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ABSTRACT

Linear time-invariant controllers are undoubtedly the most popular type of regulators
used in industrial applications, with the overwhelming majority of companies employ-
ing them. The reason is mainly given by their simple design methods. In particular, fre-
quency domain predictive performance analysis and stability methods allow the use of
loopshaping techniques. Nevertheless, inherent limitations affecting linear controllers
pose constraints on their performance that can only be overcome through the adoption
of nonlinear control schemes. Promising findings in recent literature suggest that with
reset control, a nonlinear control technique, it is possible to overcome these limitations.
At the same time, reset control could also potentially allow the use of straightforward
design techniques, thus making it suitable for industrial applications. The main goal
of this work is to bring together the different concepts scattered in literature, in order
to initialize the construction of a general framework for the design and analysis of re-
set controllers suitable for an industrial setting. Tuning guidelines for different struc-
tures using two classes of reset controllers, the first order reset element and the propor-
tional Clegg integrator, were presented. Two frequency domain methods, namely open-
loop higher order sinusoidal input describing functions (HOSIDFs) and pseudosensitiv-
ities computed through analytically derived (approximate) closed-loop HOSIDFs, were
effectively applied to predict steady-state performance. Stability was (when possible)
analysed through the frequency domain Nyquist stability vector method, which could
also be implemented in the design process. The frequency domain analysis methods
allowed the use of loopshaping techniques similar to LTI control for the design of re-
set controllers. The controllers, implemented digitally on an ASM Pacific Technology
wire bonding machine, show that through reset control a significant decrease in the
root mean square of the settling error compared to an equivalent LIT controller could
be achieved. The existing frequency domain analysis methods, its straightforward im-
plementation and the increase in performance achieved in experiments validate the po-
tential of reset control as a suitable alternative to LTI control for industry. Nevertheless,
limitations in the explored reset control structures still exist and further work is required
in order to achieve the full potential that this technique has to offer. Some recommen-
dations on further work are given in the conclusion.
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INTRODUCTION

ASM Pacific Technology Ltd. (ASMPT) is one of the world’s leading suppliers of semicon-
ductor assembly and surface-mount technology equipment [1]. One of the products in
the company’s franchise is the AB383 wire bonder, which creates interconnections be-
tween chips and their packaging (Fig. 1.1). In order to succeed in this increasingly com-
petitive market, every high-tech company is required to perpetually increase the speed
and precision of their machines. One way ASMPT aims at increasing the performance of
their products is through improving their control systems. As the overwhelming majority
of commercial products, the motion of the ASMPT AB383 wire bonder is currently reg-
ulated by a fully linear-time-invariant (LTI) control strategy. Due to inherent limitations
such as the waterbed effect and Bode’s gain phase relationship [2] it is impossible to push
the performance beyond a certain point relying solely on LTI control. For this reason, for
the last few decades nonlinear control has been given great consideration in literature.
Nevertheless, adoption in industry is still scarce [3]. One of the reasons is that for most
techniques, it is relatively complex, if not impossible, to get any indication on the perfor-
mance of the system in the frequency domain. This is however not necessarily true for
all methods. Some, such as reset control, pose an exception. Another drawback of non-
linear systems is given by their complicated stability analysis which often require exact
knowledge of the plant to be reliable, due to the lack of robustness analysis techniques.
Recent studies have proven that the stability of some reset controllers can be determined
without knowledge of the parametric description of the plant, thus overcoming this is-
sue.

Reset control appeared the first time in literature more than 60 years ago [5]. However,
it is only recently that the field has been given enough attention to be considered a po-
tentially reliable alternative to linear control [6]. This particular category of nonlinear
controllers shares much of the design process with linear control, while also allowing to
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Figure 1.1: AB383 wire bonder (reproduced with permission from [4]).

overcome the inherent limitations of linear control, which makes it attractive in indus-
try. Nevertheless, the adoption in industry is still in its infancy and literature on synthe-
sis and implementation of reset controllers in industrial applications is scarce. ASMPT
has already conducted research on the implementation of reset control on the motion
platform of the AB383 wire bonder [4]. Although reset control proved to increase perfor-
mance compared to its linear counterparts, some open issues prevented the adoption
of reset control on the wire bonder. Specifically, the lack of frequency domain analysis
tools prevented analysing the controllers in terms of predictive performance and stabil-
ity. New research such as [7], [8], [9], [10], [11] and [12] opened new possibilities in terms
of design, stability analysis and performance analysis of reset controllers. Therefore, this
research aims to use these findings to solve the open issues.

The majority of the previously cited literature works are focused on the ‘Constant in gain-
lead in phase’ (CgLp) element [13]. This structure has high versatility, as it can be used
in combination with any LTI controller, increasing its robustness without loss in per-
formance. However, being a nonlinear technique, reset controllers introduce unwanted
higher order harmonic in the response. Recently, it was proven that the performance of a
CgLp element can be potentially further improved by suppressing its nonlinearity in cer-
tain frequency bands. Two techniques that achieve that have shown promising results.
The CgLp can be used in a series continuous reset (CR) structure [11], or in combina-
tion with a shaping filter [12]. However, different structures exist for which these tech-
niques have yet to be studied. One example is the Proportional Clegg Integrator (PCI)
[14] which allows a larger low frequency open-loop gain compared to an equivalent LTI
Proportional integrator (PI) system, for the same phase margin. This leads to increased
disturbance suppression when paired with an LTT controller, thus potentially increasing
the tracking performance of the system. Furthermore, literature on synthesis and imple-
mentation of reset controllers in industrial applications is lacking. The potential issues
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of CR or shaping filters in a digital implementation were for example never studied.

The main goal of the thesis is to utilize the concepts developed in this new research to
begin with the construction of a general framework on the design and analysis of reset
controllers for an industrial setting. This requires a reliable and straightforward method
to predict the performance of the system as well as assure stability. Additionally, at least
a qualitative understanding of the robustness of the system against plant uncertainties
is necessary. Furthermore, the controller must be easily implementable digitally. The
findings, when possible, are validated on an AB383 wire bonder motion stage. Since
literature on reset control is already vast [15], one can assume an ample number of dif-
ferent reset controllers exists already in literature. It is not feasible to study the effects
of all existing reset controllers within the scope of the project. It was thus necessary to
investigate what type of reset controllers would suit an industrial motion system like the
AB383 wire bonder better, based on what predictive performance and stability/robust-
ness analysis methods can be applied. It was also necessary to investigate the issues that
prevented ASMPT from adopting reset controllers in their products [4], in order to as-
sure these issues are overcome. Based on findings presented in the explored literature,
a collection of MATLAB/Simulink tools to easily analyse reset controllers were devel-
oped. These were extensively used in combination with Simulink simulations to analyse
the selected types of reset controllers, understand their behaviour and accordingly de-
vise design guidelines. Finally, once the behaviour of an analyzed reset controller was
deemed satisfactory, it could be implemented on the AB383 wire bonder motion’s stage
to perform experiments and validate the design guidelines.

The layout of this thesis is as follows. Chapter 1 establishes the need for this project
and its relation to the AB383 wire bonder. In Section 1.1 the limitations of LTI feedback
control are presented. Section 1.2 illustrates how the inherent limitations affect the per-
formance of a wire bonder. Subsequently, in Section 1.3, the dynamics of the AB383 wire
bonder are studied. Moreover, it is examined how the AB383 wire bonder is controlled
currently. In Chapter 2 the basics of reset control are presented. Section 2.1 includes the
necessary theory on stability analysis and predictive performance indicators for reset
systems. Some schemes from literature are also be presented. Based on that knowledge,
the issues that arose in [4] are studied in Section 2.2. In Section 2.1 it is also proposed
that the CgLp and PCI are the two most suitable reset control structures for industrial
applications and should thus be studied further. The use of a CgLp for a non-collocated
mass-spring-damper system with high frequency dynamics with similar dynamics of a
stage of the AB383 wire bonder is explored in Chapter 3. This type of plant is very com-
mon for motion stages, including the AB383 wire bonder. It is concluded that the CgLp
is not suitable for these type of plants. Chapter 4 presents the most relevant findings in
this thesis in a standalone paper format. The use of a PCI for industrial applications is
studied within the aforementioned CR architecture. The systems presented in this chap-
ter showed the most promising results in terms of industrial applicability and could in
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fact be implemented on the wire bonder motion stage to perform experiments. Next, the
use of a shaping filter in combination with a PCI system is investigated in Chapter 5. The
resulting system shows promises when it comes to performance, however stability could
not be guaranteed, hence not allowing experiments. In the following chapter (Chapter 6)
the results of simulations is shown. Finally, the relevant conclusions and future recom-
mendations are summed up in Section 7.1.

1.1. LIMITATIONS OF LTI FEEDBACK CONTROL

1.1.1. BASICS OF LTI FEEDBACK CONTROL

Figure 1.2 depicts a typical control system, where Cyj, is the feedback controller, C¢y is
the feedforward controller, G is the plant, r € R is the reference, u € R is defined as the
controller output, d € R is the disturbance, n € R is the sensor noise, y € Ris the true out-
put, y* is the measured output, e = r — (y + n) is the error and v = u+d is the plant input.
Assuming no feedforward control and assuming Crj, and G are LTI single-input single-
output (SISO) systems, the open-loop transfer function is defined as L(s) = Crp(s)G(s),
with s € C representing a complex frequency. Moreover, the sensitivity transfer function
S(s) and the complementary sensitivity transfer function T'(s), are respectively defined

as
2y 1 2Ll 1

L Gs) Lt 1+L(s)
Ly Ly L)
Lirt Lt 1+L(©)
with Z{x} € C being the Laplace transform of x € R.

S(s) (1.1)

T(s)= (1.2)
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Figure 1.2: Standard control system architecture.

The goal of a control system is to track a desired reference signal while attenuating a pos-
sible unknown disturbance as well as the sensor’s noise. In other terms, the ideal control
system will result in y = r. Attenuating disturbances would require |S(jw)| = 0, with
j= v/=1 and the frequency w € R, which can be achieved only when |L(jw)| > 1, since G
cannot be altered. Good tracking requires | T'(jw)| = 1, also leading to | L(jw)| > 1. On the
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other hand, noise cancellation necessitates |T(jw)| = 0, thus constraining |L(jw)| < 1.
It is clear that these relations cannot be achieved simultaneously for all w. However,
assuming the fact that the noise acts at high frequencies, whereas disturbances act at
lower frequencies, which is usual for mechanical systems [16], it is obvious how it is de-
sirable to keep |L(jw)| large for low frequencies and small for high frequencies. In fact,
through the final value theorem, one can determine that to achieve 0 steady-state error,
lim;_. e(f) = egs, with € R representing time, an infinite gain at the frequency of 0 Hz
is necessary. This can be achieved through the addition of an integrator (pole at 0 Hz), to
the feedback controller if this is not already present in the plant. The number of integra-
tors required to drive e to 0 for a polynomial reference or disturbance signal is related
to the order of the polynomial itself and can be computed through the final value theo-
rem [2].

Loopshaping is a controller design technique in which the desired closed loop perfor-
mance is achieved by shaping the open and closed loop transfer functions in the fre-
quency domain [16]. Fig. 1.3 shows a typical shape of S(s) and T'(s) that that is required
to achieve the aforementioned trade off between disturbance suppression, noise rejec-
tion and reference tracking. At the peak of the sensitivity function Mg = ||S(jw)|leo = 1,
and control actually degrades the performance of the system since disturbances are am-
plified. Apart from performance, Mg gives an indication on the robustness of the system.
In fact, MLS is the shortest distance to the critical point [-1,0j] on the Nyquist plot. A rule
of thumb states that the controller should be tuned such that Mg <6 dB [2].

Magnitude (dB)

Frequency (Hz)

Figure 1.3: Magnitude characteristics of S(s) and T'(s) of a typical motion system.

The lowest frequency at which |[L(jw)| = 0 dB will be referred as the bandwidth fre-
quency wpw. The bandwidth frequency is positioned between the frequency at which
IS(jw)| = —3 dB and the frequency at which |T'(jw)| = -3 dB [2]. The bandwidth is a
fundamental concept in feedback control both in terms of performance as well as stabil-
ity. Higher bandwidth corresponds to a faster rise time, as control is effective on a wider
range of frequencies, but also corresponds to higher sensitivity to noise [2]. The phase
margin PM = ZL(jwpw) + 180°, obtained from the phase at the bandwidth frequency,
provides information on the performance, stability and robustness of the system. Ac-
cording to Bode’s stability criteria, an open-loop stable system requires a positive phase
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margin to be stable in closed-loop [2]. In the time domain, P M is related to the overshoot
and settling time of a system [2]. A low PM will in fact increase the overshoot as well as
the oscillations in the response. A rule of thumb is to design a controller that achieves
at least PM = 30° in order to guarantee a certain level of robustness against plant un-
certainties [2]. The next subsection will demonstrate how many of these parameters are
related in LTI systems, hence leading to inherent performance limitations.

1.1.2. INHERENT PERFORMANCE LIMITATIONS OF LTI FEEDBACK CONTROL
The fact that using LTI controllers for feedback results in inherent performance limita-
tions is anything but unfamiliar. Already in 1945 H.W. Bode described the waterbed effect
[17]. This phenomenon can be comprehended at best by making use of Bode’s sensitivity
integral, expanded to both S(s) and T'(s) in [18] and given by

o0 m
| log|S(jw)ldw =7 )_Re(p;), (1.3)
i=1

o0 n 1
f long(l/jw)Idw:nZRe(—), (1.4)

0 i=1 <
where Re(p;) € Ris the real part of one of the m € Z* open-loop right half plane (OLRHP)
poles and Re(z;) € R is the real part of one of the n € Z* OLRHP zeros. One should note
that (1.3) and (1.4) are valid only when L(s) has at least two more poles than zeros. This
holds true for most industrial plants, including the wire bonder as will be discussed in
Section 1.3. It is clear that (1.3) and (1.4) impose a constraints on the sensitivities trans-
fer functions. Fig. 1.3 can be utilized to picture this constraint. For instance, assuming
L(s) has no unstable poles or zeroes, the area of S(s) underneath the 0 dB line and the
area above the line have to be equal. This means that an improvement in one range of
frequencies comes at the cost of a worsening performance at all other frequencies. In
case of unstable poles or zeros the area above the 0 dB line must be greater than the one
underneath for S or T respectively, which would decrease performance thus making the

constraints become even more strict.

From the previous subsection, it could already be comprehended that S(s) and T'(s) are
interdependent. In fact the complementarity constraint states that S(s) + T(s) =1 Vs
[19]. This leads to a necessary trade-off between noise suppression and disturbance re-
jection or tracking at each frequency.

A further limitation is given by Bode’s phase-gain relationship
. 1 [ dn|L(jw)l dw
ZL =— —,
ool =7 f,oo dIn(w) w (1.5)
ZL(jwy) =90° NL(wo),

w + wq

w —wo

where N € R is the slope of L(s). It should be noted that this equation holds true only
if L(s) is a minimum-phase system. However, since non-minimum-phase systems have
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an additional phase lag, the constraint is even stricter. Equation (1.5) also shows how the
phase can be approximated from Nj. It should also be noted that this approximation is
good only if the slope in the range close to w = wy is constant. This constraint translates
directly to the shape of the magnitude of L(s). It would be beneficial to have a steep
negative slope in the range w = wpyw, to quickly go from good tracking to good noise
rejection, however in order to allow PM = 30°, it is required that Ny = —1.67. A typical
L(s) will then look like Fig. 1.4, with a steep negative slope at low and high frequencies
and a moderate slope in the crossover region. In case of non-minimum-phase systems
the constraints are even more severe [20]. Every real life system is to some degree non-
minimum-phase, as it suffers from time delay. Time delay will cause a linear decrease in
the phase of the system as a function of frequency, which also causes the bandwidth to be
upper-bounded. A rule of thumb states that in case of a time delay 7 € R, the bandwidth
should be chosen as wgw < 1/7 [2].

@
Svo
By

w%wgw

Magnitude (dB)
(=}

%
N

Frequency (Hz)

Figure 1.4: Magnitude characteristics of L(s) of a typical motion system.

1.2. WIRE BONDER TRACKING PROBLEM

A wire bonder is a machine utilized for the fabrication of semiconductor devices. It is
used to create electrical interconnections between a microchip and the terminals of a
chip package or other integrated circuits [21]. Fig. 1.5 illustrates the typical cycle under-
gone for each wire connection. A thin wire is initially attached to the end-effector of the
wire bonder’s motion stage (Fig. 1.5-1). The end-effector then travels to the bonding lo-
cation on the silicon chip, where a bond is created through the application of thermal or
ultrasonic energy (Fig. 1.5-2). The end-effector then moves to the second bonding loca-
tion where another bond is created (Fig. 1.5-3 and Fig. 1.5-4). The connection between
the bonded wire and the end-effector is finally broken (Fig. 1.5-5) and the wire bonding
cycle can restart. In terms of control, the operation requires the end-effector to track a
desired path. A typical reference signal resembles a trajectory required to move the end-
effector to a bonding location. After reaching the desired position, the wirebonder needs
to settle such that bonding can occur. Fig. 1.6 shows an example reference signal. As can
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be seen, there are strict requirements on the error bounds dependent on the stage of the
operation.

At the tracking stage (1), characterized by the motion of the end-effector, the bounds
are necessary to avoid contact between the end-effector and nearby, already bonded,
wires. These bounds are required for the same purpose in the settling region (2), en-
compassing the time during which the end-effector has reached the desired position,
however oscillations are still present. When these oscillations decrease to an acceptable
level, characterized by new, reduced bounds, the steady-state phase (3) commences. In
this stage, bonding occurs.

Ly
=

Figure 1.5: Illustration of a typical wire bonding cycle (reproduced with permission from [21])

M Schuettler

The performance of a wire bonder is based on its precision, hence how accurate and re-
peatable the operation is and throughput, thus how fast the time of operation is. An in-
crease in either will have a positive outcome on the overall competitiveness of the prod-
uct on the market. An increase in precision will allow the device to be used with smaller
microchips or bond more wires per squared centimeter. According to Moore’s law, it is
certain that in the future integrated circuits devices will decrease in scale [22], making
this a necessary development for the future of semiconductor device fabrication. More-
over, the semiconductor industry is under constant pressure to increase the production
of chips due to an ever-increasing demand that is predicted to last in the future [23]. A
wire bonder’s control system can affect both performance factors. An increase in the ag-
gressiveness of the controller will decrease the time required to reach the settling region,
whereas an increase in precision will allow smaller bounds to be defined for all regions.
As stated in Section 1.1.2, using LTI control there is a strict trade-off between speed and
precision. The goal is thus to use reset control to overcome these limitations. Addition-
ally, another important characteristic of a wire bonder’s control system is its robustness
to plant uncertainties. Good robustness results in less down-time, which again trans-
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lates to higher throughput.

In order to effectively compare different controllers, relevant time-domain performance
metrics must be established. However, it is first necessary to define when the settling
region starts and ends. For this thesis, the settling region will comprise the moment at
which the tracking region ends, until the moment at which the controller output reaches
and stays within a certain bound (steady-state bound). The precision of the controller
will be studied through the root-mean-square of the error egpss. It is also important to
study the maximum of the absolute value of the error e,y in order to understand the
bounds that can be satisfied by the controller. The two errors are defined mathematically
by

(1.6)

emax = max(le1l,|ez|...exl), (1.7)

where n € Z* is the total number of samples of the region of interest. The settling and
steady-state regions will be looked at together when determining the error. The RMS
error, will be thus defined as ey, in the tracking phase and ey,,,, in the settling and
steady-state phase. This metric will be defined similarly e;,, . in the tracking region and
es,,.. iN the settling and steady-state region. On the other hand, how fast the control sys-
tem reacts to a change in reference can be investigated simply by measuring the settling
time ., defined as the time spent in the settling region, given a reference such as the
one depicted in Fig. 1.6. However, this metric is highly dependent on the value of the
steady-state bound. Therefore, a more robust metric T, is defined as

b=bmax
Tser =f tser(D) dt, (1.8)

=bmin

with b;,;, the minimal value of the steady-state bound, b,y the maximal value of the
steady-state bound and ;. (b) the settling time for a given bound.

