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Summarz

Analytical and numerical methods were used to investigate the flow induced
by a shock wave in a shock-tube channel containing air laden with suspended small
solid particles. Exact results are given for the frozen and equilibrium shock-
wave properties as a function of diaphragm-pressure ratio and shock-wave Mach
nunbers. The driver contained air at high pressure. A modified random-choice
method together with an operator-splitting technique show clearly both the decay
of a discontinuous frozen shock wave and a contact discontinuity and the forma-

tion of a stationary shock structure and an effective contact front of finite
thickness.

The effects of particle diameter, particle-number density and diaphragm-
pressure ratio on the transitional behaviour of the flow are investigated in
detail. The alteration of the flow properties due to the presence of particles
is discussed in detail and compared with classical shock-tube flows.
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Notation

R = equilibrium speed of sound
ap = frozen speed of sound
Cm = gpecific heat of solid material
Cp = gas specific heat at constant pressure
Cv = gas specific heat at constant volume
) D = drag force acting on a particle
J d = diameter of particles
k = gas thermal conductivity
) = reference length [Eq. (22)]
m = mass of a particle

particle nunber density
= gas pressure

= rate of heat transfer to a particle

o O "d'_db
]

= gas congtant

T = gas temperature
t = time from digphragm rupture
u = gas velocity
U, = propagation velocity of shock wave
v = velocity of particles
X = space coordinate measured from diaphragm
C) = temperature of particles
] V) = gas visgcosity
. fa) = gas density
pp = density of golid particles
o = mass concentration of particles




Dimensionless Quantities
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Note:

Fors To0 Uy
equilibrium I,, = p2/p:L = 0'2/0‘1.

drag coefficient of a particle
us/a,]_f or u_/ay

Nusselt number of a particle
p/Py

P,/P;

Pu/Pl

gas Prandtl nunber

Reynolds number of a particle
T/Tl or 8/T;

To/Ty

T3/Ty

u/a, or v/ ay

v/ i
x/4

ratio of mass concentrations of particles to gas [Eq. (19)]

ratio of specific heats of two phases [Eq. (18)]

gas specific heat ratio

specific heat ratio of an effective perfect gas

o/py or /oy

Po/Pq

pg/Py

t/(4/a1,) .

and I';

5p can have frozen and equilibrium values; at



1. INTRODUCTION

When a gas carries a lot of solid particles, they significantly affect the
flow through the transfer of momentum and heat from or to the gas. Shock waves
propagating in such a dusty gas are characterized by a transition region orders
thicker than that caused by viscosity and heat conduction in a pure gas. Across
the transition front, the interaction of the gas and the particles leads to an
equilibrium state of the mixture, The structure of stationary shock waves
(Refs. 1-5) and its formation by a moving piston (Refs. 5, 6) have been studied
theoretically on the assumption that the formulae for the drag and the rate of
heat transfer for a single spherical particle placed in a steady flow can still
be applied to the motion of many particles contained in a dusty gas.

Some experimental studies of shock waves in a dusty gas inside a shock tube
were done in order to get some data on the interaction of the two phases (Refs.
7-10). Some of the results showed an effective drag coefficient, obtained from
the observation of the acceleration of the particles behind the shock waves,
which differed appreciably from that for a single particle. However, there
were many factors influencing the results and a definitive conclusion on the
appropriate drag coefficient to be used is not available as yet.

Recently, numerical analyses followed these experimental studies. The
shock-tube problem for a dusty gas was solved numerically by Otterman and
Levine (Ref. 11) using the particle-in-cell method. They investigated the
difference in the transient flow field due to different assumptions of the
drag and the heat transfer coefficients. Outa, Tajima and Morii (Ref. 10)
made a numerical analysis of the penetration of a shock wave into a dusty-gas
region for comparison with their experimental results. Satofuka and Tokita
(Ref. 12) discussed the efficiency of various numerical techniques applied to
the case when both sides of a diaphragm are filled with a dusty gas.

