meq has been normalized by the average of the predictedMeq
values at the Hywind Scotland site for every channel. Firstly,
it is interesting to note that the uncertainty in Meq at each
site is very small compared to the mean. This aligns with
the law of large numbers, which states that, for Mi with a
mean µ and variance σ 2, the standard deviation of the aver-
age of the distribution of (

∑
Mi) decreases as σ/

√
nL. Since

nL is in the order of 106, the standard deviation becomes ex-

tremely small as we get closer to the true mean. Even though
the effect of Mi being raised to the power of m means that
any variability in the sum is amplified, subsequently taking
the mth root has the opposite, damping effect. Therefore, the
effect of the outliers is essentially nullified due to the averag-
ing. It is important to note that this study considers only the
statistical uncertainty arising from stochastic input sources.
In practice, other sources of uncertainty may contribute to
the analysis (IEC, 2024b). For example, uncertainties related
to the underlying joint distribution of site conditions repre-
sent another significant source of variability. Including these
additional sources of uncertainties may introduce bias in the
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Figure 13. Load predictions using MDN for the blade root edgewise DEL (normalized). Panel (a) shows the surrogate predicted conditional
mean at the test locations vs. the conditional mean calculated using BHawC. Panel (b) shows the predicted and reference standard deviations
of the conditional PDF.

Figure 14. Comparison of the site conditions at the four floating wind sites considered in this study (Table A1).

long-term mean, which is reflected as an uncertainty in the
aggregated statistics of the outputs.

Secondly, the loads on different channels do not scale uni-
formly across sites. At the HIP Atlantic site, for instance, the
cumulative tower bottom fore–aft moment is the highest, as
shown in Fig. 15. This is primarily due to the influence of the
significant wave height, which is expected to have a larger
impact on the tower bottom fatigue (Singh et al., 2024c; Wi-
ley et al., 2023; Edwards et al., 2023). The marginal distri-
bution of significant wave height at this site shows a higher
probability of larger waves compared to other locations, sup-
porting the observed increase in tower bottom loads.

The distributions of wind speed, turbulence intensity, and
significant wave height at the Emerald and Hywind Scotland
sites (Fig. 14) are nearly identical. This results in compa-
rable tower top fore–aft and blade root edgewise damage.
However, there remains a significant difference in blade root
flapwise fatigue accumulation. This result is surprising, given

that the loads at this location are primarily wind-driven. Nev-
ertheless, it underscores the complexity of fatigue damage
accumulation, which can yield different outcomes with mi-
nor variations in site conditions even with respect to non-
dominant variables.

5 Conclusions

5.1 Summary

This paper presents a framework to develop probabilistic sur-
rogate models for predicting floating offshore wind turbine
fatigue loads for site analysis. The surrogate maps the envi-
ronmental conditions from potential farm sites to the 10 min
damage equivalent loads experienced by a spar-type float-
ing wind turbine. The main advantage of using probabilistic
surrogates for this application is the ability to estimate con-
ditional statistics with high accuracy to account for the sta-
tistical uncertainty resulting from the stochastic site condi-
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Figure 15. The 25-year normalized Meq calculated for four sites at the tower bottom fore–aft direction (top-left), tower top fore–aft (top-
right), blade root flapwise (bottom-left), and blade root edgewise (bottom-right) channels. The mean Meq obtained at the Hywind Scotland
site is used as the reference to normalize the loads at the remaining locations.

tions while minimizing the computational cost of training by
avoiding seed repetitions. Based on the reanalysis data from
the ERA5 database for several comparable floating sites, the
surrogate model is used to propagate the statistical uncertain-
ties to the 25-year fatigue loads on the wind turbine.