Amplitude (mm)

—— Reference signal
Bounds

2 3

Time (s)

Figure 1.6: Typical shaped reference signal subdivided in a tracking region (1), a settling region (2) and a steady-
state region (3).
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Complex mechanical systems like wire bonders will often present intricate dynamic be-
haviour, such as friction, position dependency, cross-coupling etc. For this reason, it
is also fundamental that the robustness of the control system is evaluated. Moreover,
industrial machines are mass-produced, meaning that it will not be possible to tune
the control system of each individual machine. Since different machines could present
slight alterations, it is necessary that some robustness against parameter uncertainty is
present.

1.3. THE AB383 WIRE BONDER AND ITS CONTROLLER

The AB383 wire bonder is a complex machine with multiple functionalities, however for
control purposes the interest lies solely in its motion platform. The wire bonder has in
fact a three degrees of freedom (DOF) motion platform, that allows its end-effector to
translate in every translational direction. The motion stage is subdivided into an X-, a
Y- and a Z-stage, which provide the respective translations guided by linear bearings.
The X- and Y-translation are actuated by three-phase permanent magnet synchronous
motors, whereas the Z-translation is actuated by a voice-coil actuator. Both the X- and
Y-stages weigh several kilograms and can achieve a displacement of up to approximately
70 mm. The actuators can accelerate the stage in both directions to > 200 m/s?. For the
Z-translation a pivot mechanism is used instead. The resultant equivalent mass of the Z-
stage is one order of magnitude smaller and the achieved acceleration is > 1500 m/s? [4].

Y

Figure 1.7: Drawing of the AB383 motion platform (reproduced with permission from [4]).

In order to better comprehend the dynamics of each stage they can be approximated
as a double mass-spring-damper (MSD) system, as illustrated in Fig. 1.8b. For example
for the X-stage, the first mass corresponds to the base frame which is connected to the
ground, while the second mass is given by the motion platform itself. The frequency re-
sponse function (FRF) of the transfer function from the actuator force acting between
the X-stage and the base frame to the X-stage position is shown in Fig. 1.8a. It can be
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Motion
Platform
X I IF
. . .
10° 10! 10° 10*
Frequency (Hz)
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Figure 1.8: (a) Frequency response function of X-stage MSD model approximation. (b) Diagram of approxi-
mated MSD system. F is the actuator force acting between the X-stage and the base frame and x is the encoder
position.

distinguished between a low- and a mid-frequency behaviour. The former is dictated by
the connection between the frame and the X-stage. At low frequencies the magnitude
has a -1 slope, indicating that between the frame and the X-stage there is no stiffness but
only damping. This simulates the guiding rail between the frame and the stage whose
stiffness can be neglected. Nevertheless, viscous friction, acting like a damper, must be
considered. In reality some Coulomb friction is also present in the system. This non-
linear effect acts at very low frequencies introducing a steady-state error. In the mid-
frequencies the slope becomes a constant -2, indicating a mass-line. In reality there
exist a hidden resonance at = 40 Hz, given by the connection between the X-stage and
the base frame which does not appear in the frequency response function. This is given
by the fact that the mass of the X-stage is negligible compared to the base frame.

The previous approximation gives no information on the high frequency behaviour. More-
over, it has been established that the three stages suffer from cross-coupling [4]. This is
illustrated in Fig. 1.9, which shows the identified FRF between the current required from
the actuators of each stage and the X-stage encoder position using a sampling frequency
fs = 8 kHz, which corresponds to the sampling frequency the controller of the AB383
uses during operation. The X-stage is actually the stage that suffers least from cross-
coupling due to being the heaviest one [24]. Since the thesis will focus only on SISO sys-
tems, it is favourable to deal with the stage that suffers the least from cross-coupling. The
main focus of the thesis will thus be on the X-stage. The dynamics of the stages is also
position-dependent, meaning the FRF plots differ based on the end-effector position.
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Fig. 1.9 shows the FRF at the center position, thus when all stages have no displacement.

It can be appreciated that in the low frequencies the behaviour resembles the double
MSD system. A drift in phase is then to be seen. This is caused by the time-delay present
in the system between the sensor readings and the actuator action. It can also be noted
that cross-coupling has little effect in the low and mid-frequency region. The high fre-
quency dynamics is also visible.

-60
-80
-100

140 [
-160

Magnitude (dB)

Frequency (Hz)

Phase (deg)

Frequency (Hz)

Figure 1.9: Identified FRF between X-, Y- and Z-stages actuator current and X-stage encoder position at the
center position.

In [24] a Simscape Multibody [25] model that would accurately portray the mid-frequency
dynamics of the wire bonder motion stage was constructed. The FRF of the X-stage lin-
earized about the 0-position in continuous time and discretized at f; with a 2.5 samples
time delay, is shown in Fig. 1.10. It can be noticed how the time delay added to the model
decreases the phase significantly in the frequency range of interest. Although the model
approximates the cross-coupling between stages well, the high frequency range is inac-
curate, since the Simulink model is based on a lumped-mass model and can'’t therefore
accurately portray the flexible dynamics in the system’s components. The low frequency
dynamics are also inaccurate since Coulomb friction is not incorporated in the model.
Furthermore, it should be noted that the actuator dynamics is also not present in the
model.

The motion stages DOF are controlled separately approximating the X-,Y- and Z-stage
as independent SISO systems. Hence, currently three SISO LIT control systems are em-
ployed to regulate the motion of the three stages. This means that each stage has to track
areference signal similar to the one depicted in Fig. 1.6 simultaneously. This decentral-
ized control structure is not optimal in terms of control as it does not account for the
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Figure 1.10: X-stage frequency response function of the Simscape Multibody model with and without time
delay.

cross-coupling between the stages. Nevertheless, this control scheme allows to use SISO
controllers which are easier to design, especially through loopshaping [2]. Currently, a
controller structure as the one shown in Fig. 1.2 is employed for each stage.

The current LTT feedback controller Cgj, of the X-stage has a PID-like structure, which
gives a proportional static gain (P) that increases the magnitude without affecting the
phase, a ‘tamed’ derivative action that provides a lead in phase (D), but also an increase
in gain, and an integral action (I) that adds a -1 slope at low frequencies, while however
also leading to a phase lag. Since in reality due to Coloumb friction at least one integra-
tor is required to assure a zero steady-state error for the desired reference profile. The
transfer function of a PID controller is given as

Cros)= ky (1+Z8)[[1+2) /(142
f P s wg w;
——

——
P 1 D

), (1.9)

with &, the controller gain, w; the frequency at which the integral action (1) is stopped in
order to limit the effect of the phase lag introduced it and w; < wpw and w; > wpw the
frequencies the derivative action (D) acts between to achieve a phase lead in the cross-
over region while limiting the increase in magnitude at low and high frequencies. Once
the desired wpw has been selected, a set of rules of thumb can be used to design a first
version of the PID controller that achieves PM = 30°. The parameters are selected as
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follows, based on [26]:

WBW
wi= ——

10

WBW
wgq =

3 (1.10)
wr = 3a)BW

1

P 3G(jwpw)

In addition to a PID controller, it might be beneficial to increase the suppression of the
effects of noise and high frequency dynamics. In this case it is possible to add two differ-
ent elements to Cyp(s). A low-pass filter, with transfer function

1 n
(—) , (1.11)

slwc+1

with w, the low-pass filter corner frequency and n € Z* the filter order, decreases the
magnitude slope by -n after w., while introducing a phase lag of —90n°. On the other
hand, a notch filter with transfer function

; 2+ £ 41
U-’_n Quwn

S S
((U_n) + QuwQnwp +1

) (1.12)

with w,, the notch frequency, Q,, € R* a weight related to the notch width (the larger Q,,
the narrower the notch) and Q, € R* the notch height.

A certain degree of robustness is expected from the employed feedback controllers. For
this reason the constraint Ms < 6 dB is placed to any controller in order for it to be im-
plemented. The continuous time controller is then discretized at f; using Tustin’s ap-
proximation, which preserves the phase of the continuous time system better than any
other approximation until close to the Nyquist frequency [27].

Although the focus of this thesis is on feedback control, it should be noted that every
simulation and experiment will also include a feedforward controller to best represent
the wire bonder’s oporation. This is shown in Fig. 1.11, where two simulations were run
using the Simscape Multibody model. In both cases a typical reference trajectory with
amplitude 7,4, = 4 mm had to be followed given a PID controller designed using the
rules of thumb specified in (1.10) with a bandwidth of 200 Hz. However, one of the con-
trol systems also utilizes feedforward, as designed in [24]. In both cases the steady-state
error bounds were arbitrarily chosen as 0.5 mm for illustration purposes only. The max-
imal error amplitude over the three regions decreases by a factor of almost 100 when
feedforward is employed. Moreover, it is possible to see that the shape of the error signal
is vastly different between the case with and without feedforward. In fact, in the latter
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case it is impossible to see the = 40 Hz oscillations without having to zoom in. These
are given by the natural frequency of the connection between the base frame and the
ground. As explained beforehand, due to the difference in mass between the base frame
and the X-stage this resonance is not visible in the FRF (Fig. 1.10). However, since the
feedforward controller accounts for the dynamics of the X-stage, but not for the one of
the base frame, it makes this resonance as the most influential disturbance in the sys-
tem [24]. The feedback controller will therefore be utilized to suppress this disturbance.
Figure 1.11 also shows how a constant disturbance, added at ¢ = 0 to simulate the effect
of Coulomb friction, which is not included in the Simscape model, is suppressed by the
controller due to its integral action.

Error signal with Feedforward

1 T

B
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=]

=

E 1 ——Error

= - — Reference (scaled 107%)

-1.5 i i  — Steady-state error bounds
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Time (s)

Error signal without Feedforward
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Figure 1.11: Error timeplots when using a PID-like LTI controller with and without feedforward. In both cases
a constant disturbance of 0.1 N/m was added at ¢ = 0 to simulate the effect of Coulomb friction.
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Although since decades nonlinear control techniques have been in continuous develop-
ment, 90% of the controllers used in industry are still based on the linear PID controller
[3]. The slow adaption of nonlinear control in industry is given by the fact that the sim-
ple tools used in classic control theory are based on properties of linear systems (e.g. the
principle of superposition) which in many cases are not valid for nonlinear control. This
requires the understanding of new and often demanding mathematical principles [28]
and does usually not allow stability or predictive performance analysis in the frequency
domain [29]. For instance, most nonlinear methods do not offer a systematic way to
design the controllers based on their frequency response (e.g.: model predictive con-
trol [30], adaptive control [31] and fuzzy control [32]). This makes the relation between
the plant and the response complex and often unintuitive, thus usually not suitable for
industrial applications. However, techniques such as variable gain control (VGC) [33],
split-path nonlinear (SPAN) filters [34], hybrid integrator gain system (HIGS) [35] and
reset control have been used to overcome LTT inherent limitations while also providing
an approximation of their frequency domain response. In VGC, the gain of the controller
is dependent on the input amplitude, allowing to have a steeper slope in the open-loop
magnitude FRF at low and high frequencies respectively, due to the difference in am-
plitude between low and high frequency disturbances/noise. This allows to better sup-
press low frequencies disturbances and high frequency noise [33]. However, since the
frequency response of such a filter is dependent also on the amplitude of the input [9], it
is unsuitable for systems whose reference is unknown a priori like the wire bonder. SPAN
filters allow to design a nonlinear controller in which phase lead is provided without af-
fecting the magnitude, thus overcoming Bode’s phase-gain relationship [34]. However,
no frequency domain analysis tools were developed for such filters. In [4] frequency do-
main performance prediction and stability analysis of a HIGS used to control the AB383
wire bonder were performed successfully. The HIGS was then also implemented on the

16
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AB383 validating an increase in performance. Nevertheless, literature on the HIGS is
more scarce compared to reset control. Reset control offers therefore more design pos-
sibilities as well as better frequency domain predictive performance analysis methods
(e.g.: close loop methods [8], [9]).

2.1. RESET CONTROL

In 1958 ].C. Clegg’s seminal work presented the Clegg Integrator (CI), a nonlinear integra-
tor whose first harmonic of the output could provide approximately the same magnitude
frequency response as a linear integrator but with a phase of only approximately —38°
instead of —90° [5]. In fact, in his paper Clegg presented a sinusoidal input describing
function of the CI, which allows for an approximate frequency description of the magni-
tude and phase response of the system, based on it’s first harmonic. Therefore, Clegg did
not only introduce a controller that overcomes the fundamental limitations of LTI sys-
tems, but also a controller whose approximate frequency behaviour is known and can
hence be utilized for loopshaping. Over the years the field of reset control has developed
immensely. Not only in terms of applications, which saw reset controllers implemented
in e.g. vibration suppression devices, HDDs, pH processes, heat exchangers, teleoper-
ations, flexible mechanisms and many more [36], but nowadays there also exist many
different structures of reset controllers based on different mathematical theories. The
goal of this section is to examine these different structures to assess which one would
suit industrial applications, like the control of the AB383 wire bonder, better.

2.1.1. STRUCTURE
A general description for a reset system %, proposed for the first time in [37], is given as

Xy =A;x, + Bre if (x,,e)¢.4
R=3 x5 =Apxs if (x,,e)eH 2.1

u=Crxr+Dre,

assuming a SISO system, as depicted in Fig. 2.1. It can be noticed that the first and last
lines describe a standard LTI continuous system in state-space, where A, € R B, €
R™*1 C.eR*" and D, € R are the base linear system (BLS) matrices. This description
holds true whenever the state vector x, € R”*! is not part of the reset surface 4. If,
however, x; is part of ./, the after-reset state at the reset time instant x;f = limy .10 x7(y)
is governed by the reset matrix A, € R""*”r. The BLS transfer function can then easily be
obtained as

R=Cy(sI-A;)"'B, +D,. 2.2)

If we assume the plant to be strictly proper, which is always the case for motion systems,



18 2. LITERATURE REVIEW

Figure 2.1: Unity feedback block diagram with reset controller.

the closed-loop system can be described as

X=A2+B,r if Xel
R=4 3" =Ay% if xed 2.3)
yZErfC
with

— _[A,—B;D4C, -B,Cq — _[Br

Ar= B,Cg Ag |’ Br=1Yy

_ — A, 0] . [x

C,=[DgC; Cg],Apz[OP I]’ %= x;

where the subscript ¢ indicates the states and matrices related to the plant G.

In [38] an impulsive description of reset control systems as well as a hybrid description
are also shown. The latter one, introduced in [39] as

Xr =A;x; +Bre if x,e&
R=% xf=Apx, if x, e ¢ (2.4)
u=Crx,+D;e,

uses a flow set & to indicate when the BLS dynamics governs the system and a jump
set _# which enforces resetting, where & and _¢ have to meet a number of conditions
to make the representation valid [40]. For example, in the representation shown in (2.1)
reset is only possible as long as some flow has occurred from the last reset, whereas this
is not the case for the description shown in (2.4). Moreover, the sets & and _# must be
closed and have to overlap, whereas .# and its complement are disjoint [40]. This allows
for less strict stability conditions as will be seen in 2.1.3. The impulsive representation
stems from the area of impulsive systems in applied mathematics. A typical representa-
tion is given by

(2.5)

X = f(t,x;) if h(t,x;)#0
Axy = I (xy) if h(t,x;) =0,

where Ax = x* — x are the state jumps and h(t, x) is the state- and time-dependent reset-
ting condition [38]. This representation is not given in the standard state-space descrip-
tion making it unsuitable for controller design. Furthermore, only few papers deal with
reset controllers as given in (2.5). The theory is hence still in its infancy, making it not
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suitable for industrial applications.

The reset control system descriptions in (2.1) and (2.4) allow to categorize £ based on
three different aspects.

THE BLS MATRICES

It is clear that to design a reset controller it is still fundamental to properly tune a linear
controller, as this will decide most of the response of the system. Different approaches
to design an LTI controller exist, however due to its popularity in industry including the
previously mentioned loopshaping. This method is currently employed at most com-
panies, including ASMPT due to its simplicity in relating the frequency response of the
close loop system to the tuning parameters. To make the design process as similar to re-
set control as possible, it was decided to only use loopshaping techniques to design the
BLS for this thesis.

THE RESETTING CONDITION
There are many possible reset conditions that have been employed in literature. The
most common condition is known as zero-crossing, defined for systems shown in (2.1).
This reset condition states that reset occurs when e = 0. Formally, the reset surface is
given as

M ={e=0AI~-Ap)x; #0}, (2.6)

where the condition (I — Ap)x, # 0, introduced in [37] assures that when the reset states
are already zero, a redundant reset is avoided. The zero-crossing reset condition can be
used to describe the typical CI introduced beforehand as

Xr=e if e¢ ./
R=R x5 =Apx, if eel 2.7
u=Xxy.

In [8] the reset system architecture in Fig. 2.1 was expanded as illustrated in Fig. 2.2. In
this case the zero-crossing law does not apply to e;, but to é,, which is first shaped by the
LTI shaping filter Cs. The architecture also allows to use a linear controller C; to shape
the input to #. The output of Z also passes through a linear controller C, before reach-
ing the plant.

In case reset occurs when, instead of crossing the 0-line, e crosses a scalar § € R from
above or —6 from below, the reset condition is known as a reset band [38]. Formally the
reset surface is then

Mi={(e=06Nne<0)V(e=-O0Né>0). (2.8)

Using areset band can increase robustness [41] and lower the quantization induced error
[42]. They can also provide additional phase lead, thus improve performance over zero-
crossing systems. This is especially relevant for systems with time-delay [43]. Due to
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Figure 2.2: Expanded reset control feedback system architecture. Adapted from [8].

the fact that 6 should be tuned according to the reference, it is usually favoured to use
a variable reset band. In [36] the reset surface for a variable reset band controller tuned
for a system with time delay 7 is given as

M ={te+e=0}. 2.9)

Using the definition of # given in (2.4), it is possible to use a & and _# such that they
define different sectors in the (e-u) plane. The most common definition of & and ¢ is

F ={eu=0},

F:={eu=<0}, (2.10)

which enforces resetting whenever the sign of the output and input differs [39]. In [44],
the & sector was made smaller for stability reasons, as will be explained in Section 2.1.3.
Formally & and _¢ are then given as

F:={leu= luz},
‘f 2.11)

o 12
F=leu=< au 1

Another reset condition can be achieved by predetermining the reset time instances.
This has been done for example in [45] through the minimisation of a cost function. De-
termining the reset times a priori requires however knowledge of the reference signal and
is thus not suitable for many industrial applications, including the control of the AB383
wire bonder, and will therefore not be considered further.

Sometimes it is beneficial to not allow reset before a certain time has passed before the
previous reset. Time regularization poses a constraint on the reset instances such that

Ies1 = L + 64, (2.12)

where t; € R* is a reset instance, f;,; € R* is the subsequent reset instance and §; €
R is the time between the two instances. As will be seen in Section 2.1.3, using time
regularization allows to use different stability analysis methods. Time regularization has
also been used to reduce performance degradation due to quantization [46].
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THE RESET MATRIX

In order to avoid coupling between resetting states, the reset matrix can be chosen as
a diagonal matrix A, = diag(y1,y2...Yn,), with |y;| =1, y € R to avoid amplification in-
stead of resetting, which would cause instability [8]. In case y; = 0, the corresponding
state is said to be fully reset. On the contrary, a value of y; = 1 in A, would mean that re-
setting has no effect on the corresponding state. If 1 > y;, y; # 0, the state is only partially
reset. This is best illustrated in Fig. 2.3, where the output of the CI described by (2.7) with
three different values of y is plotted. It can be seen that as y approaches 1, the response
approaches the sine wave that is obtained from the BLS. Based on the properties of A,
it can be differentiated between:

e Fullreset: ally; =0,
* Partial state reset: atleastone y; =1,
* Partial reset: at least one y; # {0, 1}.
In case of partial state reset, the reset matrix can thus be defined as

I xii 0

_ nrxXnr
Ap=1"0 (2.13)

A.Dv Ay % Aty '
where i, € Z* is the number of non-resetting states, i, € Z* is the number of resetting
states (7i + 71y = n;) and A, is a diagonal matrix A, = diag(y1,y2...v4,), with |y;| = 1,
Y # 1. In order to maximise design DokE it is beneficial to choose reset systems that allow
partial state and partial reset.

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

Figure 2.3: Output to a 5 Hz sinusoidal input with amplitude 1 of a CI with y =0, y = 0.5 and y = 1 respectively.

