

Delft University of Technology

A Domain-Specific Language and Compiler for Computation-in-Memory Skeletons

Yu, Jintao; Hogervorst, Tom; Nane, Razvan

DOI
10.1145/3060403.3060474
Publication date
2017
Document Version
Accepted author manuscript
Published in
GLSVLSI '17 Proceedings of the on Great Lakes Symposium on VLSI 2017

Citation (APA)
Yu, J., Hogervorst, T., & Nane, R. (2017). A Domain-Specific Language and Compiler for Computation-in-
Memory Skeletons. In GLSVLSI '17 Proceedings of the on Great Lakes Symposium on VLSI 2017 (pp. 71-
76). Association for Computing Machinery (ACM). https://doi.org/10.1145/3060403.3060474

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3060403.3060474
https://doi.org/10.1145/3060403.3060474

A Domain-Specific Language and Compiler for

Computation-in-Memory Skeletons

Jintao Yu Tom Hogervorst Razvan Nane
{j.yu-1, r.nane}@tudelft.nl

Abstract

Computation-in-Memory (CiM) is a new computer
architecture template based on the in-memory com-
puting paradigm. CiM can solve the memory-wall
problem of classical Von Neumann-based computer
systems by exploiting application-specific compu-
tational and data-flow patterns with the capabil-
ity of performing both storage and computations
of emerging resistive RAM technologies (e.g., mem-
ristors). However, to efficiently explore and design
such radically new application-specific CiM archi-
tectures, we require fundamentally new algorithm
specification and compilation techniques. In this
paper, we introduce a domain-specific language to
express not only the computational patterns of an
algorithm but also its spatial characteristics. Fur-
thermore, we design a compiler that is able to trans-
form these patterns into highly-optimized CiM de-
signs. Experiments demonstrate the functional cor-
rectness of the language and the compiler as well as
an order of magnitude speedup improvement over a
multicore system in both performance and energy
costs.
Keywords: Domain specific language;

computation-in-memory; algorithmic skeleton;
memristor

1 Introduction

In classical Von Neumann-based computing sys-
tems, memory access and data transfer operations
are becoming a big bottleneck for Big Data appli-
cations [5]. This is not only because of the limited
transfer speed at which data is retrieved from and
written back to memory, but also because perform-
ing a large amount of memory accesses incurs high
energy costs. A solution is to design application-

specific memristor-based Computation-in-Memory
(CiM) architectures [9], which feature a large mem-
ristor crossbar to execute massively parallel appli-
cations. Because we can perform both computa-
tions and storage using memristors [19], no off-
crossbar data transfers are required during execu-
tion, enabling CiM-based architectures to solve the
memory wall bottleneck.

Application-specific CiM-based solutions can
therefore result in significant performance gains
over multicore systems [10]. To implement highly-
optimized CiM architectures, a designer would need
to explicitly spatially program the application-spe-
cific computational and data-flow patterns onto the
crossbar. This is a new form of Spatial Compu-
tation paradigms [3], which map programs into
completely distributed hardware. Although general
purpose languages can be used for spatial compu-
tation [3], Domain-Specific Languages (DSLs) fa-
cilitate domain experts to generate optimal solu-
tions [16]. Some DSLs have been developed for
specific platforms, such as MaxJ for Data-Flow En-
gine [15] and ANML for Automata Processor En-
gines [8]. However, specifying and compiling cus-
tomized application layouts for a memristor cross-
bar poses a new challenge. Due to the passive na-
ture of the memristor, the mapping and routing
results directly influences the scheduling phase [20]
because data movements on the crossbar have to
be controlled as well. As a result, existing DSLs
for spatial computation are not applicable to mem-
ristor-based CiM architectures.

To solve aforementioned challenge, a new type
of skeleton was proposed: the CiM skeleton [20].
Skeletons (formally referred to as algorithmic skele-
tons) are high-level software constructs used to hide
the complexity of parallel computer systems from a
programmer [6]. Additionally, CiM skeletons pro-

1

vide the scheduling, mapping, and routing informa-
tion needed to program applications on the CiM ar-
chitecture. In this paper, we propose a DSL and a
DSL-based compilation flow to express and imple-
ment CiM skeletons. We make the following con-
tributions:

• A skeleton-based Domain Specific Language,
CiM DSL, to describe the low-level crossbar
details of the spatial patterns of an algorithm.

