

Delft University of Technology

Deciding the existence of a cherry-picking sequence is hard on two trees

Döcker, Janosch ; van Iersel, Leo; Kelk, Steven; Linz, Simone

DOI
10.1016/j.dam.2019.01.031
Publication date
2019
Document Version
Final published version
Published in
Discrete Applied Mathematics

Citation (APA)
Döcker, J., van Iersel, L., Kelk, S., & Linz, S. (2019). Deciding the existence of a cherry-picking sequence is
hard on two trees. Discrete Applied Mathematics, 260, 131-143. https://doi.org/10.1016/j.dam.2019.01.031

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.dam.2019.01.031
https://doi.org/10.1016/j.dam.2019.01.031

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

https://www.openaccess.nl/en/you-share-we-take-care

Discrete Applied Mathematics 260 (2019) 131–143

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Deciding the existence of a cherry-picking sequence is hard
on two trees
Janosch Döcker a, Leo van Iersel b, Steven Kelk c,∗, Simone Linz d

a Department of Computer Science, University of Tübingen, Germany
b Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
c Department of Data Science and Knowledge Engineering (DKE), Maastricht University, The Netherlands
d School of Computer Science, University of Auckland, New Zealand

a r t i c l e i n f o

Article history:
Received 30 November 2017
Received in revised form 20 October 2018
Accepted 22 January 2019
Available online 13 February 2019

Keywords:
Phylogenetics
NP-hardness
Satisfiability
Phylogenetic networks
Elimination orders
Temporal networks

a b s t r a c t

Here we show that deciding whether two rooted binary phylogenetic trees on the same
set of taxa permit a cherry-picking sequence, a special type of elimination order on the
taxa, is NP-complete. This improves on an earlier result which proved hardness for eight
or more trees. Via a known equivalence between cherry-picking sequences and temporal
phylogenetic networks, our result proves that it is NP-complete to determine the existence
of a temporal phylogenetic network that contains topological embeddings of both trees.
The hardness result also greatly strengthens previous inapproximability results for the
minimum temporal-hybridization number problem. This is the optimization version of the
problem where we wish to construct a temporal phylogenetic network that topologically
embeds two given rooted binary phylogenetic trees and that has a minimum number
of indegree-2 nodes, which represent events such as hybridization and horizontal gene
transfer. We end on a positive note, pointing out that fixed parameter tractability results in
this area are likely to ensure the continued relevance of the temporal phylogenetic network
model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the field of phylogenetics it is common to represent the evolution of a set of species X by a rooted phylogenetic tree;
essentially a rooted, bifurcating tree whose leaves are bijectively labeled by X [21]. Driven by the realization that evolution
is not always treelike there has been growing attention for the construction of phylogenetic networks, which generalize
phylogenetic trees to directed acyclic graphs [1,11,14,22]. One well known optimization problem for phylogenetic networks
is as follows: given a set of rooted phylogenetic trees T on the same set of taxaX , compute a phylogenetic networkN = (V , E)
which displays (i.e. contains topological embeddings of) all the trees in T , such that the reticulation number |E| − (|V | − 1) is
minimized. When N is restricted to being binary this is equivalent to minimizing the number of nodes of N with indegree-2.
This optimization model is known as minimum hybridization and it has been extensively studied in the last decade (see
e.g. [2,6,15,18,24]). More recently variations of minimum hybridization have been proposed which constrain the topology
of N to be more biologically relevant. One such constraint is to demand that N is temporal [19]. Informally, a phylogenetic
network N is temporal if (i) the nodes of N can be labeled with times, such that nodes of indegree-2 have contemporaneous
parents, and timemoves strictly forwards along treelike parts of the network; and (ii) each non-leaf vertex has a child whose

∗ Corresponding author.
E-mail addresses: janosch.doecker@uni-tuebingen.de (J. Döcker), L.J.J.vanIersel@tudelft.nl (L. van Iersel), steven.kelk@maastrichtuniversity.nl

(S. Kelk), s.linz@auckland.ac.nz (S. Linz).

https://doi.org/10.1016/j.dam.2019.01.031
0166-218X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2019.01.031
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2019.01.031&domain=pdf
mailto:janosch.doecker@uni-tuebingen.de
mailto:L.J.J.vanIersel@tudelft.nl
mailto:steven.kelk@maastrichtuniversity.nl
mailto:s.linz@auckland.ac.nz
https://doi.org/10.1016/j.dam.2019.01.031

132 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

indegree is 1. Property (ii) by itself is referred to as tree-child in the literature [5]. It has been shown that when |T | = 2 it is
NP-hard to solve the minimum temporal-hybridization number problem to optimality [13]. To establish the result, the
authors proved that the problem is in fact APX-hard, which implies that for some constant c > 1 it is not possible in
polynomial time to approximate the optimum within a factor of c , unless P = NP [20].

A more fundamental question remained, however, open: is it possible in polynomial time to determine if any temporal
phylogenetic network exists that displays the input trees, regardless of how large |E| − (|V | − 1) is [12,23]? Here we settle
this question by showing that, even for |T | = 2, it is NP-complete to determine whether such a network exists. We prove
this by using the cherry-picking characterization of temporal phylogenetic networks introduced in [12]. There it was shown
that, given an arbitrarily large set T of rooted binary phylogenetic trees on X , there exists a temporal phylogenetic network
that displays each tree in T precisely if T has a so-called cherry-picking sequence. Informally, a cherry-picking sequence on T
is an elimination order on X that deletes one element of X at a time, where at each step only elements can be deleted which
are in a cherry of every tree in T [12]. We show here that the seminal NP-complete problem 3-SAT [17] can be reduced
to the question of whether two trees permit a cherry-picking sequence. This improves upon a recent result by two of the
present authors which shows that, for |T | ≥ 8, it is NP-complete to determine whether T has a cherry-picking sequence [8].
Our hardness result is highly non-trivial and requires extensive gadgetry; to clarify we include an explicit example of the
construction after the main proof.

As we discuss in the final section of the paper, this result has quite significant negative consequences: given that the
decision problem is already hard, the minimum temporal-hybridization number problem is in some sense ‘‘effectively
inapproximable’’, even for two trees. This greatly strengthens the earlier APX-hard inapproximability result. Nevertheless, as
we subsequently point out, positive fixed parameter tractability (FPT) [7] results for the minimum temporal-hybridization
number problem do already exist [12] and our results emphasize the importance of further developing such algorithms,
since fixed parameter tractability forms the most promising remaining avenue towards practical exact methods.