2.1.2. PREDICTIVE PERFORMANCE

The time response of an LTI system to a sinusoidal or polynomial input can be decom-
posed in a transient and a steady-state part. These can both be calculated analytically.
Additionally, there also exist rules of thumb to relate transient response performance
parameters such as overshoot, rise time and settling time to the LTT system parameters
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[47]. However, when designing a controller through loopshaping the relation between
the LTI system and its steady-state response is fundamental. As shown in Fig. 2.4, when
a sinusoidal input acts on an LTT system, the magnitude and phase of the output are
solely dependent on the input frequency w. Additionally, the output frequency remains
w. This straightforward relationship can be used to determine closed-loop stability (for
open-loop stable systems), robustness, steady-state performance and also to qualita-
tively predict transient behaviour, as illustrated in Section 2.2.

r=Apsin(wt) ] Vss= AplG(jw)lsin(wt + LG(jw))
L G|

Figure 2.4: Relation between sinusoidal input r and steady-state output yss for LTI systems.

The goal is to derive a similar relationship for reset systems such that loopshaping is pos-
sible. Through the minimization of a cost function, a nonlinear system can be estimated
as an LTI system, the so called base linear approximation [48]. Usually white noise is in-
putted into the nonlinear system and a linear system is fitted based on its time domain
response, allowing to use linear techniques for the controller design. However, nonlinear
systems behave differently than linear ones and may suffer from nonlinear effects that
cannot be accurately represented in such an approximation. Common nonlinear effects
are [49]:

* Gain compression and expansion: Magnitude and phase can be dependent on
both input frequency as well as amplitude.

* Desensititsation: Magnitude can be dependent on possible interfering signals at
frequencies other than the main input frequency.

* Intermodulation: Since the principle of superposition does not hold for nonlinear
systems, frequencies combine nonlinearly.

* Harmonic generation: The output signal can consist of not only w but also higher
order harmonics at multiples of w.

Different nonlinear frequency domain analysis tools are capable of capturing the various
effects. Nonlinear Bode plots are an expansion of Bode plots that give the relationship
between the magnitude and phase for both input frequency and amplitude [50]. Usually
in reset systems magnitude and phase are only dependent on the input frequency [51],
making this technique unnecessary. On the other hand, desensitisation, intermodula-
tion and harmonic generation do affect reset systems. Volterra based approaches allow
to capure all nonlinear effects with good accuracy [49]. On the other hand, the deriva-
tion of frequency domain characteristics using this method is often complex and to the
best of the author’s knowledge, an analytical method for reset controllers has not been
studied in literature as of the time of writing. Morever, the interpretation of such char-
acteristics is also complicated, which makes them unsuitable for controller design tech-
niques such as loopshaping. The most commonly used predictive performance method
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for reset controllers is also the one that most closely resembles LTI FRFs, the sinusoidal
input describing function (SIDF) method [52]. A SIDF gives quasi-linear approximation
of the first harmonic of the output signal when a nonlinear system is subject to a sinu-
soidal input signal. It is defined as the quotient between the Fourier transform of the
first harmonic of the output and the Fourier transform of the input, where the input is a
sinusoidal of a certain frequency [53]. Information on desensitisasion, intermodulation
and harmonic generation is omitted in SIDFs. However, FRFs are generated by inputting
only one signal at one particular frequency at the time. This means that the nonlinear
effects of desensitisasion and intermodulation would not appear on FRF plots. Never-
theless, harmonic generation does affect reset systems and must be taken into account
in order to gain better insight on the system’s predictive performance. The subsequently
developed HOSIDFs provide additional information on the generation of higher order
harmonics. In fact, in [54] nonlinear systems are modelled as virtual harmonic gener-
ators. When a single harmonic is inputted infinite higher order harmonics are present
in the output, each with their own gain and phase. These can then be added together
to construct the resulting output signal. Numerical methods such as the Matlab sys-
tem identification toolbox [55] could give an idea of the FRF of a reset system. However,
in order to effectively make use of loopshaping it is necessary to have a more precise
method. Unfortunately, not every reset control structure offers the possibility to derive
the HOSIDFs analytically. In [9] the equation for the n'” HOSIDF for the reset system
(2.1) with a resetting condition described by (2.6) was derived first. In the expanded
reset system architecture in Fig. 2.2, a shaping filter C; is used to determine the reset

condition. Assuming C; is LTI and introduces a phase lag ¢ € R, the reset instances will

occur at fy = k”a:r ¢, with w € R the excitation frequency and k € Z* the instance. The

equation for the n'" HOSIDF with C; was derived in [56] as

Cr(Ar - joD) 'Oy () + C,(joI — A;)"'B, + D, for n=1
Hp(jo) =1 Cr(Ar - jonD)™'0,(w) forodd n=2 (2.14)
0 foreven n=2
with )
—2jwel? . -1
Bplw) = Tﬂ(w) (wlcos(p) — Arsin(@)) A" (w) B,
Q(w) =A(w) —A(w)A;I(w)ApA(w),
A(w) =1+ e%Af,
Ap(@) =TI+ Aes?,
Aw) =0T+ A2

Although this holds true only for pure sinusoidal inputs [37], leading to potential pre-
diction inaccuracies between HOSIDFs and the corresponding time response to a non-
sinusoidal input signal, these equations have been proven reliable enough for designing
controllers through loopshaping for various applications [7]. Furthermore, the solution
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to a sinusoid must be globally asymptotically stable. This can be verified by
A(ape™)| <1 voeR?, (2.15)

where A(M) is the set of eigenvalues of a matrix M. In literature oftentimes reset control
systems are implemented by preceding £ by a linear controller. Moreover, to compute
the open-loop HOSIDFs, the plant has to be taken into consideration as well.

The necessity of including higher order harmonic information is best illustrated through
an example, adapted from [9]. Figure 2.5 shows the output to a 5 Hz sinusoidal input
with amplitude 1 obtained by a CI as well as its SIDE It is apparent that the jumps in the
actual output cannot be captured by the SIDE By adding the contribution of the first 13
higher order harmonics the response can be approximated much better. If all infinite
higher order harmonics were to be added, the result would be identical.

- - -SIDF output
——HOSIDF output
Actual output

4

0.05 -

Amplitude
(=]

-0.05

d . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)

Figure 2.5: Output to a 5 Hz sinusoidal input with amplitude 1 of a CI, its SIDF and a combination of the first
13 HOSIDFs.

The importance of accounting for HOSIDFs can be shown in the frequency domain as
well, through an example from [9]. Assuming a system like the one in Fig. 2.1 with Z a

typical CI and
100

$2+0.255+ (20m)2’

representing a MSD system with low damping and a natural frequency of 10 Hz, the
open-loop HOSIDFs FRF from e to y can plotted as shown in Fig. 2.6. It is evident that
the higher order harmonics provide additional undesired peaks in the FRF which would
have a remarkable effect on the performance of the system. For example they could ex-
cite resonances of the plant. The location of the peaks can be determined by intuition
if the plant excitation frequency is known. Knowing that harmonic generation creates
higher order harmonics at multiples of the input frequency w, the third harmonic would
excite the plant at w/3 = 3.3 Hz, the fifth harmonic at w/5 = 2 Hz and so on. Even har-
monics are omitted because they have a magnitude of 0 for most reset systems. Damped
systems would not show such peaks but it has been studied that the SIDF is even more
unreliable than undamped systems at the bandwidth frequency [9]. On the contrary,

G(s) = (2.16)
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plants with integrators, low frequency poles or in general low-pass filter behaviour suf-
fer less from higher order harmonics, as the n'" HOSIDF is filtered out before the first
harmonic since it excites the low-pass filter corner frequency o, first, at w./n [9]. Gen-
erally, the goal when loopshaping with HOSIDFs is to keep all higher order harmonics
low, such that they do not have major impact in the response, and thus performance can
be accurately predicted from the SIDE Higher order harmonics get lower in magnitude
with increasing order, therefore it is not necessary to plot all higher order harmonics.
Since their shape is also alike, merely shifted to the left, plotting only the first higher

order harmonic normally suffices to understand their open loop frequency domain be-
haviour.

——1°" harmonic
——HO harmonics
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Figure 2.6: FRF of the HOSIDFs of a typical CI in series with G as given by (2.16).

Albeit the nonlinear effects of desensistisation and intermodulation cannot be captured

by HOSIDE these are a convenient, if not necessary, tool for controller synthesis through
loopshaping.

The HOSIDFs can be easily augmented in case LTI systems are present in series before
or after the reset controller, by considering % as a harmonic generator, as pictured in
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Fig. 2.7, where

e = Apsin(wt),

er =AlCi(jw)lsin(w+ ZC; (jw)),

hy  =A)lCi(jw) | Hy(jw)lsin(nw + £C; (jw) + ZH, (jw)), 2.17)
up = AlC(jo)|Hp(jo)lIC2(jnw)lsin(nw + £Cy (jw) + LHp(jw) + £LCo(jnw)),

o0
u =) up
n=1

u h u
: - R : : :
h U
: :

Figure 2.7: Representation of HOSIDFs for reset controllers in series with a linear controllers C; and C».

In [38] the SIDF for reset systems with a fixed reset band was derived. In this case the
SIDF is dependent both on the input frequency w and amplitude A. A general method
to obtain the SIDF for systems with a variable band reset condition has not been pro-
posed yet. It is thus not possible to derive the HOSIDFs for reset systems with reset
band. As can be noticed all HOSIDFs equations so far have all been utilizing the reset
description (2.1). In fact, HOSIDFs for the representation (2.4) have not been proposed
to the best of the author’s knowledge.

The effectiveness of loopshaping comes from the fact that it is possible to easily relate
the open-loop and the closed-loop through the sensitivity equations (1.1). In [9] it was
however shown that simply utilizing (1.1) with H; or a combination of H;-H,, instead
of C provides a highly inaccurate approximation of the closed-loop HOSIDFs. This is
given by the fact that the nonlinear effects influence the reset instances in close loop.
In [8] pseudosensitivities Sy, (w) were proposed as a way to combine the information
on closed-loop higher order harmonics into an analogue of a sensitivity function for re-
set systems, thus helpful for loopshaping. Although the principle of superposition does
not hold, it was established that even for non-sinusoidal inputs, the pseudosensitivity
functions can provide a reliable quantitative performance prediction to effectively de-
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sign reset controllers [8]. The pseudosensitivity magnitude is defined as
|Soo ()| = max(egs(w, 1))/ ar, (2.18)

where egs(w, t) is the steady-state error of the reset system excited by a reference input
arsin(wt). The simplest possible way to obtain S, (w) is through simulation. However,
not only it is computationally expensive, as it requires a simulation for each frequency;, it
is also difficult to relate open-loop and closed-loop characteristics, due to the black-box
nature of the method. Furthermore, a parametric description of the plant is necessary
to compute the simulations. Therefore, a less accurate analytical methods, able to re-
late open- and closed-loop from FRF data, was established in [9]. Two assumptions are
required for the validity of this method. Firstly, the reset system must be input-to-state
convergent. This assumption can be expected to hold when the reset system meets the
Hpg -condition (Section 2.1.3) [8]. Additionally, it must be assumed that only the first har-
monic of the error results in resets and hence the creation of higher-order harmonics in
the output. This does not always hold, as higher order harmonics in the error have an
effect on the reset instance, although not as strong as the first harmonic. Nevertheless,
this still leads to a more accurate solution than just using (1.1) with the SIDF to compute
the closed-loop HOSIDFs [9]. The fact that higher order error harmonics do not affect
the reset instances can be represented as a virtual harmonic separator. The first error
harmonic is inputted into the reset system 2, whereas the higher order harmonics are
passed to the BLS R, as shown in Fig. 2.8.

Mathematically, the error is thus defined as

ess= Y ISp(jw)lsin(nwt + £S,(jw)), (2.19)
n=1
with
S1(jw) for n=1
. Ly(jw) , inZS(jw
D 1 L forodd n=2 .
Sn(j®) S PRGT (11 e | forodd = (2.20)
0 foreven n=2,
and
S1(jw) = ————,
0 = T G

Ly(jw) = C(jo)Hp(jw) G (jrw)G(j nw),
Lprs(jw) =C1(jw)R(jw)Co(jnw)G(jnw),
The pseudosensitivity can then be computed using (2.18). Overall, the approximate

method is less computationally expensive and allows being used with FRF data, thus
providing better usability. On the other hand, in case the required assumptions do not
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Figure 2.8: Representation of closed-loop HOSIDFs. Adapted from [9].

hold, it cannot be assured that the results would be accurate. Moreover, (2.19) shows
that the greater the number of HOSIDFs n that are accounted for in the sum, the more
accurate the results. However, as for the the open loop method, when using FRF data for
the plant, information on the n‘" HOSIDF can be provided only up to frequencies w <
Wmax!n, with 0,45 being the highest frequency for which FRF data is available, which
makes the accuracy of the method frequency dependent: the higher the frequency, the
less HOSIDFs are taken into account. Nevertheless, it is difficult to evaluate which method
would provide the most advantage when designing a controller. To the best of the au-
thor’s knowledge, no comparison between the two method when designing a controller
for an industrial setting is present in literature. For this reason, it is beneficial to utilize
both methods until its clear if an increase in usability makes up the loss in accuracy.

In [57] reset systems are modelled as ‘linear systems with a state-dependent timed im-
pulse train input’. Using such a description, it was shown that it is possible to accurately
compute the open- and closed-loop HOSIDFs of a reset system analytically when the
reset instances and the corresponding reset states are known. This method is still in its
infancy and more research is required to quickly convert between a state-space impul-
sive description and the description proposed in [57]. However in the future this method
could become a viable option to obtain accurate closed-loop HOSIDFs analytically.
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For linear systems, frequency domain parameters can be analytically related to not only
steady-state but also qualitatevely to transient characteristics [2]. This relationship has
not been studied analytically in reset systems. However, numerical results that confirm
that an increase in phase margin of the SIDF leads to a decrease in overshoot and settling
time and an increase in bandwidth of the SIDF leads to a shorter rise time, are demon-
strated in [11]. Of course, due to the nonlinearity of reset systems other aspects must
also be taken into consideration when studying the transient behaviour, such as the ef-
fect of higher order harmonics [11].

Overall, HOSIDFs have proven to be the most popular frequency domain analysis tool
for reset controllers due to their similarity to linear Bode plots. Although not all nonlin-
ear effects are captured, they are often a necessary tool for loopshaping a reliable con-
troller. Therefore, reset control structures which do not allow an analytical way to derive
the HOSIDF:s or restrict the HOSIDFs to be either amplitude dependent or available for
only particular systems, pose a great constraint to the controller synthesis process. For
this reason, controllers that do allow an analytical way to determine the HOSIDFs, such
as the one described by (2.1), with .# given by (2.6) used in the architecture shown in
Fig. 2.2, will be prioritized for this thesis.

2.1.3. STABILITY

Although HOSIDFs provide a great tool for controller design purposes regarding predi-
cive performance, one essential property of FRF of linear systems, namely that they can
be used to evaluate linear frequency domain stability criteria such as Bode’s criterion or
the Nyquist criterion, does not hold for nonlinear systems. Frequency domain stability
criteria allow to guarantee stability based on measurements of the FRE such that it is not
required to derive a parametric approximation of the plant, which is time expensive and
introduces uncertainty. In linear systems various robustness analysis methods can be
employed to ensure that the uncertainty does not affect stability results. Suitable robust-
ness methods for nonlinear systems are not always available. Moreover, it was proven
that reset controllers can destabilize stable BLS [38]. As the difficulty in finding stability
analysis methods that are relatively simple to evaluate and perhaps can be proven even
without parametric plant description are one of the most significant drawbacks of non-
linear control methods, it is important to study the literature to find a suitable stability
method for reset control systems. Before considering stability, it should be noticed that
while in LTI systems the response is existent and unique by definition, this is not the case
in nonlinear systems. Ill-posed nonlinear systems can show different behaviours such as
deadlock, beating or Zenoness. Deadlock occurs when x, does not have a possible so-
lution, whereas beating appears when the after-reset state is still contained in the reset
surface [38]. Both can be avoided by choosing the resetting condition correctly. All re-
setting conditions proposed in Section 2.1.1 achieve this. On the other hand, Zenoness,
defined as the presence of infinite reset actions in a finite time, can be avoided through
time-regularization. In digital systems an interval at least equal to the sampling period
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is present between any reset instance. One can thus define 6; = 1/ f; in (2.12). Since the
wire bonder has a digital control system, well-posedness will be assumed for each sta-
bility method presented next.

When J.C. Clegg first developed the CI, closed-loop stability of a system containing such
a reset element, was not yet considered. In [58] and other of his works, Horowitz uses a
SIDF to approximate closed-loop stability of simple reset elements based on the Bode’s
stability condition. This method is unreliable, especially for non-autonomous systems
(i.e. systems with external inputs), as explained by Horowitz itself. The first formal
closed-loop stability proof in reset control, was presented only two decades later in [59].
Itis based on the resetting instances and is valid for a reset system containing a CI shown
in (2.7). However, it assumes the systems is autonomous and the plant is of order lower
than two. In a subsequent work the bounded-input bounded-output (BIBO) stability of
a reset controller described by (2.1), with n, = 7, =1, A, = 0 and .4 given by (2.6) was
proven under the § positive real condition [60]. This was then generalized in [37] through
the Hg-condition, which allows n, = 71, € Z*. Such a reset system was proven to be
quadratically stable if and only if the Hg-condition is satisfied. In fact, the Hg-condition
is a necessary and sufficient condition for the existence of a quadratic Lyapunov function
[37]. However, the Hg-condition is not a necessary condition for stability, meaning reset
systems which do not satisfy the Hg-condition could still be stable. The presence of sta-
ble systems which do not satisfy this condition was investigated in [61], which defines
the Hg-condition as rather conservative. The Hg-condition imposes a strictly positive
real (SPR) constraint on the BLS, thus requiring A to be Hurwitz. It is then satisfied if,
assuming C; =1,

Hg(s) = Co(sI - A) ' By, (2.21)

with
B0=[Il’lr><nr]’ C():[Q ﬁc]'

is SPR, with (A, By) controllable and (4, Cy) observable and
AZ;QAP -0=0,

where p=p7>0,peR"*", BeR"*! The existence of a solution to (2.21) can thus
be found by solving linear matrix inequalities (LMIs). A system that satisfies the Hg-
condition and whose states that reset do not depend on the states that are not reset, is
fully stable. Full stability is defined in [37] as uniform bounded-input bounded-state
(UBIBS) stability [37] and global asymptotic stability (GAS). The Hg-condition was sub-
sequently expanded in [62] to also include reset systems with partial state reset. In [8]
the Hg-condition was again expanded to systems with Cs # 1 by setting Cp = [e BC.]
instead.

The conservativeness of the Hg-condition is given by the fact that it requires a quadratic
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Lyapunov function that decreases along the entire state-space [63]. Using the reset sys-
tem description in (2.4), it is possible to instead subdivide the state-space into sectors
and thus consider piecewise quadratic Lyapunov functions instead. This was demon-
strated in [39], [40], [40], [64] which proved that beyond UBIBS stability, it is also possi-
ble to achieve a more robust £, -stability, which can be defined as a nonlinear ./, mea-
sure of input-output robustness [65]. Other similar stability methods were developed in
[66], [67], [68], [44], [69]. The latter method is based on a discrete time implementation
of the reset condition, thus fitting for digital control systems. It was later proven that
even reset systems described by (2.1), with . given by (2.6) and A, = 0, can achieve
%,-stability. In [70] the conditions for £, reference-output and disturbance-output sta-
bility were stated. For the former it is sufficient that the system has n, = 7, and the
Hpg-condition is satisfied. For &, disturbance-output an additional Hy-condition must
be satisfied. In this case the system can also have partial state resetting [70].

The least conservative stability methods for reset controllers are based on passivity. All
stability analysis methods studied beforehand require a stable finite order BLS. Time de-
lay could for example not be taken into account. In [71] and [72] two different methods
suitable for stable systems with time delay are presented. In case the BLS is unstable,
or in case the reset is triggered by predetermined reset instances, passitivity approaches
based on the reset instances have been utilized [73], [72]. Generally, the trade off for less
conservativeness is that a more complex set of LMIs have to been solved. Moreover, of-
ten stability resulting from passitivity methods does not guarantee UBIBS stability, and
is thus not favorable for systems with inputs, such as the ones used in industrial appli-
cations [38].