• A compiler that generates a scheduled,
mapped, and routed system from this DSL us-
ing CiM Skeletons.

• The verification of this compiler and compari-
son with a multicore system.

The paper is organized as follows. Section 2 pro-
vides background information about the CiM ar-
chitecture. Section 3 and Section 4 describe the
CiM DSL and the implementation of its compiler.
Thereafter, Section 5 validates the compiler with
multiple applications. Finally, Section 6 concludes
the paper.

2 Background

The CiM architecture is a computational template
in which application-specific accelerators are in-
stantiated and executed in-memory under the con-
trol of a CPU. Figure 1a shows a high-level view of
the CPU/CiM heterogeneous system. CiM’s hard-
ware consists of two parts: a large reconfigurable
crossbar of horizontal and vertical nanowires with
memristors on every intersection, and a CMOS-
based controller that activates voltages on the
nanowires to control the memristors. Memristors
can be configured as memory elements as well as
computation elements [19], allowing both to be per-
formed in the crossbar. The high density of a mem-
ristor crossbar enables this architecture to fully ex-
ploit the parallelism in embarrassingly parallel ap-
plications. Furthermore, since a CiM crossbar co-
exists with the general memory space (RRAM in
Figure 1a), we do not have any off-chip memory
accesses. This leads to significant improvements in
both performance and energy consumption.

Figure 1c shows CiM’s programming model. Be-
fore programmers can use application-specific ac-
celerators in CiM, an algorithm designer is required

to create the library functions (i.e., accelerators)
optimized for minimum communication maximum
parallelism on the crossbar. The algorithms are
specified in the CiM DSL, using skeleton opera-
tors to specify not only the floorplan but also the
communication paths1 between the computational
units. Please note that in the CiM crossbar, each
corner point that changes the direction of the path
needs to be explicitly controlled [18]. As a re-
sult, the scheduling is dependent on the mapping
and routing. The defined CiM skeletons are used
further to specify the complete algorithm that is
stored in the function library. Subsequently, an ap-
plication programmer can use this library in a dif-
ferent high-level language (e.g., C). Therefore, CiM
DSL is designed for the library developers rather
than the application developers. Functions not con-
tained in the library are processed by a CiM High-
Level Synthesis (HLS) tool. Finally, the compila-
tion results of different tools are linked together.
Figure 1a illustrates one possible compilation re-
sult of the sample program shown in Figure 1b.
One circuit is generated using the library functions
(colored green), and another one is generated by the
CiM HLS tool (colored blue). Code that doesn’t
need to be executed on the CiM crossbar (colored
red), is compiled regularly for the CPU. In this pa-
per we focus only on the CiM DSL compiler.

3 CiM DSL

In this section, we describe the rules of CiM DSL’s
syntax using one variant of Extended Backus-Naur
Form (EBNF) [2]. We design the DSL with the
goal to create and use CiM skeletons easily. Fig-
ure 2 shows the dependence between different CiM
concepts. First, we define skeleton language oper-
ators, which are language constructs that are used
to specify different connections between functional
blocks and their relative position. Subsequently,
the operators are used to define CiM Skeletons. Fi-
nally, both skeleton operators and CiM skeletons
are used to build library functions.

1We refer to communication paths simply as paths in the
remainder of the paper

2

L2

L1Mem

Controller

C
on

tr
ol

le
r

RRAM

CPU
Top

Nanowire

Memristor

Bottom
Nanowire

(a) CiM architecture

f = open_file();
b = read_file(f);

#pragma hw
while (i<100)
 a[i] = b[i] * 2;

#pragma lib
Inner_pro(a, b);

(b) Program sample

Software/CiM Partitioning

HLS
tool

Software
compiler

Function
library CiM DSL

compiler

CiM DSL
Application

CiM Implementation

Primitive
circuits

Library
developer

Linking

Application
developer

(c) CiM compilation tool-chain

Figure 1: CiM architecture and compilation tool-chain.

Figure 2: Dependence of CiM skeletons and library
functions.