The work of Otterman and Levine provided a rough sketch of the transient
flow behaviour in a shock tube. However, they treated cases of unusually high
mass-loading ratio and their numerical results include obscure points regarding
the frozen shock front and the delay of particle acceleration.

At present, a more extensive and clear analytical study is required for
comparison with experimental results. In this paper, we consider the classical
problem of the shock tube where the driver contains high-pressure air and the
channel contains a dusty gas, as would be the case in actual experiments. The
effects of the ratio of mass concentrations, the size of the particles and the
diaphragm pressure ratio upon the flow characteristics are fully discussed.
Working curves are produced for the physical properties as a function of the
initial conditions and the disphragm pressure ratio. The transitions through
the shock front and contact region as well as the rarefaction wave are studied
in detail as functions of time. Some of the randomness produced by mesh size
and drag relations on physical properties are also shown.

The study of shock waves in dusty gases provides a good introduction to
real-gas effects. Frozen shock waves, transition to equilibrium flow, frozen
and equilibrium sound speeds and dispersed shock waves are all encountered
and well illustrated by analogy with real-gas flows,



2. ANALYTICAL CONSIDERATIONS

We consider the transient flow occurring after diagphragm rupture in a
shock tube (Fig. 1). In order to formulate the motion of the mixture, we
mist make several assumptions (Refs. 1-6). The gas is assumed perfect and
its viscosity and heat conductivity are neglected except for the interaction
with the particles. The particles are assumed to be spheres of uniform size
and their number is so large that the flow may be treated as a continuum.
The volume occupied by the particles is neglected.

Let p, p, T, u be the pressure, density, temperature and velocity of the
gas, and o, ©, v be the mass concentration, temperature and velocity of the -
particles, respectively. Using the agsumptions stated sbove, we can express
the equations of motion of mass, momentum and energy for either the gas or

the particles as follows: N
§§+%(pu)=o (1)
K& () =0 (2)
& (ow) +& () +R=-Zp (3)
& (ov) + < (o) =Z (4)

%{D<CVT+%u2>}+g§{pu<cpT+-]2'-u2>}=--%(vD+Q) (5)

k(o (b g {m (i) omr0 o

The thermally perfect equation of state for the gas is given by
D = ERT (7)

The interaction of the two phases is incorporated in the terms of the drag
and the heat transfer on the right-hand sides of Egs. (3)-(6). Specification
of the dependence of D and Q on the flow quantities is needed to obtain a closed
set of equations. While various formulae valid for a single sphere exist (Refs.
3, 4), attention should be paid to the fact that in the present transient case
the Reynolds number of the particle takes on a high value initially because of
the large difference in velocity between the two phases. We assume that
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D =-g a"p(u-v) |u-v [C})

= ¥ &®p(u~v) Ju-v|(0.48 + 28 Re™0-8%) (8)

for the drag (Ref. 13) and
Q= 'nﬂuCPPr-l(T-e)Nu
= WduCpPr-l(T-G)(2.0 + 0.6 Prl/ 3 Rel/ 2) (9)

for the heat transfer (Ref. 1L4), where Re is thé Reynolds number based on the
diameter of the particle and the relative velocity of the particle to the gas

Re = plu~v|d/u (10)
and Pr is the Prandtl nunber
Pr = uCp/k (11)

The viscosity and the thermal conductivity of the gas are assumed constant
for stationary shock waves (Ref. 9), since the change in temperature of the gas
is small over the relaxation region., In the present case, however, the particles
interact not only with a hot compressed gas between the shock front and the
contact front but also with a cold expanding gas behind the contact front. TIn
addition, the temperature of the gas varies with time. Therefore s the variations
of the viscosity and the thermal conductivity with temperature must be taken into
account. With air (Ref. 15) inside the tube

- o N\OT7
B =171 x 10  x <-2-’ﬁ> poise (12)
and
Pr = 0.75 (13)

The high pressure air in the driver obeys Eqs. (1), (3) and (5) with
o =0, and Eq. (7).