2. Preliminaries

A rooted binary phylogenetic tree on a set of taxa X , where |X | ≥ 2, is a rooted, connected, directed tree with a unique root
(a vertex of indegree-0 and outdegree-2), where the leaves (verticeswith indegree-1 and outdegree-0) are bijectively labeled
by X , and where all interior vertices of the tree are indegree-1 and outdegree-2. If |X | = 1, we consider the single isolated
node labeled by the unique element of X , to also be a rooted binary phylogenetic tree. Since all phylogenetic trees considered
in this paper are rooted and binary, we henceforth write tree for brevity, and draw no distinction between the elements of X
and the leaves they label. Let T be a tree, and let T = {T1, T2, . . . , Tm} be a set of trees. We use X(T) to denote the taxa set of
T and, similarly, we use X(T) to denote the union of taxa sets over all elements in T , i.e. X(T) = X(T1)∪ X(T2)∪ · · · ∪ X(Tm).
Lastly, for two distinct elements x and y in X , we call {x, y} a cherry of T if they have the same parent. A tree with a single
cherry is referred to as a caterpillar.

Now, let T be a tree on X , and let X ′
= {x1, x2, . . . , xk} be an arbitrary set. We write T |X ′ to denote the tree obtained from

T by taking the minimum subtree spanning the elements of X ′ and repeatedly suppressing all vertices with indegree-1 and
outdegree-1. (If v is a vertex with indegree-1 and outdegree-1, with incident edges (u, v) and (v, w), then suppressing v is
achieved as follows: v and its two incident edges are deleted, and an edge (u, w) is added.)

Furthermore, we also write T [−x1, x2, . . . , xk] or T [−X ′
] for short to denote T |(X − X ′). If X ∩ X ′

= ∅, then T |X ′ is the
null tree and T [−X ′

] is T itself. For a set T = {T1, T2, . . . , Tm} of trees on subsets of X , we write T |X ′ (resp. T [−X ′
]) when

referring to the set {T1|X ′, T2|X ′, . . . , Tm|X ′
} (resp. {T1[−X ′

], T2[−X ′
], . . . , Tm[−X ′

]}). Lastly, a rooted binary phylogenetic
tree is pendant in T if it can be detached from T by deleting a single edge.

2.1. Cherry-picking sequence problem on trees with the same set of taxa

We say that a taxon x ∈ X is in a cherry of T if there exists some y ̸= x such that {x, y} is a cherry of T or T consists of
a single leaf x. If x is in a cherry of T , we say that x is picked (or pruned) from T to denote the operation of replacing T with
T [−x]. Given a set of trees T , all on the same set of taxa X , we say that a taxon x ∈ X is available (for picking) in T if x is in a
cherry in each tree in T . When this is the case, we say that x is picked (or pruned) from T to denote the operation of replacing
T with T [−x].

Let T be a set of trees on the same set of taxa X . A cherry-picking sequence is an order on X , say (x1, x2, . . . , x|X |), such
that each xi with i ∈ {1, 2, . . . , |X |} is available in T [−x1, x2, . . . , xi−1]. Such a sequence is not guaranteed to exist; if it
does, we say that T permits a cherry-picking sequence. It was shown in [8] that deciding whether such a sequence exists is
NP-complete if |T | ≥ 8. Note that, if |T | = 1, then T always has a cherry-picking sequence. To illustrate, a cherry-picking
sequence for the two trees that are shown at the top of Fig. 1 is (f , g, d, b, a, c, e).

2.2. A more general cherry-picking sequence problem

Let T be a set of trees, and let X = X(T). Suppose we consider the variant of the problem described in Section 2.1 in
which the trees in T do not necessarily have the same set of taxa. In this case, some taxa may be missing from some trees.
This requires us to generalize the concept of being in a cherry of a tree. We say that a taxon x is in a cherry of a tree T , if
exactly one of the following conditions holds:

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 133

Fig. 1. A cherry-picking sequence for the two trees T and T ′ at the top is (f , g, d, b, a, c, e). The two trees in the middle have been obtained from T and T ′ ,
respectively, by pruning f , and the two trees at the bottom have been obtained from T and T ′ by first pruning f and, subsequently, pruning g . While we can
alternatively prune a and, subsequently, b, from T and T ′ , note that no cherry-picking sequence exists for T and T ′ whose first two elements are a and b.

(1) x ̸∈ X(T) or
(2) x ∈ X(T) and T has a cherry {x, y}, where x and y are distinct elements in X(T).

(Note that, once again, this means that if x is the only taxon in T , then x is vacuously considered to be in a cherry of T .)
It initially seems counter-intuitive to say, when condition 1 applies, that x is ‘‘in’’ a cherry of T . However, the idea behind
this is that such trees do not constrain whether x can be picked; they ‘‘do not care’’. More formally, we say that a taxon x is
available in T if it is in a cherry in each tree in T . Similar to Section 2.1, we say that an order on X , say (x1, x2 . . . , x|X |) is a
cherry-picking sequence of T if each xi with i ∈ {1, 2, . . . , |X |} is available in T [−x1, x2, . . . , xi−1]. If a tree becomes the null
tree due to all its taxa being pruned away then this tree plays no further role. Moreover we note that, if all trees in T have
the same set of taxa, then the more general definition of a cherry-picking sequence given in this subsection and that will be
used throughout the rest of this paper coincides with that given in Section 2.1.

3. Main results

In this section, we establish the main result of this paper. We start with two lemmas.

Lemma 1. Let T be a set of m trees on not necessarily the same set of taxa. Then we can construct in polynomial time a set T ′ of
m trees all on the same set of taxa, such that T has a cherry-picking sequence if and only if T ′ does.

Proof. Let X = X(T), and let Y = {y1, y2, . . .} be the set of taxa that are missing from at least one input tree. Let
Y ′

= {y′

1, y
′

2, . . .} be a disjoint copy of this set. Every modified tree will have taxon set X ∪ Y ′
∪ {ρ}. The idea is as follows.