3.1 Circuits and Expressions

The CiM DSL creates systems by connecting func-
tional blocks together in expressions. The syntax
related to this is as follows:

Circuit decl ::= ID File name (1)

Exp ::= Circuit | Int | ID Exp1 Exp2 ...
(2)

| Exp1 Op Exp2 | Map | Fold | Repeat
(3)

Op ::= ∗ D ∗ | ∗ H ∗ | ∗ I ∗ (4)

Map ::= ID Range Exp (5)

Fold ::= Op Exp (6)

Repeat ::= Int Exp (7)

Range ::= Int | Int [Ar Op Int] Int (8)

Ar Op ::= “ + ” | “− ”| “ ∗ ” | “/” (9)

A circuit declaration (Circuit decl) declares the
name of the primitive circuit used in the program
and specify its library file (Rule 1). This file con-
tains all the circuit’s information needed by the

a b

(a) * D *

a

b

(b) * H *

a b

(c) * I *

input ports
output ports
routing
mirror

Figure 3: Implementation of operators.

CiM compiler, including its latency, area, energy
consumption, positions of input and output ports,
initiation interval, and VHDL model. An expres-
sion can be a primitive circuit, an integer, or an
instantiation of a CiM skeleton (Rule 2). To instan-
tiate a CiM skeleton, the user needs to specify the
component name that represents the skeleton, and
assign the parameters. Two expressions and an op-
erator (Op) constitute a new expression (Rule 3).
The operators are * D *, * H *, and * I *. Op-
erators represent different mapping strategies as
shown in Figure 3. The mapping is performed ac-
cording to the positions of input and output ports.
* D * puts two circuits next to each other so that
an input port is directly linked with the output
port. * H * rotates one circuit and uses a mirror
in between. The mirror changes the direction of a
path [18]. * I * links two groups of input and out-
put ports between two components using mirrors.

Other forms of expressions include map (Rule 5),
fold (Rule 6), and repeat (Rule 7). These expres-
sions are useful to generate larger circuits. For ex-
ample, map applies every number in a range to an
expression that contains an variable. The range is
an array of integers, which can be expressed using
one to three fields (Rule 8). If the range has one

3

add add

add

add add

add

add

repeat[4](add)

H
repeat[2](add)

map

H
repeat[1](add)

foldR

foldR< _H_ >(map<i=4:/2:0>(repeat[i](add))) ∗ ∗

Figure 4: Expression and data-flow graph of an
adder tree.

field, it is a single value. If it has two fields, it is a
series of incrementing integers from the first up to
but not including the second value. If it has three
fields, it represents a discontinuous array of inte-
gers. In this case, the arithmetic operator (Ar Op)
and the number in the middle indicate the intervals.
The arithmetic operators are add (“+”), subtract
(“-”), multiply (“×”), and divide (“/”) (Rule 9).
The bracket (“[]”) surrounding “Ar Op Int” means
they are optional.

We use an example shown in Figure 4 to explain
the semantics of repeat, fold, and map expressions.
The example is an adder tree that calculates the
sum of eight values. The CiM DSL line that de-
scribes this circuit is shown at the top of the fig-
ure. Repeat[n](add) creates an array of n addi-
tions. The map expression duplicates the repeat
expression following a noncontinuous array [4, 2,
1]. These duplicates are linked with * H * opera-
tor, which is specified by the fold expression. The
associativity of fold expressions is indicated by the
letter “L” or “R” at the end.

3.2 Statements and Signals

Statements connect the circuits declared in expres-
sions to signals, to give explicit control over the
data flow to and from those circuits. A Signal is a
connection path between two data locations. The
relevant CiM DSL syntax is as follows:

Statement ::= Signal [Exp] Signal | Loop (10)

Loop ::= ID Range Statement+ (11)

Signal ::= ID Range | Signal + + Signal (12)

| Zip(Signal, Signal) (13)

A statement contains an input signal, an output
signal and optionally an expression (Rule 10). It

will be translated into a group of primitive circuits.
Loops can be used to compactly express a group
of similar statements, which is similar to the se-
mantics of map (Rule 11). The symbol “+” means
the loop structure accepts one or more statements.
Signals have a name and a range, and they can be
built using signal operators “++” (Rule 12) and
“zip” (Rule 13). “++” concatenates two signals
sequentially and “zip” builds a single signal from
the elements of two signals interleaved with one an-
other.

Statements are allowed to specify only the con-
nection between input and output signals, without
including any component (Rule 10). This feature is
useful for shuffling the signals. Listing 1 shows an
example of a signal shuffle, specifically one named
the butterfly pattern, which is used in a bitonic sort
function.