The initial conditions at t = 0 are as follows:

L:L:L:L:Q—:l, u=v=0Q0forx>0

P <) T g. T

¢ & 1 1 1 1 (1)
L g A

%L:_Ez_‘r_u_l, u=0,0=0forx<0



It is assumed here that the gas and the particles initially are in equili-
brium. The system of equations (1)-(7) for seven unknowns (p, e, T, u, o,

8, v) together with the supplementary equations (8)-(13) subject to the
initial conditions can be solved numerically. We apply the random-choice
method (Refs. 16-19) to the present problem, for it describes discontinuities
clearly without the use of implicit or explicit artificial viscosity. An
operator-splitting technique makes its application possible (Refs. 18, 19).
The solution is obtained by solving the two sets of equations alternately in

each time step,

that is, the equations derived from Egs. (1)-(6) with the

right-hand sides omitted and the equations obtained by omitting the deriva-
tives with respect to x.

The element of the random-choice method, which solves the former set,
is to determine by means of random sampling the solution at the middle point
between the two adjacent points where the solution is known at a previous
time. The initial condition in this calculation is taken as a step-like

discontinuity.

The procedure for the gas phase has been written in a few

papers (Refs. 17-19) and is omitted in this paper.

On the other hand, a difficulty arises in the treatment of the equations
for the particles in this stage, which are reduced to

X4+ (av) =0
%‘é+v% =0 (15)
gg + V'gg =0

A discontinuous initial condition would result in a multivalued solution for

the velocity v.

The flow variables of the particles are continuous and we

assume the initial condition of linear distribution only for the particles in

order to avoid

this difficulty. Consider two adjacent points with distance

Ax apart, where the solution is known. We take the following initial condi-

tions:

where the subsc
respectively.

v = (vr - vz) %E +-% (vr # vz)
6= (6, - 8,) & +5 (6, +86)) (16)
o= (Oi - 02) %i + % (Uf + 02)

ripts r and £ refer to the two points x = + 3 Ax (for convenience),
The solution of Eq. (15) subject to the condition (16) is given by



1 Ax
VEART (v, - v,)% '{(Vr " VPx ko (v, 4 vﬂ)}

fo e +(ir —E {(@r - ®£)x +% (6, + 6;2) + (eﬁvr - rvﬂ)t} (17)

U = 5 +1?icr y g)t}Q {(Ur - 0% +§_x§ b Pl tagl s Urvl’f)t}

Random sampling of the solution between the two points determines the values

of flow variables at the middle point a little time later. Two repetitions

of this procedure bring about a time evolution by a time step, say, At. The
time step must be appropriately small so that the so-called Courant-Friedrichs-
Lewy condition is satisfied, otherwise the result loses physical meaning. Al-
though most points are treated in this way, the point bordering the region of
the dusty gas is an exception. Since the diffusion of concentration is not
considered, we must take a discontinuous initial condition at this point so

as to get a clear boundary of the particle cloud.

The other portion of the operator-splitting technique is accomplished
by integration of the equations with respect to time. Thig procedure must be
carefully done for moving discontinuities, because it may produce a significant
error of the first order. Consider the case when a discontinuous surface
passes across a point in a time of At. The surface should be regarded to have
moved over the distance Ax between the middle points on both sides of the point.
Therefore, the contribution to the integration in At at the point must be con-
sidered separately for the two halves of % At.

3. RESULTS AND DISCUSSIONS

An assignment of several parameters is needed for the numerical calculations.
We take air (y = 1.L4) as the gas in both the driver and the driven sections. The
gas is assumed to be at room temperature (Ty = T4) before diaphragm rupture. The
initial pressure p; in the driven section is taken to be one atmosphere. Further,
we restrict ourgelves to the case where the ratio of specific heats of the two
phases