In this study, the analysis is performed on a spar buoy
floating foundation based on a modified Hywind Scotland
6 MW wind turbine. The damage equivalent loads are con-
sidered on critical locations on the tower and blades and are
calculated using a coupled implementation of BHawC/Or-
caFlex for training and validating the surrogate. The features
characterizing a floating farm site and the appropriate ranges
are defined. The probabilistic model considered in this study
is the mixture density network, as it is flexible, robust, and
interpretable and has performed well for fixed-bottom load
emulation in the literature.

Since MDN is based on a neural network parametriza-
tion, several hyperparameters require tuning prior to training.
Therefore, a hyperparameter study is performed to find the
appropriate neural network layout and the minimum num-
ber of training samples required to reach a high accuracy in
terms ofR2µ and dW2 . The conditional distribution predicted
by the chosen model is validated on a set of 47 operating con-
ditions, each simulated with 44 random seeds in BHawC/Or-
caflex to obtain a reference conditional distribution for each
test case. The R2 value for estimating the conditional mean
is > 0.99 on all channels with the surrogate, indicating an

excellent fit. The standard deviation of the conditional distri-
bution is over-predicted by the model in the case of the tower
bottom fore–aft moment but within the range of uncertainty
bounds for the tower top and blade root channels.

Finally, the validated surrogate model is used to make
probabilistic estimates of the 25-year equivalent damage on
the tower and blades for four different sites. Since the sur-
rogate model is fast, load predictions can be made quickly
on all observed site conditions without lumping or binning
the sea states a priori. We demonstrate that surrogate models
can be powerful tools for site analysis, especially for float-
ing wind turbines, where the choice of variables and binning
methods is still an open question. Additionally, using proba-
bilistic surrogates like MDNs helps reduce bias in calculating
the aggregate mean fatigue, as the conditional distributions
are not always normally distributed.

5.2 Discussion and future work

This section provides a critical discussion of the study’s re-
sults, along with practical considerations and limitations as-
sociated with the use of MDNs.

5.2.1 10 min conditional DEL prediction

Given the stochastic nature of the site conditions, it is natu-
ral to model the 10 min DEL response within a probabilistic
framework. MDN is demonstrated in this study to be a reli-
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able tool for modeling the conditional distribution of 10 min
DELs on the spar buoy floating wind turbine’s tower and
blades. MDN predictions are shown to remain robust across
different network architectures and numbers of mixture com-
ponents. The conditional means of the DELs are predicted
with high accuracy, achieving an R2

= 0.99. Additionally,
the Wasserstein distance between the predicted and refer-
ence conditional distributions shows a strong match at the
blade roots and tower top. However, at the tower bottom, the
conditional standard deviation of the 10 min fore–aft DEL
is consistently over-predicted. It is corroborated by the rela-
tively larger normalized Wasserstein distance value, indicat-
ing a bigger difference between the reference and predicted
PDFs. Two main factors contribute to this: (i) the reference
BHawC distributions are not converged at all simulated test
locations with 44 random seeds. The tails of some distribu-
tions are not developed, resulting in short-tailed distributions
that the MDN cannot easily capture. (ii) The tower bottom
fatigue is shown in the literature to have a stronger correla-
tion to the hydrodynamic parameters, leading to higher noise
in the data. As MDN is trained to minimize the negative log-
likelihood, it is rewarded for predicting higher variance when
there is less confidence.

5.2.2 Probabilistic lifetime DEL aggregation

The uncertainty in the aggregated lifetime fatigue loads due
to stochastic inputs is found to be much smaller in scale com-
pared to the mean. This results from summing the 10 min
DELs over 1 million occurrences, effectively nullifying the
impact of the outliers. The use of a probabilistic surrogate
that correctly captures the conditional distribution is still use-
ful, as it minimizes the aggregation of error in the final re-
sponse.

5.2.3 Notes on mixture density networks

Mixture density networks, due to their flexibility in model-
ing the conditional response, are well suited for the prob-
lem of probabilistic load estimation. One big advantage of
the method is the ease of implementation and robustness, as
demonstrated in this paper. Compared to deterministic mod-
els that often assume a Gaussian response to determine the
conditional mean, mixture models can account for skewness
and multimodality and improve the mean estimates. This is
especially important for quantities like DELs, which may
have non-Gaussian, heteroscedastic variations. MDNs scale
well and are cost-effective to train compared to models that
use Bayesian inference or variational inference (Blei et al.,
2017).