Listing 1: Butterfly Shuffle Statement

1 zip(in[0:2:m/2], in[m/2:2:m]) ++
2 zip(in[1:2:m/2], in[1+m/2:2:m]) => out[0:

m];

3.3 Programs and Components

A complete CiM DSL program consists of one or
more circuit declarations and one or more compo-
nents (Rule 14). A component describes a library
function or a CiM skeleton. The CiM DSL syn-
tax concerning these two language constructs is as
follows:

Program ::= Circuit decl∗ Component∗ (14)

Component ::= ID Sig decl [Par decl] Statement∗

(15)

Sig decl ::= {ID Int}∗ {ID Int}∗ (16)

Par decl ::= {Type ID}∗ (17)

Type := “int” |“comp” (18)

The head of a component contains its name (ID),
signal declaration (Sig decl), and parameter decla-
ration (Par decl) (Rule 15). The square brackets
surrounding Par decl means it is optional. Among
all the components in a program, one and only one
component should be named as “main”. It repre-
sents the library function defined by the program.
The signal declaration declares input and output

4

signals, containing names (ID) and their sizes (Int)
(Rule 16). Parameter declaration specifies the type
and names of the parameters (Rule 17). Cur-
rently, CiM DSL supports two types of parameters,
which are integer (“int”) and components (“comp”)
(Rule 18). The body of a component is one or more
statements (Rule 15), which link expressions with
input and output signals (Rule 10).

As an example of a complete CiM DSL pro-
gram, Listing 2 shows the code for matrix multi-
ply Am×n × Bn×k in CiM DSL. It is built based
on the inner product function. To achieve the best
performance, the primitive circuits used in the in-
ner product are arranged following an H-tree pat-
tern [10]. Please refer to Figure 6a for a visualiza-
tion of the target layout. The inner product hard-
ware is duplicated to calculate all the elements of
the result matrix in parallel.

Listing 2: Matrix Multiply in CiM DSL

1 libmod add(add.lib);
2 libmod mul(mul.lib);
3 comp main <in[32] | out [16] >(){
4 in[0:32]= > matrix_multiply (4, 4, 4) =>out

[0:16];
5 }
6 comp matrix_multiply <A[m*n], B[n*k] | out[m*k]>
7 (int m, int n, int k){
8 forV i=0:m do
9 A[n*i: n*i+n] ++ B[0: n*k] =>

10 row(n,k) => out[k*i:k*i+k];
11 end
12 }
13 comp row <a[n], b[n*k] | out[n]>(int n, int k){
14 forH i=0:k do
15 a[0:n]++b[n*i:n*i+n]=> inner_product(n)=>out

[i];
16 end
17 }
18 comp inner_product <a[n], b[n] | out[1]>(int n){
19 zip(a[0: n], b[0: n]) => repeat[n](mul)
20 *_H_* reduce(n/2, add) => out [0];
21 }
22 comp reduce <in[2*n] | out[1]>(int n, comp c){
23 in[0: 2*n] => foldR <*_H_*>(map <i = n: /2: 0>
24 (repeat[i](c))) => out [0];
25 }

Line 1 and line 2 declare two primitive circuits,
i.e. the adder (add) and the multiplier (mul). The
keyword of this declaration is “libmod”, and the
name suffix of the library files is “.lib”. After these
declarations, the program defines five components
with the key word “comp”. The “main” compo-
nent (line 3 to line 5) specifies that the sizes of two
matrices are both four by four. The declaration of
input and output ports are surrounded with a pair
of angle brackets and separated with a delimiter
(“|”). On the other hand, the parameter declara-