B =cC,/C, (18)

is unity. The remaining factors, on which flow behaviours depend, are the ratio

of mass concentration
W,

L

a=o0/p) (29)

the diameter of the particles d and the diaphragm pressure ratio




The results for the case of @ = 1, d = 10 ym and P4; = 10 are presented
in Figs. 2-6. Normalized quantities are used in all the figures. Flow quan-
tities, except the velocity, are referred to corresponding values in the
stationary region (1) ahead of the shock wave. The velocity is normalized

by the speed of pound in the gas phase, i.e., the so-called frozen speed of
sounds

a1y = N7B /Py (21)

The distance x is also measured in units of

P,
£=8m2= S (22)

7Tpld Pl

Wl

and the time t in f/81,. [Note the value of £ can be obtained from Eq. (4)].
Numerical calculations have been done in the manner stated in the previous
section. A mesh size Ax of 0.1 is used together with time step At as large as
the Courant-Friedrichs-Lewy condition may allow.

Flow structures after a small time has elapsed after the diaphragm rupture
are gshown in Fig. 2, for the case of P4 = o =1, d =10 um for 'a time 7 = k4,
Under these condltions with p; =1 atm and Tl 3OO K using glass beads, the -
number density to provide % 1 would be 0.94 x 10 /cc' L =2.72 cm; 31, = 350
m/s and 7 = 4 = 3.11 x 10~* sec (see Table 1 for further details). The dashed
lines are for the classical shock-tube problem. The solid lines show the frozen
shock wave as an abrupt change followed by a gradual approach to equilibrium.

In this case the flow is far from equilibrium. Note in Fig. 2(b) the particle
concentration rises gradually though the shock front, reaches a maximum at the
contact front and then drops to zero at the driver gas. It should be noted that
the rarefaction is weaker than for the gas case only. In addition there are
spurious numerical oscillations near the tail of the wave in all flow properties,
Only the gas responds to the abrupt change at the instant of disphragm rupture,
while the particles cannot folow any sudden change. After the frozen shock
front has passed by, the velocity and temperature of the particles are raised
gradually through interaction with the gas. On the other hand, the gas is
decelerated and loses energy. A comparison of the results with the solution

for a pure gas exhibits a decay of the frozen shock front due to this inter-
action. The velocity of propagation of the shock wave also diminishes as

can be seen by looking at the values of X for both cases. The deceleration

of the gas results in a compression and its pressure away from the frozen

shock front attains a higher value than in the case of a pure gas. The
rarefaction wave weakens as a result, Some particles cross the frozen contact
surface and drop to zero in the cold gas. Thus the temperature of these particles
drops. However, the gas temperature [see Fig. 2(c)] also drops but not as low
as for the frozen flow since the particles act as a heat reservoir.

Subsequent transitional behaviours of the physical quantities are shown in
Figs. 3-5 for increasing time 7. Both the velocities and temperatures of the gas
and the particles behind the frozen shock front approach each other with time and
a new uniform region in equilibrium forms some distance behind the discontinuous
frozen shock front. An almost stationary shock structure of finite thickness
can be seen in Fig. 5. For our case of pp = 2.5 g/cm » this state is attained



after 2.49 x 10~3 sec and the thickness of the shock transition is about 34 cm.
If, for example, P, is made smaller for & = 1, the particle number density will
increase and the transition length will decrease.

It is very useful to assume that everywhere the particles reach the equili-
brium-flow limit of the gas velocity and temperature. This must occur because
the flow except for relaxation regions of finite length must approach this limit
after a sufficient time elapses. The mixture in this limit behaves effectively
as a perfect gas with the specific heat ratio given by (Ref. 4)

7o = (v +0B)/(1 +oB) (23)

and the speed of sound by

o y + 0B K |
a‘1e“/(1 FO)(L +0B) B, (24)

The shock-tube solution for this equilibrium-flow limit is also shown in Fig. 5
for comparison. The agreement of the equilibrium flow limit and the numerical
results is very good indeed. Besides the relaxation region of the shock wave,
the contact surface also has a structure of finite thickness. The particles in
this layer are in equilibrium with the gas. The sgtructure of the effective
contact surface must depend on how the particles have interacted with the gas.