MDNs without regularization can result in overfitting.
Therefore, in this study, both L1 and L2 regularization are
implemented. Secondly, MDNs rely on a stochastic opti-
mizer that is sensitive to the initialization of the model pa-
rameters. Hence, a 10-fold cross-validation is recommended

to ensure the optimizer is not stuck on a false minimum. As
seen in the tower bottom fore–aft channel, minimizing the
negative log-likelihood can result in the over-prediction of
the standard deviation of the conditional response when the
underlying distribution is short-tailed. MDNs here are not re-
stricted to strictly positive values; in some cases, the tails
may also extend to negative values. A potential solution is
to assume a lognormal distribution for the output. This can
be done by directly predicting the parameters of a lognormal
distribution during training or by transforming the output to
a normal distribution before training.

5.2.4 Future work

Future studies could use such surrogates to identify opti-
mal methods for grouping sea states in order to reduce the
number of physics-based simulations required to achieve the
same lifetime fatigue loads as using all observed site data.
This type of analysis would be computationally impractical
with an engineering tool, as it would require the performance
of millions of simulations to establish a baseline reference.
Surrogates offer an alternative for reducing the computa-
tional demands while maintaining accuracy. Surrogate mod-
els can also be used in this context to isolate combinations
of sea states that produce the highest fatigue on the wind tur-
bine structure. Furthermore, it is interesting to include other
sources of uncertainty in the analysis of loads, such as in-
troducing an uncertainty on the parameters defining the joint
distribution of the site conditions. Once trained, probabilis-
tic surrogate models can be used to propagate the different
uncertainty sources to the loads to study the combined effect
without additional costs. This approach opens new opportu-
nities for integrating reliability-based decision-making into
the design process.

Appendix A: ERA5 locations used for defining
feature ranges

Table A1 lists the locations used for defining the feature
ranges in Sect. 2. The data are downloaded from the years
1979 to 2020. The database consists of the hourly average
wind speeds at 10 and 100 m, the significant wave height, the
spectral peak period, and the wave direction. The shear law
exponent is derived from the wind speed values assuming a
power law profile for the atmospheric boundary layer.
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Table A1. Description of the sites used for defining the feature ranges.

Site Location ERA5 approx. location Depth (m)

Latitude (°) Longitude (°) Latitude (°) Longitude (°)

Dyning (Creane et al., 2024) 58.218 17.860 58.00 17.75 141
Mareld (Creane et al., 2024) 58.161 10.575 58.25 10.50 233
Sørlige Nørdsjo Phase II (Creane et al., 2024) 56.783 4.918 56.75 5.00 60
Tetraspar 59.15 5.013 59.00 5.00 200
Utsira Nord Phase I (Creane et al., 2024) 59.276 4.540 59.00 4.50 273
Buchanan Deep (Equinor ASA, 2014) 57.45 −1.31 57.50 −1.25 100
West of Barra (Vigara et al., 2019) 56.885 −7.947 57.00 −7.75 100
Gran Canaria (Vigara et al., 2019) 27.75 −15.33 27.75 −15.00 200
Morro Bay (Vigara et al., 2019) 35.083 −121.5 35.5 −121.75 870
Sud de la Bretagne II (Creane et al., 2024) 47.3247 −3.6594 47 −3.7 94
Emerald (Creane et al., 2024; Wind, 2025) 51.3565 −8.0761 51.5 −8 90
Moneypoint Offshore I (Creane et al., 2024; ESB, 2025) 52.519 −10.276 52.5 −10.5 102
HIP Atlantic (Creane et al., 2024) 63.6325 −16.3756 63.5 −16.5 98

Appendix B: Feature bounds

B1 Significant wave height

The upper and lower limits for the significant wave height
are defined as functions of the wind speed at hub height Uref.

