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Abstract

Noise’s impact on biochemical systems has long been a focal point of investigation, given

its potential to compromise signal accuracy and disrupt system functionality [31]. This

paper conducts a comprehensive exploration into the noise characteristics within a set of

signal differentiators recognized for their high precision. Noteworthy for their modularity,

swift computation, and ease of implementation, these differentiators play a pivotal role

in computing concentration changes and bear the potential to regulate the dynamics of

biological systems.

This study establishes a comprehensive simulation framework to examine the noise

characteristics of these differentiators across diverse input signal scenarios. Furthermore, we

also apply noise suppression techniques such as noise filters to mitigate excessive noise and

enhance noise performance.

Our findings reveal that these differentiators significantly amplify the system noise level,

surpassing both the Poisson level and the original system noise level. Moreover, while noise

filters demonstrate notable success in noise reduction, achieving Poisson-level noise without

compromising signal integrity remains a challenge.

This investigation yields invaluable insights into the noise properties of biochemical

differentiators, shedding light on their inherent limitations. Additionally, it presents a viable

pathway to enhance noise behaviour, thereby extending the scope of applications for these

differentiators.
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Chapter 1

Introduction

Biological systems encompass both internal and external sources of noise, the former arising

from the intrinsic stochastic nature of biochemical reactions, while the latter includes factors

like temperature, humidity, and food availability [39]. When organisms encounter noise, they

exhibit adaptive behaviours by making adjustments, such as altering their diet to regulate

mammalian influx calcium or utilizing lactation to export calcium [3]. These behaviours

can be mathematically abstracted into basic operations, including addition and subtraction.

Moreover, organisms can also perform more complex calculations, such as derivations.

For instance, in 2010, Shimizu et al. discovered that the chemotaxis-signalling pathway in

Escherichia coli is capable of computing time derivatives [49].

In the field of physics, differentiators play a crucial role. They are employed to differentiate

signals and obtain important parameters such as rates, and with simple modifications, they

can be transformed into controllers, similar to the "D" (derivative) component in classical

PID (Proportional-Integral-Derivative) controllers. Consequently, the discovery of differential

mechanisms in biology has gained the interest of researchers, as it has the potential to

facilitate derivative calculations and control processes in the field of biochemistry.

Due to their importance, many novel designs of biochemical differentiators have been

proposed [2] [28], but there has been limited research on the noise properties of biochemical

differentiators, which holds great importance. Noise introduces stochastic fluctuations into

the system, making it impossible to predict the system’s evolution with absolute certainty [46].

These fluctuations can also introduce errors into information or corrupt it [46].

Hence, before these architectures can be practically applied, it is crucial to study their

noise properties. This paper aims to analyze the noise behaviour of one specific biomolecular

differentiator, Biomolecular Signal Differentiators (BioSD) [2], which can calculate the time

derivative around the steady states. The BioSD includes 3 typologies, namely BioSD-I, II and
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III. BioSD is selected for its modularity, short delay, and high accuracy, distinguishing it from

other differentiators.

The investigation commences with the meticulous modelling of BioSD topologies using

the syntax of Chemical Reaction Networks (CRNs) [37]. Noise quantification is achieved by

employing the Fano factor [47], a widely-adopted metric for measuring noise intensity. The

analytical exploration is facilitated through the utilization of the simulation tool Kaemika [9],

which employs the Linear Noise Approximation (LNA) method [37]. Rigorous experiments,

encompassing a diverse array of input signals, reveal a consistent trend: the noise levels of

BioSD outputs persistently transcend the Poisson level and frequently surpass the intrinsic

noise present in the initial input signal. Consequently, the application of Noise Filters [38] is

investigated to temper this excessive noise.

In summary, this paper makes significant contributions to our understanding of the noise

characteristics and performance of BioSD. The key contributions are as follows:

• Noise Level Revelation: This study unveils that the noise levels in BioSD outputs are

notably higher compared to their input signals. This highlights the critical importance

of employing noise suppression techniques.

• Noise Filtering Implementation: The paper introduces the application of noise filters

to BioSD outputs, effectively reducing the noise levels and subsequently enhancing

accuracy and reliability.

• Accuracy Validation: The accuracy of BioSD calculations is rigorously validated through

experiments involving intricate input signals. Despite the challenging nature of these

inputs, BioSD showcases commendable accuracy, further substantiating its potential

practical utility.

• Parameter-Noise Relationship: The paper uncovers an intricate relationship between

the parameter b of BioSD and the corresponding noise levels. This insight sheds light on

the role of parameter configuration in influencing noise behaviour, thereby providing

valuable guidance for optimization.

Page 5 of 72
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1.1 THESIS OUTLINE

The thesis is organized as follows:

Chapter 2 introduces the foundational modelling language, Chemical Reaction Networks

(CRNs), which serves as the basis for subsequent chapters. Both deterministic and stochas-

tic semantics are discussed, and under the stochastic framework, various approaches to

modelling the system are explored.

Chapter 3 provides a comprehensive review of biochemical differentiators, with a specific

focus on Biomolecular Signal Differentiators (BioSD) and Transfer Function Differentiators

(TFD). This chapter highlights the respective advantages and disadvantages of these differen-

tiators and conducts a comparative analysis, ultimately revealing BioSD’s superiority over

TFD.

Moving on to Chapter 4, we devote ourselves to the design of noise analysis. We first con-

duct an in-depth review concerning noise, which covers its effects, measurement techniques,

and methods for suppression. This lays the groundwork for understanding the significance

of noise analysis and provides valuable insights for experimental design. We then discuss the

selection of the simulation software tool and the choice of input signals for testing. Addition-

ally, we present the reference derivative used for comparison to assess the accuracy of BioSD.

Subsequently, we input the selected test signals to BioSD and verify the accuracy.

Chapter 5 unveils the outcomes of the noise analysis conducted using the methodologies

outlined in Chapter 4. Here, we obtain the noise levels of BioSD outputs corresponding to

each test signal, and compare them with the noise level of the respective test signal as well as

the Poisson level. This examination enables us to delve into the correlation between a specific

BioSD parameter and the resulting noise, achieved through controlled adjustments of this

parameter and subsequent noise level testing. Furthermore, we introduce noise filtering

techniques to effectively attenuate the noise levels.

Chapter 6 is dedicated to presenting the conclusion and discussing the findings. We

summarize the key contributions of this study and provide insights into future directions for

further research and improvements in the field of biochemistry.

Page 6 of 72



Chapter 2

Chemical Reaction Networks

Biochemical systems are constructed using biochemical reactions. These reactions are

effectively modelled using a programming language called Chemical Reaction Networks

(CRNs) [52]. The versatility of CRNs enables their application in various research areas,

including noise filters [38] and molecular programming [51].

CRNs are based on a premise called the Well-Mixed Assumption, which assumes that

the system is well-stirred, and all molecules are uniformly distributed [37]. This assumption

ensures that the spatial location of molecules does not influence the likelihood of reactions,

thereby excluding unrelated disturbances.

At any given moment, the reactions of molecules are randomized with some probability.

When the copy numbers of molecules are sufficiently large, the fluctuations resulting from

this inherent randomness become negligible, allowing for deterministic modelling of the

system [26]. This scenario is relatively straightforward and is referred to as Deterministic

Semantics. However, when the copy numbers of molecules are low, stochastic effects become

significant and cannot be disregarded. In order to accurately account for the uncertainty in

such situations, the Stochastic Semantics is employed.

In this section, we begin by introducing the syntax of CRNs in Section 2.1. We then delve into

the deterministic modelling approach in Section 2.2, providing an in-depth exploration of its

principles and calculation process. Subsequently, in Section 2.3, we shift our focus towards

stochastic models and their associated methodologies, accompanied by relevant information

and considerations.

7
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2.1 SYNTAX

A Chemical Reaction Network (CRN) C = (Λ,R) consists of two sets: Λ, which represents all

the chemical species involved, with |Λ| denoting the size of the species set, and R, which

represents the set of reactions, with n denoting the number of reactions [37]. The species

in Λ interact with each other based on the reactions in R. Each element τi = (rτi , pτi ,kτi )

(i ∈N+, i ≤ n) in R represents the i-th reaction. Here, rτi ∈N|Λ| and pτi ∈N|Λ| are two sets that

represent the stoichiometry of the reactants and products of the reaction, respectively. And

kτi ∈R> 0 denotes the reaction rate coefficient. The net change of species in this reaction is

given by vτi = pτi − rτi . If the initial condition x0, which sets the initial concentration of each

species, is also included, then the network C = (Λ,R, x0) is referred to as a chemical reaction

system (CRS) [37].

Example 2.1 Consider the following reactions:

; 100→ b

a +b
10→ c

b + c
1→ a

c
0.1→;

The corresponding CRN is as follows:

C = (Λ,R)

Λ= {a,b,c} |Λ| = 3

R = {τ1,τ2,τ3,τ4} n = 4

τ1 = ([0,0,0], [0,1,0],100) vτ1 = [0,1,0]

τ2 = ([1,1,0], [0,0,1],10) vτ2 = [−1,−1,1]

τ3 = ([0,1,1], [1,0,0],1) vτ3 = [1,−1,−1]

τ4 = ([0,0,1], [0,0,0],0.1) vτ4 = [0,0,−1]

Page 8 of 72
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2.2 DETERMINISTIC SEMANTICS

In deterministic semantics, CRNs are described using a set of deterministic Ordinary Differ-

ential Equations (ODEs) known as rate equations [37]. These rate equations represent the

concentration change of each species over time:

F
(
Φ(t )

)= dΦ(t )

d t
(2.1)

where F
(
Φ(t)

)
is known as drift term, and Φ(t) : R≥0 → R|Λ| describes the concentration of

each species against time.

To obtain the rate equations, the Law of Mass Action, also known as Mass Action Kinetics,

is used. This principle states that the reaction rate is proportional to the product of reactant

concentrations to the power of its stoichiometry [42] [34], and it was first introduced by Cato

Maximilian Guldberg and Peter Waage in 1864 [25] to study the chemical affinity between

reactants. The Law of Mass Action has found applications not only in chemistry [54] and

biology but also in pharmacology [35], epidemiology [30], and even economics [48].

Using Mass Action Kinetics, the rate equation can be obtained through the following

procedure:

1. Calculate the propensity rate ατi

(
Φ(t)

)
for each reaction τi , and arrange them in a

vector ατ
(
Φ(t )

)
in the order of reactions, from top to bottom. These rates represent the

likelihood of the reaction occurring at time t . The propensity rate can be calculated

using the Law of Mass Action, which multiplies the reaction rate coefficient with the

concentration of each species raised to the power of its reactant stoichiometry (see the

equation below).

ατi

(
Φ(t )

)= kτi

∏
j∈Λ
Φ j (t )rτi ( j ) (2.2)

ατ
(
Φ(t )

)=

ατ1

(
Φ(t )

)
ατ2

(
Φ(t )

)
...

ατn

(
Φ(t )

)


2. Calculate the net change vτi for each reaction τi , and generate the row vector vτ in the

order of reactions, but from left to right.

vτ =
[

vτ1 vτ2 · · · vτn

]

Page 9 of 72
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3. The rate equation is obtained by the dot product of the net change row vector and

propensity rate vector F
(
Φ(t )

)= vτ ·ατ. Each element in the resulting vector is actually

the expect value of concentration change of the corresponding species at a given time,

which is also the concentration change rate.