A wave diagram is shown in Fig. 6. The paths of the discontinuous frozsn
and equilibrium shock fronts are shown. For comparison the present numerical
results are also shown. As noted on Fig. 6, the present data shows the relaxa-
tion distance between the present frozen shock and the idealized equilibrium
gas-particle front. It shows that the present frozen shock moves at a velocity
closer to the idealized equilibrium shock front than the perfect gas frozen
shock wave after a sufficient time has elapsed. At times close to zero it
would move closer to the perfect gas shock.

The path of the contact surface has been made possible by choosing a
point on its transition region such that the temperature equals the original
gas temperqture T1. Consequently, the results by definition must lie on our
equilibrium contact front path for convenience of illustration. The results
for the tail of the rarefaction wave were obtained by extrapolating the
straight lines of the pressure curves in regions (2) and (3), the uniform
states, until it hit the rarefaction wave profile. It can be seen that the
agreement with the idealized equilibrium value is very good by large. Note
that the tail of this wave is weaker than the perfect gas tail. Of course
the head of the rarefaction wave is identical for all three flows as shown.

A The changes in temperature and pressure of the gas immediately behind
the frozen shock front as it moves are shown in Fig. 7. They start from values

for a pure gas and approach finally the values calculated from the shock speed
attained in the idealized equilibrium-flow limit.

¥




Small random disturbances in the numerical results are characteristic
of the use of the random-choice method. Taking a smaller mesh size makes
the disturbances smaller. (We confirmed this by comparing the results with
those for a half and quarter-size mesh smaller, although only for a short
time owing to the increased cost of the computations - see Figs. 8 and 9.)

It should be noted that the thermal equilibration between the two phases
is achieved faster than the equilibration of velocity (see Figs. 2c, d and
3c, d). This fact is also reflected in that longer length from the discombinuous
shock front is needed for velocity equilibration than for temperature equilibra-
tion (see Figs. 5c and 5d).

Next, we investigate the influence of the size of the particles on the
transition of the flow. The results for the cases of d = 20 um (see Figs.
10-12) and d = 40 um (see Figs. 13-15) with other parameters unchanged, are
shown in Figs. 10-15, respectively. It is interesting to find almost similar
flow fields at T = 4 in the three cases of 10-40 um. Note that the actual
times and distances are different for different particle diameters, being
proportional to the diameter according to Eq. (22). This is nearly true for
later times as well. This similarity may be related to the constancy of the
drag coefficient of the particles for large Reynolds numbers. The rate of
heat transfer is much greater for smaller particles. For example, a comparison
of Figs. 2c and 13c soon show that the 10 pm particle differs greatly from the
frozen value but the 4O um particle is very close to the frozen value.

The results at T = 32 may be compared with the structure of a stationary
shock wave, Tt can be seen that the stationary shock values are almost’
achieved. The length of the relaxation region is naturally longer for larger
particles on account of their larger inertia. Alternatively, the relaxation
length depends on the diameter d [Eq. (22)]. However it is found to lie between
d and 4. As seen from Figs. 7, 12 and 15, the time required for the stationary
shock wave to form also depends on the diameter of the particles. However, it
is not a linear relation. The time T for the 20 pm particle to achieve equili-
brium is much less than a factor of two for the 10 um particles. Nevertheless
the actual time is longer than two but less than four.

Calculations have been done for cases of different ratios of mass concen-
trations with the remaining parameters the same as the first case. The results
for @ = 0.4 and @ = 2.0 are shown in Figs. 16-18 and 19-21 respectively. It
can be seen from comparison of the flow fields at T = 4 that a larger mass
concentration of particles causes in the gas phase larger deviations from the
frozen flow. However, the final quasi-equilibrium state is accomplished more
quickly when @ is small. For example, compare median curves through Figs. 12,
7 and 21 and it will be clear that equilibrium is faster for the small loading
ratio @ = 0.4, The effect of the mass concentration of particles on the thick-
ness of the stationary shock wave is not so apparent. In the case when Q = 2,05
the propagation of the shock wave becomes so slow that the discontinuous jump
in the gas phase cannot be supported (see Fig. 20). The transition to the
fully dispersed shock wave is characteristic of this case. The contact surface
consists of a region of dusty gas of finite thickness which is followed by a
discontinuity in the gas phase (see Figs. 20b and 20c).