Let TY ′ be an arbitrary rooted binary tree on Y ′. For each input tree Ti, we start by joining Ti and ρ beneath a root, and then
join this new tree and TY ′ together beneath a root. Next, for each yj ∈ Y that is missing from Ti, we add yj by subdividing
the edge that feeds into y′

j and attaching yj there (so yj and y′

j become siblings). For an example, see Fig. 2. We call the set of
trees constructed in this way T ′. The high-level idea is that if a tree Ti does not contain some taxon x, we attach x just above
x′ and thus ensure that, trivially, x is in a cherry in that tree (i.e. together with x′). So Ti does ‘‘not care’’ about x and will not
obstruct it from being pruned.

First, assume that T has a cherry-picking sequence σ . (We show that T ′ has a cherry-picking sequence.) We start by
applying exactly the same sequence of pruning operations to T ′. These picking operations will always be possible because, if
a taxon y ∈ Y is missing from a tree Ti ∈ T , it will be in a cherry together with y′ in the corresponding tree of T ′. After doing
this, all the trees will be isomorphic and have the same set of taxa: Y ′

∪{ρ}. At this point these remaining taxa can be pruned
in bottom-up fashion (since two isomorphic trees always have a cherry-picking sequence). Hence T ′ has a cherry-picking
sequence. Note that the taxon ρ is included to ensure that if, during σ , a tree Ti has been pruned down to a single taxon, this
taxon can still be pruned in the corresponding tree of T ′ (because it is sibling to ρ).

In the other direction, let σ ′ be a cherry-picking sequence for T ′. Let σ be the sequence obtained by deleting all taxa
from σ ′ that are not in X . Let x be an arbitrary element of X and let i be the position of x in σ ′. Let ℓ′

1, ℓ
′

2, . . . , ℓ
′

i−1 be the
prefix of σ ′ that has been pruned from T ′ prior to x, and let ℓ1, ℓ2, . . . , ℓj (where j ≤ i − 1) be the prefix of σ that has been
pruned prior to x. We claim that, if x is available in T ′

[−ℓ′

1, ℓ
′

2, . . . , ℓ
′

i−1], then it is also available in T [−ℓ1, ℓ2, . . . , ℓj]. To
see this, let T be an arbitrary tree in T [−ℓ1, ℓ2, . . . , ℓj]. If x ̸∈ X(T), then (by definition) x is in a cherry of T . If x is the only

134 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 2. The construction described in Lemma 1. Here Y , the set of taxa missing from at least one tree, is {a, c, e, f }. In each modified tree the artificially
added members of Y are circled; note that they are always in cherries. A cherry-picking sequence for the original trees is e, b, c, d, a, f . A corresponding
sequence for the modified trees is e, b, c, d, a, f , f ′, e′, c ′, a′, ρ.

taxon in T , then it is (also by definition) in a cherry. So the only case remaining is that x ∈ X(T) and |X(T)| ≥ 2. Let T ′ be
the tree from T ′

[−ℓ′

1, ℓ
′

2, . . . , ℓ
′

i−1] that corresponds to T . The critical observation here is that, by construction, T occurs as
a pendant subtree of T ′. So if x was not in a cherry of T , then x would not be in a cherry of T ′ which gives a contradiction to
the assumption that T ′ has a cherry-picking sequence. Hence, x is in a cherry of T . Due to the arbitrary choice of x and T , it
follows that σ is a cherry-picking sequence for T .

It remains to show that the reduction is polynomial time. Observe that, depending on the instance, the size of T can be
dominated by |X | or m. Each of the m trees in T ′ contains |X | + |Y | + 1 taxa, where |Y | ≤ |X |, and the transformation itself
involves straightforward operations, so overall the reduction takes poly(|X |, m) time. □

Let T be a set of rooted binary trees, and let Ti and Tj be two trees in T such that X(Ti) ∩ X(Tj) = ∅. Furthermore, let ρi

and ρj be the root vertex of Ti and Tj, respectively. Obtain a new tree from Ti and Tj in the following way.

(1) Create a new vertex ρ and add new edges e = (ρ, ρi) and e′
= (ρ, ρj).

(2) Subdivide e (resp. e′) with a new vertex v (resp. v′) and add a new edge (v, x) (resp. (v′, y)), where x and y are two new
taxa such that {x, y} ∩ X(T) = ∅.

We call the resulting rooted binary tree the compound tree of Ti and Tj. To illustrate, Fig. 3 depicts the compound tree of Ti
and Tj.

The next lemma shows that, for a set T of rooted binary trees, the replacement of two trees in T with their compound
tree preserves the existence and non-existence of a cherry-picking sequences for T .

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 135

Fig. 3. The compound tree of two rooted binary trees Ti and Tj . The taxon x (resp. y) simply ensures that the last taxon pruned away in the Ti (resp. Tj) part
is in a cherry with x (resp. y).

Lemma 2. Let T be a set of rooted binary trees, and let Ti and Tj be two trees in T such that X(Ti) ∩ X(Tj) = ∅. Let Ti,j be the
compound tree of Ti and Tj. Then T has a cherry-picking sequence if and only if (T −{Ti, Tj})∪{Ti,j} has a cherry-picking sequence.

Proof. To ease reading, let T ′
= (T − {Ti, Tj}) ∪ {Ti,j}. Furthermore, let |X(T)| = n, and let x and y be the unique two taxa in

X(Ti,j) that do not label a leaf in Ti or Tj.
Suppose that σ = (ℓ1, ℓ2, . . . , ℓn) is a cherry-picking sequence for T . Let i′ be the maximum index of an element

in σ such that ℓi′ ∈ X(Ti) and, similarly, let j′ be the maximum index of an element in σ such that ℓj′ ∈ X(Tj). Then
T [−ℓ1, ℓ2, . . . ℓi′−1] contains a tree that is a single vertex labeled ℓi′ and T [−ℓ1, ℓ2, . . . ℓj′−1] contains a tree that is a single
vertex labeled ℓj′ . Moreover, by the construction of Ti,j, the set T ′

[−ℓ1, ℓ2, . . . ℓi′−1] contains a treewith cherry {ℓi′ , x} and the
set T ′

[−ℓ1, ℓ2, . . . ℓj′−1] contains a treewith cherry {ℓj′ , y}. Since Ti and Tj are pendant subtrees in Ti,j andσ is a cherry-picking
sequence for T , it now follows that

(ℓ1, ℓ2, . . . , ℓn, x, y)

is a cherry-picking sequence for T ′.
Conversely, suppose that σ ′

= (ℓ1, ℓ2, . . . , ℓn+2) is a cherry-picking sequence for T ′. Let {ℓi′ , ℓj′} = {x, y}. Without loss
of generality, we may assume that i′ < j′. Then, as x and y are only contained in the leaf set of Ti,j, it is straightforward to
check that

(ℓ1, ℓ2, . . . , ℓi′−1, ℓi′+1, ℓi′+2, . . . , ℓj′−1, ℓj′+1, ℓj′+2, . . . , ℓn+2)

is a cherry-picking sequence for T . □

Now we establish the main result of this paper.