This process is further demonstrated by the following example:

Example 2.2 Considering the same chemical reaction network (CRN) system as illustrated in

Example 2.1, we proceed to calculate the drift term by first determining the propensity rate for

each reaction:

(r eacti ons) (pr opensi t y r ates) (net chang es)

; 100→ b 100 [0 1 0]

a +b
10→ c 10Φa(t )Φb(t ) [−1 −1 1]

b + c
1→ a Φb(t )Φc (t ) [1 −1 −1]

c
0.1→; 0.1Φc (t ) [0 0 −1]

And then, we dot product the net change row vector and propensity rate vector:

F
(
Φ(t )

)=[
[0 1 0] [−1 −1 1] [1 −1 −1] [0 0 −1]

]
·


100

10Φa(t )Φb(t )

Φb(t )Φc (t )

0.1Φc (t )


=

[
0 100 0

]
+

[
−10Φa(t )Φb(t ) −10Φa(t )Φb(t ) 10Φa(t )Φb(t )

]
+[

Φb(t )Φc (t ) −Φb(t )Φc (t ) −Φb(t )Φc (t )
]
+

[
0 0 0.1Φc (t )

]

=


−10Φa(t )Φb(t )+Φb(t )Φc (t )

100−10Φa(t )Φb(t )−Φb(t )Φc (t )

10Φa(t )Φb(t )−Φb(t )Φc (t )−0.1Φc (t )


T

From the drift term, we can get the concentration change rate for each species:

Φ̇a(t ) = −10Φa(t )Φb(t )+Φb(t )Φc (t )

Φ̇b(t ) = 100−10Φa(t )Φb(t )−Φb(t )Φc (t )

Φ̇c (t ) = 10Φa(t )Φb(t )−Φb(t )Φc (t )−0.1Φc (t )

Page 10 of 72
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2.3 STOCHASTIC SEMANTICS

As mentioned previously, deterministic semantics utilize the expected changing rate of

species to represent CRNs. However, to investigate the noise or the randomness in species

concentrations, deterministic semantics is not sufficient. In such cases, we turn to stochastic

semantics to address our requirements and capture the stochastic nature of the system.

In this section, we delve into the stochastic semantics of CRNs. We begin by introducing

the fundamental concept of a Markov process, which serves as the cornerstone of stochastic

modelling and is regarded as one of the most essential types of random processes [50]. Sub-

sequently, we explore Chemical Master Equation (CME), Gillespie Algorithm and Linear

Noise Approximation (LNA). Each of these three methods has its own pros and cons, and is

applicable to different types of applications.

2.3.1 Markov Process

A Markov process {X (t), t ∈ T } is a stochastic process with the Markov property, which im-

plies that the conditional probability density has no memory. In other words, the probabilities

of future events only depend on the current state [20]. A Markov chain is a special case of the

Markov process where the state space S is discrete. Depending on whether the time domain

T is continuous or not, the Markov Chain can be classified into Continuous-Time Markov

Chains (CTMCs) and Discrete-Time Markov Chains (DTMCs) [29].

For a discrete process X (t ), t ∈ T to be a Markov chain, it must satisfy the condition that

for any n > 0, any t1 < t2 < ... < tn < tn+1 in the time domain T , any states i1, i2, ..., in , and any

state j in the state space S, the following equality holds:

Pr {X (tn+1) = j |X (t1) = i1, ..., X (tn) = in}

=Pr {X (tn+1) = j |X (tn) = in} (n ⊆N, n ≥ 1) (2.3)

where Pr {B |A} denotes the conditional probability density of event B given event A, also

known as the transition probability from event A to event B [29].

The transition probability on the right-hand side of the equal sign in Equation 2.3 can be

viewed as a one-step square transition matrix Pi j = [pi j ], where one step corresponds to one

time interval, i represents all the states that can reach state j in one step, j is the destination

state, and the each element p represents the conditional probabilities of transitioning from

state i to state j [29].

Page 11 of 72



Master Thesis – Final Report TUDelft

By extending the number of steps to n, the transition matrix becomes:

P (n)
i j = Pr {X (tm+n) = j |X (tm) = i } (2.4)

And the n-step transition probabilities can be calculated by using the Chapman-Kolmogorov

equation [21] for all n,m ≥ 0:

P (n+m)
i j = ∑

k∈S
p(n)

i k p(m)
k j (2.5)

When m = 0, for n = 2,3, ...

P (n)
i j = ∑

k∈S
p(n−1)

i k pk j

= ∑
k∈S

pi k p(n−1)
k j (2.6)

Moreover, since P (n)
i j = P (n−k)

i j P (k)
i j = P (n−1)

i j Pi j , P (n)
i j can be seen as the n-th power of the Pi j .

With the initial probability distribution Pr {X (0) = i } = pi , the unconditional distribution can

be determined as:

Pr {X (tn) = j } =∑
i

Pr {X (t ) = j |X (0) = i }

=∑
i

pi p(n)
i j (2.7)

In the area of biochemistry, the states contain the copy number of each species. Since the

copy numbers are all discrete nature numbers, the states are also discrete. And because the

reactions fire continuously and randomly, the time is continuous. Therefore, for this thesis,

CTMCs are suitable for representing stochastic dynamics.

The Markov process is commonly described in 2 ways. One is the Chemical Master Equation

(CME) (Section 2.3.2), which models the probability distribution function against time. The

other is the Gillespie algorithm, which simulates the trajectory of each step [22] (Section

2.3.3). In the following sections, we introduce these two methods for expressing CTMCs.

2.3.2 Chemical Master Equation

The Chemical Master Equation (CME) is a method used to accurately model the stochastic

dynamics of biochemical systems by taking the uncertainty of reactions firing into account

through the use of transition probabilities, rather than deterministic equations [32].

Page 12 of 72
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To calculate the master equation d
dt (Pr {X (t ) = j }), we can take a very small time interval dt

in which only one reaction can occur. We then take the limit:

d

dt
(Pr {X (t ) = j }) = lim

x→0

Pr {X (t +d t ) = j }−Pr {X (t ) = j }

dt
(2.8)

The result for Pr {X (t +d t) = j }−Pr {X (t) = j } is the difference between the probability of

entering the state j and leaving the state j during the time interval dt .

Given that i is the set of all the states that can reach state j in dt , k is the set of all the states

that state j can reach in dt , we get:

probability of entering the state j :

∑
i

{ ατ(i )︸ ︷︷ ︸
pr opensi t y r ate

Pr {X (t ) = i }}

or

Pr {X (t +dt ) = j |X (t ) = i }Pr {X (t ) = i }

probability of leaving the state j :

∑
τ∈R

{ ατ( j )︸ ︷︷ ︸
pr opensi t y r ate

Pr {X (t ) = j }}

or

Pr {X (t +dt ) = k|X (t ) = j }Pr {X (t ) = j }

Therefore, we obtain the Chemical Master Equation:

d

dt
(Pr {X (t ) = j })

=Pr {X (t +dt ) = j |X (t ) = i }Pr {X (t ) = i }−Pr {X (t +dt ) = k|X (t ) = j }Pr {X (t ) = j } (2.9)

=Pi j (t )Pr {X (t ) = i }−P j k (t )Pr {X (t ) = j } (2.10)

From the equation above, we can see that CME generates one ODE to describe one state. The

CME generates one ODE to describe one state. To describe the entire system, the CME needs

to generate one ODE for each state. However, when the copy numbers or species count are

high, the number of states and corresponding equations grows exponentially. Consequently,
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solving the CME becomes computationally infeasible in many cases [37].

2.3.3 Gillespie Algorithm

In cases where CME is difficult or impossible to solve either numerically or analytically [37],

alternative methods are needed. The Gillespie Algorithm, introduced by Dan Gillespie in

1976 [23], provides a solution for simulating chemical reaction networks (CRNs) and is also

known as the Stochastic Simulation Algorithm (SSA) [22].

The Gillespie algorithm employs Monte Carlo Simulation to describe the system [43],

also referred to as Monte Carlo Method, a name generally believed to be derived from the

casinos of Monte Carlo. It is a statistical technique that uses random samples to approximate

the process [33]. The Monte Carlo method operates differently from the usual approach: in-

tuitively, one often estimates random quantities in a deterministic way, whereas this method

does exactly the opposite, using random quantities to provide an estimate of a deterministic

quantity [44].

A simple example can help illustrate the approach:

Example 2.3 Given a square of known area Asquar e , an irregular closed shape is in the square

and the area of the shape needs to be found.

The area can be derived by the Monte Carlo Simulation:

1. Scatter small balls (much smaller than the square and the irregular shape) of the same

size randomly over the square

2. Count the number of all balls on the square and the number of balls on the irregular

shape

3. The area of the irregular shape Ai r r can be calculated by Ai r r = #bal l s on shape
#bal l s on squar e ×Asquar e

4. If the result is not precise enough, add more balls or/and repeat the above steps

With the knowledge of Monte Carlo Simulation, the Gillespie algorithm works like this [24]:

1. Initialize the chemical concentrations for the CRN

2. Evaluate the propensity rate of each reaction occurring in this state

3. Use the Monte Carlo method to randomly select the time interval (infinitesimal) until

the next event and then randomly select the reaction that will occur.
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4. Record the new state and update the concentrations of species. Then return to step 2

and repeat the process or end the simulation.

The Gillespie algorithm simulates the stochastic dynamics of the system by sampling re-

action events based on their propensity rates. It generates a trajectory of the system by

iteratively updating the chemical concentrations according to the selected reactions. The

more simulations are performed, the more accurate the Gillespie algorithm becomes. In

fact, if all possible trajectories are simulated, the Gillespie algorithm is an exact method for

representing CRNs [53] [23].

In Figure 2.1, the results of two independent runs of the Gillespie Algorithm simulating a

simple reaction S
c→; are compared with the solution obtained by solving the corresponding

ordinary differential equation (ODE), with reaction rate coefficient equal to 1 and initial copy

number equal to 100. The blue and red stair-step curves are the 2 independent simulated

results, while the smooth black curve is obtained by solving deterministically.

Figure 2.1: Comparison of SSA and ODE Solution for a Simple Reaction

It is evident that the accuracy of the Gillespie Algorithm increases with the number of simula-

tions performed. However, achieving perfect accuracy requires a high computational cost,

particularly when the system involves many species or high copy numbers. Fortunately, the

advancement of computer power has alleviated this problem [8].

2.3.4 Linear Noise Approximation

While high-performance computers have mitigated the computational challenges of the

Gillespie Algorithm, they may not always be available. In situations where high accuracy is not
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necessary, an alternative method for stochastic modelling is the Linear Noise Approximation

(LNA), also known as the Central Limit Approximation (CLA) [37].

The LNA approximates the stochastic behaviour of a chemical reaction network (CRN) by

linearizing (using a first-order expansion) the CME. It assumes that the mean and variance of

species against time can be modelled as a Gaussian process. The LNA can be represented as

follows:

Y =Ω ·Φ︸ ︷︷ ︸
mean

+
p
Ω ·Z︸ ︷︷ ︸

covar i ance

(2.11)

where Ω is the volume of a CRS C = (Λ,R, x0), Φ is the solution of the Equation 2.1 with

initial conditionΦ(0) = x0
Ω , and Z is a zero-mean Gaussian process whose variance C[Z(t)] is

described by the following differential equation:

dC [Z (t )]

dt
= JF

(
Φ(t )

) ·C [Z (t )]+C [Z (t )] · JF
(
Φ(t )

)T +W
(
Φ(t )

)
(2.12)

where JF
(
Φ(t)

)
is the Jacobian of F

(
Φ(t)

)
, JF

(
Φ(t)

)T is the transpose version, C [Z (t)] is the

correlation matrix containing variance and covariances of all species against themselves and

each other, and W
(
Φ(t )

)
is the sum of the square of net change times the propensity rate [11]:

W
(
Φ(t )

)= ∑
τ∈R

vT
τ vτατ

(
Φ(t )

)
(2.13)

The first part of Equation 2.11 determines the expectation value of LNA: E [Y (t)] =Ω ·Φ(t),

the second part determines the covariance matrix of LNA: C [Y (t)] = Ω ·C [Z (t)] [11]. By

calculating the mean and variance values, the LNA provides approximations for the mean

and variance values obtained from the CME. Research has shown that the LNA can yield

accurate approximations even when fluctuations are large [14].