The difference in transitional behaviour due to the strength of the diaphragm
pressure ratio is studied next. The results for the cases of P41 = 5.0 and p)jy= 20.0
are shown in Figs. 22-24 and 25-27, respectively. The length of the relaxation



region of the stationary shock wave forming after a sufficient time is larger
for weaker shock waves (see Figs. 23 and 26), i.e., smaller diaphragm pressure
ratio. When the diaphragm pressure ratio is lower than a critical value, the
shock wave is weak and the decay due to absorption of energy by the particles
is so large that the shock wave becomes fully dispersed , that is, the frozen
shock front disappears. In fact, the case of py; = 5.0 lies in this range.
Comparison of the changes in the pressure jump at the frozen shock front with
time clarifies that the stationary shock wave forms also in a shorter time for
a higher diaphragm pressure ratio (see Figs. 7, 24 and 27).

Finally, several figures (Figs. 28-34) are presented illustrating the
effect of the existence of particles upon the wmiform states between the shock
wave, the contact surface and the rarefaction wave for the idealized gas-particle
equilibrium flow limit. Flow quentities are given by the exact classical shock-
tube solution (Ref. 20) (see Appendix B) for the effective perfect gas based
on ye and alp (see Table 2). Variations of shock Mach numbers based on the
frozen or the equilibrium speed of sound with the diaphragm pressure ratio are
shown in Fig. 28 for values of & over the range 0 <& < 2. The particles reduce
the velocity of propagation of a shock wave and since The speed of sound of the
gas is fixed the Mach number Mg falls with increasing @ for a fixed p4j. The
reason lies in the fact that the particles absorb kinetic and thermal energy.
However, the equilibrium speed of sound becomes much smaller and as a result
the effective shock Mach number increases with @ for a fixed pj,. The shock
speed is even less than the frozen speed of sound if the amount of particles
is sufficiently large. Then, the shock wave becomes dispersed without a
discontinuous frozen front. The region below the dashed line Mg = 1, is that
of dispersed shock waves over the p)j; range. The variations of flow quantities
behind the shock wave with diaphragm pressure ratio are illustrated in Figs.
29-32, The flow quantities of the gas immediately behind the frozen shock front
are also plotted. The temperature and the velocity reduce as @ takes on larger
value. On the contrary, the equilibrium pressure and density increase owing to
compression. It should be noted that at equilibrium the frozen values of the
pressure and the density of the gas decreases with particle concentration. The
density and the temperature between the contact surface and the rarefaction
wave are plotted in Figs. 33 and 34. The presence of particles bring about
compressive effects on the flow in this region, such that these values increase
with particle concentration for a given diaphragm pressure ratio.

4, CONCLUSIONS

Flow properties in a shock tube, in which many solid particles are sus-
pended in the driven section, were analyzed numerically. Use was made of the
random-choice method modified so as to be applicable to a dusty gas together
with an operator splitting technique.

The particles remove momentum and energy from the gas behind the shock
wave. As a result, the strength of the discontinuous frozen shock wave in
the gas phase decays. If the number of particles is sufficiently large or
the shock is fairly weak, the frozen shock decays to a Mach wave and the
shock wave becomes fully dispersed. The deceleration of the gas, while the
particles accelerate behind the shock wave, produces a compression and the
equilibrium pressure becomes higher than for the case of a pure gas at some
distance from the front. In this manner a thick stationary structure arises,
where the particles finally reach the same velocity and temperature as the
gas. On the other side of the contact front the compressive effect weakens
the strength of the rarefaction wave.




Some particles remain in the contact region, such that they interact
with the hot gas in front of it and with the cold gas behind it. Thus, the
sharp discontinuities in temperature and density of the gas become transi-
tional and a contact region of finite thickness appears. For the cases con-
sidered here, with larger drag values, it is possible for the particles to
vanish abruptly at the cold side of the contact region. As a consequence,
there is a sudden discontinuity in temperature and density typical of a contact
surface (see Fig. 20).