Most stability analysis techniques mentioned so far require solving LMIs. In case the
plant is of high order, which is the case for complex industrial machines such as the
AB383 wire bonder, these become complex and computationally expensive [8]. Fur-
thermore, with LMI-based methods it is difficult to relate the result from the numerical
computation to the controller parameter, often making the controller design procedure
lengthy. Additionally, LMIs necessitate a state space description of the plant, which re-
quires approximating the plant parameters, introducing uncertainty. This uncertainty,
which plays an especially important role in industry, as different machines will have
slightly different parameters, must be accounted for by selecting an appropriate robust-
ness analysis method. However, studies on robustness of reset systems are still scarce.
In [38] and [51] two alternative methods were proposed, both of which are however not
suitable for systems with inputs. For these reasons, three different stability methods
which do not require to solve any LMIs, do not require a parametric plant description
and give a qualitative notion on the robustness of the system, are provided next. The
first one, presented in [74], [75], [76] uses a circle criterion-like argument to guarantee
pre-input-to-state stability (pre-ISS). Pre-ISS is stronger condition than UBIBS, in fact
UBIBS is implied in pre-ISS [77]. The method requires £ to be given by the representa-
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tion in (2.4) with & and _# as shown in (2.11). Pre-ISS can then be guaranteed if
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Figure 2.9: Controller structure for circle-like stability criterion adapted from [74]

A different approach to stability was introduced in [10] and expanded in [8], and can be
utilized for some system described by (2.1), with .# given by (2.6) and n, = i,. This
method can be utilized also for systems with the architecture portrayed in Fig. 2.2. It
is necessary that the BLS is stable, with no pole-zero cancellations and that £ has the
structure of a CI, a PCI, a FORE, a SORE or a SOSRE'. The method relies on a frequency
domain condition to prove that the Hg-condition holds. Assuming C;(0) > 0 the condi-
tion is defined as

b4 T
(—§<01<T[)/\(—5<92<7[)/\(92—91<7’[), (2.22)

where . N

601 = min /A (w), 0> = max/A (w),

weR* weR*
with
T = |5 @)] _ [ReLprs(jo)Cs(jo) 0+ Ly s(j))
Ny (@) Re((1+ LY, s(jo)R(jw)) ’

*

being the so called nyquist stability vector (NSV), where Ly, ¢ is the complex conjugate
of Lprs. The condition can be computed using the measured FRF data of the BLS, thus
not requiring a parametric plant description or solving LMIs. Furthermore one could

argue that the distance between the resulting phase of N (w) and the bounds can give

I These systems are defined in Section 2.1.4
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a qualitative idea on the robustness of the system. However, to the best of the author’s
knowledge, this assessment of robustness was never studied in literature. Furthermore,
it should be noted that, in case 2 is a SORE, the method requires solving additional opti-
mization problems, making it more computationally demanding and complex. Itis clear
that this stability method poses strict constraints on the structure of . However, stud-
ies in recent years using controllers with architectures that satisfy these constraints have
shown promising results, especially in the field of motion control [8]. A third frequency
domain stability method valid for FORE systems described by (2.1) with .# given by (2.6)
and A, = 0is given in [37], [78]. Again this method allows to solve for the Hg condition
using frequency domain conditions. In fact, in case 2 satisfies the aforementioned con-
ditions, (2.21) can be instead computed as

Hg = R(jw)S(jw) + BT (jw). (2.23)

However, since this method requires to find a suitable S, it is difficult to verify (2.23)
holds. Moreover, the newer NSV method also allows to study the stability of FORE sys-
tems, making this method obsolete.

Overall, many different stability methods exist in literature. UBIBS stability of systems
described by (2.1) with .4 given by (2.6) can be guaranteed making use of the classi-
cal Hg-condition (2.21), as long as the BLS is stable. This method requires solving LMIs
that are usually easier to evaluate compared to other methods, but is rather conserva-
tive [51]. If ./ is instead described by (2.8) or (2.9) a passitivity based method must be
employed. These can also be utilized for unstable BLS. However, they are often not suit-
able for systems with inputs. Systems described by (2.4) offer different, less conservative
stability methods, which often also give a more robust #»-stability definition. In some
cases systems described by (2.1) can also be guaranteed %> -stability. However, only two
methods offer the desired characteristics of not requiring a parametric plant description,
not requiring solving LMIs and providing a qualitative assessment of robustness. Reset
systems described by (2.4), with resetting condition given by (2.11), offer the circle-like
stability condition to be utilized. However, the systems in question do not allow ana-
lytical derivation of HOSIDFs, making loopshaping not possible. Using the architecture
shown in Fig. 2.2, with # a CI, PCI, FORE, SORE or SOSRE, as defined in Section 2.1.4,
and with . given by (2.6), the NSV stability method can be used, although in case Z is
a SORE, the NSV method is more complex. Additionally, the qualitative assessment of
robustness that can be performed using this approach was never studied before. Never-
theless these reset elements allow the analytical derivation of HOSIDFs.

2.1.4. SUITABLE RESET CONTROLLERS

The previous two subsections demonstrated that of the vast amount of reset control
structures present in literature, only a fraction allows both the analytical derivation of
HOSIDFs and a suitable stability analysis. These two characteristics have however great
benefits in the controller design process and reset controllers which possess them should
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therefore be prioritized. For this reason, the following section will present controllers
present in literature that allow both. All reset elements mentioned in the following sec-
tion can fit within the architecture shown in Fig. 2.2.

TRADITIONAL CI

The CI shown in (2.7) is the most basic reset element. When it was first introduced in
1958 in [5], it was assumed that A, = 0. However, since then it has been generalized to
allow A, =, just like all other control structures presented subsequently [9]. As shown
from the FRF of the SIDF in Fig. 2.3, a CI reduces the phase lag of a linear integrator from
—90° to = —38°, while only slightly affecting the magnitude response. However, in case
the BLS leads to a steady-state error, a CI will introduce a limit-cycle behaviour. This due
to the fact that resetting causes the stored energy from the integral action, required to
avoid a steady-state error, to be eliminated [9].

50
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Figure 2.10: FRF of the SIDF and HOSIDFs of a typical CI.

PCI
A CI can be transformed into a PCI if a zero is introduced in the BLS at the corner fre-
quency w,. The state-space matrices then become

Ar=0,B,=w;,Cr=1,D,=1,A,=7. (2.24)

As shown in Fig. 2.11, the system behaves as a CI at w << w, and as a static gain at w >>
or. Due to the same low frequency response, the issues affecting the CI's steady-state
error are also present in the PCI.
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Figure 2.11: FRF of the SIDF and HOSIDFs of a PCI with w, = 27 rad/s.

PI+CI

The PI+CI was introduced in [79] as a simple-to-tune alternative to the traditional PCI
that would overcome its limit cycle issues. Its structure is shown in Fig. 2.12, where £ is
a traditional CI controller, k, € R is the proportional gain, 7; € R is the integral time and
pr €[0,1] is the reset ratio. Is is noticeable that the PI+CI adds a linear PI controller in
parallel to a standard CI controller. The reset ratio imposes the relative weight of the CI
over the PI. When p, = 0, the controller is a PI and when p, = 1, the controller is a PCI
[80]. The state-space matrices can be obtained as

0 0 1 1 0
Ar—[o OrBr_ lvAp_O 0];
(2.25)
kp
Cr:?[l_pr pr],Dr:kP-
i

Although in [81] and [36] it is stated that for the PI+CI the Hg-condition cannot be uti-
lized, due to the fact that the resulting A is not Hurwitz, this is given by the fact that the
description in (2.25) is a non-minimal realization of the system. By simply assuming the
BLS to be a first order system and hence utilizing only the first state of the PI+CI sys-
tem, stability can be guaranteed through the Hg-condition, in the same way as for a PCL.
In fact, in [81] it is stated that for the PI+CI system, although the original Hg-condition
cannot be used, stability of the BLS and satisfaction of the Hg-condition can be used to
guarantee stability for practical purposes. This allows to similarly also use the NSV sta-
bility method.

The PI+CI tuning rules suggest to tune a BLS with high overshoot, which will be reduced
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Figure 2.12: Block diagram representation of PI+CI controller.

by the PCI. The parallel PCI is therefore used as an alternative to the derivative action,
since it reduces phase lag, however without sacrificing response speed. This allows to
design controllers with higher bandwidths than achievable through an LTI PI controller.
Nevertheless, the phase lag of a PI+CI will always be greater than that of a standard PCI as
long as p, > 0. This signifies there is a trade-off between between the nonlinearity of the
PCI and the linear integral action, which makes this controller architecture suboptimal.
This is best illustrated in Fig. 2.13.
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Figure 2.13: FRF of the SIDF of a PI+CI with 7; = 1, kp = 1 and various values of p,

FORE

Resetting low-pass filters of order n, = 1 are known as first order reset elements (FOREs).
After they were first introduced in [82], they have been studied thoroughly in literature.
In [9] a FORE with partial reset was classified as a generalized FORE (GFORE). It should
be noticed that the term GFORE was utilized as well in [83] and [84] to describe two
different first order reset controller, both described by (2.4). The state-space matrices of
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the FORE from [85] are given as
Ar=-wr, Br=w;,C=1,D,=0,A,=7. (2.26)

FOREs are the building blocks of many reset controllers and can hence be utilized in
different applications. On their own they have a low-pass filter behaviour, as portrayed
in Fig. 2.14, acting as a static gain of 1 at low frequencies, and as a CI at frequencies

greater than w;.
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Figure 2.14: FRF of the SIDF and HOSIDFs of a FORE with w, =27 rad/s and Ap =0

SORE

Resetting low pass filters of order n, = 2 are known as second order reset elements (SOREs).
This definition was first used in [86], but as for the FORE, different structures have been
associated with the given name. Within this report, the term SORE will be used to de-
scribe a reset controller with state-space matrices

_|0 _fr1 o
=l =[5 1)

0 1

Ar= [—wf —2bw,

(2.27)
Cr=[1 0],D,=0,

As can be seen from Fig. 2.15, a SORE has a similar behaviour to a linear second order
low pass filter, however the phase does not go below 52° for y; = y, = 0. With b, a new
tuning parameter is introduces, which regulates the damping of the system. The closer
to 0, the more the system will be underdamped, thus showing a faster roll-off in the
phase. However, contrarily to linear LTT low pass filters, the damping barely affects the
magnitude response, which does not show major peaks even in case of very low values
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of b. This can be advantageous in terms of control, since resonance peaks in the mag-
nitude after the bandwidth frequency can lower the precision in closed-loop. This leads
to a less strict trade-off between phase lag in frequencies lower than o, and increase in
magnitude compared to LTI filters making undamped reset filters more attractive.
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Figure 2.15: Frequency response function of the SIDF of a SORE with w, = 27 rad/s, Ap = 02x2 and different
values of b.

SOSRE

A SORE which has only one resetting state is defined as a second order single resetting el-
ement (SOSRE). Its state-space matrices are equal to (2.27), however with A, = diag(y, 1)
instead. The resulting HOSIDF show that the magnitude behaviour of the first harmonic
remains almost unchanged, whereas the third harmonic, and thus all higher order har-
monics, have a greater roll-off slope as well as a notch filter behaviour at w, (Fig. 2.16).

RESET PID
The FORE has been utilized in [85] to construct a reset version of the classic PID con-
troller. This is done by replacing
S
[1+5)
Wy

with a FORE in (1.9). As depicted in Fig. 2.17, a ‘reset PID’ can achieve the same low
frequency behaviour as an LTI PID, while also increasing the bandwidth without loss in
phase margin.

Nevertheless, this element has become obsolete since another reset controller based on
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Figure 2.17: Frequency response function of the SIDF of a ‘reset PID’ and an LTI PID with the same low fre-
quency behaviour.

a resetting low pass filter, the CgLp, has made its appearance in literature. Combined
with a PID, a CgLp allows for easier tuning and more design freedom, while having the
same working principle of reducing the phase lag introduced by the integral action of a
PID.
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CGLp

The CgLp reset element was developed only recently in [7], although a similar approach
was already introduced in [87] and [88]. However, due to its characteristics it is highly
suited for motion systems and has thus appeared in literature various times since [13],
[89], [90], [91]. A CgLp can in fact create a band of frequencies in which phase lead occurs
with only a minimal effect on the magnitude. Its characteristic makes it thus multipur-
pose, as the phase lead can be utilized in different ways. Depending on the desired effect,
a CgLp can be for example used to increase the bandwidth and low frequency gain, while
keeping the same phase margin as a linear controller, or to increase the phase margin
and decrease the slope at low frequencies while keeping the same bandwidth as a linear
controller. It consists of a FORE or a SORE in series with a first order lead filter F; or a
second order skewed-notch filter F;, respectively, where the two filters are defined as

s 524 2sbp
F_wd+1 _(wd) + oy +1 508
1= i+l, sn — 5 \2 25 1 ’ ( )
w; (w_[) +w_z+

with wg € R being the corner frequency at which phase lead is provided and w; > w; € R
the corner frequency at which phase lag is provided by the linear filters and br € R a pa-
rameter related to the value of the anti-resonance peak at w;. One can quickly assess
that in case A, = 1 and the FORE/SORE acts fully linear, choosing w, = w; and w; >> wg
would essentially cancel out the low filter behaviour of the FORE/SORE and act as a con-
stant gain of 1 with 0° phase until = w;. One can thus appreciate that if the FORE/SORE
has A, < 1, it’s phase lag decreases while the magnitude behaviour only slightly changes,
thus providing a phase lead, while the gain is still 1, when in series with F;/F;,. Never-
theless, the magnitude behaviour does slightly change, especially it’s corner frequency.
Therefore, the FORE/SORE is usually adjusted such that w, = w;/a, where @ = 1 € R
is a tuning parameter used to calibrate the constant gain region of the CgLp [13] to ac-
count for the change in corner frequency. Figure 2.18 shows that CgLps create a region of
phase lead in the range (w4, w;] nearly without affecting the gain. In case of SORE CgLp,
the phase advantage is significantly greater than the one obtained by a FORE CgLp.

As stated before, only using the SIDFs to approximate the FRF is often unprecise. This
becomes evident when the third harmonic of a FORE and SORE CgLp are plotted as well
(Fig. 2.18). It can be noticed that the FORE has a much more satisfactory behaviour, with
higher order harmonics having a lower magnitude than the first harmonic. This is not
the case for the SORE CgLp, where in the range (w4, /], the third harmonic reaches a
greater magnitude compared to the first harmonic. This could lead to different issues
in closed-loop and must thus be avoided. In [92] a CgLp constructed using a SOSRE
was demonstrated to achieve only a slightly worse magnitude and phase behaviour as
a FORE CgLp, while also producing smaller HOSIDFs, as portrayed in Fig. 2.19. In fact,
a SOSRE CgLp provides a tunable notch filter behaviour in the higher order harmonics.
By tuning a, it is possible to position the notch filter at the desired frequency, e.g. at a
frequency that would assure a resonance of the plant is not excited by higher order har-
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Figure 2.18: FRF of the SIDF and 374 HOSIDF of a FORE Cglp with a = 1.2, wz = 0.1 rad/s, w; = 10 rad/s,
Ap=0 and of a SORE CgLp with a = 1.2, §=0.5, wz = 0.1 rad/s, w; = 10 rad/s and Ap =02x2.

monics.

It was shown in [93], that the sequence of the linear filters and reset controller affects
the prevalence of higher order harmonics. This can be explained from (2.17). The mag-
nitude of the n*" HOSIDF is determined by |C; (jw)| and |C, (jnw)|. The LTI filters F; and
Fs,, have both a positive magnitude at frequencies w > w,4. To assure the HOSIDFs are
low in this range it is therefore advantageous to place them after 2. This is however not
necessarily true if a lag element is used in combination with the CgLp. In that case, the
combination that minimises the HOSIDF magnitude is dependent on the FRF charac-
teristics of the lag element. For example, in [93] the CgLp is used in combination with an
LTI PI. The resultant best performing sequence of a FORE CgLp-PI was achieved when 22
was preceded by F; and the PI was placed last. However, it is clear that a lead will amplify
noise in the range w > w,4. Noise can affect reset systems even more than their LTI coun-
terparts, since it can influence the resetting instances. In [93] and [91] it was discovered
that when the signal-to-noise ratio (SNR) overcame 1%, the suggested sequence would
perform worse than when F; followed Z.

CONTINUOUS RESET ARCHITECTURE

One of the potential implementation issues that is introduced by reset control, is given
by the jumps in the output, given by discontinuity of the signal. These jumps in u de-
mand the actuator to have an infinite rate of change of current, which is physically not
possible and can thus lead to saturation. Using the continuous reset (CR) architecture,
it was proven that the output is instead continuous, overcoming this limitation, while
virtually not affecting the SIDF [11]. This is achieved by choosing C; and C, in Fig. 2.2 as



42 2. LITERATURE REVIEW

0 e e~ T
—~ ! P RN
/m [ |
S I !

) |
8201 SN I 1
£ S |
= . W —— 1! harmonic of FORE CgLp !
g P n | ~
ko . w |- -3 harmonic of FORE CglLp | N
= 4057 i ——1°! harmonic of SOSRE CgLp| 1 AN 1
': - - 3" harmonic of SOSRE CgLp : S
102 wi 107 wr 107

Frequency (Hz)

|
102 wa 10° w 102
Frequency (Hz)

Figure 2.19: FRF of the SIDF and 374 HOSIDF of a FORE Cglp with @ = 1.2, wy = 0.1 rad/s, w; = 10 rad/s,
Ap =0and of a SOSRE Cglpwith@=1.2, $=0.5, wg =0.1rad/s, w; = 10 rad/s and Ap = diag(0,1).

F;and
1
Ff = (2.29)

S )
w_d+l

respectively. The SIDF is not affected up to w; since the contribution of the zero in F;
is cancelled out by the pole in F;. On the other hand, F; acts as a low pass filter for
the HOSIDFs, as can be verified from (2.17). The smoothing effect is however not given
only by the lowered HOSIDFs. The lead F; anticipates the reset instances which in closed
loop are now not only based on the error but on a linear combination between the error
and it’s derivative. The change in reset instances signifies that the transient behaviour
changes as well as the steady-state one. Using the CR architecture it was shown that it is
possible to lower overshoot, while not affecting settling time [11].

SHAPING FILTERS

The effect of shaping filters, defined by C; in Fig. 2.2, on the performance of reset sys-
tems has not been studied extensively, as they have only been introduced recently [8]. In
[12] it was shown how using a shaping filter it is possible to band-pass the nonlinearity
of a reset controller with n, = 1, i.e. the reset controller can be tuned such that it acts
linear in a certain range of frequencies. This can be achieved by assuring C; introduces
a certain phase lag —ZCs(w) = ¢(w) between e, and é,. The necessary value of ¢(w) re-
quired to assure a fully liner behaviour is dependent, apart from w, on the parameters
of Z. These can be found by setting H,(jw) = 0 for a certain w for n = 2 in (2.14). In
fact, when the HOSIDFs are 0, the system behaves like the BLS. This however means that
the gain advantage and the phase advantage given by reset control are also lost. The
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variable ¢ affects the SIDF as well as the HOSIDFs, potentially increasing the phase ad-
vantage provided by a reset controller. For this reason, they have been utilized to shape
the phase of a CgLp in order to approximate complex-order controllers [56], something
that was already performed for a reset system containing a CgLp witout a shaping filter
[94]. Although approximating complex-order controllers is outside the scope of this the-
sis, it can be appreciated that C introduces a new design DoF which could potentially
result beneficial and should thus be explored accordingly.

In this section the basics of reset control were explored. After looking at the structure,
predictive performance and stability analysis methods for reset controllers, the conclu-
sion was drawn that only a restricted number of systems allow both analytical descrip-
tion of the HOSIDFs and a suitable stability analysis method that does not require solv-
ing complex LMIs and provides a qualitative assessment of robustness. Nevertheless,
different configurations of both linear and reset elements provide various design DoE
Some of these configurations were presented in this section. Using a CI or a PCI without
alinear integrator could introduce a steady-state error and can thus not be deemed reli-
able enough. The PI+CI solution solves this issue at the expense of the nonlinearity that
makes reset systems attractive in the first place. For this reason, it is more beneficial to
utilize CI, PCI, FORE, SORE and SOSRE based systems used to in combination with linear
controllers that include one integrator. Since the overarching goal is to make the imple-
mentation of reset controllers as straightforward as possible, it is beneficial for these re-
set elements to be utilized to improve the performance of a PID-like LTI controller, as the
one already utilized by ASM PT. Given the phase lag introduced in the plant by the time
delay, using a CI would require a very strong derivative action to achieve PM = 30° with
a PID-like controller, reducing disturbance suppression in the mid-frequency range. In-
stead, a PCI-PID can be utilized for this purpose, taking advantage of the increased track-
ing performance and error suppression at low frequencies. A CgLp-PID controller will
also be designed. SORE-CgLp controllers require a more computationally demanding
stability proof and result in greater HOSIDFs, making them disadvantageous compared
to FORE-CgLp and SOSRE-CgLp controllers. Out of the two, FORE systems are far more
established in literature and offer a simpler, lower order, controller structure. Moreover,
the HOSIDFs notch behaviour of the SOSRE-CgLp controllers can be achieved with any
reset element utilizing a shaping filter, which actually allows a more tunable trade-off
between the magnitude of HOSIDFs and the gain and phase advantage from reset [12].
Therefore, a FORE-CgLp system will prioritized, while also studying the effect of linear
controllers C; and C, and Cs.
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2.2. PASTIMPLEMENTATION OF RESET CONTROL ON THE AB383
WIRE BONDER

In [4] the implementation of two different reset controllers to lower the RMS error in the
tracking and settling/steady-state region of the AB383 wire bonder, was studied. The re-
sults were only partially successful, as some open issues prevented the controllers from
being adopted on the machine and replace their linear counterpart. In order to avoid the
same issues from occurring again, in this section the implementation of reset control in
[4] will be studied.