Consider the case of steady state, we can let Equation 2.12 equal to 0, and then the matrix

C [Z (t )] can be solved and thus all the variance values are revealed. The mean value can be

solved by making Equation 2.1 equal to 0. Inserting these values back to Equation 2.11, the

corresponding LNA of the CME can be obtained.
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Below we give a simple example of how it works.

Example 2.4 Given a simple system below, we want to get the corresponding mean value and

the covariance of LNA at a steady state.

(r eacti ons) (pr opensi t y r ates)

; 1→ a 1

a
1→; Φa(t )

a
1→ a +b Φa(t )

b
1→; Φb(t )

The rate equation is:

Φ̇a(t ) = 1−Φa(t ) Φ̇b(t ) =Φa(t )−Φb(t )

Let the rate equation equal to 0, we can get the mean value E [Φa] = 1 E [Φb] = 1.

The Jacobian of the rate equation is:

JF (Φ) =
[
−1 0

1 −1

]

And the covariance matrix is:

C [Z ] =
[

Va(t ) C [a,b]

C [a,b] Vb(t )

]

With

vT
1 =

[
1

0

]
, vT

2 =
[
−1

0

]
, vT

3 =
[

0

1

]
, vT

4 =
[

0

−1

]
we can get

W (Φ) =
[

1+Φa 0

0 Φa +Φb

]
Finally, solve

JF (Φ) ·C [Z ]+C [Z ] · JF (Φ)T +W (Φ) = 0

we can get

C [Z ] =
[

1 0.5

0.5 1.5

]
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From the matrix, we can extract that Va(t ) = 1 and Vb(t ) = 1.5.

And we simulate the system in software, where µ is the mean value and σ2 represents the

variance (see in Figure 2.2). From the figure, we can see that σ2
a = 1 and σ2

b = 1.5, verifying the

calculated variance value above.

Figure 2.2: LNA Plot in Kaemika
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Chapter 3

Biochemical Differentiators

In recent years, numerous biological differentiators have been studied and designed. In

this chapter, we introduce and compare two recent differentiators, namely Biomolecular

Signal Differentiators (BioSD) and Transfer Function Differentiators (TFD). Our goal is to

identify an accurate differentiator that is easy to implement, tune, and test. These distinct

approaches offer diverse strategies for calculating derivatives, each with its own advantages

and applications. After conducting a thorough comparison, we selected BioSD as the study

object of our analysis.

3.1 BIOMOLECULAR SIGNAL DIFFERENTIATORS

In 2021, Alexis et al. introduced a novel set of architectures called Biomolecular Signal

Differentiators (BioSD) for calculating the time derivative [2]. The BioSD consists of three

differentiators: BioSD-I, BioSD-II, and BioSD-III, as illustrated in Figure 3.1. The complexity

of the BioSD, including the number of auxiliary species, reactions, and parameters, increases

with the ordinal numbers in their names (see Figure 3.1 below).

3.1.1 System Structures

This section describes the system structures of BioSD. In these architectures, the input signal

is represented by species U , and the output signal is represented by X . Additional species are

introduced as auxiliary species to assist in the differential calculations.
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Figure 3.1: Architecture of BioSD
From left to right: BioSD-I, BioSD-II, and BioSD-III. The graphical representation denotes various
types of reactions: (;) represents the empty set, (→) indicates the transformation of reactants into
products following the direction of the arrow, (–•) describes catalytic production where products are
generated without consuming the reactants (denoted by •). In some cases, there may be two reactants
in this reaction, with one of the reactants also being a product, as seen in BioSD-III. (— a) represents
the catalytic inhibition reaction, where a indicates the reactants being diminished.

BioSD-I consists of the following reactions:

; ki nU−→ X , ; b−→ X , X
k2−→ X +Z

X +Z
k1−→ Z , X

δ−→;, Z
k3/Z−→ ; (3.1)

In BioSD-I, the input species U acts as a catalyst for the reaction rather than being directly

involved. The generation of auxiliary species Z is catalyzed by X , and Z catalyzes the diminish

of X in turn. Additionally, species X and Z directly diminish, simulating species ageing in

real-world scenarios.

Using the Law of Mass Action, the corresponding rate equations for BioSD-I are as follows:

Ẋ = ki nU +b −k1X Z −δX (3.2a)

Ż = k2X −k3 (3.2b)

BioSD-II is defined by the following reactions:

; ki nU−→ X , ; b−→ X , X
k2−→ X +Z1

X +Z1
k1−→ Z1, ; k3−→ Z2, Z1 +Z2

η−→;, X
δ−→; (3.3)
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From Figure 3.1, we can see that the structures of BioSD-I and BioSD-II are similar. In BioSD-

II, Z is replaced with Z1, and an additional auxiliary species Z2 is introduced. The reaction

between Z1 and Z2 leads to their annihilation.

BioSD-II can be described by the following ODEs:

Ẋ = ki nU +b −k1X Z1 −δX (3.4a)

Ż1 = k2X −ηZ1Z2 (3.4b)

Ż2 = k3 −ηZ1Z2 (3.4c)

BioSD-II is essentially a variant of BioSD-I, where Z2 is generated at a rate of k3 and subse-

quently combines with Z1, leading to the disappearance of Z1. When the value of η is set to

be large enough, we can consider that Ż2 = 0 and k3 is equal to ηZ1Z2. Thus, Ż1 becomes the

same as the Ż in BioSD-I, decreasing at a rate of k3.

The CRN of BioSD-III is described as follows:

; ki nU−→ X , ; b−→ X , X
k2−→ X +Z1

X +Z1
k1−→ Z1, ; k3−→ Z2, X +Z2

k1−→ X +X +Z2

Z1 +Z2
η−→;, X

δ−→; (3.5)

BioSD-III is an extension of BioSD-II, without introducing new auxiliary species but including

a double catalytic production reaction where X and Z2 catalyze the production of X . However,

the number of reactions is considerably increased.

The following ODE model can be generated from BioSD-III:

Ẋ = ki nU +b −k1X Z1 +k1X Z2 −δX

= ki nU +b −k1X (Z1 −Z2)−δX (3.6a)

Ż1 = k2X −ηZ1Z2 (3.6b)

Ż2 = k3 −ηZ1Z2 (3.6c)

BioSD-III is a modification of BioSD-II. However, the underlying principles differ. In BioSD-II,

the equation of X looks like this:

Ẋ = ki nU +b −k1X
∫

(k2X −k3)−δX
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while in BioSD-III, Equation 3.6a actually looks like this:

Ẋ = ki nU +b −k1X (Z1 −Z2)−δX

= ki nU +b −k1X
∫ (

(k2X −ηZ1Z2)− (k3−ηZ1Z2)
)−δX

= ki nU +b −k1X
∫

(k2X −k3)−δX

Therefore, while the reactions in BioSD-III and BioSD-II are very similar, a large value of η is

not necessary for BioSD-III.

3.1.2 System Design Principle

Since both U and X represent the concentration of species, BioSD can only accept non-

negative input signals and produce non-negative output signals. However, it is important to

note that the time derivative of a non-negative signal can still be negative in certain cases. To

address this issue, Alexis et al. introduced a bias term to the calculated result, which takes

on the steady-state value of X . By incorporating this bias, BioSD ensures that the resulting

outputs remain non-negative.

The steady-state value of X can be determined by setting Equation 3.2b of BioSD-I,

Equation 3.4b and 3.4c of BioSD-II, Equation 3.6b and 3.6c of BioSD-III to 0:

0 = k2X −k3

0 = k2X −ηZ1Z2

0 = k3 −ηZ1Z2

0 = k2X −ηZ1Z2

0 = k3 −ηZ1Z2

The steady-state value of X in all typologies can be easily calculated as k3/k2, which serves as

the bias term.

When employing BioSD for derivative calculations, our focus is primarily on scenarios

that are in close proximity to their respective steady states. To obtain the derivatives near

these steady states, a linearization process is performed on the rate equations. In this study,

we utilize BioSD-I as our illustrative example (the processes for the other two differentiators
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are the same). The linearized representation of the system dynamics is expressed as follows:[
ẋ

ż

]
=

[
−k2(ki nU∗+b)

k3 −k1k3
k2

k2 0

][
x

z

]
+

[
ki n

0

]
u

where the variables u =U−U∗, X = X −X ∗,z = Z −Z∗ represents the small deviations around

the equilibrium points (U∗,X ∗,Z∗).

Then we apply variable transformations according to the section Behaviour Analysis of

Biomolecular Signal Differentiators in [2], transforming the equation into the second-order

differential equation and finally getting the following expression:

x = ki n

k1k3
u̇ (3.7)

Following these calculations, the researchers made an observation that the time derivatives

can be approximated as:

X = ki n

k1k3︸ ︷︷ ︸
ampli f i cati o

U̇ + k3

k2︸︷︷︸
bi as

(3.8)

If the parameters are appropriately set, specifically ki n = k1k3, the equation simplifies to:

X = U̇ +bi as (3.9)

Suppose that the input signal U can be divided into two parts:

U = U∗︸︷︷︸
const ant

+ U T V︸ ︷︷ ︸
t i me−var yi ng

(3.10)

A sufficient but not necessary condition to ensure accurate results from the BioSD can be

expressed as:

ε= k2
2

k1k3
3

(ki nU∗+b)2 ¿ 1 (3.11)

3.1.3 System Performance

In the research [2], the authors utilized a simple linear signal and a basic design of Antithetic

Integral Feedback (AIF) [7] (which will be discussed in subsection 4.5.2) to evaluate the

performance of BioSD.

Page 23 of 72



Master Thesis – Final Report TUDelft

Figure 3.2: Input and Output of BioSD-I on Linear Signal

The CRN for the linear signal is given by:

; vb−→U , U
vd−→;

Here, the reaction rates are specified as vb = 0.1 and vd = 0.001.

The BioSD parameters are set as follows: ki n = 10, b = 100, k1 = 1, k2 = 1, k3 = 10, and δ= 0.5.

Consequently, the following values are obtained:

ampli f i cati on = ki n

k1k3
= 10

1×10
= 1

bi as = k3

k2
= 10

1
= 10

U∗ = 0

ε= k2
2

k1k3
3

(ki nU∗+b)2 = 10 À 1

Here we only present the results for BioSD-I, as the other two differentiators yield identical

outcomes. The results are depicted in Figure 3.2, which shows the input and output of BioSD-I

for the linear signal.

From the figure, it is evident that despite the large value of ε exceeding 1, the BioSD still

accurately matches the calculated derivative, except during the initial period where the BioSD

undergoes a "warm-up" phase.
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The CRN for the Antithetic Integral Feedback is described by the following reactions:

; v1−→C1, C1
v2−→C1 +Y1, Y1

v3−→ Y1 +Y2

Y2
v4−→ Y2 +C2, C1 +C2

v5−→;, Y1
v6−→;, Y2

v7−→;

Here, Y2 represents the input signal U to the BioSD, and the reaction rates are specified as

v1 = v2 = v4 = 2, v3 = 4, v5 = 12, v6 = v7 = 1.