The upper limit is a quadratic function of the form

HsU =−0.008U2
ref+ 0.45Uref+ 5. (B1)

The lower limit is defined as

HsL = 0.719e(0.0832Uref)− e(0.04Uref). (B2)

B2 Peak spectral period

The peak spectral period range is designed to be a function
of the significant wave height (which is, in turn, a function
of the wind speed at hub height). We define scaling functions
A, B, and C as

A= a1+ a2H
a3
s (B3)

B = b1+ b2e
−b3Hs (B4)

C = c1+ c2e
−c3Hs . (B5)

The scaling functions are used to define the upper bound TpU

and lower bound TpL as

Tpµ = e
(A+0.5B) (B6)

TpL = Tpµ (1− 3×
√

(eB − 1)) (B7)

TpU = Tpµ (1+ 3×
√

(eC − 1)). (B8)

The coefficients used to fit the curve in this study are listed
in Table B1.

Table B1. Tuning coefficients for defining the range functions for
the spectral wave period.

a1 a2 a3 b1 b2 b3 c1 c2 c3

1.3 0.57 0.37 0.005 0.1 0.43 0.005 0.75 0.6

Appendix C: Choice of hyperparameters

C1 Number of layers and nodes

Large networks are better at capturing complex expressions
in data but are susceptible to overfitting with a small training
set. The objectives of this study are, firstly, to observe the
robustness of the model relative to the number of network
parameters for a particular training data size and, secondly,
to choose a network architecture suitable for the rest of the
study.

A sensitivity study on the number of nodes and layers is
performed in this section for a training dataset of 8250 sam-
ples. The number of mixture parameters is four in all cases,
and the rest of the network hyperparameters are fixed to the
values listed in Table 6. Networks with two, three, and four
layers with various widths are tested. The x axis in Fig. C1
lists the combinations of widths per layer evaluated in this
study. The tower bottom fore–aft DEL channel is chosen for
this study.

The R2 values of the DEL are notably good for the archi-
tectures tested, indicating good model robustness. The main
differences observed are in dW2 , where the large three- or
four-layer networks are generally better at capturing the com-
plete conditional PDF. For the remainder of this study, we
chose a three-layer network with 30 nodes in layer 1, 30
nodes in layer 2, and 50 nodes in layer 3 in combination with
8250 training samples.
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Figure C1. Study on the network architecture. The x axis reflects the number of nodes per layer. The rows correspond to two-, three-, and
four-layer networks. The left column shows the R2 value for the mean of the conditional PDF of the tower bottom fore–aft DEL channel.
The dashed line corresponds to an R2 value of 0.99. The right column plots the dW2 values for the same channel with the dashed line
corresponding to a dW2 value of 1.

Figure C2. Sensitivity of the MDN surrogate to the number of mixture components (Ncomponent) for the tower bottom fore–aft DEL.
Panel (a) shows the R2 values for the predicted mean. Panel (b) indicates the average normalized dW2 for the predicted conditional PDF.
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C2 Number of mixture elements

The number of Gaussian distributions in the mixture controls
the complexity of the predicted conditional PDF. However,
a large number of unnecessary mixture elements add redun-
dancy and increase the computational complexity of the sur-
rogate. In this section, we use 6250 and 8250 training sam-
ples with a three-layer architecture width= (30, 30, 50) and
test the performance of 4, 12, and 20 mixture elements on the
tower bottom fore–aft DEL channel.

The number of components does not affect the estimation
of the tower bottom fore–aft DEL mean. A slight improve-
ment can be seen in Fig. C2b with four components. The
model, therefore, appears to be robust regarding the choice of
the number of mixture components. In other words, it does
not necessarily benefit from a large set of mixture compo-
nents. MDN models in the remainder of the study are trained
with four kernels.
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