Figure 2.9 shows the feedback control system employed in [4] to regulate the motion
of the AB383 wire bonder’s X-stage, where Cyj, was chosen as a lead-lag compensator,
tuned using some rules of thumb stated in [4]. The first controller that was utilized as
Z was a CI, given by the representation (2.1) with state space matrices A, =0, B, = o,
C;=0,D, =0, Ay =0 and .« given by (2.6). The equivalent series representation of the
system is thus a PID controller as given by (1.9) whose integral action (I) is replaced by
the CI. The linear part of the controller, as well as the corner frequency of the CI, was
kept identical to the LTI PID controller. The reset controller achieved a substantial RMS
error reduction in both the tracking and settling/steady-state region, even though the
CI suffers from the limit-cycle behaviour that prevents it from being able to achieve a
zero steady-state error Section 2.1.4. The HOSIDFs of the control systems were obtained
using (2.14). The Hﬁ-condition was then computed using (2.21). However, no feasible
solution to the LMIs could be found. In order to be able to utilize a less conservative sta-
bility method, the same controller was also described using the representation in (2.4),
with ¢ and & as given by (2.10). Based on the new representation of the CI, the stability
method from [69] was successfully utilized to guarantee £»-stability. The time domain
response of the two configurations was proven to be the same, thus it was argued that
intuitively the same HOSIDFs can be utilized. This statement was however not proven
and can thus not be considered generalizable for other reset structures. Furthermore, no
closed-loop frequency domain performance analysis method was utilized to investigate
the control system. As mentioned in Section 2.1.3, the utilized stability analysis method
is also based on solving LMI’s and does not provide any indication on robustness. In fact,
no suitable robustness analysis method could be found. Moreover, the stability result re-
lied on the identified plant model, which contains parametric uncertainty [4].

To allow the use of a frequency domain stability method instead, a sector-bounded CI
was designed next. The sets & and _# were defined as given by (2.11), with a the great-
est possible value such that the system is still stable and allowing A, to be a nonzero
value. The circle criterion-like stability method from [74] could thus be employed, al-
lowing to analyse stability without necessitating a parametric plant description. More-
over, the graphical result from the circle criterion-like stability analysis allowed to give
a qualitative measure of robustness, which proved the reset controller would be reli-
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able enough for implementation. Using this method, stability could be guaranteed for a
higher bandwidth system, which could achieve an even greater reduction in RMS errors.
Nevertheless, it was discovered that a lower a, decreases the performance, due to the
introduction of more severe premature resets [4]. Therefore, this type of sector-bounded
systems are not ideal, as the higher a, therefore the greater %, the greater the increase in
performance. Additionally, an analytical method to derive the HOSIDF is not available
for this type of system. This makes it impossible to use loopshaping to effectively tune
the controller.

The most critical limitations of the reset controllers explored in [4] can be summarized
as follows:

* The schemes are based on replacing the integral action of the controller with a CI,
thus not allowing to achieve a zero steady-state error.

* Neither scheme allows both an open-loop frequency domain predictive perfor-
mance analysis and a frequency domain stability analysis method.

* No closed-loop predictive performance analysis method was utilized, thus not al-
lowing loopshaping techniques to be employed.



CGLP-PID

The objective of a CgLp is to provide a phase advantage at w gy, while keeping the SIDF’s
gain close to 1 up to the low-pass filter behaviour. It is thus necessary to account for the
shift in corner frequency given by lowering y < 1, to assure the FORE and the numerator
of F; cancel out. It is therefore often suggested to tune w; = aw,, where a > 1 is the ratio
between the corner frequency of the FORE BLS and the FORE itself [7]. However, this
method only applies if w; >> w,. The parameter w, can instead be accounted for when
finding w, through the optimization problem

IP:{ e ‘%?'HIF”_JPJ?WWIF” 3.1

subj. to  Z(H;(wpw)F(wpw)) =04,

where 6, € R* is the desired phase advantage. Since the problem is convex, given a cer-
tain wg, w; and v, there exist only one w, which minimizes the change in gain of the
CgLp until the low-pass filter behaviour, while providing the desired amount of phase
advantage at wpw .

For a CgLp, the HOSIDFs are low at low frequencies and increase up to shortly after w,.
The CgLp has therefore a high degree of nonlinearity in the range w > w,. It is hence
desired to keep w, and thus w, as high as possible. However, increasing w,; will lead to a
smaller phase advantage at wpw . To show this, three CgLp elements were tuned. They all
have the same w; and y = 0, but each has a different w,. The parameter w, was derived
by solving the optimization problem (3.1). The SIDF and third HOSIDF of three CgLp
elements can be seen in Fig. 3.1, which also shows how the phase difference between
F; and the corresponding CgLp SIDF at wgy is = 30° for all CgLp. In fact, it was found
empirically that when using (3.1) to find w,, this relationship holds true independently
on the parameters wy and w;.

46
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In [13] it was discovered that the combination of w,; and y that results in the lowest
HOSIDFs at low frequencies maximises low frequency disturbance suppression. In gen-
eral, it is usually proposed to choose w; = [5wpw, 10wpw] [13], [7]. Based on the findings
in [13], [7] and the optimization problem (3.1), a tuning procedure for a CgLp to be used
in combination with a low phase margin LTI PID controller is proposed. A CgLp-PID
reset controller is then constructed by selecting C; =1, C; = 1, # as a FORE and C, in-
cluding both the low phase margin LTI PID controller and F;. This order was selected to
assure resetting occurs when the error crosses the zero-line (i.e. é, = e). Subsequently
the proposed tuning procedure is shown.

Tuning Procedure 3.0.1 (CgLp)

1. Tune an LTI controller such that the system has the desired open-loop gain with
cross-over frequency w gy and phase margin PM < 30°.

2. Choosef,;=30°—PM,y=0andw;=7wpw as an initial guess.

3. Find the parameter of w4 with which ZF;(wpw) = 04+ 30° to assure that with the
CgLp the SIDF of system has a phase margin of 30° at wpw .

4. Solve the optimization problem (3.1), obtaining w,.

5. In case the peak of the pseudosensitivity magnitude can be increased further (i.e. it is
lower than the acceptable level, e.g. 6 dB), the combination of y and w, that results
in the lowest HOSIDFs at low frequencies must be found empirically: Decrease/in-
crease’y while simultaneously increasing/decreasing w,, making sure the open-loop
HOSIDFs at low frequencies have decreased. Return to step 4.

With this tuning procedure a CgLp which lowers the magnitude peak of pseudosensitiv-
ity compared to the peak of sensitivity of the same system controlled solely by the LTI
PID controller can be found. The procedure is iterative, as no analytical relationship to
determine the magnitude peak of pseudosensitivity was ever derived. Two CgLp con-
trollers, CgLp;o and CgLp,5 providing 8,; = 10° and 6, = 15° respectively are designed
using the above procedure for a plant resembling a highly damped non-collocated 2-
DoF MSD system

ds+k
myma st + d(my + my) s3 + k(my + my) s’

Gq (3.2)
with parameters given in Table 3.1. Although difficult to see due to the high damping, G,
has a resonance at 1 kHz. This structure approximates many industrial stages, includ-
ing the ASMPT wire bonder (Fig. 1.9). An LTI controller with the structure shown in (1.9),
and with parameters also given in Table 3.1 was tuned for G, to achieve wpy = 200 Hz. It
has a weak D-action that does not provide enough phase to keep Mg < 6 dB, thus making
it not implementable by ASMPT Section 1.3. Figure 3.2 shows that the tuned CgLp-PID
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Figure 3.1: FRF of the SIDE 374 HOSIDF and corresponding F; of a FORE CgLp for different w; with w; result-
ing from (3.1), ws = 5wpw and y = 0. The gain of the CgLp was adjusted for w gy = 1 Hz.

Table 3.1: Parameters of G4, PID4, CgLp1o and CgLp;s5.

G m my k d
@ 100 100 1.97 x10° | 60.6 x 10%
PID kp Wy wp wT
@ [1.68x10° | 20Hz | 11L.11Hz | 360 Hz

W wg Wy Y

CelP10 52377, (198 1z | 2000 Hz 0
W wg Wy %

C8LP1s 553811, [ 163 Hz | 2000 [z 0

controllers provide 10° and 15° respectively with only negligible effects on the gain of the
SIDE

The resultants pseudosensitivities computed through the approximate method are por-
trayed in Fig. 3.3. The effect of the CgLp is apparent from the lower magnitude peak of
the resultant pseudosensitivities. The magnitude peak of the LTI system without CgLp
is of 7.4 dB. Although not equivalent in terms of robustness, it was deemed necessary to
set an equivalent constraint to Mg < 6 dB on the peak of the pseudosensitivity to prevent
large amplification of the reference. When implementing the CgLp;¢, the peak decreases
to 4.2 dB, while with the CgLpj¢ it decreases to 3.7 dB. This brings the control system
within the 6 dB peak of pseudosensitivity requirement by an extensive margin, allowing
for the phase margin of the LTI part of the system to be reduced further. A slight increase
of the magnitude in the range [40, 100] Hz compared to the LTI system shows that al-
though low, HOSIDFs have already an effect on performance.



49 3. CGLP-PID

——CgLpy - SIDF
- - -CgLpyp - 3" HOSIDF
——CgLpy;s - SIDF
- - .CgLpis - 3" HOSIDF
——No CgLp

wﬁ
S
T

®)
=]
T

=]
T

[
S
i

Magnitude (dB)

B
S
T

60 - RS

Phase (deg)
(=]
T
o
L

|
10t 10% 10°
Frequency (Hz)
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Figure 3.3: Pseudosensitivities magnitude computed through the approximate method of the closed-loop sys-
tem with G, as the plant, PID, as the LTI controller and without CgLp, with CgLp1¢ and with CgLp15 respec-
tively.

To the best of the author’s knowledge, in literature the CgLp controllers were designed
only for particular types of systems with either highly damped resonance peaks, as the
highly damped 2 DoF MSD system, or resonances at frequencies much greater or lower
than the bandwidth frequency. In reality however, industrial stages, including the one of
the ASMPT wire bonder, are often not as damped (Fig. 1.9). The effect of these high fre-
quency resonances on stability will be studied next. A second, less damped plant G, was
constructed, with the same structure as G,, but with d = 4.6 x 10*. In order to suppress
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the resonance of G, a notch filter acting at 1 kHz, given as

253x107%s? +1.59x 1035 +1
©2.53x107%852+3.56x1073s+1’

' (3.3)
was also tuned. The phase of the NSV as well as 8, — 6 for the control system with G4, G,
and G, Fy,, as the plant respectively, is portrayed in Fig. 3.4. While for the system with G,
the NSV phase and 6, — 6; for both CgLp are within the bounds, the opposite is true for
the system with Gy, due to the spike of the NSV phase at the resonance frequency. The
Hpg -condition is hence not satisfied and stability cannot be guaranteed (Section 2.1.3). In
case of the system with G, F,, the bounds are not overcome for 6, — 6; when CgLpy is
utilized, while the opposite is true when CgLpi5 is used. This is given by the higher value
of w, for the system employing CgLp;s5, leading to higher HOSIDFs at the resonance fre-
quency. An even stronger notch filter would be required to satisfy the Hg-condition. On
the other hand, although the system employing CgLpo does satisfy the Hg-condition, it
is not beneficial to implement it. Due to the relative proximity between w gy and the res-
onance frequency, the notch filter has an effect on the phase margin, reducing it by more
than —10°. To guarantee stability it is hence required to use a notch filter that lowers the
phase margin more than the respective CgLp provides phase advantage. The whole pur-
pose of increasing the phase margin is therefore negated by the notch filter, causing the
CgLp to be ineffective.
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Figure 3.4: NSV plots of the closed-loop system with plant G, (top), G}, (middle), and G}, Fp,; (bottom), PID4
as the LTI controller and CgLp1¢ or CgLp15 respectively.

By definition a CgLp element has high HOSIDFs at high frequencies and low HOSIDFs
at low frequencies. If a motion system has a resonance peak at high frequency, the reso-
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nance is excited by the HOSIDFs, which could lead to complications when proving sta-
bility. The lower w,, the higher the HOSIDFs, thus the greater the NSV phase peak caused
by the resonance. When the resonance peak is too large, it is not possible to simply in-
crease wy, a notch filter must be implemented as well. Such a filter provides however also
a phase lag, lowering the phase margin, especially if wpyy is relatively close to the reso-
nance frequency. In order to make the CgLp have any beneficial effect it is necessary for
it to provide a greater phase advantage than the phase lag introduced by the notch filter.
This is however not always possible. Although y also affects the presence of HOSIDFs,
the NSV phase is independent from it (Section 2.1.3). In some instances it might hence
be possible to lower y in order to obtain enough phase advantage without affecting sta-
bility. However, decreasing y < 0 exponentially increases HOSIDFs, thus leading to an
overall worse performance [13]. In case of high frequency resonance peaks of high am-
plitude or relatively close to wpw, a CgLp element could be unsuitable. This appeared
to be the case for the ASMPT wire bonder’s motion stage, for which no beneficial CgLp
could be designed.



PCI-PID

The following chapter will iinclude the most significant findings of this work in a stan-
dalone paper format, in which no confidential information will be disclosed. This will
allow the distribution of the findings. The introductory sections will include background
theory already presented in Section 1.2, Section 1.3 and Section 2.1.
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Increasing the tracking performance of an industrial
motion stage with reset control

Daniel Caporale*

Abstract—Promising findings in recent literature suggest that
with reset control, a nonlinear control technique, it is possible
to overcome inherent limitations of Linear Time-Invariant (LTI)
control. However, current literature on reset controllers aimed
for industrial applications, especially regarding precision motion
control, is lacking. In this work the Proportional Clegg Integrator
(PCI), a resetting PI element, is studied with the aim of increasing
the tracking performance of an industrial motion stage. In
fact a PCI has an increased open-loop gain and decreased
phase lag compared to an equivalent PI el t. Two freq y
domain methods, namely open-loop Higher Order Sinusoidal
Input Describing Functions (HOSIDFs) and pseudosensitivities
computed through analytically derived (approximate) closed-
loop HOSIDFs, were effectively applied to predict steady-state
performance. This allowed the use of loopshaping techniques
similar to LTI control for the design of reset controllers, allowing
to present frequency-based tuning guidelines for all proposed
structures. Experimental results, validated on an ASM Pacific
Technology wire bonding machine, confirmed that disturbances
can be suppressed more effectively by adopting a PCI-PID
controller compared to a LTI PI-PID. However, being nonlinear,
the PCI introduces unwanted higher order harmonics that can
reduce performance. The series Continuous Reset (CR) architec-
ture was recently introduced in literature to lower the higher
order harmonics, thus increasing performance. Experimental
results show that although capable of suppressing higher order
harmonics, different issues can prevent an optimal performance
when implemented digitally. A novel parallel CR architecture,
which overcomes the issues of the series CR architecture, is thus
presented. With this structure, a significant decrease in the root
mean square of the settling error compared to an equivalent LTI
controller could be achieved.

I. INTRODUCTION

Linear Time-Invariant (LTI) control is indisputably the
most popular choice for motion control strategies, with the
overwhelming majority of industry relying on it [1]. The
success of LTI control can be attributed to the simplicity it
offers regarding the controller design process. It allows for the
use of classical control theory, which offers frequency domain
tools to predict performance, as well as determine stability
and robustness of feedback systems. Often these tools are
utilized in industry to shape the open- and closed-loop transfer
functions to obtain the desired controller characteristics, what
is often referred to as loopshaping [2]. Nevertheless, LTI
control suffers from inherent limitations, such as the ‘waterbed
effect’ [3] and ‘Bode’s gain-phase relationship’ [4]. Therefore,
employing such controllers creates a trade-off between e.g.,
rise time, tracking precision, noise suppression and robustness.

*Daniel Caporale is a MSc student in Mechanical Engineering at the Faculty
of Mechanical, Maritime and Materials Engineering (3mE), Delft University
of Technology.

Improving one characteristic requires to worsen at least one
of the other characteristics as a consequence. For this reason,
for the last few decades nonlinear control has been given
great consideration in literature. Nevertheless, adoption in
industry is still scarce [1]. This is given by the fact that for
most techniques it is not possible to get a reliable indication
on the performance or stability/robustness of the system in
the frequency domain, thus preventing the use of loopshaping
techniques.

Reset control appeared for the first time in literature
more than 60 years ago [5]. However, it is only four
decades later that the field has been given enough attention
to be considered a potentially reliable alternative to linear
control [6]. Recent literature demonstrated that frequency
domain predictive performance and stability analysis methods
exist for some particular reset control structures [7]. This
makes it is possible to design and analyze these particular
nonlinear controllers in a similar way as linear controllers,
while overcoming the inherent limitations of their linear
counterparts. The majority of literature works are focused
however on the ‘Constant in gain-lead in phase’ (CgLp)
element [8]. This structure has high versatility, as it can be
used in combination with any LTI controller, increasing its
robustness without loss in performance. However, being a
nonlinear technique, reset controllers introduce unwanted
higher order harmonic in the response. Recently, it was proven
that the performance of a CgLp element can be potentially
further improved when used in a series Continuous Reset
(CR) structure, capable of reducing the nonlinearity of the
reset element over broad frequency band [9].

However, literature on synthesis and implementation of
reset controllers in industrial applications is lacking. The
potential issues of CR in a digital implementation were for
example never studied. Additionally, it is known that noise
can affect the performance of a CgLp [10], however its effects
on the CR architecture are also still unknown. Furthermore, a
significant drawback affects the CgLp. When used to control
plants that have resonance peaks at frequencies higher than
the bandwidth, it is very difficult to guarantee their stability
[11]. This is particularly significant in industry, where
many motion stages have the structure of a non-collocated
mass-spring-damper system with high frequency resonances.

A different structure, known as the Proportional Clegg
Integrator (PCI) [12] allows a larger low frequency open-loop
gain compared to an equivalent LTI Proportional integrator



(PI) system, for the same phase margin. This leads to
increased disturbance suppression when paired with an LTI
PID, thus potentially increasing the tracking performance
of the system. Although having a simpler structure than the
CgLp, the PCI has been studied in literature for such purpose
only once. In [13], a PCI-PID system was compared to a
PI-PID system for reference tracking, with the former one
not being able to outperform its linear counterpart. However,
since then new predictive performance analysis tools were
developed, as well as the aforementioned CR architecture,
allowing for new design possibilities.

The aim of this paper is thus to study the viability of
PCI-PID controller, within the CR framework, for increasing
the tracking performance of an industrial motion stage.
State-of-the-art frequency domain analysis tools are used
to analyze the controllers. Tuning guidelines based on
loopshaping principles are proposed for a simple PCI-PID, as
well as a series CR PCI-PID and a novel parallel CR PCI-PID
structure. Furthermore, it is made sure that the controllers
are easily implementable digitally. The findings are validated
experimentally on the motion stage of an industrial wire
bonder, a machine which creates interconnections between
chips and their packaging.

The next section (Section II) presents the ASMPT wire
bonder, used as the experimental setup. The following section
(Section III) includes the necessary background theory in
terms of reset control. In the subsequent section (Section IV)
the PCI-PID structure will be analysed using methods
presented in Section III. Relevant tuning guidelines are also
proposed. In Section V the advantages and drawbacks of the
series CR architecture are presented. A novel parallel CR
structure, capable of overcoming the drawbacks of the series
CR architecture, is presented in Section VI, along with tuning
guidelines. In Section VII, the reset controller is implemented
digitally on the wire bonder’s stage and experimental results
are shown. Finally, the relevant contributions and suggestions
for future work are given in Section VIIL.