Theorem 1. It is NP-complete to decide if two rooted binary phylogenetic trees T and T ′ on X have a cherry-picking sequence.

Proof. Given an order σ = (x1, x2, . . . , x|X |) on X , we can decide in polynomial time if, for each i ∈ {1, 2, . . . , |X |}, xi is in
a cherry in T [−x1, x2, . . . , xi−1] and T ′

[−x1, x2, . . . , xi−1]. Hence, the problem of deciding if T and T ′ have a cherry-picking
sequence is in NP. To establish the theorem, we use a reduction from 3-Sat. This is the variant of Satisfiability where each
clause contains exactly three literals, and the logical expression is in conjunctive normal form, i.e.,

m⋀
i=1

Ci =

m⋀
i=1

(li,1 ∨ li,2 ∨ li,3),

where li,j ∈ {v(k), ¬v(k)
| 1 ≤ k ≤ n}. The corresponding set of variables is denoted with

V := {v(1), v(2), . . . , v(n)
}.

We reduce from the NP-complete version of 3-Sat in which no variable occurs more than once in a given clause. Such
restricted instances can easily be obtained by a standard transformation as described in [10]. In the remainder of this proof,
n and m refer to the number of variables and clauses in a restricted 3-Sat instance, respectively.

Now, given an instance I of 3-Sat, we first construct a set T of 3n + 5m + 2 trees with overlapping taxa sets and show
that I has a satisfying truth assignment if and only if T has a cherry-picking sequence. We then repeatedly apply Lemma 2
in order to replace T with two trees and, finally, apply Lemma 1 to complete the proof of this theorem.

We start by describing the construction of T that makes use of the introduction of a set {b1, b2, . . . , b4n+3m, bX , bY , bZ }
of blocking taxa. As we will see later, each such taxon can only be pruned from T after certain other taxa have been

136 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 4. Each variable v(k) , is represented by a single tree in Tv and two trees in T ′
v .

Fig. 5. Each clause Ci is represented by three trees in Tc and two trees in T ′
c .

pruned first and so the main function of the blocking taxa is to be unavailable for pruning which in turn constraints the
number of possibilities to construct a cherry-picking sequence from T . An explicit example of the construction of T is given
subsequently to this proof.

Variable gadget. We construct two sets Tv and T ′
v of trees. Each variable v(k) with k ∈ {1, 2, . . . , n} adds one tree on four

taxa to Tv which is the tree shown in the solid box of Fig. 4. Each such tree has two blocking taxa and, intuitively, encodes
whether v(k) is set to be true or false, depending on whether v

(k)
T or v

(k)
F is pruned first. Moreover, each variable v(k) adds

two caterpillars to T ′
v . Relative to a fixed v(k), the precise construction of these caterpillars is based on the definition of two

particular tuples. Let φk := (p1, p2, . . . , p|φk|) (resp. νk := (q1, q2, . . . , q|νk|)) be the indices, in ascending order, of all the
clauses in which v(k) appears unnegated (resp. negated). Since no clause contains any variable more than once, the elements
in φk (resp. νk) are pairwise distinct.

Now the taxon set of one caterpillar contains v
(k)
T , a new blocking taxon and, for each element pj in φk, a new taxon v

(k)
pj ,

while the taxon set of the other caterpillar contains v
(k)
F , a new blocking taxon and, for each element qj in νk, a new taxon

¬v
(k)
qj . The precise ordering of the leaves in both caterpillars is shown in the dashed box of Fig. 4. It is easily checked that

|X(Tv)| = 4n and, since each clause contains precisely three distinct variables, |X(T ′
v)| = 4n + 3m. Noting that the taxa sets

of the trees in X(Tv) and X(T ′
v) only overlap in v

(k)
T and v

(k)
F , we have

|X(Tv ∪ T ′

v)| = 4n + 4n + 3m − 2n = 6n + 3m (1)

distinct taxa over all trees in Tv and T ′
v .

Clause gadget.We construct two sets Tc and T ′
c of trees. For each i ∈ {1, 2, . . . ,m}, consider the clause Ci = ℓ(p)∨ℓ(q)∨ℓ(r),

where each k ∈ {p, q, r} is an element in {1, 2, . . . , n} with ℓ(k) ∈ {v(k), ¬v(k)
}. Relative to Ci, we add three three-taxon trees

to Tc which are shown in the solid box of Fig. 5. The first such tree has taxon set {ℓ
(p)
i , c i1, ∪

i
a} where ℓ

(p)
i is an element in

{v
(p)
i , ¬v

(p)
i }. Note that ℓ

(p)
i labels a leaf of a tree in T ′

v while the other two taxa do not label a leaf of a tree in Tv or T ′
v . The

other two trees in Tc are constructed in an analogous way. Furthermore, for each Ci, we add two five-taxon trees to T ′
c which

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 137

Fig. 6. The two trees Tf and T ′

f in the construction of T from I .

are shown in the dashed box of Fig. 5. The taxa set of the first tree contains two new blocking taxa and the three previously
encountered elements {c i1, c

i
2, c

i
3}, while the second tree contains one new blocking taxon, the new taxon ∪i, and the three

previously encountered elements {∪
i
a, ∪

i
b, ∪

i
c}. Similar to the variable gadgets, we now count the number of taxa in trees in

Tc and T ′
c . As no two trees in Tc or T ′

c share a taxon, we have |X(Tc)| = 9m and |X(T ′
c)| = 10m. Moreover, since all taxa of

trees in T ′
c , except for the blocking taxa and elements in {∪1, ∪2, . . . ,∪m}, are also taxa of trees in Tc , we have

|X(Tc ∪ T ′

c)| = 9m + 10m − 6m = 13m. (2)

Formula gadget. We complete the construction of T by constructing two caterpillars Tf and T ′

f which are shown in the
solid and dashed box of Fig. 6, and define

T = Tv ∪ T ′

v ∪ Tc ∪ T ′

c ∪ {Tf , T ′

f }.