tions are marked with parentheses (line 7, line 13,
etc.). The body of components are surrounded with
curly braces and consists of one or more statements.
For each statement, the expression and signals are
linked by “=>”, which means that input locations
(e.g., registers/storage locations in the crossbar)
are transferred via signals to the matrix multiplica-
tion’s input ports. Note the use of the “++” signal
operator in lines 10 and 15 to concatenate two ar-
rays into one, and of the “zip” signal operator in
line 19 to zip the elements of two arrays into one.
matrix multiply and row components both employ
a for-loop, which expresses a group of statements.
They arrange the circuits that are obtained from
the loop statements vertically (forV) or horizon-
tally (forH). Therefore, line 15 duplicates k inner -
product function in a row, and line 10 further ex-
tends these rows into a matrix. The repeat expres-
sion in lines 19 and 24 represents duplicates of a
circuit, which are executed in parallel. It does not
contain mapping information and will be further
mapped using operators. Line 23 builds a binary
tree as shown in Figure 4. The map expression du-
plicates a circuit using a variable (i) in the range
(n:/2:0). The range is divided into three fields by
colons (:). The first field (n) is the starting number.
The second field (/2) is applied to n repetitively un-
til the value reaches the third field (0). All these
intermediate values, not including the third field,
constitute the range. Finally, the group of circuits
represented by map are linked with the operator
specified in the fold expression (i.e., * H *).

4 Implementation

We developed CiM DSL compiler using Spoofax, a
language workbench in the Eclipse IDE [11]. The
development consists of two phases. First, we de-
fine the syntax and the name binding rules, which
are used to parse user programs into an Intermedi-
ate Representation (IR). Second, we define trans-
formation and generation rules, which annotate and
transform the IR according to our defined skeleton
operators, and emit the code for the desired cir-
cuits, respectively. Spoofax has good support for
both phases so that the workload of developing the
new DSL is significantly reduced. After defining
all the rules, the CiM DSL compiler is generated
by Spoofax.

5

Figure 5: Dereferencing of reduce(4, add).

A CiM DSL program is compiled into circuits
following four steps, namely parsing, dereferencing,
transforming, and emitting. The parsing builds an
Abstract Syntax Tree (AST), which is subsequently
dereferenced to eliminate language structures such
as for-loop, fold, map, and repeat. During derefer-
encing, the loops are fully unrolled, and fold, map,
and repeat are applied. Figure 5 shows this pro-
cess for the expression in the reduce component in
Listing 2 (line 22). In this case, we assume n is
four. The left side illustrates the AST obtained
after parsing, where the range is calculated into a
noncontinuous array. Then, map, repeat, and foldR
are applied successively as described in Section 3.
The result of the deferencing is also an AST in
which all the leaf nodes are primitive circuits, and
all the internal nodes are skeleton operators. The
result AST is shown in the right part of Figure 5,
where the * H * operator is replaced by the name
HTree that implements this pattern.

The transform process constructs circuits based
on the AST that is obtained in the previous step.
The circuit construction is performed using a post-
order, depth-first tree traversal using the Trans-
form ske function that is dynamically dispatched
according to the type of the operators. The func-
tion contains the scheduling, placement, and rout-
ing algorithms that will be applied to the circuits
according to the particular CiM skeleton that it
implements. Figure 7 shows an example of trans-
forming the AST on the right of Figure 5. Its left
part shows the leaf nodes of the dereferenced AST
and the circuits they represent. The right part is
the transformation of this AST, which is done in
two steps. The lower Htree node is transformed
first, which combines four adders and two adders
into two group adders. Next, these two groups
are transformed by the root node to form a whole
circuit together with another adder. The small
squares shown in this figure represent mirrors.

Finally, the code generation phase emits three

types of files, which are VHDL, mapping con-
straints, and graphic outputs. The VHDL contains
the port maps and an FSM, which are produced ac-
cording to the mapped, routed, and scheduled Data
Flow Graph (DFG) of the algorithm. This VHDL
can be used for behavioral simulation. We gener-
ate graphic output to examine the placement and
routing results. This output is in the C language,
invoking a graphic library named pslib to produce
a graph in postscript (.ps) format.

5 Experimental Results

We use four functions to validate CiM DSL and its
compiler, which are vector inner product, matrix
multiply, Finite Impulse Response (FIR) filter, and
bitonic sort. The code of the first two functions and
a small part of bitonic sort is shown in Listing 2 and
Listing 1. The data type used in these functions are
32-bit integer.