II. WIRE BONDER MODEL

To experimentally validate the results obtained in this work,
a wire-bonding machine (Fig. 1) produced by ASM Pacific
Technology (ASMPT) is utilized. A wire bonder is a complex
machine with multiple functionalities, however for control
purposes the interest lies solely in its motion platform. The
wire bonder has in fact a three degrees of freedom (DoF)
motion platform, that allows its end-effector to translate in
every translational direction. The motion stage is subdivided
into an X-, a Y- and a Z-stage. The former two provide the
respective translations guided by linear bearings, whereas the
Z-stage utilizes a pivot mechanism. The three stages suffer
from cross-coupling, high frequency dynamics and a transport
time delay [14]. This is illustrated in Fig. 2, which shows the
identified FRF between the current required from the actuators
of the X- and Y-stage respectively, and the X-stage encoder
position. Due to confidentiality, the X-axis has been scaled by

Fig. 1: Picture of the wire bonder whose stage was utilized in this
work (reproduced with permission from [14]).

an arbitrary constant k. The dynamics of the stages is also
position-dependent, meaning the FRF plots differ based on
the end-effector position. Fig. 2 shows the FRF at the center
position, thus when all stages have no displacement.
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Fig. 2: Identified FRF between X-, Y- and Z-stages actuator current
and X-stage encoder position at the center position.

The motion stages DoF are controlled separately approxi-
mating the X-,Y- and Z-stage as independent SISO systems.
Currently a SISO LTI feedback and feedforward control sys-
tems is hence employed to regulate the motion of each of
the three stages. Although feedforward control is capable of
substantially reducing the transient error, it does not account
for the dynamics of the base frame that connects the stage to
the ground. The base frame resonance mode acts therefore as a
disturbance creating undesired oscillations in the settling phase
[15] that have to be suppressed by feedback control. Many
controllers utilized currently by ASMPT have a structure of a



PID controller, defined in terms of a transfer function as

Cpm(s):ji (1+%) <<1+i>/<1+£>)

P I D
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with kp € R and wy, wp, wr € RT in rad/s. PID controllers
are the most widespread option for feedback control. In order
to simplify the implementation of reset control it is thus
beneficial to design reset controllers that can be utilized in
combination with PID controllers, increasing their settling
performance.

III. PRELIMINARIES

Over the years the field of reset control has developed sig-
nificantly. Not only in terms of applications [16], but nowadays
there also exist many different structures of reset controllers.
However, frequency domain tools for predictive performance
and stability analysis that allow loopshaping techniques to be
employed have been developed only for a certain class of reset
controllers. This paper will only address these.

A. Definition of reset element

In this paper the definition from [17], given as
&y = Apxr(t) + Brer(t), if  (x.(t),er(t)) ¢ M
R=1 z7(t) = A,z (1), if (x.(t),er(t) € M
ur(t) = Cra,(t) + Dyer(t),

@)
is used to describe a SISO reset system R. The first and last
lines of (2) describe a standard LTI system in state-space,
where A, € R*>"r B, € R*X1 (O, € R™" and D, € R
are the Base Linear System (BLS) matrices, x,(t) € R"*1 is
the reset element’s state vector, e,(t) € R is its input, u,(t) €
R is its output and ¢+ € RT indicates time. For the sake of
brevity, the dependency on ¢ will be omitted henceforward.
The LTI system description holds true whenever z, is not
part of the reset surface M, defined as

M:={e, =0N(I—-A,)x, #0}, 3

If, however, x, is part of M, the after-reset state at the
reset time instant z;} = limy,_;y02,(y) is determined by
the reset matrix A, = diag(y1,...,Yn,.), with || < 1. If
Ap = I" X" resets do not affect the system, which thus
behaves like its BLS, defined as

R:CT(SlfAr)ilBT‘FDM (C)]

with s € C being the Laplace variable.

B. Control system architecture

In [7] the closed-loop reset system architecture depicted in
Fig. 3 was presented. C';, Cy are single-input single-output
(SISO) LTI filters, G is the plant, r € R is the reference, u € R
is defined as the controller output, d € R is the disturbance,
n € R is the sensor noise, y € R is the true output, y* = y+n
is the measured output, e =  — y* is the error and v = v +d
is the plant input.

ﬁ?

Fig. 3: Expanded reset control feedback system architecture. Adapted
from [7].

The LTI part of the closed-loop system £ can be described by

[7] .
(=A(+ Be,e, + Bw

y=C¢
€r = Cerc + Derra

L= 5)

where ¢ € R"» is the vector of the states of all linear filters
and the plant and w = [r, d, n]L. The overall closed-loop
system can then be described by [7]

&= Ax+ Bw, if (r,e.)¢ M
R=<azt = pr, if (z,e,) €M 6)
y = Cu,

] g A B.C.,
*=l¢]r “7|B..C. A+B.,D.C.|

— 0”T><2 BTDE 0”'1‘)(1 o )
B:[ B }-‘r{BP Drf)e o x1 | C:[le ” C}v
- A e Xnp

4,= {Of Ix}

C. PCI

Different structures of R fit the definition in (2), however
this paper focuses on the PCI, with state-space matrices given
by

A= 0, B, = Wr Cr = 1, D, = 1, Ap =7 7

where w,, € RT in rad/s represents the element’s BLS corner
frequency.

D. Stability

A sufficient condition for Uniform Bounded-Input Bounded-
State (UBIBS) stability of a closed-loop reset system with a
stable BLS was introduced in [17] and expanded in [18] as
the Hg-condition (Theorem III.1).

Theorem IIl.1. [17], [18] A closed-loop reset system (6) with
a stable BLS is UBIBS stable if there exists a 0 = ol'>0,0€
R™*" and a f € R™ > such that

Hg(s) = Co(sI — A)™' By,

with
By = [In,xn,]» Co=/[e BC],

is strictly positive real (SPR), with (A, By) controllable, (A,
Cy) observable and

ATpA, —0<0.



Proving whether Theorem III.1 holds necessitates solving
complex Linear Matrix Inequalities (LMIs) using a paramet-
ric plant description. This would require approximating the
parameters of the motion stage, which is time consuming
and leads to model inaccuracies. Moreover, it is difficult to
relate the result from the LMIs to the parameters of the reset
element itself. Finally, it is complex to deduce information
on the robustness of the system from the solution of the
LMIs. In order to at least partially overcome these limitations,
an equivalent frequency domain condition, based on the so-
called Nyquist Stability Vector (NSV), can be utilized to
prove that the Hg-condition holds instead [7] if R is a PCI
(Theorem I11.2).

Theorem IIL2. /7] Given R as in (2) is a PCI, the BLS
is stable, no pole-zero cancellations occur and the open-loop
system has at least one pole at the origin, the Hg-condition
is satisfied if and only if

<7g<91<7r)/\(fg<6'2<7r>/\(92*91<77)7

where
61 = min Zﬁ(w), 62 = max Z./T)/(w),
weRF weRt
with frequency w € R and NSV
K}f(w) |:RC(LBL5(S)(1 + LBLS(S)*)):| 7

| Re((1+ Lprs(s)*)R(s))
where w € R represents a frequency.
Lprs(s) = C1(s)R(s)Ca2(s)G(s)

and Lprs(s)* is the complex conjugate of Lprs(s).

Theorem II1.2 thus requires the NSV phase to be within
certain bounds over all frequencies. Although never studied
in literature, one c_0>u1d argue that the distance between the
resulting phase of A (w) and the bounds can give a qualitative
idea on the robustness of the system. Moreover, one can easily
assess stability given the variation of some parameters. An
analog to the phase and gain margin can for example be
assessed by evaluating stability after increasing/decreasing the
open-loop phase and gain respectively. Furthermore, the shape
of the NSV can be plotted against frequency. This allows to
determine at which frequency the bound is crossed and can
give an indication on how the control system can be tuned in
order for the Hg-condition to be satisfied. Finally, the NSV
can be computed using the measured Frequency Response
Functions (FRFs) data of the plant, thus not requiring a
parametric plant description or solving LMIs. This avoids
incurring in model inaccuracies and simultaneously allows to
speed up the analysis process, making it an essential tool for
industrial implementation.

E. Predictive performance

The steady-state input-output relationship of LTI systems
in the frequency domain allows to analytically compute FRFs,
necessary for the use of loopshaping techniques in the con-
troller design process. A quasi-linear approximation of a

nonlinear system, equivalent to the Bode plot of an LTI system,
can be determined by the Sinusoidal Input Describing Function
(SIDF) method [19]. A SIDF is defined as the quotient be-
tween the Fourier transform of the first harmonic of the output
and the Fourier transform of the input, where the input is a
sinusoidal of a certain frequency [20]. Being nonlinear, reset
control systems suffer from the effect of harmonic generation.
This denotes that the output signal, given an input sinusoid of a
certain frequency, consists of not only the excitation frequency
but also higher order harmonics at multiples of the excitation
frequency [21]. The Higher Order Sinusoidal Input Describing
Functions (HOSIDFs) introduced in [22], provide information
on the generation of the higher order harmonics. Theorem II1.3
can be utilized to analytically obtain the HOSIDFs for a reset
element.

Theorem IIL3. [23] For a reset element R as in (2), with
input e, a sinusoidal signal of frequency w, the equation for
the SIDF (H,) and n*" HOSIDF (H,, n € R, n > 1) then is

Cy(jwl — AT‘)il(I +jOp(w))Br + D

for n=1
H,(jw) = { C(jwnl — A.)"'j0p(w)B, + D,
forodd n>2

0 foreven n>2
®
with j = /—1 and
—2w? _

Op(w) = ——AW)[lp(w) —A Hw)l,

Aw) = 0?1 + A2,

Aw) =T +ed4r,

Ap(w) =T+ Ape%A”‘,

L) = A, W) A, AW) A (w),

It should be noted that usually the magnitude of the FRF
of the n'* HOSIDF of a reset element follows the same
shape of its SIDF, with a lower gain and shifted to the left
with a factor w/n. This is depicted in Fig. 4, where an
arbitrary mass-spring-damper (MSD) system with resonance
10 Hz is positioned in series with a CI, a PCI with w, = cc.
For this reason it is usually only necessary to analyse the
first non-zero HOSIDF (i.e. the third harmonic) in order to
comprehend the behaviour of all HOSIDFs.

Generally, the goal when loopshaping with HOSIDFs is
to keep the magnitude of all higher order harmonics low,
such that they do not have major impact in the response,
and thus performance can be accurately predicted from the
SIDF, making the controller design procedure similar to LTI
controllers. The phase of the higher order harmonics does
also contribute to the resulting response. However, if the
magnitude of the HOSIDFs is low, the effect of the phase is
negligible. Therefore, the phase is not utilized in any of the
analysis methods employed in this work and can therefore
be neglected in the analysis process. Theorem III.3 allows to
compute HOSIDFs only for continuous time reset controllers.
When digitally implementing the reset controller, the BLS
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Fig. 4: FRF of the SIDF, 3" HOSIDF and 5" HOSIDF of a CI in
series with an arbitrary MSD system.

will have to be discretized. It will therefore be assumed that
in the frequency range of interest the sampling period is
small enough to assure the difference in the HOSIDFs is
negligible. When computing the open-loop HOSIDFs using
FRF data for the plant, information on the nth HOSIDF can
be provided only up to frequencies w < Wz /N, With Wyee
being the highest frequency for which FRF data is available.
The HOSIDFs can be easily augmented in case LTI systems
are present in series before or after the reset controller, as
depicted in Fig. 3. The resulting steady-state output signal
given an input sinusoid e, = Ay sin(wt) can be computed as
an infinite sum of sinusoids

= 3 Ao[Cy (jeo)| [ H () | (o) sin(rest
n=1 (9)

+ £C1 (jw) + £LH, (jw) + £Co(njw)).

The effectiveness of loopshaping in case of LTI systems comes
from the fact that it is possible to easily relate the open-loop
and the closed-loop through the sensitivity equations. In [24] it
was however shown that even when low, HOSIDFs are usually
not negligible in closed-loop and simply utilizing the SIDF
provides a highly inaccurate approximation of the closed-
loop FRF. In [25] the so-called pseudosensitivity Sy, (w) was
proposed, with magnitude defined as

|Soo (w)| = o ?iazx (ess(w, 1))/ Ar,

(10)

where egs(w,t) is the steady-state error of closed-loop reset
system excited by a reference input A,sin(wt), with 4, € RT.
It allows to combine the information on closed-loop higher
order harmonics into an analogue of a sensitivity function
for reset systems, thus helpful for loopshaping. Although the
principle of superposition does not hold, it was established that
even for non-sinusoidal inputs, the pseudosensitivity functions
can provide a reliable quantitative performance prediction to
effectively design reset controllers [26]. Obtaining Soo(w)
through simulation is computationally expensive, as it requires
a simulation for each frequency, and also difficult to relate
open-loop and closed-loop characteristics, due to the black-box

nature of the method. Furthermore, a parametric description of
the plant is necessary to compute the simulations. Therefore,
a less accurate analytical methods, able to relate open- and
closed-loop HOSIDFs, given some assumptions, was estab-
lished in [24] and is given in Theorem III.4.

Theorem IIL.4. [24] Given a closed-loop reset system with
input r = sin(wt), the steady-state error can be approximated

by

ess(t) = Z n(jw)|sin(nwt + £8,(jw)),  (11)
with
S1(jw) for n=1
Ln(jw) . in 51 (jw)
S (VAo Y~ jnsS1(jw
Sn(jw): 1+LBL5(jw) <‘ 1(]4«0)‘6 )
for odd n > 2
0 for even m > 2
12)
and 1
S1(jw) = ———
109) = T Gwy
L (jw) = C1(jw) Hy (jw)C2(jnw)G (jnw),

as long as the following assumptions hold true:

1) The system is input-to-state convergent
2) The resets are a result of only the first harmonic of e,.

The first assumption, on input-to-state convergence, can
be expected to hold when the reset system satisfies the
Hg-condition [25]. The second assumption, specifying that
only the first harmonic of e, results in resets and hence the
creation of higher-order harmonics in the output, is does not
always hold. In fact, higher order harmonics in the error
have an effect on the reset instants, although usually not as
strong as the first harmonic. Moreover, (11) shows that the
greater the number of HOSIDFs that are accounted for in
the sum, the more accurate the result. However, as for the
the open-loop method, when using FRF data for the plant,
information on the n'* HOSIDF can be provided only up
to frequencies w < wWpmaqe/n. This makes the accuracy of
the method frequency dependent: the higher the frequency,
the less HOSIDFs are taken into account, therefore the more
inaccurate the result. Nevertheless, this still leads to a more
accurate solution than just using the SIDF to compute the
closed-loop HOSIDFs. In fact, the method was deemed
accurate enough for controller design synthesis of a precision
positioning stage [24]. Furthermore, as aforementioned,
the goal will be to tune the reset control system with low
HOSIDFs compared to the first harmonic. These will be
more likely to reset as a result of the first harmonic, thus
making the approximate closed-loop HOSIDFs more accurate.

A certain degree of robustness is expected from the
employed feedback controllers. For this reason a constraint
on the peak of the sensitivity transfer function < 6 dB is
placed by ASMPT to any LTI controller in order for it to be
implemented. Although not equivalent in terms of robustness,
it was deemed necessary to set the same constraint on



the peak of the pseudosensitivity (10) for a reset control
system to prevent large amplification of the reference. A
pseudosensitivity can be viewed as a ‘worst-case-scenario’
closed-loop sensitivity in terms of performance, as only
information on the maximum amplitude is regarded. This
conservative approach makes sure that the reset controller
does not amplify excessively signals of certain frequencies in
closed-loop.

In case of an LTI closed loop system, it is possible to
qualitatively relate transient response performance parameters
such as overshoot, rise time and settling time to frequency
domain parameters [27]. To the best of the author’s
knowledge, proof of such a relationship for a reset control
system has not been studied. Nevertheless, due to the fact that
reset systems behave linearly during most of the response,
a similar relationship can be expected. Evidence of this was
found empirically in [9], where an increase in phase margin
resulted in a smaller overshoot and faster settling time, equal
or improved compared to an equivalent LTI system.

IV. PCI-PID

A PCI (7) is a resetting integrator with corner frequency w;-.
The nonlinearity affects therefore mostly the low frequencies
in the range w < w,, where the resetting leads to a smaller
phase lag compared to a linear integrator and a constant
positive offset in magnitude. Nevertheless, contrary to a PI,
a PCI cannot be utilized to suppress steady-state errors. This
is due to the fact that resetting causes the stored energy from
the integral action, required to avoid a steady-state error, to
be eliminated, introducing a limit-cycle behaviour [28]. For
this reason it is not beneficial to replace the ‘Pl-part’ of the
linear PID controller (1) with a PCI. On the contrary, the use
of a PCI in addition to an LTI PID could improve performance.

It is usual for industrial motion stages to be controlled
with cutting-edge feedforward controllers which are capable
of tracking a predetermined reference. Feedback control
is then needed mostly to increase tracking precision by
suppressing disturbances, as is the case for the ASMPT
wire bonder. For improved tracking precision, it is necessary
to increase the open-loop gain at low frequencies. Due to
Bode’s gain-phase relationship, this affects the phase margin
of the system and thus its stability and robustness. With
reset control this limitation can be overcome, allowing a
larger low frequency open-loop gain compared to an LTI
system, for the same phase margin. It should be however
noted that although in reduced extent compared to a PI, a
PCI also introduces phase lag. Therefore, a system controlled
by a PCI-PID controller has an increased magnitude peak
of pseudosensitivity compared to the peak of sensitivity of
the same system controlled solely by the PID controller.
This must be accounted for, by assuring the LTI controller
has a high phase margin. A PCI-PID is then constructed by
selecting C; = 1, R as a PCI and C> as a high phase margin
LTI PID controller.

Overall, although a PCI element is less versatile compared to
a CgLp, it could still prove to be beneficial in industry. Since
PCI-PID systems have smaller HOSIDFs at high frequencies
compared to CgLp-PID systems, the effect of high frequency
resonances on the NSV is usually irrelevant. The satisfaction
of the Hpg-condition for PCI-PID systems is therefore
mostly straightforward for plants such as the X-stage of the
ASMPT wire bonder. In fact, the only parameter affecting
the NSV is w,, which can simply be decreased to lower the
HOSIDFs. Finally, PCI-PID systems are less prone to result
in inaccurate approximate closed-loop HOSIDF computed
through Theorem III.4 compared to CgLp-PID systems.
The method decreases in accuracy with higher HOSIDFs
magnitude and higher frequency. As CgLp-PID systems have
high HOSIDFs at high frequencies, this can lead to greater
imprecision compared to the PCI-PID systems.

As it only has two parameters, w, and <, tuning a
PCI-PID is relatively straightforward. By increasing w,, the
magnitude and phase behaviour of the SIDF and HOSIDFs
can be shifted to the right. This will lead to a higher gain
at frequencies lower than the bandwidth, but also higher
HOSIDFs and a lower phase margin. A similar effect is given
by 7. Decreasing the parameter leads to a smaller phase
lag and greater gain at the cost of increased HOSIDFs. As
depicted in Fig. 5, it is thus possible to achieve the same
phase lag for different combinations of v and w,. In order
to find the combination that achieves the greatest increase
in magnitude of the SIDF in a certain frequency region [w,,
wp], the following optimization problem is proposed

Jod 1Hy ()] dew

ZHi(wpw) > ¢d,
([H1(w)| = [H3(w)]) > ha,

13)

max
Y

T

P: sul;j. to

min
we <w<wp

where wpy € RT is the open-loop cross-over frequency, 64
€ R~ is the phase lag of the PCI at wpy and hy € RT is the
desired minimal difference between the SIDF and the third
HOSIDF in the region [w,, wp]. The optimization problem is
subject to two constraints. The first constraint assures that the
proposed combination does not decrease the phase margin
more than the acceptable value ¢4. The second constraint
guarantees that the HOSIDFs are lowered by a factor of hg.
In order to effectively utilize (13) to design a PCI-PID, the
following tuning procedure is suggested:

Tuning Procedure (PCI-PID).

1) Tune an LTI controller such that the open-loop system
has the desired cross-over frequency wpw and phase
margin PM > 30°.

Choose the region [w,, wy] in which it is desired to

increase the open-loop gain compared to the LTI system.