Summarizing the construction, we have |T | = 3n + 5m + 2. Moreover, by construction and Eqs. (1)–(2), it follows that
|X((Tv ∪ T ′

v) ∩ (Tc ∪ T ′
c))| = 3m. Now, since the three taxa bX , bY , and bZ , which are common to Tf and T ′

f , are the only taxa
of these two trees that are not contained in the taxa set of any other constructed tree, we have

|X(T)| = 6n + 3m + 13m − 3m + 3 = 6n + 13m + 3. (3)

We next prove the following claim:

Claim 1. I is satisfiable if and only if T has a cherry-picking sequence.

First, suppose that I is satisfiable. Let β : V → {T , F} be a truth assignment for V such that each clause is satisfied. We
next describe a sequence of pruning operation. Noting that each taxon in X(T) is contained in the taxa sets of exactly two
trees in T (a fact that we freely use throughout the rest of this proof), it is straightforward to verify that this sequence implies
a cherry-picking sequence for T .

Part 1: variable gadgets. For each variable v(k) with k ∈ {1, 2, . . . , n} do the following. If β(v(k)) = T prune taxon v
(k)
T from

the two trees in Tv ∪ T ′
v whose taxa sets contain v

(k)
T . On the other hand, if β(v(k)) = F prune taxon v

(k)
F from the two trees in

Tv ∪ T ′
v whose taxa sets contain v

(k)
F . Taken together, these pruning steps delete a single leaf of each tree in Tv and a single

leaf of half of the trees in T ′
v .

Part 2: clause gadgets. Consider the set of trees resulting from the pruning described in Part 1. For each Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r)

with i ∈ {1, 2, . . . ,m}, let Li be a subset of {p, q, r} such that |Li| = 2 and, if ℓ
(k)
i is not satisfied by β , then k ∈ Li. Setting

i = 1, process the three literals in Ci from left to right in the following way.

(1) If ℓ
(k)
i is satisfied by β , prune ℓ

(k)
i from the tree in Tc whose taxa set contains ℓ

(k)
i and, noting that ℓ

(k)
i ∈ {v

(k)
i , ¬v

(k)
i },

prune ℓ
(k)
i from the tree in T ′

v whose taxa set contains ℓ
(k)
i .

(2) If k ∈ Li, prune c is, where s = 1 if k = p, s = 2 if k = q, and s = 3 if k = r , from the two trees in Tc ∪ T ′
c whose taxa

sets contain c is.
(3) Prune ∪

i
t , where t = a if k = p, t = b if k = q, and t = c if k = r , from the two trees in Tc ∪ T ′

c whose taxa sets contain
∪

i
t .

Now prune ∪i from the tree in T ′
c whose taxa set contains ∪i, and prune ∪i from Tf . If i < m, increment i by one and repeat

this process with the next clause. Intuitively, by definition of Li, the above process prunes exactly two elements in {c i1, c
i
2, c

i
3}.

Since each clause is satisfied by β , this guarantees that we can prune each element in {∪
i
a, ∪

i
b, ∪

i
c} and, subsequently ∪i.

138 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Part 3: formula gadget and remaining taxa. Consider the set of trees resulting from the pruning described in Part 2. We prune
the remaining taxa as follows.

(1) In order, prune each of

b4n+3m, b4n+3m−1, b4n+3m−2, . . . , b4n+3i, b4n+3i−1, b4n+3i−2, . . . , b4n+3, b4n+2, b4n+1

from a tree T ′
c whose taxa set contains the respective blocking taxa and from Tf . After all taxa have been pruned, each

tree in T ′
c is either the null tree or consists of a single vertex labeled c is for some s ∈ {1, 2, 3}.

(2) For each i ∈ {1, 2, . . . ,m}, prune the unique taxon c is with s ∈ {1, 2, 3} that has not been pruned in Part 2 from two
trees in Tc ∪ T ′

c . Now, each tree in Tc ∪ T ′
c that is not the null tree consists of a single vertex labeled ℓ

(k)
i for some

i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . , n}.
(3) For each k ∈ {1, 2, . . . , n}, note that one of {b2(n+k)−1, b2(n+k)} labels a leaf of a cherry in a tree in T ′

v while the other
labels the leaf of a tree in T ′

v that consists of a single vertex. In order, prune each of

b4n, b4n−1, . . . , b2(n+k), b2(n+k)−1, . . . , b2n+2, b2n+1

from the tree in T ′
v whose taxa set contains the respective blocking taxa and from Tf .

(4) In order, prune bX and bY from Tf and T ′

f .
(5) Consider the remaining trees in Tv and observe that each such tree consists of exactly three leaves, two of which are

blocking taxa that form a cherry. In order, prune each of

b2n, b2n−1, . . . , b2k, b2k−1, . . . , b2, b1

from T ′

f and the tree in Tv whose taxa set contains the respective blocking taxon.
(6) For each k ∈ {1, 2, . . . , n}, let v

(k)
X be the unique element in {v

(k)
T , v

(k)
F } that has not been pruned in Part 1. Prune v

(k)
X

from the two trees in Tv ∪ T ′
v whose taxa sets contain v

(k)
X .

(7) For each i ∈ {1, 2, . . . ,m} in increasing order, consider each literal ℓ(k)i in Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r) with k ∈ {p, q, r} that
is not satisfied by β . By processing such literals from left to right in Ci, prune ℓ

(k)
i from the two trees in T ′

v ∪ Tc whose
taxa sets contain ℓ

(k)
i . It is easily seen that the corresponding tree in T ′

v either consists of a single vertex or contains a
cherry with a leaf labeled ℓ

(k)
i .

(8) Prune bZ from Tf and T ′

f .