The parameters of BioSD-I are set as follows: ki n = k3 = b = 100, k1 = k2 = 1, δ= 0.5, η= 1000.

Consequently, the following values are obtained:

ampli f i cati on = ki n

k1k3
= 100

1×100
= 1

bi as = k3

k2
= 100

1
= 100

U∗ = 0

ε= k2
2

k1k3
3

(ki nU∗+b)2 = 0.01 ¿ 1

Same as the previous experiment, only the results for BioSD-I are presented below in Figure

3.3. From the left graph, we can observe that the input signal undergoes rapid and intense

oscillations, which poses a greater challenge for the BioSD. However, in the right graph, the

yellow curve representing the reference derivative is almost indistinguishable, as the output

signal X closely matches the dU /dt curve. This indicates that BioSD produces highly accurate

results for this example.

Figure 3.3: Input and Outputs of BioSD-I on AIF
Time scale is in minutes, concentration unit is nM (1nM = 1 ·10−6M)
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However, if the premise 3.11 is not satisfied for this case, the accuracy of BioSD may be

compromised, as illustrated in Figure 3.4. It can be observed from the figure that BioSD-I

exhibits some delays in tracking the time derivative. Although the output signal X cannot

closely follow the curve during the initial surge and plunge of the time derivative, the changing

trends are still preserved.

Figure 3.4: Poor Performance of BioSD-I on AIF
Time scale is in minutes, and the concentration unit is nM (1nM = 1×10−6M). ki n and k3 have been
changed to 10, resulting in bias = 10 and ε= 10 À 1.

3.2 TRANSFER FUNCTION DIFFERENTIATOR

In 2017, Halter et al. proposed a novel design of differentiator based on the concept of

Laplace transformation, which enables the transformation between the time domain and the

frequency domain [28]. We call it Transfer Function Differentiator (TFD).

In the frequency domain, the ideal differentiator is represented by a transfer function

of G(s) = s, where s denotes the Laplace variable. However, this ideal differentiator is non-

causal, meaning that its output depends on future inputs, making it physically unrealizable.

To overcome this limitation, Halter et al. approximated the ideal differentiator by adding a

low-pass filter. The transfer function of the approximated differentiator is given by G(s) = K s
s+K ,

where K represents the bandwidth of the filter. This transfer function can be realized through

the circuits illustrated below.
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Figure 3.5: Approximated Differentiator Circuit [28]

From the circuit diagram, the transfer function can be derived as this:

Y = K (U −Go(s)Y )

=⇒Y +KGo(s)Y = KU

=⇒(1+KGo(s))Y = KU

=⇒Y

U
=G(s) = K

1+Go(s)K

By assuming a large K and choosing the integrator 1
s for Go(s), the transfer function becomes:

Y

U
=G(s) = K

1+ K
s

= K s

s +K
≈ s

Therefore, the design of the transfer function differentiator can be implemented using a

signal difference, a gain, and an integrator.

3.2.1 System Design

The process of turning the design into a genetic differentiator is guided by the Oishi and

Klavins’ approach [41]. By using the molecular quantities of DNA, mRNA, and proteins to

represent the signal levels, the implementation of this differentiator design can be achieved.

Figure 3.6 illustrates the system architecture, where the concentration of mRNA denotes the

differential result y .

Page 27 of 72



Master Thesis – Final Report TUDelft

Figure 3.6: System Design of TFD
f (t ,λ(u,P ),Φ) is the DNA transcription rate, where t is time, λ is the transcription initiation rate, u is
the input, P is the amount of Protein and Φ is the environmental parameters; ν is the degradation
rate of mRNA; g (t ,λ,η,Φ) is the mRNA translation rate, η is the translation initiation rate; δ is the
degradation rate of protein.

The CRN of the system can be described as follows:

DN A
f /DN A−→ DN A+mRN A

mRN A
ν→;

mRN A
g /mRN A−→ mRN A+pr otei n

pr otei n
δ→;

The process of protein annihilating the generation of mRNA is realized by the λ function, so

it is not marked separately in the above CRN.

The implementation of the three functional parts (signal difference, gain, and integrator)

as well as the representation of positive and negative signals are elaborated as follows:

• Signal Difference:

To achieve negative feedback, a protein is chosen that inhibits DNA transcription, with

the degree of inhibition determined by the protein concentration.

• Gain:

The amplification of a signal can be achieved by a process of production and degra-

dation. The researchers aimed to achieve rapid amplification, allowing the system to

reach a steady state within a reasonable time. Therefore, the production and degrada-
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tion rates must not be too different in order of magnitude. For this reason, mRNA is

chosen to achieve this function.

From Figure 3.6 and the CRN, we can get

Φ̇mRN A = f −ν ·ΦmRN A

By choosing a sufficiently large value for ν and assuming a linear relationship between

f and u ( f ≈αu), the steady state of mRNA becomes:

ΦmRN Ass =
f

ν
≈ αu

ν

Hence, the gain K can be expressed as:

K = α

ν

• Integrator:

Similar to the gain function, integration can be achieved through production and

degradation processes. However, in this case, the annihilation rate is chosen to be as

low as possible, effectively behaving as an integrator. This is exactly what happens with

the degradation rate of a protein. Thus, protein is chosen for this function.

• Positive and Negative Signals:

In order to make this differentiator more versatile, the input u and output y are not

restricted to non-negative numbers. To accommodate both positive and negative

signals, the dual rail method is employed. The signal is split into positive and negative

components (e.g., u = u+−u−).

To save input and output signal resources, Oishi and Klavins generate two additional

species for each functional block. The overall layout of the system is depicted in the

graph below, where G represents the DNA, P represents the protein and M is the mRNA.
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Figure 3.7: Dual Rail Representation of TFD [27]

From Figure 3.7, the detailed dynamic of the system can be described by the CME below

(the notations here are the same as in the description of Figure 3.6):

Ṁ1 = f G1 ·k(u −P1)−ν1M1

Ṗ1 = g M1 −δ1P1 −δ12P1P2

Ṁ2 = f G2 ·k(k0 −u −P2)−ν2M2

Ṗ2 = g M2 −δ2P2 −δ12P1P2

with the function

k(x) =
x x > 0

0 x ≤ 0
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3.2.2 System Performance

The feasibility of the Transfer Function Differentiator approach is validated through in silico

experiments. Two different signal inputs are tested, and the results are presented inFigure 3.8.

Figure 3.8: Test Results of Transfer Function Differentiator

From the graphs, it can be observed that there are some delays in the outputs ynorm(t)

of TFD compared to the calculated values u̇norm(t ). These delays are attributed to the time

required for transcription and translation processes within the system. The accuracy of

the outputs is also dependent on the type of input signals. The outputs of the sinusoidal

waveform closely follow the trends of the calculated results, while the outputs of the first

input waveform exhibit some overshoots, undershoots and slightly lower accuracy. But in

general, the outputs remain reasonably close to the calculated results.

Furthermore, additional experiments demonstrated the robustness of the Transfer Func-

tion Differentiator under a certain degree of parameter uncertainty [28].

It is important to note that the method assumes a large value for the gain K . Generally,

a larger gain leads to more accurate differentiation. However, to maintain the behaviour of

mRNA as a gain element, it is crucial that the production rate and degradation rate do not
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differ significantly. This constraint imposes a constraint on the value of K , as a balanced

production and degradation rate is necessary for the proper operation of the system.

3.3 COMPARISON

Both the BioSD and TFD have their own advantages and drawbacks, and for the purpose

of this thesis, the goal is to select a differentiator that offers accuracy while being easy to

implement, tune, and test.

First, we compare their performance. TFD exhibits noticeable delays in its output,

whereas BioSD has a negligible delay. The accuracy of TFD is highly dependent on the

signal type, and it tends to exhibit errors even with relatively slow square wave signals. On the

other hand, the accuracy of BioSD may seem good, but the related paper only tested it with

one "complex" signal. Therefore, a wider range of input signals is needed to be determined

its general accuracy.

Next, we consider the convenience of the experiment. BioSD offers good modularity and

is easy to implement. Conversely, the implementation of reaction rates f and g in TFD can

be challenging. The good point of TFD is that the tuning process is rather easy since it only

has one parameter K , whereas the workload of BioSD to find the optimal solution is no less.

As for the test time, the calculation process of TFD is quite slow, with one square wave test

taking 100 minutes, whereas BioSD exhibits faster response times. Additionally, TFD can

handle both positive and negative signals, while BioSD is limited to non-negative inputs.

Considering these factors, BioSD appears to have advantages over TFD in terms of imple-

mentation ease, response time, and modularity. Therefore, BioSD is chosen as the selected

differentiator for this thesis. However, further experimentation and evaluation are needed

to fully assess the general accuracy and performance of BioSD across a wider range of input

signals.
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Chapter 4

Simulation Preparation

As previously mentioned, biomolecular systems are subjected to both external and internal

noise sources. Within this thesis, our focus centres on exploring the impact of internal noise.

Understanding the noise in biochemical networks is pivotal for our research. Thus, our

exploration begins by investigating the effects of noise. While in vitro experiments lie beyond

the scope of this work, our investigation into noise behaviour primarily relies on computer

simulations. Consequently, we proceed to review and select the tools and methods for our

analysis.

We undertake a comprehensive review of diverse methods for evaluating noise. Then we

research noise suppression methods, aiming to identify effective strategies to mitigate noise

and enhance the reliability of our biochemical system. We also discuss two software tools,

Kaemika and ERODE, and undertake a comparative analysis to determine the most suitable

choice. Additionally, we carefully choose input signals for the tests, including hyperbolic

tangent, Antithetic Integral Feedback (AIF), and sinusoidal wave. These selected test signals

are then input into BioSD, the results of which are compared with the chosen reference

derivative, allowing us to assess their accuracy. This comprehensive examination of noise-

related aspects serves as a crucial stepping stone for the subsequent experimental phase of

our study.

4.1 EFFECTS OF NOISE IN BIOCHEMICAL NETWORKS

The role of noise in biochemical systems has long been a subject of study. Intuitively, noise

has been considered detrimental, compromising the accuracy of signal monitoring and

suppressing the functionality of biochemical switches [31]. Additionally, uncontrolled noise

has the potential to significantly disrupt essential cellular processes and even contribute to
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the development of diseases, including cancer [15].

However, it is essential to acknowledge that the impact of noise on biochemical systems

is not uniformly negative. In certain contexts, noise can play a constructive role, enabling

system regulation and facilitating probabilistic cellular differentiation or evolution processes,

ultimately leading to Robust Perfect Adaption (RPA) [13]. And contrary to common belief,

research indicates that the presence of input noise doesn’t inevitably lead to an increase in

output variance [31].

Furthermore, we possess the capability to manipulate and harness noise to our advantage.

Mechanisms that modulate noise, such as those increasing heterogeneity within systems, can

be advantageous in coping with environmental stress, diversifying antibodies, and promoting

functional heterogeneity [15].

Consequently, the effects of noise in biochemical systems encompass both positive and

negative aspects. It has the potential to either enhance or hinder system functionality,

depending on the noise level and the environment. When noise proves beneficial, we can

exploit it to our advantage. Conversely, when noise poses a threat, regulatory measures or

alternative tools can be deployed to mitigate its adverse effects.

In this thesis, BioSD serves as a tool facilitating the derivation of derivative information

from biochemical systems. Therefore, it is important to avoid excessive noise in the outputs,

thereby ensuring accuracy and clarity. As such, noise is regarded as a detrimental factor in

this context and should be reduced.