3) As an initial guess, choose pq = —(PM — 30°), to
constrain the SIDF to have a phase margin of 30° and
hq = 20 dB to constrain the third HOSIDF to have a
maximal magnitude of less than 10% of the SIDF in the
region [wg, wp].

2

~



4) Solve the optimization problem (13).

5) Plot the magnitude of the pseudosensitivity of the closed-
loop system.

In case the pseudosensitivity in the region [w,, wp]
does not show the desired level of suppression (i.e. the
gain is higher than desired), increase hg, to lower the
HOSIDFs. Return to step 4.

In case the peak of the pseudosensitivity magnitude can
be increased further (i.e. it is lower than the acceptable
level, e.g. 6 dB), decrease 4. Return to step 4.
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Fig. 5: FRF of the SIDF and 3"¢ HOSIDF of three PCI elements with
different combinations of w, and v resulting in a phase lag of 10°
at 200 Hz. The gain was adjusted to keep the crossover frequency as
200 Hz.

V. SERIES CR PCI-PID

It is clear how the HOSIDFs pose a constraint on the
tuning of a PCI element. It would therefore be beneficial
to to lower the HOSIDFs without affecting the SIDFE. It
was shown in [10], that switching C; and C5 results in the
same SIDF but in different HOSIDFs. This can be explained
from (9). The magnitude of the n‘* HOSIDF is determined
by |Ci(jw)| and |Ca(jnw)|. Therefore, in case a lead-lag
element such as a PID controller is used in combination with
a reset controller, placing the lead part of the controller in C
and the lag part in C would minimize the HOSIDFs.

Based on the same principle, the series continuous reset (CR)
architecture was developed [9]. A nf” order lead filter F; can

be defined as

14

with wg, w; € RY in rad/s and n; € Z*. By keeping
the PID in Cb, but also adding F; and I‘Tl to C7 and
Cy respectively, it is possible to tune the region in which
HOSIDFs are lowered, and by how much they are lowered,
without affecting the SIDF or the NSV. This allows for
greater design freedom compared to changing the sequence
without any drawback and is thus preferred. To determine

the range in which HOSIDFs have the most significant
effect, and which HOSIDF has the greatest effect, the power
spectral density of the error signal when utilizing a PCI-PID
without CR can be analyzed. In case feedforward control
is employed, most of the power should be caused by either
external disturbances or resonances not modelled in the
feedforward. If these disturbances/resonances are present at
frequencies wy;s, the nt* HOSIDF will excite these, causing
undesired higher order harmonics of frequencies nwgq;s. It
can be evaluated from (8), that by choosing wy = wg;s and
Wy = NWgis, \F}(jw)”F[%jnw)\ has a minimum at wg;s,
whose value H¢(wq;s) = |Fl(jwdis)HFl_l(jnwdis)\ represents
the suppression of the nt* HOSIDF. The lead filter order n;
can then be increased, increasing the suppression by a factor
n He (wis)-

Next, the effect of CR will be visualized through an

example. A PCI-PID was tuned for a plant resembling a

highly damped non-collocated 2-DoF MSD system
ds+k

mimast + d(mq + ma)s® + k(my + mg)s?’

G = (15)
with parameters given in Table I, using the aforementioned
tuning procedure. The transfer function parameters of the
respective LTI PID controller PID; and of the PCI are given
in Table 1. The open-loop block diagram is pictured in Fig. 6.
PID; was tuned such that it has ~ 40° phase margin at
wpw = 200 Hz, allowing the PCI to have 10° phase lag at
200 Hz. Two different F; & Ffl pairs were tuned allowing to
utilize two CR architectures, CR; and CR; respectively, with
parameters also given in Table I. The two F; & Fl’1 pairs
have the same wy and w;, but while n; = 1 for CRy, n; = 2
for CRy. The two F; & Ffl pairs were tuned assuming a
disturbance d = sin(wg;st), Where wg;s = 50 Hz, is acting
on the system, thus assuring H(wg;s) < 0. In fact for CRy,
H (wgis) = —6.02 dB and for CRy, H (wgis) = —12.04
dB. The resultant open-loop FRF are plotted in Fig. 7. It can
be appreciated how in the range [wq, w:] the HOSIDFs are
lowered with increasing H(wg;s), whereas the SIDF remains
unchanged.

e € Ur [T u Yy
—af
Fig. 6: Series CR PCI-PID block diagram.

TABLE I: TRANSFER FUNCTIONS OF PCI, PID; AND OF F}
USED FOR CR; AND CRs.

a mi mo k d
1 100 100 107 x 10° | d= 4.6 X 107
PID kp wr wp w
! [8304x107 | 20 Hz 7692 Hz 520 Hz
or v
PCI 60 Hz 0
wq wt ny
CRy S0H, | 50x3 M2 T
wq wt ny
CR: S0H, | 50x3 Mz 2
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Fig. 7: FRF of the SIDF and 3"¢ HOSIDF of the open-loop system
with G'1 as the plant, PID; as the LTI controller, PCI as R and
without CR architecture, with CR; or CR» respectively.

A Simulink [29] simulation was then performed with inputs
r=20,n=0,d = sin(wgst), where wg;s = 50 Hz. The
resulting closed-loop error is given in Fig. 8. The cumulative
power spectral density (CPSD) of the PCI-PID system without
CR shows that the power spectra has peaks at 150 Hz and
250 Hz, 3 and 5 times the disturbance frequency respectively.
These higher order harmonics are resultants of the excitation
of the 50 Hz disturbance frequency by the third and fifth
HOSIDF respectively. The increase in performance resulting
from the lower HOSIDFs at wg;, introduced by the series CR
architecture, is clearly to be seen. While the peak at 50 Hz
in the CPSD remains almost identical, evidence that the SIDF
does not change, the peaks at 150 Hz and 250 Hz decrease
with increasing H¢(was)-

Time (s)

CPSD
=
T

10" l(‘V 10*
Frequency (Hz)

Fig. 8: Normalized closed loop error signal resulting from a Simulink

simulation of a system with G as the plant, PID; as the LTI

controller, PCI as R and without CR architecture, with CR; or with

CR: respectively. The inputs to the system are r = 0, n = 0,

d = sin(wa;st), where wa;s = 50 Hz.

Nevertheless, the CR architecture does not only affect the
HOSIDFs, but also transient performance. In [9] it was demon-
strated that having C as a first order lead filter results in the

reset instants being affected not only by e,, but also by é,.
A change in reset instants can affect the transient behaviour,
potentially allowing to lower the overshoot of a CgLp-PID
system [9]. However, due to the presence of feedforward
control, affecting the transient behaviour is of less interest and
beyond the scope of this work.

A. Effect of noise

The change in reset instants will affect transient behaviour,
but also steady-state performance in case noise is present in
the system. To compute the open-loop SIDF and HOSIDFs
it is assumed that the input is a sinusoid, which allows to
predetermine the reset instants ¢;. When noise is present
in the system, the reset instants could differ. The greater
the power of the noise, the higher the chance for one of
these undesired resets. A lead element such as Fj increases
the magnitude of the output signal in a certain frequency
range. The power of the noise present in the error signal e,
at w is therefore increased with increasing H(wq;s) hence
causing the SIDF and HOSIDFs to be more unreliable. This
is visualized in Fig. 9, where the simulation shown in Fig. 8
is repeated with n being white noise. It can be seen that an
increase in H¢(wq;s) still results in lower excitation of higher
order harmonics, however in this case the three signals have
a different suppression of the disturbance frequency itself,
confirming that the SIDF is less reliable in the presence of
noise.

Amplitude

Time (s)
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Fig. 9: Normalized closed loop error signal resulting from a Simulink
simulation of a system with G as the plant, PID; as the LTI
controller, PCI as R and without CR architecture, with CR; or CR2
respectively. The inputs to the system are » = 0, n is white noise
with power 1 x 107" V2/Hz, d = sin(waist), where wq;s = 50 Hz.

B. Effect of aliasing

Even without considering noise, the CR architecture
has an additional limitation when considering its discrete
implementation. As derived from (8), when inputting a
signal of a certain frequency into a reset element, the output
signal will not only contain that frequency but also odd
integer multiples. A sampled system requires signals to have



=~ 0 power content for frequencies higher than the Nyquist
frequency (wy) to avoid aliasing, which introduces fictitious
low frequency content. This is usually not a problem in
reset control as the higher the order of the HOSIDFs, the
lower its amplitude. Moreover, usually open-loop FRFs are
designed to have a steep negative slope at high frequencies or
anti-aliasing low-pass filters to suppress noise. Nevertheless,
when in closed-loop, if the fictitious frequency content is not
within the range w < wq, F; will cause its amplification,
thus changing the reset instants. This is especially relevant
when the input frequency is high enough such that already
low HOSDIFs generate power content at frequencies greater
than wy.

The magnitude plots of the pseudosensitivities given in
Fig. 10, computed after discretising all LTI parts of the
system at 10 kHz, show a contrasting behaviour between
low and high frequencies. At low frequencies an increase in
H(wais) corresponds to a lower magnitude, thus an increase
in disturbance suppression, caused by the suppression of the
HOSIDFs. Contrarily, at high frequencies, the amplification
of the fictitious frequency content caused by aliasing leads to
undesired peaks in the magnitude of the pseudosensitivity.

—CR,

—CR,

0 | —No CR

10! 10° 10°
Frequency (Hz)

Fig. 10: Pseudosensitivities magnitudes computed through the ap-
proximate method (Theorem IIL.4) of the closed-loop system with
G as the plant, PID; as the LTI controller, PCI as R and without
CR architecture, with CR; or CR respectively, discretized at 10 kHz.

Greater insight is given by plotting the closed-loop error
signal of the discrete time system resulting from a sinusoid
with the same frequency as one of the spikes in the
pseudosensitivity magnitude plot for a PCI-PID without CR.
Arbitrarily a sinusoid of 290 Hz was chosen. The error signal
was computed analytically using the approximate method
(Theorem III.4), which gives the possibility to sample the
error signal at any frequency, independently on the sampling
frequency of the system itself. As portrayed in Fig. 11, the
signal sampled at 10 kHz, the same frequency as the system,
shows power content in frequencies lower than the excitation
frequency. As given by (8), this is not expected, meaning this
power content is fictitious, resulting from aliasing. In fact,
the same closed-loop error sampled at a ten times higher
sampling rate does not show any power in frequencies lower
than the excitation frequency, neglecting numerical artefacts
from computation. Instead, spikes at odd multiples of the
excitation frequency, representing the HOSIDFs can be seen,
as expected.
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Fig. 11: Steady state time plot (only two periods shown) and power
spectral density of the error signal of the closed-loop system with
G as the plant, PID; as the LTI controller, PCI as R and without
CR architecture, discretized at 10 kHz. The inputs to the system are
r=0,n=0,d=sin(290 x 27t). The error signal was sampled at
two different sampling frequencies.

VI. PARALLEL CR PCI-PID

It was shown that with the CR architecture HOSIDFs
can be successfully reduced in a frequency range, without
affecting the SIDF. Nevertheless, the architecture suffers from
limitations, caused by the effect of amplifying the error signal
through Fj. To avoid this, a novel parallel CR architecture,
is proposed. The block diagram of the structure is depicted
in Fig. 12, with R a PCI and with F;~* placed in Cy. This
allows to still utilize the lag element Ff1 to lower HOSIDFs,
while also avoiding to affect reset instants by removing C.
For a fully LTI system (i.e. R = R), it is possible to find that
by choosing C,qr = R(F; — 1) the system is equivalent to the
series CR architecture. However, when resetting is introduced,
it would be necessary to instead use Cpq, = R(F; — 1). This
would require having two separate reset controllers (one in R
and one in C,q, in Fig. 12). However, the theory presented in
Section III does not allow for two separate reset controllers in
the same loop. Therefore, in case R is a PCI, an approximation
with

s
PIpar =1+ )

Cpar = PIpar(E - 1)7

(16)

ipar

with w;,, = w, can be utilized instead.

Fig. 12: Modified expanded reset control feedback system architec-
ture that allows Cpq, to be in parallel of R instead of C preceding
it in series.

When R # R, the open-loop SIDF is not identical contrarily



to the standard CR architecture. This is confirmed in Fig. 13,
where the PCI in the series CRy is compared to a parallel
CR architecture with the same parameters. It is shown that at
low and high frequencies the SIDF behaviour of the parallel
architecture asymptotically reaches the series architecture.
However, in the mid-frequency range the parallel architec-
ture has a smaller gain and lower phase. Furthermore, the
HOSIDFs are also different between the two structures, with
the parallel architecture having significantly lower HOSIDFs
in the frequency range w > wgy. The reason is given by the
fact that in a series CR architecture the HOSIDFs gain is
dependent on |C}|, whereas in a parallel CR architecture it
is not dependent on |Cj,,|, as it contributes only to the first
harmonic. In fact, for a parallel CR system such as the one
shown in Fig. 12, (9) becomes

|Cpar (jw)| sin(wt + £Cpar(jw)) +
Z | H, (jw)||Co(jnw)| sin(nwt
n=1

+ ZH, (jw) + £LC(jnw)).

u =

a7
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Fig. 13: FRF of the SIDF and 3"¢ HOSIDF of the PCI in the series
CR: architecture and a parallel CR2 architecture with PI,., = R.

Instead of simply utilizing w;,,, = wr, wi,,, can be tuned.
As shown in Fig. 14, the lower w; ., the greater the phase
advantage gained by the system at wpyy. The trade-off is
given by a slightly lower gain in the mid-frequency range. On
the other hand, the HOSIDFs are independent from C,,, and
hence from w;, . It is therefore possible to lower w; ,, in
order to increase the phase advantage while only marginally
lowering the gain in the mid-frequency region.

Since the HOSIDFs in the parallel CR architecture are
significantly lower than the series CR architecture in
the range w > wy, it allows for v to be lowered while still
maintaining lower HOSIDFs in the range of interest compared
to a PCI-PID without CR. The effect of v on the parallel CR
architecture is portrayed in Fig. 15. The HOSIDFs increase
over the entire frequency range, while the SIDF increases
in the low- and mid-frequency range. The proposed tuning
procedure for a parallel CR PCI-PID is thus as follows:
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14: FRF of the SIDF and 3" HOSIDF of the PCI in the parallel
architecture for different values of w;,,,,..
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Fig. 15: FRF of the SIDF and 3"¢ HOSIDF of the PCI in the parallel

CR2

architecture for different values of ~.

Tuning Procedure (Parallel CR PCI-PID).

D
2)

3

=

4

=

5)

6)
7

Tune a series CR PCI-PID first.

Choose Wiy, = W as an initial guess and compute
Cpar (16).

Transform the series CR PCI-PID into a parallel CR
PCI-PID, by removing Cy and adding Cq, in parallel
of R.

Lower ~y until the difference between the SIDF and the
HOSIDFs over the entire frequency range of interest
(wais) is the same or greater than with the series CR
architecture.

Lower w,,,, until the phase at wpyy is the same as with
the series CR architecture.

Adjust the gain to set the cross-over frequency at wgyy.
In case the peak of the pseudosensitivity magnitude must
be decreased further (i.e. it is higher than the acceptable
level, e.g., 6 dB), return to step 5, however aiming at
obtaining a higher phase at wpyy.



8) In case the peak of the pseudosensitivity magnitude can
be increased further (i.e. it is lower than the acceptable
level, e.g., 6 dB), return to step 5, however aiming at
obtaining a lower phase at wpy .

The tuning procedure was performed to convert the series
CR; PCI-PID controller into a parallel CR controller. The gain
was adjusted to keep the cross-over frequency as 200 Hz. The
resulting w;,,, = 30 Hz and v = —0.3 were found. The
controllers’ FRF are pictured in Fig. 16. An LTI PI system with
the same phase at the cross-over frequency as the two CR PCI
system is also shown. For the same phase margin and a greater
difference between SIDF and 37¢ HOSIDF in the range w >
50 Hz, the parallel achieves a greater SIDF gain in the low-
frequency range. However, in the range SIDF [70, 200] Hz, the
series CR architecture provides a greater gain. Furthermore at
higher frequencies the series CR PCI has a steeper SIDF slope
and thus provides greater noise and disturbance suppression.
Nevertheless, in both cases the parallel CR structure still out-
performs the LTI PI structure. Additionally, all implementation
issues of the series CR architecture occurring due to its effect
on the reset instants are overcome, making this architecture
more suitable for industry.

Il CR, - SIDF
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Fig. 16: FRF of the SIDF and 3"¢ HOSIDF of the PCI in the series
CR; architecture, a parallel CR2 architecture with w;,,,, = 30 Hz
and v = —0.3 as well as an LTI PI element with equivalent phase
lag at 200 Hz.

In order to make use of the analysis methods presented in
Section III, the parallel CR architecture must be able to be
represented using (2). It is possible to describe a the system
as given in Fig. 12 by augmenting R and A, as

i) o
0 Ac,..]’ Beyar

C, = [é, Ccpa,,] 5 D, = [ﬁr + DCW,.} (18)
0
Ap = |:E]/ ]n(;mrxncpw} ’

with Ar,BT,C’T,ﬁT the state-space matrices of the resetting
part of R (e.g. a PCI) and ng,,, € 7% the number of
states of Cpq,. Using this definition all theorems presented
in Section III hold, apart from Theorem III.2. No frequency

A, = B, =

01:17

domain condition can be utilized to prove stability. It is
therefore necessary to rely on the classical Hg-condition
(Theorem III.1).

VII. EXPERIMENTAL IMPLEMENTATION AND RESULTS

In the previous two sections different reset control struc-
tures were presented and analyzed based on computational
method and simulations. The following section will present
how these structures were implemented digitally to perform
experiments using the previously described experimental setup
(Section III). The results of these experiments are then exhib-
ited. The block diagram that describes the closed-loop system
is portrayed in Fig. 17. It can be noticed that a feedforward
controller Cyy is present in the system. The system in Fig. 17
has both a C'; and a Cl,q, block. It is clear that when the series
CR architecture is employed, it is assumed that Cp,r = 0,
whereas when the parallel CR architecture is employed one
can assume C; = 1.

Fig. 17: Block diagram representation of the experimental setup.

A. Implementing a reset controller

So far it was assumed that the reset controller acts in the
continuous time domain. However, in reality a discrete time
reset controller is implemented in the physical system. In order
to describe the dynamics of a discrete time reset controller, (2)
was modified to

xT}chl = ATJ:Tk- + BTET}M if (Q:Tk-vehc) ¢ M
R =142, =A Az, + Bre,,, if (xy,,er,) €M
Uy, = C‘T:crk + f)rerk,
19)
with
M :={erer, , <OA(tp —tho1 > ts)},
where ¢, = 1/f, indicates the sampling period and A,

B,, Cy, D, are the state-space matrices of the discretized
BLS. It can be noticed that the second line of (19) differs
compared to (2). This is given by the fact that although it is
not possible to exactly implement z;" in discrete time, a good
approximation is provided by z;} = z,, = A,x,,. This term
can then be substituted in the first equation of Equation (19)
to determine x,, , when reset occurs. Resetting is thus based
on the condition that e, in the current instant changes sign
compared to the previous instant. Furthermore, a constrain is
posed on the fact that after a reset at least ¢ = t; must have
passed before the next reset. This condition does not have to be



enforced during implementation, as it always holds true since
samples are always t, apart. The condition is beneficial as it
avoids the occurrence of Zenoness, a cause of ill-posedness,
defined as the presence of infinite reset actions in a finite time.

B. Experimental Results

An LTI PI-PID controller was tuned first, assuring the
peak of sensitivity is ~ 6 dB. The same PID was paired
with a PCI, tuned using the procedure given in Section IV,
resulting in a PCI-PID system. Two series CR architectures
were tuned next. Both with the same wy and w;, however
one with n; = 1 (CR;) and one with n; = 2 (CRy).
Both were then converted to parallel CR architecture using
the procedure in Section VI, resulting in parallel CR; and
parallel CRy respectively. The parameters are not revealed
due to confidentiality. The (scaled) open-loop FRF plots are
portrayed in Fig. 18, whereas the respective magnitude plots
of the pseudosensitivities are plotted in Fig. 19. It can be
appreciated that for the same peak of sensitivity, all reset
systems have greater open-loop gain and a lower magnitude
of the pseudosensitivity at low frequencies compared to the
LTI system. Moreover, as expected, the parallel CR systems
have a larger open-loop magnitude compared to the respective
series CR systems with the same Fj. It is also observed
that systems with the CRy architectures have lower open-
loop HOSIDFs compared to the respective CR; architecture
systems. Nevertheless, in a certain range before wpy, the
magnitude of pseudosensitivities of the two systems controlled
by parallel CR PCI-PID controllers are higher in magnitude
compared to the system controlled by the respective series
CR PCI-PID controllers. This is a trade-off of the paralle]l CR
architecture already mentioned in Section VI. The waterbed
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Fig. 18: FRF of the SIDF and 3"¢ HOSIDF of the open-loop system
with the FRF data of the ASMPT wire bonder at the center position
as the plant and different reset control structures.

effect can be described mathematically by the Bode sensitivity
integral, which can be simplified as
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Fig. 19: Pseudosensitivities magnitudes of the closed-loop system
with the FRF data of the ASMPT wire bonder at the center position
as the plant and different reset control structures.