Now, relative to the elements in X(T), we prune 2n elements in Parts 1 and 3.6, all 4m elements in

{∪1, ∪
i
a, ∪

i
b, ∪

i
c, . . . ,∪m, ∪m

a , ∪m
b , ∪m

c }

in Part 2, and all 4n + 3m + 3 blocking taxa in Parts 3.1, 3.3, 3.4, 3.5, and 3.8. Additionally, in Parts 2.1 and 3.7 we prune 3m
taxa, and in Parts 2.2 and 3.2, we prune again 3m taxa. Summing up, we prune

6n + 13m + 3

taxa, which is equal to the number of elements in X(T).
Second, suppose that T has a cherry-picking sequence σ = (x1, x2, . . . , x|σ |). We write xi ≺ xj if and only if i < j and

xi ≻ xj if and only if i > j. Further, let

M := {1, 2, . . . ,m}, N := {1, 2, . . . , n}, B := {b1, b2, . . . , b4n+3m, bX , bY , bZ }.

We define a truth assignment β: V → {T , F} as follows

β
(
v(k))

=

{
T if ∃i ∈ M: v(k)

T ≺ ∪i,

F else.

In order to show that β satisfies each clause of I , we establish four necessary conditions that σ fulfills by construction.

(1) All taxa in {∪1, ∪2, . . . ,∪m} are pruned earlier than any blocking taxon:

∀i ∈ M ∀b ∈ B:∪i ≺ b. (4)

Argument: Observe that the arrangement of bX , bY , bZ in Tf and T ′

f implies that all taxa in {∪1, ∪2, . . . ,∪m} are pruned
prior to any blocking taxon. Furthermore, we cannot prune any taxon in T ′

f until we have pruned all taxa from Tf
except for bX , bY , and bZ . We will freely use Condition 1 throughout the remainder of this proof.

(2) Let Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r) be a clause of I . At least one taxon in {ℓ
(p)
i , ℓ

(q)
i , ℓ

(r)
i } is pruned earlier than ∪i. Stated more

formally:

∀i ∈ M ∃ℓ
(si)
i ∈

{
ℓ
(pi)
i , ℓ

(qi)
i , ℓ

(ri)
i

}
: ℓ(si)i ≺ ∪i. (5)

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 139

Argument: Consider the five trees in Tc ∪ T ′
c representing Ci (see Fig. 5). In order to prune ∪i, we have to prune all

taxa in {∪
i
a, ∪

i
b, ∪

i
c} first. Since we can prune at most two taxa in {c i1, c

i
2, c

i
3} prior to an element in {b4n+3i−2, b4n+3i−1},

pruning all taxa in {∪
i
a, ∪

i
b, ∪

i
c} is only possible if at least one taxon in {ℓ

(p)
i , ℓ

(q)
i , ℓ

(r)
i } has been pruned previously.

(3) Let v(k)
∈ V be any variable of I . Recall the definition of the tuples φk and νk that is used in the construction of the

variable gadget. If there exists a v
(k)
i with v

(k)
i ≺ ∪i for some i ∈ φk, then v

(k)
T is also pruned earlier than ∪i. Stated

formally:

∀k ∈ N ∀i ∈ φk:
(
v
(k)
i ≺ ∪i H⇒ v

(k)
T ≺ ∪i

)
. (6)

Argument: Consider a variable v(k)
∈ V such that v

(k)
i ≺ ∪i for some i ∈ φk. Since there is no blocking taxon b ∈ Bwith

b ≺ ∪i, we have ∪i ≺ b2(n+k)−1. Thus, v
(k)
T is pruned from the associated caterpillar in T ′

v that contains v
(k)
i such that

v
(k)
T ≺ v

(k)
i ≺ ∪i (see Fig. 4).

The following can be shown analogously. If there exists a ¬v
(k)
i ≺ ∪i for some i ∈ νk, then v

(k)
F is also pruned earlier

than ∪i. Stated formally:

∀k ∈ N ∀i ∈ νk:
(
¬v

(k)
i ≺ ∪i H⇒ v

(k)
F ≺ ∪i

)
. (7)

(4) Let v(k)
∈ V be any variable of I . If v(k)

T is pruned earlier than some taxon in {∪1, ∪2, . . . ,∪m}, then v
(k)
F is pruned later

than all taxa in {∪1, ∪2, . . . ,∪m}, i.e.,

∀k ∈ N:
((

∃i ∈ M: v(k)
T ≺ ∪i

)
H⇒

(
∀i ∈ M: v(k)

F ≻ ∪i

))
. (8)

Argument: Consider a variable v(k)
∈ V such that v

(k)
T ≺ ∪i for some i ∈ M . Assume towards a contradiction that there

is some j ∈ M such that v
(k)
F ≺ ∪j. Then, one of the two blocking taxa b2k−1 and b2k is pruned prior to v

(k)
F (see Fig. 4).

But this is not possible since there is no blocking taxon b ∈ Bwith b ≺ ∪j.
As an immediate consequence of statement (8), we get the analogous statement for v

(k)
F , i.e.,

∀k ∈ N:
((

∃i ∈ M: v(k)
F ≺ ∪i

)
H⇒

(
∀i ∈ M: v(k)

T ≻ ∪i

))
. (9)

Now, we show that β indeed satisfies each clause of I . For each clause Ci = ℓ(p) ∨ ℓ(q) ∨ ℓ(r), we have ℓ
(s)
i ≺ ∪i for some

ℓ
(s)
i ∈

{
ℓ
(p)
i , ℓ

(q)
i , ℓ

(r)
i

}
(Condition 2). Since ℓ

(si)
i ∈

{
v
(k)
i , ¬v

(k)
i

}
for some k ∈ N , we have v

(k)
T ≺ ∪i if ℓ

(si)
i = v

(k)
i and v

(k)
F ≺ ∪i

if ℓ
(si)
i = ¬v

(k)
i (Condition 3). Hence, by setting β(v(k)) = T if v

(k)
T ≺ ∪i and β(v(k)) = F if v

(k)
F ≺ ∪i, we satisfy at least one

literal of each clause. Note that we can assign arbitrary truth values to variables v(k) with v
(k)
T ≻ ∪i and v

(k)
F ≻ ∪i for all i ∈ M .