The influence of particle diameter, particle-number density and diaphragm
pressure upon the transient properties of the flow have been studied with the
following conclusions. Particles of large size increase the time required for
the flow to be in quasi-equilibrium and also increase relaxation length or time
to the final stationary shock wave. The degree of increase varies with particle y
diameter d and lies between d and d°. When the particle number density is
large, variations in the flow quantities occur quickly but the final equilibrium
flow values are reached after a longer time. Strong shock waves have much «
shorter relaxation lengths.

The flow quantities in the equilibrium-flow limit were calculated from
exact shock-tube relations. The speed of sound and the specific-heat ratio
of this effective perfect gas take on fairly low values owing to the increase
of the effective molecular weight. The increase in pressure and density of
the dust-laden gas from its frozen values at the shock wave can be quite large.
The temperature and velocity on the other hand decrease.

The results obtained in this paper have been based, in particular, on the
assumption that the drag force and the rate of heat transfer to the particles
are given by Egs. (8) and (9) (see Appendix C for other assumptions). However,
there are many causes in practice to make these assumptions questionable. Among
these are non-spherical shape of particles, variation in local distribution of
particle-size, interaction between particles, rotation of particles and electro-
static forces. Nevertheless, the quantitative and qualitative nature of the
flow in a dusty-gas shock tube has been made clear in our study.

Undoubtedly improvements will be made in the future to take into account
some of the above non-ideal properties of the particles. It is possible that
even volume and partial-pressure effects will be considered in future for
comparison with the present study.
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APPENDIX A

LIST OF NUMERICAL PROGRAMS

In each time step, four calculations are done in order: integration of
inhomogeneous equations for % At, two applications of random-choice procedure
to homogeneous equations and integration of inhomogeneous equations for % At.
Godunov's iterative procedure (Refs. 17-19) is used in solving the Riemann

problem for the gas.
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APPENDIX B

FROZEN AND EQUILIBRIUM FLOWS

The frozen-flow values at the instant of diaphragm rupture when the
particles have no effect can readily be found from the relations given in
Ref. 20. If it is now assumed that the velocity and the temperature of the
particles are the same as those of the gas everywhere and we neglect the
transition thicknesses of the shock wave and the contact region, the equi-
librium-flow limit is readily found. In this limit, the pressure in the

uniform region behind the shock wave Po must satisfy the shock-tube equation
(Ref. 20):

271+
By _P2p, (7, - V(aq/a) (p,/py - 1)

4.2 » }- et (B1)
s 3 N2y, NZy ¥ (77 * D(p,/0; - 1)

where 7, and @1, are now given by Egs. (23) and (24) as 71 end aj, respectively.
Once Poq is known, the other flow quantities are obtained from the Rankine-
Hugonio% relations as follows (see Ref. 20):

Pp L+ (7 *1)/(y - 1) x (py/p))

(82)

H
n
e]

o (ry +1)/(yy - 1) +0,/p)

1 P T (7 + 1) /Try - 1) = (2,/2,) (B3)

Y 1 /P 2 Py 7 -1
o\ ) FT/\E T (Bk)
1 71 \Py 41 b n

u -
s_/71 P ™

1 2 P

(B5)

where Uy ig the velocity of propagation of the shock wave.
The temperature and the density in the uniform region between the contact

surface and the rarefaction wave are given by the isentropic relations (Ref. 20)
7), =1

T ——n‘-l /D, \—
a3 - L PN <p2 Pl> 7
Ty <Pu > : VN ) S
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g4

1
i <P3 >7l+ e <P2/P1 7y
o, \3, ~\ /5, (B7)

Once Uy is obtained, we can calculate the properties of the discontinuous
frozen shock wave at the head of the shock front. If ug is smaller than the
frozen speed of sound 2lp, the frozen shock wave reduces to a Mach wave and
it is fully dispersed.