5.1 Compiler Outputs

The attributes of primitive circuits we used in this
case study are listed in Table 1. The adder (Add)
and the multiplier (Mul) are designed by previous
works [12, 1]. The original design is not based
on a crossbar, so the area and latency are mod-
erately different when we adapt it to CiM. We will
not discuss these changes since the hardware de-
sign is beyond the scope of this work. The Greater
than (Gt) component, which is used in bitonic sort,
cannot be found in existing works. Therefore we
estimate their attributes. The latency is listed
in terms of Clock Cycle (CC). The area is repre-
sented by the required number of rows (Height) and
columns (Width). The energy consumption of the
adder and the multiplier is not given in the original
papers [12, 1]. Actually, it is impossible to report
accurate energy consumption at the design phase
because this is input data dependent. However, we
can estimate the maximum value by assuming every
IMPLY or FALSE operation [12] consumes the en-
ergy of switching states. This energy varies among
technologies, from 0.1 fJ [17] to 230 fJ [13]. In this
paper, we use 100 fJ. We also calculated the energy
consumption for copy operation following the same
way. Its implementation, which is essentially two
NOT operations, is taken from [1].

6

(a) Inner product (b) FIR filter

(c) Bitonic sort

Figure 6: Graphic output.

Figure 7: Transformation of reduce(4, add).

Table 1: Attributes of Primitive Circuits and Copy
Operation

Latency Width Height Energy Ref.
Add 178 9 32 124.8 [12]
Mul 803 256 128 4407.8 [1]
Gt 27 128 192 93 –

Copy 3 – – 12.8 [1]

We generated the graphic outputs of inner prod-
uct, FIR filter, and bitonic sort as shown in Fig-
ure 6. Matrix multiply is not presented because it
is a matrix of inner products, which is very large
but contains little information. The vector size of
inner product is 16. The tap size of FIR filter is
four and the input size is two. The input size of
bitonic sort is eight. In Figure 6a and Figure 6b,
the large and small boxes denote multipliers and
mirrors respectively. The adders are tiny bars be-
side the mirrors. In Figure 6c, the small boxes are
also mirrors while the large ones are gts. The red
and green dashes in these figures indicate the in-
put and output ports while the blue lines show the
routing. The layouts are the same as we designed,
which demonstrates the DSL works as intended.

5.2 Performance Evaluation

We enlarged the problem sizes and compared the
performance of generated circuits with a multicore
platform. The problem sizes and the attributes of
the generated circuits are listed in Table 2. For
the FIR filter, the tap size is 64 and the input size
is 512. We calculated the area of the generated
circuits based on the memrisor density predicted
by ITRS [7], which is 2.38× 1011 bit/cm2. These
library functions are simulated using Sniper [4],

7

Table 2: Experimental Results
Problem CIM Multicore

size Lat/CC Width Height Area/mm2 Energy/mJ Lat/µs Energy/mJ Speedup
Inner product 32768 3653 20448 73696 0.6332 0.1502 272.7 15.99 74.65

Matrix multiply 32×32 1753 19456 72704 0.5943 0.1500 174.5 21.96 99.54
FIR filter 64/512 12773 8192 147456 0.5075 0.1498 302.7 35.95 23.70

Bitonic Sort 256 1401 58240 32768 0.8019 0.0008 – – –

Figure 8: FPGA floorplanning for inner product.

and the energy consumption is reported by Mc-
PAT [14]. The targeted multicore system is Intel
Xeon X7460 processor that consists of six cores on
a die of 503 mm2, running at 2.66 GHz each. These
cores have 64 kB L1 cache each and share a 16 MB
L3 cache. Every two cores share an L2 cache of
3 MB. The latency (Lat) and energy consumption
are also listed in Table 2. The speedup of CiM’s la-
tency over multicore is calculated, which is between
23x and 99x. The area of the circuits generated by
CiM compiler is very small compared with this pro-
cessor. The energy consumption is less than 1% of
the multicore. Please note that we do not include
the CMOS controller in the energy evaluation be-
cause there is no backend synthesis tool yet for the
CiM system. However, we do not expect the con-
troller to have a big impact on the reported num-
bers due to its simplicity.

5.3 FPGA Prototyping

To confirm the validity of the graphical output, we
built also an FPGA prototype to simulate the lay-
out of the CiM inner product design on FPGA.
We synthesized the generated area constraint file
and the VHDL file with Xilinx Vivado. The im-
plemented design of inner product is shown in Fig-
ure 8. Primitive circuits are recognizable by their

yellow borders, and connections between circuit are
represented by orange lines. The sizes of the adders
and multipliers are different from Figure 6a. De-
spite this difference in visualization of the connec-
tions, we can verify that the floorplanning and in-
terconnect information was included in the VHDL
and constraint files correctly.