Here, we choose to set all these variables to F . The truth assignment β is consistent, since at least one taxon in
{
v
(k)
T , v

(k)
F

}
is

pruned later than all taxa in {∪1, ∪2, . . . ,∪m} (Condition 4). Hence, the truth assignment β is consistent and satisfies each
clause of I .

Folding into two trees on the same set of taxa. The trees in Tv ∪Tc ∪{Tf } and, similarly, the trees in T ′
v ∪T ′

c ∪{T ′

f } (see Fig. 4, 5,
and 6) have mutually disjoint taxa sets. Hence, by n + 3m applications of Lemma 2, we can construct a compound tree S
for all trees in Tv ∪ Tc ∪ {Tf } and, by 2n + 2m applications of Lemma 2, we can construct a compound tree S ′ for all trees
in T ′

v ∪ T ′
c ∪ {T ′

f } such that T has a cherry-picking sequence if and only if S and S ′ have a cherry-picking sequence. Lastly,
by applying Lemma 1, we obtain two trees T and T ′ from S and S ′, respectively, such that X(T) = X(T ′), and S and S ′ have a
cherry-picking sequence if and only if T and T ′ have such a sequence. It now follows that I is satisfiable if and only if T and
T ′ have a cherry-picking sequence.

Number of taxa in the final instance. It remains to show that T and T ′ can be constructed in polynomial time. By Eq. (3), recall
that |X(T)| = 6n + 13m + 3. Now, since we apply Lemma 2 a total of 3n + 5m times and each application introduces two
new taxa, we have

|X({S, S ′
})| = 6n + 13m + 3 + 2(3n + 5m) = 12n + 23m + 3.

Observe that each taxon in X(T) labels a leaf of a unique tree in Tv ∪ Tc ∪ {Tf } and a leaf of a unique tree in T ′
v ∪ T ′

c ∪ {T ′

f }.
It therefore follows that each taxon that is contained in exactly one of X(S) and X(S ′) has been introduced by an application
of Lemma 2. Conversely, each application of this lemma introduces two taxa that are both contained in exactly one of X(S)
and X(S ′). Hence, recalling that in obtaining T and T ′ from S and S ′, respectively, an additional leaf labeled ρ is introduced
(see the third sentence in the proof of Lemma 1), we have

|X(T)| = |X(T ′)| = 12n + 23m + 3 + 2(3n + 5m) + 1 = 18n + 33m + 4.

It now follows, that the size of T and T ′ aswell as the time it takes to construct these two trees are polynomial. This completes
the proof of the theorem. □

140 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 7. The variable gadget for (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

To illustrate the proof of Theorem 1, we now give an explicit example of a 3-Sat instance and show how it is reduced to
a set of trees by following the construction that is described in the aforementioned proof. Let I be the following instance of
3-Sat

(x ∨ ¬y ∨ z)  
C1

∧ (¬x ∨ y ∨ z)  
C2

∧ (x ∨ ¬y ∨ ¬z)  
C3

.

For the purpose of ordering the blocking taxa in the sameway as described in the proof, we regard variable x as v(1), variable
y as v(2), and variable z as v(3). Let n = 3 (resp. m = 3) be the number of variables (resp. clauses) in I . We construct a set T
of 3n + 5m + 2 = 26 trees. The 9 trees that represent the variable gadget Tv and T ′

v are shown in Fig. 7, the 15 trees that
represent the clause gadget Tc and T ′

c are shown in Fig. 8 and the two trees that represent the formula gadget Tf and T ′

f are
shown in Fig. 9. Note that |X(T)| = 3n + 13m + 3 = 60. Clearly, I is satisfied for the truth assignment β : {x, y, z} → {T , F}

with β(x) = β(z) = T , β(y) = F . To see that T also has a cherry-picking sequence of length 60, we follow the sequence of
pruning operations that is described in Parts 1–3 in the first direction of the proof of Claim 1

(xT , yF , zT ,

x1, c11 , ∪
1
a, ¬y1, c12 , ∪

1
b, z1, ∪

1
c , ∪1, c21 , ∪

2
a, c

2
2 , ∪

2
b, z2, ∪

2
c , ∪2, x3, ∪3

a, ¬y3, c32 , ∪
3
b, c

3
3 , ∪

3
c , ∪3,

b21, b20, . . . , b13, c13 , c
2
3 , c

3
1 , b12, b11, . . . , b7, bX , bY , b6, b5, . . . , b1, xF , yT , zF , ¬x2, y2, ¬z3, bZ),

where line 1 corresponds to Part 1, line 2 corresponds to Part 2, and line 3 corresponds to Part 3.

4. Discussion

Given any set of input trees, there always exists some phylogenetic network displaying them. Roughly speaking, one can
simply merge the input trees at the leaves and at the root. However, what happens when you restrict the network to have
some additional, biologically motivated, properties? Then theremight not always exist a network displaying the input trees.
Moreover, deciding whether or not there exists such a network may be a difficult problem. Indeed, in this paper we have
shown that even if the input consists of only two binary trees, it is already NP-complete to decide whether there exists any
temporal phylogenetic network displaying them.

One could be tempted to look for approximation algorithms for the associated optimization problem: given a set of
phylogenetic trees, find a temporal network that displays them and has smallest possible reticulation number, if such
a network exists. Note, however, that an approximation algorithm is required to always output a valid solution, for any
valid input. The problem formulation above (based on [13]) does not specify what a valid solution is when there does not
exist a temporal network displaying the input trees. Nevertheless, whatever the output in that case is, it can be checked
in polynomial time whether the output of the algorithm is a temporal network displaying the input trees. This is because
temporal networks are tree-child, and checking whether a tree-child network displays a tree can be achieved in polynomial
time [16]. Hence, any approximation algorithm for the problem could be used to decide in polynomial time whether there

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 141

Fig. 8. The clause gadget for (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

142 J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143

Fig. 9. The formula gadget for (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

exists a temporal network displaying the input trees, which is not possible, unless P=NP, given the NP-completeness shown
in this paper.