For ug larger than 2lp, the pressure immediately behind the frozen shock
front is obtained from Eq. (B5) by taking 81y and y as aj and yq respectively.
Other quantities at this position are calculated from the foregoing Rankine- ’
Hugoniot relations for a pure gas.

To summarize, in Fig. 26a for example, the equilibrium value of pressure _
can be calculated at once from the shock-tube relations for the given initial
conditions. Knowing the equilibrium Mach nunber, the frozen part of the shock
front can also be immediately calculated from the shock-tube equations (since
the entire equilibrium phenomenon and the frozen shock all move at the same
Mach number). The transition from the frozen shock wave to equilibrium,
however, must be obtained numerically. On this basis all the curves from
Fig. 28 to 32 were constructed to provide exact solutions useful for the
experimenter.,



APPENDIX C

NONEQUILIBRIUM SHOCK-TUBE PROFILES USING STOKES' DRAG LAW

Figures 35-37 are included to illustrate how the Stokes' drag law Cp = Re/2L
together with Nu = 2 can give erroneous results. TFor example, the shock transi-
tion profiles are unduly long owing to the very small drag coefficient (compare
Fig. 36a with Fig. 5a). The same is true of the contact front transition (compare
Fig. 36c with Fig. 5¢). The change in transition is slow and the oscillations
are very much reduced (compare Fig. 7 with Fig. 37).
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Table 1

Some Reference Lengths, Times and Number Densities

o)
. d, t =—=— 7
P *1e

L =

wl &

i 2.5 g/cm3 (typical of crown glass), Py = 1.23x10-3 g/cm3, a1, = 350 m/sec

d (pm) 10 20 40
£ (cm) T o BTR 5.4Y 10.9
L/a1¢ (sec) 0.78 x 107 1.56 x 107 3.11 x 107
t (sec) for v =.4 3.11 x lO-h 6.23 x 10‘1‘ 1.25 x 1073
t (sec) for v = 32 2,49 x 1073 4.98 x 1073 9.96 x 1073
n, (cmf3) fora =1.0| 0.94 x 1o6 | 1.17 x 10° 1.46 x 1oLl
Table 2

Some Properties of Idealized Equilibrium Gas-Particle Mixture

- 2 top - / y + 0B Py
Te © %_-1-"65’ ale~\/(l+06)(l+aﬁ).'p_l'

B =1 (typical of glass), T, = 300°K

o Ve alg (m/sec)

0 1.50 (= 9) 350 (= a1,)
] 0.2 1.33 312
0.k 1.29 283
g 0.6 1.25 261
0.8 1.22 2kh
1.0 1.20 229
2.0 1.13 182




GAS DUSTY GAS

FIG. 1 SCHEMATIC DIAGRAM OF FLOW IN A DUSTY-GAS SHOCK TUBE AFTER
DIAPHRAGM RUPTURE.
e

{ = RAREFACTION WAVE; C = CONTACT FRONT; § = SHOCK FRONT;
H = HEAD, T = TAIL.
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FIG. 3 FIOW QUANTITIES AT T = 8 (o =1, Py =10, d = 10 um)
GAS, PARTICLES.
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FIG. 6 WAVE DIAGRAM OF TIME-DISTANCE (7, X) PLANE AFTER DIAPHRAGM
RUPTURE (@ = 1, Pyy = 10, d = 10 um).

(] PRESENT RESUILTS, EQUILIBRIUM FLOW, ===m=== FROZEN FLOW,
R = RAREFACTION WAVE, H = HEAD, T = TAIL, ¢ = CONTACT SURFACE,
S = SHOCK FRONI, NOTE THAT THE SEPARATION BETWEEN THE PRESENT

RESULTS AND THE EQUILIBRIUM LINES SHOW THE STRUCTURE OF THE
SHOCK-WAVE TRANSITION.
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FIG. 7 VARIATIONS WITH TIME OF TEMPERATURE AND PRESSURE OF GAS
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------ EXPECTED FINAL VALUE.
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