6 Conclusion

In this paper, we introduce a DSL and compiler
to design programs to be run on future CiM-based
systems. The skeleton-based DSL allows for the
modular, high-level description of a system, and
the compiler schedules, places, and routes the sys-
tem using information provided by CiM skeletons.
The functional correctness of the DSL is verified us-
ing VHDL files generated by the compiler, and the
mapping and routing results are confirmed by gen-
erating graphical output files. This DSL can also be
used for FPGA designs and it will be investigated
in future work.

References

[1] K. Bickerstaff and E. E. Swartzlander. Memristor-
Based Addition and Multiplication, pages 473–486.
Springer International Publishing, Cham, 2014.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen et al.
Extensible markup language (XML). World Wide
Web Consortium Recommendation, 1998.

[3] M. Budiu, G. Venkataramani, T. Chelcea et al.
Spatial computation. ASPLOS XI, pages 14–26,
New York, NY, USA, 2004. ACM.

[4] T. E. Carlson, W. Heirman, S. Eyerman, et al.
An evaluation of high-level mechanistic core mod-
els. ACM Trans. Archit. Code Optim., 11(3):28:1–
28:25, Aug. 2014.

[5] C. P. Chen and C.-Y. Zhang. Data-intensive appli-
cations, challenges, techniques and technologies: A

8

survey on big data. Information Sciences, 275:314
– 347, 2014.

[6] M. Cole. Algorithmic Skeletons: Structured Man-
agement of Parallel Computation. MIT Press,
Cambridge, USA, 1991.

[7] I. R. Committee. International technology
roadmap for semiconductors 2.0. Technical report,
2015.

[8] P. Dlugosch, D. Brown, P. Glendenning, et al.
An efficient and scalable semiconductor architec-
ture for parallel automata processing. TPDS,
25(12):3088–3098, Dec 2014.

[9] S. Hamdioui, L. Xie, H. A. D. Nguyen et al.. Mem-
ristor based computation-in-memory architecture
for data-in- tensive applications. DATE ’15, pages
1718–1725, San Jose, CA, USA, 2015. EDA Con-
sortium.

[10] A. Haron, J. Yu, R. Nane, et al. Parallel matrix
multiplication on memristor-based computation-
in-memory architecture. HPCS ’16, pages 759–766.
IEEE, July 2016.

[11] L. C. Kats and E. Visser. The spoofax language
workbench: Rules for declarative specification of
languages and ides. OOPSLA ’10, pages 444–463,
New York, USA, 2010. ACM.

[12] S. Kvatinsky, G. Satat, N. Wald, et al. Memristor-
based material implication (imply) logic: Design
principles and methodologies. VLSI, 22(10):2054–
2066, Oct 2014.

[13] S. Lee, J. Sohn, Z. Jiang et al. Metal oxide-resistive
memory using graphene-edge electrodes. Nature
communications, 6(8407):1–7, 2015.

[14] S. Li, J. H. Ahn, R. D. Strong et al. Mcpat:
An integrated power, area, and timing modeling
framework for multicore and manycore architec-
tures. MICRO 42, 2009. ACM.

[15] O. Pell, O. Mencer, K. H. Tsoi et al. Maximum
Performance Computing with Dataflow Engines,
pages 747–774. Springer New York, New York,
NY, 2013.

[16] The OpenSPL Consortium. Openspl: Revealing
the power of spatial computing. Technical report,
Dec. 2013.

[17] C.-L. Tsai, F. Xiong, E. Pop et al. Resistive ran-
dom access memory enabled by carbon nanotube
crossbar electrodes. Acs Nano, 7(6):5360–5366,
2013.

[18] L. Xie, H. A. D. Nguyen, M. Taouil et al.
Interconnect networks for memristor crossbar.
NANOARCH ’15, pages 124–129. IEEE, July
2015.

[19] J. J. Yang and R. S. Williams. Memristive devices
in computing system: Promises and challenges. J.
Emerg. Technol. Comput. Syst., 9(2):11:1–11:20,
May 2013.

[20] J. Yu, R. Nane, A. Haron et al. Skeleton-based de-
sign and simulation flow for computation-in-mem-
ory architectures. NANOARCH ’16, pages 165–
170. IEEE, July 2016.

9