Therefore, amore promising direction is to consider fixed-parameter algorithms for the associated parameterized version
of the problem. Given a set of phylogenetic trees and a parameter k, decide whether there exists a temporal network
that displays the input trees and has reticulation number at most k. One then aims at algorithms solving this problem
in O(|X |

O(1)f (k)) time, with f some function of k, preferably of the form ck with c a small constant. Intuitively, such an
FPT algorithm is only exponential in the reticulation number and not in the number of leaves. Indeed, even though it is
NP-complete to decide whether there exists a temporal network with unlimited reticulation number, for small reticulation
numbers this problemmight bemuch easier. In fact, for instances of two binary trees a fixed-parameter algorithm is already
known [12]. Important open problems include the question whether such algorithms exist for instances of more than two
trees and whether algorithms can be developed that work well in practice.

It would also be interesting to consider other biologically motivated network classes. For example, binary tree-child
(e.g. [5]) or tree-sibling networks (e.g. [3]). Could it be that one of the associateddecisionproblems is nontrivial (formore than
two input trees) but polynomial-time solvable? For other network classes, such as tree-based (e.g. [9]) or time-consistent
(e.g. [4]) networks, it is known that there always exists a solution [25]. For such classes, it would be interesting to study the
optimization version of the problem.

Acknowledgments

We thank Matúš Mihalák for useful discussions. Leo van Iersel was partly supported by the Netherlands Organization for
Scientific Research (NWO), including Vidi grant 639.072.602, and partly by the 4TU Applied Mathematics Institute. Simone
Linz was supported by the New Zealand Marsden Fund.

References

[1] E. Bapteste, L. van Iersel, A. Janke, S. Kelchner, S. Kelk, J. McInerney, D. Morrison, L. Nakhleh, M. Steel, L. Stougie, J. Whitfield, Networks: expanding
evolutionary thinking, Trends Genet. 29 (8) (2013) 439–441.

[2] M. Bordewich, C. Semple, Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable, IEEE/ACM Trans. Comput. Biol.
Bioinform. 4 (3) (2007) 458–466.

[3] G. Cardona, M. Llabrés, F. Rosselló, G. Valiente, A distance metric for a class of tree-sibling phylogenetic networks, Bioinformatics 24 (13) (2008)
1481–1488.

[4] G. Cardona, M. Llabrés, F. Rosselló, G. Valiente, Path lengths in tree-child time consistent hybridization networks, Inform. Sci. 180 (3) (2010) 366–383.
[5] G. Cardona, F. Rosselló, G. Valiente, Comparison of tree-child phylogenetic networks, IEEE/ACM Trans. Comput. Biol. Bioinform. 6 (4) (2009) 552–569.
[6] Z.-Z. Chen, L. Wang, Hybridnet: a tool for constructing hybridization networks, Bioinformatics 26 (22) (2010) 2912–2913.
[7] M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, vol. 3., Springer, 2015.
[8] J. Döcker, S. Linz, On the existence of a cherry-picking sequence, Theoret. Comput. Sci. 714 (2018) 36–50.
[9] A. Francis, M. Steel, Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64 (5) (2015) 768–777.

[10] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1979.
[11] D. Gusfield, ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks, The MIT Press, 2014.
[12] P. Humphries, S. Linz, C. Semple, Cherry picking: a characterization of the temporal hybridization number for a set of phylogenies, Bull. Math. Biol.

75 (10) (2013) 1879–1890.
[13] P. Humphries, S. Linz, C. Semple, On the complexity of computing the temporal hybridization number for two phylogenies, Discrete Appl. Math. 161

(7) (2013) 871–880.
[14] D. Huson, R. Rupp, C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications, Cambridge University Press, 2011.
[15] L. van Iersel, S. Kelk, C. Scornavacca, Kernelizations for the hybridization number problem on multiple nonbinary trees, J. Comput. System Sci. 82 (6)

(2016) 1075–1089.
[16] L. van Iersel, C. Semple, M. Steel, Locating a tree in a phylogenetic network, Inform. Process. Lett. 110 (23) (2010) 1037–1043.

http://refhub.elsevier.com/S0166-218X(19)30066-6/sb1
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb1
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb1
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb2
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb2
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb2
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb3
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb3
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb3
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb4
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb5
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb6
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb7
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb8
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb9
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb10
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb11
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb12
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb12
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb12
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb13
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb13
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb13
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb14
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb15
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb15
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb15
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb16

J. Döcker, L. van Iersel, S. Kelk et al. / Discrete Applied Mathematics 260 (2019) 131–143 143

[17] R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations (Proc. Sympos. IBM Thomas J. Watson Res. Center,
Yorktown Heights, N.Y., 1972), Plenum, 1972, pp. 85–103.

[18] S. Kelk, L. van Iersel, S. Linz, N. Lekić, C. Scornavacca, Stougie. Cycle killer. L., Qu’est-ce que c’est? On the comparative approximability of hybridization
number and directed feedback vertex set, SIAM J. Discrete Math. 26 (4) (2012) 1635–1656.

[19] B. Moret, L. Nakhleh, T. Warnow, C. Linder, A. Tholse, A. Padolina, J. Sun, R. Timme, Phylogenetic networks: modeling, reconstructibility, and accuracy,
IEEE/ACM Trans. Comput. Biol. Bioinform. 1 (1) (2004) 13–23.

[20] C. Papadimitriou, M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991) 425–440.
[21] C. Semple, M. Steel, Phylogenetics, Oxford University Press, 2003.
[22] S. Soucy, J. Huang, J. Gogarten, Horizontal gene transfer: building the web of life, Nature Rev. Genet. 16 (8) (2015) 472–482.
[23] M. Steel, Phylogeny: Discrete and Random Processes in Evolution, SIAM, 2016.
[24] C. Whidden, R. Beiko, N. Zeh, Fixed-parameter algorithms for maximum agreement forests, SIAM J. Comput. 42 (4) (2013) 1431–1466.
[25] L. Zhang, On tree-based phylogenetic networks, J. Comput. Biol. 23 (7) (2016) 553–565.

http://refhub.elsevier.com/S0166-218X(19)30066-6/sb17
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb17
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb17
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb18
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb18
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb18
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb19
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb19
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb19
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb20
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb21
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb22
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb23
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb24
http://refhub.elsevier.com/S0166-218X(19)30066-6/sb25

	Deciding the existence of a cherry-picking sequence is hard on two trees
	Introduction
	Preliminaries
	Cherry-picking sequence problem on trees with the same set of taxa
	A more general cherry-picking sequence problem

	Main results
	Discussion
	Acknowledgments
	References