4.2 NOISE EVALUATION METHODS

When evaluating noise, simple measurement of noise is often inadequate as it overlooks the

varied characteristics exhibited by different signals. Thus, a comprehensive assessment of

noise levels necessitates the application of suitable methods. In this section, we discuss three

commonly employed techniques: Signal-to-Noise Ratio (SNR), Root Mean Square (RMS),

and the Fano Factor.

• Signal-to-Noise Ration (SNR): The SNR is a widely utilized metric in electromagnetic

systems to evaluate signal quality. It quantifies the ratio between the level of a desired

signal and the level of noise within the system. This concept has also been extended to

the field of biology, as highlighted in [5], where it measures the degree of noise deviation

from the ideal representation. In this context, the ideal case is interpreted as "true,"

and the presence of noise is interpreted as "false". The SNR can then be calculated
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using the following equation:

SN RdB = 20log10

(∣∣log10(µtrue/µfalse)
∣∣

2log10(σ)

)
where µtrue represents the value of the true signal, µfalse represents the geometric mean

value of the noise, and σ denotes the geometric standard deviation for both states.

• Root Mean Square (RMS): RMS is a measure calculated as the square root of the mean

value of the squared values of each signal. Mathematically, it can be expressed as:

RMS(t ) =
√

x2
1 +x2

2 +·· ·+x2
n

n

where n denotes the number of signals, and xi (i ∈ n) represents the value of each

signal. When all xi values correspond to noise, the RMS value represents the noise level

at the given moment. A lower RMS indicates better signal quality. Additionally, RMS

can be utilized in the calculation of SNR using the following relationship:

SN R =
(

RMSsignal

RMSnoise

)2

• Fano Factor: The Fano factor is a commonly used measure for analyzing noise [18].

It is first introduced by U. Fano in 1947 to quantify the level of fluctuations of ions

[16]. Since then, it has found applications in various fields, including computational

neuroscience [47], nuclear physics [36], and synthetic biology [19].

The Fano factor is defined as the ratio of the variance to the mean value, expressed as

F ano = var i ance

mean

This factor serves as a valuable criterion for comparing noise levels across different

systems, as it normalizes the noise by dividing it by the mean value. Moreover, the Fano

factor can be used to assess the reliability of a system, with smaller values indicating

greater stability and reliability.

In the case of a Poisson Process, which counts the number of random events occur-

ring in a fixed time interval, the Fano factor has a special interpretation. Under this

circumstance, the variance is equal to the mean value, resulting in a Fano factor of 1.

Fluctuations characterized by a Fano factor of 1 are referred to as being at the Poisson
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level.

All of these methods are effective for noise evaluation, and determining a clear winner among

them is challenging. Therefore, we continue with selecting a suitable software tool and then

choose the noise analysis method based on the convenience of the software.

4.3 NOISE SUPPRESSION METHODS

In the context of utilizing BioSD as a tool for calculating signal derivatives, maintaining the

accuracy and reliability of the biochemical system is important. Excessive noise in BioSD’s

outputs can compromise the integrity of the derived information. To deal with this issue,

various noise suppression methods can be employed.

This section reviews two approaches for noise reduction: Noise Filters and Biological

PID Controller. By exploring these noise suppression methods, we aim to gain insights into

their applicability in biochemical systems.

4.3.1 Noise Filters

Inspired by the principles of low-pass filters, Laurenti et al. introduced a series of innovative

molecular filters designed to effectively mitigate both extrinsic and intrinsic noises within

biochemical systems [38]. These noise filters include a Linear Filter, an Annihilation Module,

and an Annihilation Filter.

The Linear Filter (F ) is the simplest one among the three. It is represented by the

following CRN in which an input species (A) reacts to produce an output species (B):

F : A
k1→ A+B B

k2→; (4.1)

The linear filter effectively reduces the noise level to the Poisson level for positively correlated

elements. With the incorporation of a feedback loop, it can further suppress noise below the

Poisson level. It is important to note that the linear filter is limited to uni-molecular reactions,

which leads to an interest in exploring nonlinear filters.

The Annihilation Module (M ) utilizes second-order reactions to improve noise filtering.

The corresponding CRN is as follows:

M : A
r1→ A+B +C B +C

r2→; (4.2)

Within this module, species A acts as the input, and species B and C are substantially the
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same, making either one suitable as the output. Through the co-expression of B and C , the

low-frequency portion of the input undergoes annihilation, thus reducing noise without

introducing any delay. To maintain adherence to the expectation value of the input (E [A]),

the reaction rate coefficients must satisfy the condition r1
r2
= E [A]. Under this constraint, the

Fano factor consistently remains below the Poisson level. However, when the expected value

of A is not constant, the output fails to accurately track the input value.

The Annihilation Filter (A ) addresses this limitation and can consistently track the

input, regardless of parameter values. It is the most complex one among the three filters. The

corresponding CRN is defined as:

A : A
r1→ A+B +D D

r1→ E B +E
r2→;

B + A
r3→ A+C E +C

r3→; (4.3)

For this filter, species A is the input and species C serves as the output. In addition to

employing the co-expression method, the annihilation filter introduces a delay to the system

via the reaction D
r1→ E , resulting in further noise reduction. The Fano factor can even

converge to zero with this filter. The reaction rate coefficients r1 and r2 should be as large as

possible, while r3 is the crucial parameter that determines the duration of the delay. With the

initial concentrations of B and E set to be the same, the output species eventually converges

to the expected value of the input.

The different noise suppression effects of these three filters are demonstrated in the

example below:

Figure 4.1: Comparison of Three Noise Filters

The noisy input A is generated by ; kp→ A+A A
kd→;. From left to right: Linear Filter (k1 = 0.0064,k2 =

0.0064), Annihilation Module (r1 = 0.005,r2 = 0.00005) and Annihilation Filter (r1 = 100,r2 = 1000,r3 =
0.000055).

Based on the information provided, it is evident that each of the three noise filters pos-
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sesses distinct advantages and disadvantages, rendering them suitable for systems with

different conditions and different noise suppression requirements.

4.3.2 Biological PID Controller

In control systems, the PID (Proportional-Integral-Derivative) controller is a widely used tool

for system regulation and noise suppression. It offers robust performance and functional sim-

plicity [55]. The PID controller combines three main components, namely the proportional,

integral, and derivative parts, to achieve control over the system dynamics. The structure of a

traditional PID system is depicted in Figure 4.2.

Figure 4.2: Block Diagram of Process Control using PID [6]
The error signal e(t ) is obtained by comparing the desired set-point r (t ) with the actual system output
y(t ). The proportional term Kp ·e(t ) produces an output that is directly proportional to the current
error. The integral term Ki ·

∫
e(t )d t integrates the error signal over time to account for accumulated

errors. Finally, the derivative term Kd · de(t )
d t calculates the rate of change of the error and adds a

corrective component based on the error’s temporal behaviour.

In 2021, Modi et al. introduced a biochemical PID controller that incorporates specific

adaptations, aiming to explore the influence of each component on both internal and external

noise [40]. The design and noise suppression effects of each PID component are investigated

in detail below.

4.3.2.1 Proportional Part

Instead of using the error signal e(t ), the biochemical proportional algorithm operates on the

target signal y(t ). This is achieved by introducing a sensor species Z . By configuring the birth

rate of Z as kzY , the sensor species responds proportionally to the concentration of the target
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species Y . To prevent unlimited growth, Z decays with a rate coefficient γz . Additionally, Z

inhibits the production of Y , closing the loop for regulation (see Figure 4.3 (a)).

Figure 4.3: Structure and Noise of Proportional Part [40]

The CRN of the part in the dotted rectangular box is as follows:

; kz Y→ Z

Z
γz→;

The normalized noise in Y concerning feedback gain is presented in Figure 4.3 (b). The graph

illustrates that increasing the feedback gain decreases intrinsic noise (stochastic expression

noise) without eliminating it entirely, and reduces external noise to zero. Nevertheless, the

introduction of the sensor species Z brings about another type of noise, as it has its own

noise characteristics. Specifically, the sensor noise increases with the proportional gain. An

optimal proportional gain exists (represented by the red point) where the cumulative noise is

minimized.

It’s noteworthy that higher feedback gains lead to reduced output static sensitivity in the

proportional controller.

4.3.2.2 Integral Part

The biochemical integral controller utilizes the error signal e(t ) to regulate the system. In this

case, integration is achieved by setting the creation rate and annihilation rate of the sensor

species Z . The creation rate remains consistent with that in the proportional part, while the

decay rate of Z is kz〈Y 〉, where 〈Y 〉 represents the steady-state value of the target species
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Y . Therefore, the concentration change of Z at each moment reflects the multiplied error

between the desired and actual values of Y , and it integrals over time. Additionally, Z inhibits

Y as in the previous section, allowing the controller output to be passed to Y and closing the

loop (see Figure 4.4 (a)).

Figure 4.4: Structure and Noise of Integral Part [40]

The CRN of the integral algorithm in the dotted rectangular box can be written as:

; kz Y→ Z

Z
kz〈Y 〉/Z→ ;

Compared to the proportional controller, this design of the integral feedback loop has no

impact on the intrinsic noise (as shown in Figure 4.4 (b)). This is because the integrator treats

noises differently. By performing an integration operation on the input, high-frequency fluc-

tuations can be effectively eliminated, while low-frequency fluctuations remain unaffected.

In other words, the integrator can be approximated as a low-pass filter. Since internal noise is

typically considered a low-frequency disturbance, it remains unaffected by the integrator’s

operation [17].

The external noise decreases as the feedback gain increases, and the integrator species

introduces additional sensor noise, similar to what is observed in the proportional controller.

In this case, the magnitude of the noise from the integrator is directly proportional to the

feedback gain. The total noise exhibited by the integral controller follows a U-shaped pattern

concerning the increment of the integral gain, with the optimal gain value located near the

origin.

Despite its lack of input-output sensitivity, the integral controller effectively eliminates
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steady-state errors and is therefore a valuable component of the PID controller.

4.3.2.3 Derivative Part

The derivative part also uses the target signal y(t). The differentiation is achieved through

the principle of buffering, where species Y transmits its current value to the sensor species Z

while annihilating itself to obtain a new value. Simultaneously, Z stimulates the creation of Y ,

thereby passing the previous value forward. In this manner, the multiplied difference between

the previous and current values is the changing rate of Y , enabling the differentiation process

(refer to Figure 4.5 (a)). To prevent unlimited growth, Z decays with a rate coefficient γz .

Figure 4.5: Structure and Noise of Derivative Part [40]

The dynamics of the algorithm in the dotted rectangular box can be described as follows:

; kz Y→ Z

Z
γz→;

In Figure 4.5 (b), it is evident that the derivative controller effectively reduces both intrinsic

and external noise. As the derivative gain increases, the noise suppression effect becomes

more pronounced. However, the introduction of the sensor species leads to additional

noise, resulting in a larger overall noise when the gain is set to high values. Similar to the

proportional and integral controllers, the derivative controller exhibits an optimal gain value

that minimizes total noise.

The derivative controller proves to be highly effective in noise reduction while preserving

the system’s static sensitivity. This characteristic makes it a valuable tool for precise control

tasks.
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4.3.3 Summary

The noise filters presented in this section offer modular solutions for noise suppression,

allowing easy integration into the target system. For our specific BioSD system, which is not a

uni-molecular system, we can exclude the linear filter initially. Furthermore, our priority lies

in ensuring that the filtered output signal remains accurate, and a little delay does not pose a

significant concern. As such, the annihilation filter is a suitable choice for our purpose.

In the context of the biological PID controller, we can exclude the integral part due to its

inability to reduce stochastic noise and its requirement for additional implementation to ob-

tain the steady-state value of Y . Regarding the proportional and derivative parts, duplicating

species X in BioSD as protein Y might help reduce intrinsic noise. This deviation prevents

the concentration of Y from accurately tracking that of species X , rendering the attachment

of these "P" and "D" controllers to BioSD unsuitable for noise reduction. Nevertheless,

these findings provide valuable insights into the noise characteristics of a differentiator and

contribute to our understanding of BioSD noise behavior.

In conclusion, we ultimately select the annihilation filter as our preferred method for

noise suppression.

4.4 SOFTWARE TOOLS

For accurate exploration and analysis of noise characteristics, the selection of an appropriate

software simulation tool that can effectively simulate and quantify noise is crucial. Ideally,

these tools should be equipped with noise evaluation methods. Currently, there are several

up-to-date applications available to fulfil these requirements. Among them, two widely used

tools, namely Kaemika [9] and ERODE [10], have gained recognition for their capabilities in

simulating biochemical systems and assessing noise within the models. In this section, we

introduce and discuss these software tools, highlighting their features and functionalities for

studying noise properties.

4.4.1 Kaemika

Kaemika is a relatively new software tool developed by Luca Cardelli in 2020 [9]. This in-

tegrated application serves as a versatile platform for simulating the performance of both

deterministic and stochastic biochemical models. It incorporates essential modelling tech-

niques such as Mass Action Kinetics and Linear Noise Approximation (LNA). Kaemika’s
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capabilities extend beyond simulation, as it also supports implementation on microfluidic

devices through the utilization of liquid-handling protocols.

The user interface of the Kaemika application consists of three main components, as

depicted in Figure 4.6. The left part is the script editor, which adopts the notation of Chem-

Figure 4.6: Example of Kaemika Interface

ical Reaction Networks and additionally incorporates basic programming syntax, such as

parameters, conditional control, and loop statements, simplifying the modelling process.

The top right corner features the plot component, enabling the visualization of expected con-

centration changes over time for the selected duration. Alongside the mean value, Kaemika

offers various output options, including standard deviation and the Fano factor. Each output

is represented by a distinct colour on the plotted curves. The system representation section

is located in the lower right corner, providing different ways to visualize the system. Notably,

a novel and clear representation resembling "Petri Nets" known as the reaction score is

available. This representation visually captures the relationships between species, offering

enhanced insights.

Overall, Kaemika’s comprehensive features and user-friendly interface make it a powerful

software tool for simulating and analyzing biochemical systems. It has gained popularity as a

valuable tool and has already been utilized in research studies such as [12] and [1], where it

was employed to calculate species distributions and track variance evolution.

4.4.2 ERODE

ERODE is specifically designed for the analysis and reduction of Ordinary Differential Equa-

tions (ODEs), Chemical Reaction Networks (CRNs), and other quantitative models [10]. Its
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user interface and functionalities resemble those of other coding tools, providing a familiar

environment for users.

The script editor in ERODE follows a "code-based" approach, where users create a file

and type commands in a notebook-like tab for execution. The integrated development

environment of the code editor includes features such as syntax highlighting, in-line error

annotation, fix suggestions, and auto-completion. To model CRNs, users can define reactions

and rates, and input simulation commands. An example of the ERODE script editor interface

is shown in Figure 4.7.

Figure 4.7: Example Script Editor of ERODE [10]

The plotting functionality in ERODE enables not only deterministic species evolution

analysis but also stochastic analysis using Gillespie’s Direct Method or Linear Noise Approxi-

mation (LNA). Mean and variance plots can be generated, with different colours representing

various species. An example of variance is shown in Figure 4.8.

Figure 4.8: Example Plot of Variance in ERODE [10]
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ERODE’s exchange interface offers considerable flexibility in modelling. Users can import

Continuous-Time Markov Chains (CTMCs) into the editor and export CTMCs to platforms

like Matlab and PRISM. Additionally, ERODE provides model reduction capabilities, allowing

users to simplify models without compromising their primary dynamic behaviour.

In conclusion, ERODE serves as a powerful software tool, offering a coding-based envi-

ronment for the analysis, reduction, and exchange of CTMCs. It has found extensive usage

in various studies. For instance, Argyris et al. utilized ERODE to reduce Boolean Networks

in [4], and G. Pogudin and X. Zhang employed ERODE to compare the correctness of Linear

Reduction in [45].

4.4.3 Comparison

Both Kaemika and ERODE offer simulation capabilities for both deterministic and stochastic

models. However, there are some differences in their noise evaluation, user interface and

functionalities.

Kaemika provides the Fano factor directly as an output, while ERODE calculates the

Fano factor using variance and mean derived from LNA, which is available in both software

tools. In this study, Fano factor is chosen for evaluating noise due to its availability in both

applications.

From the perspective of programming difficulty, Kaemika stands out as it requires users

to input information about the CRNs, and the noise analysis can be performed with a simple

click. On the other hand, although ERODE provides a more user-friendly coding environment,

it involves coding all the necessary operations in addition to specifying the reactions, making

it a more complex tool.

Furthermore, Kaemika features an additional species relationship graph, which enhances

the visualization of system dynamics. ERODE’s interface allows for connections with other

applications like Matlab, making it advantageous for data analysis. Additionally, ERODE

provides model simplification capabilities, which can be valuable for more complex systems.

However, given the simplicity of the CRNs in this thesis, the data exchange and model

reduction functions are deemed unnecessary.

Considering these factors, Kaemika is selected as the software tool for this thesis due to

its ease of use, and direct availability of the Fano factor for noise evaluation.
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4.5 INPUT SIGNALS FOR TESTING

To comprehensively assess the effect of BioSD on noise, it is essential to select a variety of

input signals with diverse characteristics. While a previous study [2] utilized the AIF and a

simple linear system as input signals, we substitute the linear system with a hyperbolic signal,

keep the AIF, and introduce a sinusoidal signal as an additional input, aiming to enhance

the variety and complexity of the test signals. These adjustments allow for a more robust

evaluation of BioSD’s impact on noise under varying signal conditions.

Another crucial consideration when selecting test signals is the accuracy of the derivative

results computed by BioSD. If the computed derivatives do not accurately match the ex-

pected values, it indicates that BioSD may struggle to handle that particular signal accurately,

rendering it unsuitable for noise analysis.

In this section, we first introduce each input signal and then test their derivative accuracy

calculated by BioSD against the selected reference derivative. This process not only lays a

robust foundation for the noise analysis but also provides a comprehensive assessment of

BioSD’s performance across various scenarios.

4.5.1 Hyperbolic Tangent

The hyperbolic tangent is defined as

t anh z ≡ si nh z

cosh z
= ez −e−z

ez +e−z

The mathematical graph of the hyperbolic tangent is depicted in Figure 4.9. The curve rises

for approximately 6 seconds with a varying slope, while remaining nearly constant elsewhere.

This simple input exhibits different types of behaviour, offering a slight challenge in verifying

the instantaneous behaviour and response speed of BioSD.

To implement the hyperbolic tangent in Kaemika, certain modifications are necessary.

Due to the limitation that BioSD cannot handle negative input signals, the hyperbolic tangent

is shifted up by one unit. Additionally, Kaemika does not support drawing signals before 0

seconds, so the curve is shifted to the right by five units to include the rising part. These adjust-

ments can be achieved using a simple function in Kaemika, as shown in S1 of Supplementary

Information. The resulting graph in Kaemika is depicted in Figure 4.10.
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Figure 4.9: Hyperbolic Tangent Figure 4.10: Hyperbolic Tangent in Kaemika

4.5.2 Antithetic Integral Feedback (AIF)

AIF represents a type of integral control that takes noise into account for system regularization,

enabling robust set-point tracking and perfect adaptation even in the presence of random

noise [7]. The design of AIF consists of two main components: the control part (left part) and

the reaction network (right part), as illustrated in Figure 4.11:

Figure 4.11: Structure of Antithetic Integral Feedback [7]

We select a simple reaction network and the CRN of the system becomes:

; µ→ Z1, ; k Z1→ X1

; θX2→ Z2, Z1 +Z2
η→;

X1
v1→ X1 +X2

X1
v2→; X2

v3→;
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In this CRN, X1 is the actuated species, and X2 is the controller species as the output. The

concentration of the output affects the generation rate of Z2, essentially storing the output

value in Z2. The annihilation of Z1 and Z2 acts as a subtraction operation. The remaining

concentration of Z1 becomes the new input signal sent back to the reaction network.

These reaction rate coefficients determine whether the system is stable or not. The system

is considered stable if the output eventually reaches its desired value, µ/θ. In some cases, this

process may be oscillatory, like the system used in [2] (see Figure 4.12 below).

Figure 4.12: Antithetic Integral Feedback in Kaemika (t = 100 s)
µ= k = θ = 2, η= 12, v1 = 4, v2 = v3 = 1

The dynamics of the AIF system can be challenging to differentiate as it starts with a sharp

increase and then continues to oscillate with decreasing amplitudes. This behaviour can be

used to test the performance of BioSD, with X2 serving as the input signal.

To avoid conflicts and ensure consistency throughout our implementation, we make

some modifications to the code of AIF since some of the notations used in AIF are the same

as those in BioSD. The modified code can be found in S1 of Supplementary Information.

4.5.3 Sinusoidal Wave

As mentioned in subsection 3.1.2, when utilizing BioSD, the focus lies on the proximity to

their respective steady states. For the previous two test signals, they eventually flatten out,

leading to derivatives that are almost zero at the end, indicating BioSD’s closeness to steady

states. However, signals like sinusoidal wave prevent BioSD from reaching a steady state, and

such signals have not been extensively studied in research. By investigating the responses of

BioSD to such signals, we can gain valuable insights into the limitations and robustness of

the system. The mathematical graph of si n(x) is depicted in Figure 4.13.

Page 48 of 72



Master Thesis – Final Report TUDelft

Figure 4.13: Sinusoidal Wave

Directly using si n(x) as the input signal for BioSD is not feasible due to the negative

portions of the curve. To address this, we shift the signal upwards and introduce a phase shift

to ensure that the signal begins at 0. Without this phase shift, the curve would experience

a sudden jump at the start, leading to an extremely high derivative. This abrupt transition

would result in a significant but unnecessary alteration in the species concentration within

BioSD (please refer to the figures above, which illustrate the curves in Kaemika, for a clearer

demonstration). To implement this in Kaemika, we employ a function as outlined in S1 of

Supplementary Information.

Figure 4.14: phase = 3
2π Figure 4.15: phase = 0

4.5.4 Accuracy Tests of Input Signals

In this subsection, we first select a reference derivative for comparison, and then evaluate the

accuracy of BioSD on the three input signals.
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4.5.4.1 Reference Derivative

To assess the calculation performance of BioSD, we need a reference derivative for com-

parison. Since direct differential functions are not available in Kaemika, we have to use an

alternative method involving reactions.

In selecting a reference derivative, our primary concerns are accuracy and computational

speed. Additionally, we prefer a simpler composition to avoid excessive computational load

in Kaemika, which could result in longer computation times for obtaining the graph.

With these requirements in mind, we choose the "Derivative1" method from the example

code provided by Kaemika as our reference derivative, whose code in Kaemika can be found

in S1 of Supplementary Information. This method records the input value from the previous

time step and calculates the difference between the current value and the recorded value

to obtain the derivative. It has a single-rail input, denoted as A, and a dual-rail output,

represented by B+−B−. Since BioSD can only handle non-negative inputs, the single-rail

input is enough, and we refer to this method as the Single-Rail Differentiator (SRD) in the

subsequent sections.

Figure 4.16: Output of SRD on Step Signal in Kaemika

We test the performance of this reference derivative using a challenging step signal A,

which rises from 0 to 1 at t = 1 second. The derivative result is shown in Figure 4.16. It can be

observed that SRD experiences an immediate surge at t = 1 second and quickly returns to 0

in a very short span of time, indicating that the reference derivative is not only accurate but

also fast.
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4.5.4.2 Accuracy Results

In the subsequent figures of BioSD outputs, we use the following notations: X1 represents

the output of BioSD-I, X2 represents the output of BioSD-II, and X3 represents the output of

BioSD-III.

To facilitate a more straightforward comparison between the outputs and the reference

derivatives, we employ specific methods. Firstly, for each test signal, all three differentiators

of BioSD share one set of parameters (except for parameter b). This ensures that they all have

the same amplification and bias, making them close to each other in the graphs. Secondly,

we multiply the reference derivative by the same amplification and then add the same bias

as the BioSD outputs. This approach ensures that the reference derivative and the BioSD

outputs are scaled to the same magnitude. Thirdly, the outputs are initialized as the bias to

avoid the effects of the "warm-up" phase. By adopting these techniques, we can conveniently

assess the performance of BioSD by analyzing the deviations of its outputs from the adjusted

reference derivative.

Hyperbolic Tangent:

The reference derivative of the hyperbolic tangent in Kaemika is represented by the green

curve in Figure 4.17:

Figure 4.17: Reference Derivative of Hyperbolic Tangent

After conducting tests and adjusting the parameters with variations of 1 for ki n and b, 0.1

for k1, k2, k3 and δ, and 10 for η, the results shown in Figure 4.18 are obtained.

From the figure, we can observe that the outputs of BioSD-I and BioSD-II exhibit small

fluctuations at the beginning, and the derivatives of all three BioSDs slightly lag behind the

reference derivative during the rising period of the hyperbolic tangent. Overall, the errors in

using BioSD for derivative calculation are quite small, and we can consider the computed

results to be fairly accurate.
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Figure 4.18: Modified Reference Derivative and BioSD Outputs for Hyperbolic Tangent
ki n = 35, k1 = 1, k2 = 1, k3 = 20, η= 230, δ= 0.5. For BioSD-I and BioSD-III, b = 10 (corresponding to
ε= 0.0125 ¿ 1), while for BioSD-II, b is chosen as 16 (corresponding to ε= 0.032 ¿ 1). These settings
result in an amplification of ki n

k1k3
= 1.75 and a bias of k3

k2
= 20.

AIF:

The reference derivative of the AIF is represented by the green curve B+−B− in Kaemika (see

Figure 4.19 below):

Figure 4.19: Reference Derivative of Antithetic Integral Feedback (t = 100 s)
v1 = v2 = v4 = 2, v3 = 4, v5 = 12, v6 = v7 = 1

After conducting tests and adjusting the parameters with variations of 1 for ki n , b and k3,

0.1 for k1, k2, and δ, and 50 for η, we obtain the results presented in Figure 4.20.

When the time is set to 100 seconds, the calculated derivatives obtained by BioSD seem

to perfectly match the modified reference derivative.

To further verify the accuracy of BioSD, we zoom in and observe the difference between

the results obtained by BioSD and the reference derivative during the first 10 seconds, where

the most intense fluctuations of AIF occur(see Figure 4.21). In this figure, we can observe that

Page 52 of 72



Master Thesis – Final Report TUDelft

Figure 4.20: Modified Reference Derivative and BioSD Outputs for AIF (t = 100s)
ki n = 190, k1 = 1.9, k2 = 1, k3 = 80, η= 1050, δ= 0.5. For BioSD-I and BioSD-III, b = 41 (corresponding
to ε = 0.055 ¿ 1), while for BioSD-II, b is selected as 85 (corresponding to ε = 0.0777 ¿ 1). These
settings result in an amplification of ki n

k1k3
= 1.25 and a bias of k3

k2
= 80.

the results of the three BioSD exhibit slight deviations from the reference derivative. Among

them, BioSD-III has the smallest deviation from the reference derivative, followed by BioSD-I,

while BioSD-II has the largest deviation. However, these errors are significantly less than 0.1,

leading us to consider BioSD to be relatively accurate.

Figure 4.21: Modified Reference Derivative and BioSD Outputs for AIF (t = 10s)
All the other settings are the same as those in Figure 4.20.

Sinusoidal Wave:

The green curve B+−B− in Figure 4.22 represents the reference derivative of the sinusoidal

wave obtained in Kaemika.

After conducting tests and adjusting the parameters with variations of 1 for ki n , b and k3,

0.1 for k1, k2, and δ, and 1000 for η, we obtain the results presented in Figure 4.23.
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Figure 4.22: Reference Derivative of Sinusoidal Wave

Figure 4.23: Modified Reference Derivative and BioSD Outputs for Sinusoidal Wave
ki n = 20, k1 = 5, k2 = 1, k3 = 20, η= 10000, δ= 0.5. For BioSD-I, b = 11 (corresponding to ε= 0.003 ¿ 1),
for BioSD-II, b is selected as 15 (corresponding to ε= 0.0056 ¿ 1), and for BioSD-III, b is selected as 10
(corresponding to ε= 0.0025 ¿ 1) . These settings result in an amplification of ki n

k1k3
= 0.2 and a bias of

k3
k2

= 20.

In this figure, we can observe that the results of the three BioSD exhibit deviations from

the reference derivative. Among them, BioSD-III has the smallest deviation from the reference

derivative, followed by BioSD-I, while BioSD-II has the largest deviation. However, these

errors are significantly less than 0.1, leading us to consider BioSD to be relatively accurate.

Interestingly, unlike the previous test signals, BioSD-I and BioSD-III now have different

values for parameter b, despite their relatively similar values. This divergence highlights the

sensitivity of the differentiators to parameter variations and underscores the importance of

selecting appropriate parameter sets for each specific application.
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4.5.4.3 Accuracy Summary

As mentioned earlier, to facilitate easier observation and comparison, we utilized common

sets of parameters for BioSD in each experiment. However, due to the structural differences

among the three differentiators, they may not share the same optimal parameters, particu-

larly BioSD-II. Achieving improved results would require more meticulous parameter tuning.

While further fine-tuning based on the previously discussed parameters with smaller varia-

tions could potentially lead to a perfect match with the reference derivative for BioSD-I and

BioSD-III, achieving accurate calculation results for BioSD-II demands the exploration of

different parameter sets. However, this tuning process is time and effort-intensive, and the

Condition 3.11 provides limited assistance, especially for the sinusoidal wave, which poses

more intricacies compared to the previous two signals. Hence, we do not conduct more

precise tuning at this stage.

Nevertheless, despite these considerations, the BioSD results obtained demonstrate a

commendable level of accuracy, with the largest deviation being well below 0.1. As a result,

all three differentiators are considered qualified for further noise analysis.
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Chapter 5

Noise Analysis Result

In this chapter, we employ the tools and methodologies outlined in the previous chapter

to conduct a comprehensive experimental analysis of the noise characteristics exhibited

by BioSD. Each section of this chapter is dedicated to a specific input signal that has been

selected for examination.

Our approach begins with the determination of the Fano factor associated with the chosen

input signal. Subsequently, we utilize BioSD to process the input signal, generating Fano

factors for each of the BioSD outputs.

Furthermore, we delve into an exploration of the relationship between parameter b and

the noise levels by introducing modifications to the value of b. In instances where noise levels

are deemed excessively high, we implement the annihilation filter to assess its potential to

reduce the Fano factor to levels lower than that of the input signal or even approaching the

Poisson level.

By undertaking these investigations, we aim to gain insights into the noise properties of

BioSD and understand the impact of parameter b on its overall noise behaviour. Additionally,

the integration of a noise filter explores the possibility of enhancing reliability and expanding

applications of BioSD.

Throughout this chapter, graphical representations will utilize the following conventions:

X1 signifies the output of BioSD-I, X2 corresponds to the output of BioSD-II, and X3 pertains

to the output of BioSD-III. Additionally, the designations F1, F2, and F3 denote the filtered

outputs of BioSD-I, BioSD-II, and BioSD-III respectively. Legends featuring µ represent the

mean value, while those featuring σ2/µ denote the Fano factor.
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5.1 HYPERBOLIC TANGENT

We first analyze the noise level of the hyperbolic tangent. The Fano factor of the hyperbolic

tangent is consistently equal to 1 (denoted as Uσ2/µ in Figure 5.1), indicating a Poisson level

of noise.

Figure 5.1: Noise Level of Hyperbolic Tangent in Kaemika

Then the hyperbolic tangent works as the input to BioSD, and we get the Fano factor

of BioSD outputs, which is illustrated in Figure 5.2. The noise levels of all three BioSD are

significantly higher than the noise of the input signal and the Poisson level. BioSD-I and

BioSD-III exhibit similar noise levels, while BioSD-II shows lower noise compared to the

other two.

Figure 5.2: Noise Levels of Hyperbolic Tangent and BioSD Outputs in Kaemika
The parameter set used is the same as depicted in Figure 4.18, where ki n = 35, k1 = 1, k2 = 1, k3 = 20,
η= 230, δ= 0.5. For BioSD-I and BioSD-III, b = 10, while for BioSD-II, b is selected as 16.
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Parameter Modification
In addition to the inherent structural differences among the BioSD models, the disparity in

noise levels, particularly the lower noise level observed in BioSD-II, might also be attributed

to distinct parameter configurations, specifically parameter b.

To investigate this relationship, we conduct an experiment involving the modification of

parameter b for BioSD-III. By increasing the value of b from 10 to 16, aligning it with the value

used for BioSD-II, we observe a substantial reduction in the noise level of BioSD-III compared

to BioSD-I, as evident from Figure 5.3. However, this decline in noise level is coupled with a

compromise in accuracy, as the output of BioSD-III oscillates for about 5 seconds.

Figure 5.3: Noise Level of Hyperbolic Tangent and BioSD Outputs in Kaemika (Modified b)
The parameter set illustrated in Figure 5.2 is also used here, except for b = 16 for BioSD-III.

Noise Suppression
To mitigate the noise depicted in Figure 5.2, we implement the annihilation filter as discussed

in Section 4.3.1. It’s essential to recognize that this filter achieves noise suppression by

introducing a system delay. As a consequence, a trade-off emerges: while employing a

sufficiently long delay can yield a Fano factor akin to or even lower than the Poisson level,

the output of the filter will significantly deviate from that of BioSD due to the extended delay.

Hence, taking into account both the impact of delay and noise level, one desirable filter is

shown in Figure 5.4.

From the graph, it is evident that the corresponding Fano factor for each BioSD signifi-

cantly decreases, resulting in substantial improvement. However, these Fano factor reduc-

tions come at the cost of slight delays and decreases in peak values (see Figure 5.5 for clearer

demonstration). Notably, the initial warm-up phases of the noise filter outputs cannot be

eliminated through species initialization, as is done for BioSD.
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Figure 5.4: Hyperbolic Tangent and BioSD with Noise Filter in Kaemika
The parameter set used for BioSD is the same as depicted in Figure 5.2. The parameters of the Noise Filter are
set as follows: r1 = 100, r2 = 1000, r3 = 0.1.

Figure 5.5: Zoomed-In Detail: BioSD Outputs with Noise Filter in Kaemika
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5.2 ANTITHETIC INTEGRAL FEEDBACK (AIF)

The noise level of AIF is analyzed before further experiments, which exhibits pronounced

oscillations and does not converge to the Poisson level(see Figure 5.6). After the initial few

seconds, the Fano factor of U begins to oscillate with an approximate period of 8 seconds.

Within each cycle, two oscillations occur, with one exhibiting a larger amplitude and the other

a smaller amplitude. The amplitudes of these oscillations gradually diminish and eventually

stabilize around 16.

Figure 5.6: Noise Level of Antithetic Integral Feedback (t = 100 s)
v1 = v2 = v4 = 2, v3 = 4, v5 = 12, v6 = v7 = 1

We subsequently delve into the analysis of the noise levels generated by BioSD. The noise

levels of the three outputs exceed the Fano factor of the input signal for most of the time, with

BioSD-I and BioSD-III exhibiting similar Fano factors and BioSD-II displaying a smaller one.

Figure 5.7: Noise Levels of AIF and BioSD Outputs in Kaemika (t = 100 s)
The parameter set used is the same as depicted in Figure 5.6 and Figure 4.20, where ki n = 190, k1 = 1.9,
k2 = 1, k3 = 80, η= 1050, δ= 0.5. For BioSD-I and BioSD-III, b = 41, while for BioSD-II, b is selected as
85.
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An intriguing observation is that when the noise level of the input signal reaches its

universal peak, the noise of all three outputs exhibits a downward trend and becomes lower

than the noise of the input signal. It is worth noting that despite the Fano factors of all signals

exhibiting oscillations every 8 seconds, the local noise peaks in the input and output signals

do not synchronize.

Parameter Modification
Similar to the previous scenario, the level of the Fano factor is also partially attributed to the

parameter b. This relationship is demonstrated by the experiment depicted in Figure 5.8,

where the value of parameter b for BioSD-III is increased to 85, matching the value of b used

for BioSD-II. As a result, the noise level of BioSD-III significantly decreases and becomes

much lower than that of BioSD-I and closer to that of BioSD-II. This enhancement in noise

reduction also adds oscillation at the beginning (see Figure 5.9).

Figure 5.8: Noise Levels of AIF and BioSD Outputs in Kaemika (Modified b) (t =100 seconds)
The parameter set illustrated in Figure 5.7 is also used here, except for b = 85 for BioSD-III.

Figure 5.9: BioSD Outputs of AIF after Parameter Modification (t = 10 seconds)
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Noise Suppression
To mitigate the noise levels illustrated in Figure 5.7, we employ the annihilation filter, as

previously applied to hyperbolic tangent. Similarly, when tuning the filter parameters, we

carefully balance the noise reduction against the impact on the output signal. One desirable

filter setting is selected as shown in Figure 5.10.

Figure 5.10: Noise Levels of AIF and BioSD with Noise Filter in Kaemika (t = 100 s)
The parameter set used for BioSD is the same as depicted in Figure 5.7. The parameters of the Noise Filter are
set as follows: r1 = 100, r2 = 1000, r3 = 0.05.

From the graph, it is evident that in this case, the filter can reduce the Fano factors of

BioSD smaller than the noise level of the input signal for most of the time, although they still

remain higher than the Poisson level. Importantly, it should be noted that the initial warm-up

phases of the noise filter outputs cannot be eliminated through species initialization, as is

done for BioSD.

For improved clarity, upon closer examination, it becomes apparent that the warm-up

phase of the filter is time-consuming. This leads to the filtered results losing accurate tracking

during the initial oscillation of AIF, resulting in delays and reduced peak values.

Figure 5.11: Zoomed-In Detail: Noise Levels of AIF and BioSD with Noise Filter in Kaemika (t = 20s)
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5.3 SINUSOIDAL WAVE

Since the sinusoidal wave is generated by a function instead of reactions, the Fano factor of it

is the same as the hyperbolic tangent, which remains at 1 (indicated as Uσ2/µ in Figure 5.12),

signifying a Poisson level of noise.

Figure 5.12: Noise Level of Sinusoidal Wave in Kaemika

The Fano factor for the outputs generated by BioSD is illustrated in Figure 5.13. The noise

levels of all three BioSD are notably higher than the noise of the input signal as well as the

Poisson level. BioSD-III has a slightly smaller value for parameter b compared to BioSD-I in

this instance, and the noise of BioSD-III is marginally higher than that of BioSD-I. Meanwhile,

BioSD-II, with the largest b value, exhibits the least noise.

Figure 5.13: Noise Levels of Sinusoidal Wave and BioSD Outputs in Kaemika
The parameter set used is the same as depicted in Figure 4.23, where ki n = 20, k1 = 5, k2 = 1, k3 = 20,
η= 10000, δ= 0.5. For BioSD-I, b = 11, for BioSD-II, b is selected as 15, and for BioSD-III, b is selected
as 10.
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Furthermore, it’s worth noting that the noise patterns differ in this case. While BioSD-II’s

noise displays two local peaks per period, the other two differentiators exhibit only one peak

per period.

Parameter Modification
To further investigate the influence of parameter b on noise, we increase the value of b for

BioSD-III to 15, which is the same as the b of BioSD-II. The outcomes are displayed in Figure

5.14. As we can see from the figure, the Fano factor of BioSD-III reduces and is smaller than

that of BioSD-I. This implies that a larger value of b might result in a smaller Fano factor.

However, this enhancement also induces severe oscillations at the beginning (see Figure

5.15).

Figure 5.14: Noise Levels of Sinusoidal Wave and BioSD Outputs in Kaemika (Modified b)
The parameter set illustrated in Figure 5.13 is also used here, except for b = 15 for BioSD-III.

Figure 5.15: BioSD Outputs of Sinusoidal Wave after Parameter Modification
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Noise Suppression
To reduce the noise exhibited in Figure 5.13, we implement the annihilation filter on the

outcomes of BioSD. As observed in the preceding cases, tuning the filter involves a trade-off

between signal quality and noise level. After testing, one desirable filter is set as below.

Figure 5.16: Noise Levels of Sinusoidal Wave and BioSD with Noise Filter in Kaemika
The parameter set used for BioSD is the same as depicted in Figure 5.13. The parameters of the Noise
Filter are set as follows: r1 = 100, r2 = 1000, r3 = 0.2.

The graphical representation reveals that, in this particular scenario, the filter effectively

curbs the Fano factors of BioSD outputs without introducing considerable delays. It’s im-

portant to emphasize that while the aim may involve further minimizing noise levels to

align with the Poisson level, achieving this might necessitate a trade-off in terms of signal

integrity. This is partially due to the long initial warm-up phase associated with the filter’s

operation, which cannot be diminished through species initialization, unlike in the case of

BioSD. The amplitudes of sinusoidal oscillations are very small compared to the amplitude

of the warm-up rise, which also makes it challenging to see the sinusoidal oscillations in

Kameika.
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Chapter 6

Conclusion and Discussion

In this study, the central focus was on investigating the noise characteristics of BioSD as a

tool for calculating derivatives in biochemical systems. Through comprehensive evaluations

involving various input signals and noise analysis techniques, several important insights

have been garnered.

The key finding of this research underscores that BioSD has a tendency to significantly

amplify noise levels above the Poisson level or even the original noise level of the input signals.

This observation underscores the necessity of incorporating noise reduction strategies into

the BioSD framework.

Employing noise filters to mitigate the noise levels in the outputs of BioSD has proven

effective in achieving noise reduction. However, it’s important to note that while these

enhancements curtail noise, they also introduce certain delays to the system. Achieving Fano

factors at the Poisson level could potentially lead to information loss due to these delays, thus

warranting careful consideration.

Interestingly, the utility of the conditions presented by Equation 3.11 for parameter tuning

and accuracy assessment is shown to be limited in practical scenarios. The condition fails to

account for all parameters, and smaller ε does not necessarily indicate better performance.

Therefore, without any other help in tuning, the time and effort to find the optimal

parameter sets are no less, and we acknowledge that we did not find the optimal parameter

set for all differentiators, potentially influencing the order of accuracy and noise levels. As

a result, we refrain from providing a definitive conclusion regarding the most accurate and

least noisy differentiator. However, we suggest that for applications requiring a simple and

accurate biochemical differentiator, BioSD-I would be a suitable choice. On the other hand,

for situations prioritizing lower noise, BioSD-II would be the preferred option.

An intriguing observation is the robustness of BioSD’s performance, as it still shows
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high accuracy when BioSD is not precisely tuned, or even when the input signals oscillate

continuously and fail to reach a steady state. This resilience enhances the practical viability

of BioSD across a spectrum of real-world situations where ideal tuning or input signals might

not always be achievable.

Furthermore, we observe that larger values of parameter b might lead to reduced Fano

factors for some of the BioSD.

Future research directions could encompass the exploration of machine learning tech-

niques to optimize parameter sets for BioSD. Additionally, refining the noise filter to eliminate

warm-up phases could enhance signal tracking and viewing clarity.
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Supplementary Information 

S1 Kaemika Code 

Single-Rail Differentiator 

//================================== 

// This network computes the derivative  

// of an input signal A as the difference  

// of two output signals B⁺ B⁻. 

// I.e. the (positive or negative) output  

// is represented as the difference of  

// two positive signals. 

//================================== 

 

// input A, output B⁺ - B⁻ 

 

network deriv1(species A B⁺ B⁻) {          

 number r = 1000 

 number s = 1000 

 amount B⁺ B⁻ @ 0 M 

 species A' @ observe(A) M 

  

 // A' tracks A by r  

 A ->{r} A + A';   A' ->{r} Ø    

  

 // B⁺ traks r·A by s 

 A ->{r·s} A + B⁺;   B⁺ ->{s} Ø  

 

 // B⁻ tracks r·A' by s 

 A' ->{r·s} A' + B⁻;   B⁻ ->{s} Ø  

 

 // Normalization 

 B⁺ + B⁻ -> Ø 

} 

 

// Example: computing the derivative  

// of the exponential function:  

// d(e^t)/dt  ( = e^t ) 

 

// Input: A grows exponentially  

// from 1: A(t) = e^t 

 

species A @ 1M 

A -> 2 A 

 

// Output: differentiate A into B⁺ - B⁻ 

 

species {B⁺, B⁻} 

deriv1(A, B⁺, B⁻) 

 

// plot input, output, and also the true  

// exponential function for comparison 

 

report A, B⁺ - B⁻, exp(time) 

equilibrate for 3 

 

 

Hyperbolic Tangent 

// Turn a positive function into a waveform 

network Signal(species X, function f) { 

   Ø ->{{100·f()}} X;   X ->{100} Ø 

} 

 

species U @ 0 M 

 

Signal(U, λ(){1+tanh(time-5)}) 

 

report U 

equilibrate for 10 

 

 

Antithetic Integral Feedback (AIF) 

species C1, C2, Y1, Y2@ 0M 

 

number v1 = 2 

number v2 = 2 

number v3 = 4 

number v4 = 2 



number v5 = 12 

number v6 = 1 

number v7 = 1 

 

Ø   ->  C1 {v1} 

C1  ->  C1 + Y1 {v2} 

Y1  ->  Y1 + Y2 {v3} 

Y2  ->  Y2 + C2 {v4} 

C1 + C2 ->  Ø {v5} 

Y1  ->  Ø {v6} 

Y2  ->  Ø {v7} 

 

report Y2 

equilibrate for 100 

 

 

Sinusoidal Waveform 

// Turn a positive function into a waveform 

network Signal(species X, function f) { 

   Ø ->{{1000·f()}} X;   X ->{1000} Ø 

} 

 

species A @ 0 M 

 

number freq = 1 

number ampl = 1 

number phase = 3·pi/2 

 

Signal(A, λ(){ampl·(1+sin(freq·time+phase))}) 

 

report A            // plot test signal 

 

equilibrate for 20 

 

 

 