The area underneath the 0 dB line in a sensitivity plot, which
should be minimized to increase tracking performance, can
thus not be greater than the one above. Due to the waterbed
effect, an improvement in one range of frequencies comes at
cost of worse performance at other frequencies. For the same
plant, every minimum phase LTI controller will result in the
same fooo In(S)dw value. From Fig. 20, it can be seen how this
constraint is overcome with reset control. All reset controllers
achieve in fact a better value for the Bode sensitivity integral
compared to the LTI system.
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Fig. 20: Bode sensitivity integral using the FRF data of the ASMPT
wire bonder at the center position as the plant and different reset
control structures. For the LTI system S is utilized instead of S

The NSV plots of the PCI-PID system without CR, which are
also valid for the series CR systems since this architecture has
no effect on the NSV, are depicted in Fig. 21. The bounds
given in Theorem III.2 are not overcome, thus the system
is UBIBS stable. It was found numerically that the bounds
are still not overcome if a phase lag of < 33.8° or a gain
increase of < 9.7 dB is added to the system. This gives a
qualitative indication of the robust stability of the system.
For the parallel CR configuration, the NSV method cannot
be utilized. The classical Hg-condition (Theorem IIL.1) can
instead be utilized to guarantee stability after augmenting the
system as given in (18). In order to do that, a parametric plant
description is necessary. Additionally, no qualitative indication
on the robustness of the system can be obtained.

The (scaled) resulting error signals and their cumulative power
spectral density, for a typical reference input trajectory, are
portrayed in Fig. 22. The final root-mean-square of the steady-
state part of the error egrpss, normalized with respect to
the eryrg resulting from the LTI PCI-PID system, is shown
in Table II. The PCI-PID system without CR has a greater
erms than the fully LTI system due to the prevalence of
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Fig. 21: NSV angle and 6; — 62 (Theorem IIL.2) of the PCI-PID
system.

HOSIDFs. This is accounted for partially using the series
CR; architecture which shows significantly lower power in
the higher frequencies. However, the series CRy architecture
results in greatly increased power of the first harmonic. This
shows that the noise present in the system is amplified by
this architecture, to the point where performance deterio-
rates. Finally, the highest suppression of the first harmonic is
achieved by the parallel CR structures, which also result in the
lowest excitation of higher-order harmonics. The parallel CR2
architectures reduces the steady-state RMS error by more than
30% compared to the LTI system. This is however also due to
the fact that in the range in which their pseudosensitivities are
larger compared to the series CR structures, the disturbance is
less significant.
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Fig. 22: Normalized error signal and cumulative power spectral
density obtained from experiments for a typical reference trajectory
(plotted scaled).

TABLE II: SCALED egrjss FROM EXPERIMENT.

[NoCR | CRy | CRz [ p.CRy [ p.CRz [ LI |
[erms | 11763 | 09847 | 1.0491 | 0.8708 | 0.6839 | 1 |

VIII. CONCLUSION

Reset control has gained significant attention in literature
as a potential alternative to LTI control. It offers increased
performance and at the same time simple controller design
methods comparable to LTI control. In this work, various
findings recently proposed in literature were combined to

verify if and how a PCI reset controller can be utilized to
increase tracking performance of a standard industrial motion
stage, such as the one of an ASMPT wire bonder. Open-
and closed-loop HOSIDFs were successfully put at use as
a predictive performance frequency domain tool. It was
demonstrated how, by reducing the magnitude of HOSIDFs,
it is possible to treat reset control systems in a very similar
fashion as LTI controllers, allowing loopshaping techniques
to be used for design. It was thus possible to relatively easily
design reset controllers that were utilized in combination with
PID controllers, to improve closed-loop performance.

Three different structures based on the PCI were suggested. A
PCI can increase open-loop gain at low frequencies even more
than an equivalent PI, thus increasing suppression of low
frequency disturbances. Furthermore it has a lower phase lag
compared to an equivalent LTI PI element. Nevertheless, the
low frequency HOSIDFs can cause performance degradation
in case of low frequency disturbances. Two different CR
architectures were thus explored to reduce the HOSIDFs.
The first structure, namely a series CR architecture, involves
adding a lead element F; before the reset element R while
simultaneously adding Ffl after the R. The effect of the
two filters F; and Fl’1 cancels out in the overall system
SIDF, affecting therefore only the HOSIDFs. It was shown
that with increased H(wg:s), the higher order harmonics
excited by the n'* HOSIDFs could be decreased at nw.
Nevertheless, some issues were exposed for the series CR
architecture that hinder its implementation. In fact, F; causes
the amplification of e,., denoted as the input signal to R. This
affects the reset instants in an unpredictable way, possibly
affecting the transient behaviour but also the steady-state
behaviour in case noise is present in the system. Furthermore,
when implemented in discrete time, aliasing can cause the
amplification of the closed-loop error when power in certain
frequencies is present in the system’s exogenous inputs. A
novel structure, named parallel CR, was therefore developed
to overcome the inherent issues of the series CR architecture.
The parallel CR architecture is also based on the principle of
utilizing Fl’1 placed in series after R to lower HOSIDFs,
however the lead element is instead placed in parallel to
‘R. This avoids an amplification of e, and thus avoids
affecting the reset instants. On the other hand, the SIDF
is not identical to the same PCI-PID system without CR
architecture. Nevertheless, tuning guidelines were proposed
that allow an even greater open-loop gain compared to the
same PCI-PID system without CR architecture, at the cost of
reduced suppression at frequencies right before the bandwidth.

The experiments consisted of tracking a typical reference
signal of the wire bonder in presence of both feedforward
and feedback control. The PCI-PID system without CR
architecture showed how the systems main disturbance is
suppressed more effectively compared to an equivalent PI-PID
system. However, higher order harmonics led to a significant
decrease in performance. Two series CR architectures were
used to expand the PCI-PID system, demonstrating their
effectiveness at lowering higher order harmonics. However,



one of the two series CR PCI-PID systems showed a worse
performance compared to the LTI PI-PID system, evidencing
that when tuned inappropriately the noise can cause significant
performance degradation in systems employing the series
CR architecture. Two parallel CR architectures were also
used to expand the PCI-PID system. These achieved the best
performance with cumulative power spectral density error
reduction of up to > 30% compared to the fully LTI system.

Although this work highlighted the potential of the parallel
CR architecture, it should be noted that the frequency domain
NSV method cannot be utilized to analyze stability of parallel
CR systems. The classical Hg-condition can be utilized
instead. Nevertheless it can be argued that through future
work it should be possible to augment the NSV method to
the parallel CR architecture. In fact, an augmented NSV
method for a reset element with two states, where only the
first state resets, was presented in [7]. The structure of R
has thus a similar characteristic to (18), where also only the
first state resets. A further recommendation for future work
is to incorporate the so called shaping filter, a linear filter
that affects the reset instants of R, but not its input-output
relation, in the CR architecture. In [23] it was demonstrated
that shaping filter are capable of bandpassing the nonlinearity
of a reset element in a certain frequency region. This
technique could be utilized to counteract the implementation
issues that arose with the series CR architecture.
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USING A SHAPING FILTER TO
LOWER HOSIDFsS orF A PCI-PID

In this chapter the effect of a shaping filter to suppress the HOSIDFs of a PCI-PID con-
troller at low and high frequencies will be studied. It can be derived from (2.14) that if 2
is a PCI, choosing ¢ = 90m°, where m € Z* is an odd value, will result in all HOSIDFs to
be equal to 0. However, as with ZC; # 0, also with ZC; # 0 the reset instances are modi-
fied. In order to avoid the issues encountered with the series CR architecture due to the
amplification of the reset signal é, (Chapter 4), it is therefore necessary to choose C as
alag element, i.e. ¢ > 0° Vw. By selecting Cs as a lag element, the amplification of noise
and the aliasing effect will both be avoided, although the change in transient response
can still occur. A lag element delays the reset instance, hence potentially decreasing the
total number of reset instances compared to the equivalent reset control system without
C;. Therefore, the effect on transient response is not as significant as with a lead element,
and in fact approaches the transient response of the BLS for ¢p — 90°. The magnitude of
the HOSIDFs |H(w) ;| given £ is a PCI, is dependent on ¢, w and n. However, it can be
determined from (2.14) that when normalized for a given 7, the magnitude is identical
for all w, as depicted in Fig. 5.1. It is clear that setting ¢ = 90° the reset element has no
HOSIDFs, in fact behaving as its BLS. Increasing/decreasing ¢ increases the HOSIDFs at
the same rate.

Apart from affecting the HOSIDFs, it should be taken into account that C; has also an
effect on the SIDE In Fig. 5.2, the difference in the magnitude and phase of the SIDF and
third HOSIDF of a PCI with and without C; for different ¢ is shown. At ¢ = 90°, when
the HOSIDFs are 0, the system behaves like the BLS, the gain advantage and the phase
advantage given by reset control are therefore lost. As expected for ¢ = 90°, the gain ad-
vantage from reset is at its minimum. However, it can be seen that by increasing ¢ > 90°
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Figure 5.1: Normalized magnitude of n* " HOSIDFs as a function of @, for a given w.

it is possible to reduce the phase even further, with the minimum being ¢ ~ 115°. In lin-
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Figure 5.2: Difference between magnitude and phase of SIDF and 374 HOSIDFs as a function of @ and w/wy.

ear systems the phase margin is an important metric related to stability. Although never
proven, simulations and experiment suggest that this qualitative relationship holds also
for the SIDF phase margin of a reset systems with C; = 1 [11]. To the best of the author’s
knowledge, this relationship was never studied for Cs # 1. Two shaping filters C,, and Cs,
were designed for the previously tuned PCI-PID system with PID; as the LTT controller
and G as the plant (Chapter 4). Both shaping filters were tuned to have low HOSIDFs
at low and high frequencies, thus with ¢ = 90° in these frequency ranges. C,, was tuned
to maximise the phase margin, therefore it was made sure that ¢(wpw) = 65°. On the
other hand, Cs, was tuned in such a way that the phase margin is minimized, hence with
@(wpw) = 115°. C,, and C;, consist of a pure integrator, that has a phase lag of —90° and
a lead-lag or lag-lead element, such as F; or F,” Lin (2.28) respectively. The lead-lag el-
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ement has a phase of 25° at wpw, whereas the lag-lead element has a phase of —25° at
wpw-. Their transfer functions are given as

o 1 S/(a)Bw/l.55)+l 1 S/(l.55(1)3w)+1
==X — = X —
T s T s/(1.550wpw) + 1 27 s " (wpw/1.55)+1

(5.1)

The phase of the two shaping filters is plotted in Fig. 5.3. It can be noticed that the
phase approaches —90° for low and high frequencies. The open-loop FRFs are plotted
in Fig. 5.4.

. .
10! 10? 10°
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Figure 5.3: Phase-frequency plot of Cs; and Cs,.
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Figure 5.4: FRF of the SIDF and 374 HOSIDF of the open-loop system with Gj as the plant, PID; as the LTI
controller, PCI as % and without Cs, with Cs; and Cs, as the shaping filter respectively.

The pseudosensitivities magnitudes shown in Fig. 5.5 illustrate that, contrary to the re-
lation between the phase margin and Mg in LTI systems, the phase margin of the SIDF is
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not always related to the peak of pseudosensitivity magnitude. In fact, the system with
Cs, has a higher pseudosensitivity magnitude peak even though the SIDF has a higher
phase margin, while the opposite is true for the system employing Cs,. Furthermore, the
effect of C; on the magnitude at high and low frequencies, given by the suppression of
HOSIDFs, is again to be seen. On the other hand, in the frequency range (50, 150] Hz,
the system with C;, shows an increased pseudosensitivity magnitude. This is given by
the fact that the SIDF open-loop gain is decreased for ¢ = [20°, 90°], as can be derived
from Fig. 5.2.

-20

Magnitude (dB)

-30

-40

-50 L I
10 10 10*
Frequency (Hz)

Figure 5.5: Pseudosensitivities magnitude computed through the approximate method of the closed-loop sys-
tem with G as the plant, PID; as the LTI controller, PCI as % and without Cs, with Cs; and Cs, as the shaping
filter respectively.

Due to the decreased pseudosensitivity magnitude peak, the open-loop gain and band-
width of the system can be increased to increase tracking performance, until the peak of
pseudosensitivity magnitude reaches almost 6 dB. A static open-loop gain increase of 2
dB was applied to the system, by tuning a new PID controller PID, = PID; F,, x kpip,,
with

 2.533x107%5%+7.958 x 10 %5 +1

© 2.533x107852+1.415x 1035+ 1’
being a notch filter to suppress the 1000 Hz resonance of the plant and kprp, = 2 dB.
The notch filter is required since the increase in open-loop gain amplifies the resonance
peak, as visible in the open-loop HOSIDFs and pseudosensitivity magnitude plots shown
in Fig. 5.6 and Fig. 5.7 respectively. The notch filter decreases the phase margin even fur-
ther, however the pseudosensitivity peak is still within the 6 dB limit. At the same time
the system also achieves higher suppression at low frequencies compared to the equiva-
lent system with PID;.

(5.2)

12

Based on these findings, a rudimentary tuning procedure is proposed subsequently.

Tuning Procedure 5.0.1 (C, for a PCI-PID system)
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Figure 5.6: FRF of the SIDF and 3" 4 HOSIDF of the open-loop system with G as the plant, PID7, PID, or PID;
with increased gain as the LTT controller, PCI as % and with Cy, as the shaping filter.
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Figure 5.7: Pseudosensitivities magnitude computed through the approximate method of the closed-loop sys-
tem with Gy as the plant, PID;, PID, or PID; with increased gain as the LTI controller, PCI as 2 and with Cs,
as the shaping filter.

e Choose C; as an LTI element with /Cg approaching —90° at low and high frequen-
cies and = —65° at wpw, e.g.: Cs,.

e Iteratively increase the open-loop gain up to the point where the peak of the pseu-
dosensitivity magnitude reaches the desired value. Add a notch filter in case the
resonance causes a spike > 6 dB in the pseudosensitivity magnitude.

The tuning procedures ignores stability. In fact, although the designed shaping filter
supposedly decreases the nonlinearity of the system, stability could not be proven using
the Hg-condition for any shaping filter with max(¢) =~ 90°. This suggests that the con-
dition is too conservative in the case of C; PCI-PID systems. It was shown that shaping
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filters can not only significantly improve the performance of PCI-PID systems, but are
also relatively straightforward to tune. It could therefore be beneficial to explore if a less
conservative stability method can be utilized instead, thus allowing to more easily guar-
antee stability of C; PCI-PID systems. In [62] it is stated that the stability of reset systems
using the Hg-condition is independent on the reset times, therefore it is perhaps possi-
ble to expand the Hg-condition itself to prove that with certain shaping filters stability is
guaranteed if the equivalent system without shaping filter is stable.

Since stability could not be guaranteed, experiments on the AB383 wire bonder could
not be performed. Nevertheless, the performance of the C; PCI-PID could be compared
to the CR PCI-PID structures using Simulink simulations, as shown in the next chapter.



PERFORMANCE ANALYSIS
VALIDATED ON SIMSCAPE
MULTIBODY MODEL

A more detailed insight in the frequency and time domain performance achieved by the
reset control system structures presented in Chapter 4 and Chapter 5, is given subse-
quently. The provided tuning procedures were utilized to tune different PCI-PID con-
trollers for the Simscape multibody model of the motion stage. The performance of each
controller was then validated through Simulink simulations performed using the same
model. The structure of each controller in terms of continuous time transfer functions
is displayed in Table 6.1, with

1.0305 x 108(s +251.1)(s + 326.5) (s + 515.3)

PID =
s(s+753.9)(s+1.408 x 10%)
1.3624(s + 188.5)
PI=1+ —————,
N
60 x 21
PCI=1+ R
S
$/(60 x 27)
Fll e
$/(200 x 27)
F _( s/(60 x 27) )2
L=\ s/@00x2m))

1x2m 1x2m
Cpar, =1+ S Fr—(1+ )
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2 X271 2 %21
C,mr2=1+ S F,— 1+ S ,

1 s/(1.55wpw)+1
Ci=— X —mm8m
s  (wpw/1.55)+1

where wpw = 180 x 27. The transfer functions were discretized at f; = 8000 Hz for imple-
mentation.

Table 6.1: Controllers used for simulations of the Simscape multibody model.

C C, Cpar | Cs | R Y

PCI-PID / PID / / |PCI| 0

CR; PCI-PID Fy, Flzl x PID / / |PCI| 0

CR, PCI-PID F, Flle x PID / / | PCI| 0O
Parallel CR; PCI-PID /| 1.267 x Fl‘ll xPID | Cpar, | / | PCI| -03
Parallel CR; PCI-PID /| 1.462 x FI;I xPID | Cpar, | / | PCI| -0.6

High bandwidth C; PCI-PID | / 1.445xPID / Cs,, | PCI| 0

LTI PI-PID / 1.362xPIxPID / / / /

The resulting open-loop FRF plots are portrayed in Fig. 6.1, whereas the pseudosensitiv-
ities computed using the approximate method (Theorem II.4) are shown in Fig. 6.2. The
open-loop systems have a cross-over frequency of 180 Hz, apart from the one controlled
by the high bandwidth C; PCI-PID, which was tuned to have a higher bandwidth than
the base PCI-PID (210 Hz), as per the tuning rules. The phase margin of the systems is
also comparable (= 30°), with the C; PCI-PID again being the exception. This is given by
the fact that for C; PCI-PID a lower phase margin of the SIDF is required to result in an
equivalent peak of pseudosensitivity as the same system without C;. As expected all reset
systems have a larger open-loop gain at the base frame connection resonance frequency
(= 40° Hz), compared to the LTT system. The parallel CR systems show the greatest open-
loop gain, however also the lowest gain in the region [100,200] Hz and the highest gain at
high frequencies. The pseudosensitvities suggest an equivalent behaviour to the open-
loop FRE It can be appreciated how the series CR architecture introduces spikes at high
frequency. The errors resulting from simulation are portrayed in Fig. 6.3a and Fig. 6.3b
in the case with and without white noise in the input n respectively. Again, the same
conclusion already derived in Chapter 4 and Chapter 5 can be drawn:

* The HOSIDFs decrease the performance of the standard PCI-PID.

* The series CR architecture can be utilized to decrease HOSIDFs, however it is sus-
ceptible to noise, further decreasing the performance.
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Figure 6.1: FRF of the SIDF and 374 HOSIDF of the open-loop system with the Simscape multibody model as
the plant, controlled by the control systems shown in Table 6.1. The zoomed-in sections in the bottom-left
show the behaviour around the cross-over region.
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Figure 6.2: Pseudosensitivities of the closed-loop system with the Simscape multibody model as the plant,
controlled by the control systems shown in Table 6.1, computed using the approximate method.

» The parallel CR architecture achieves the greatest suppression and is not sensitive
to noise.

¢ The C, PCI-PID is also not sensitive to noise.

In Fig. 6.3a it can be noticed that the cumulative power spectral density of the error dur-
ing the settling period of the fully LTI system is significantly greater than that of any
reset system, although the pseudosensitivity magnitude at the base frame connection
resonance frequency is lower than that of the PCI-PID system. This is partly given by
the definition of pseudosensitivites. Since they are computed based on the maximum
magnitude of the error, they give a conservative estimation that can differ from the root-
mean-square value of the error, which more accurately describes the power at a given
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Figure 6.3: Error signal and cumulative power spectral density obtained from simulations of the Simscape
multibody model for a typical reference without white noise (a) and with white noise (b) in the input 7.

Table 6.2: Resultant metrics from simulations of the Simscape multibody model without noise.

Ctams | Csrms | Ctmax | Csmax Tse:
PCI-PID 0.3333 | 0.1449 | 0.7502 | 0.8569 | 0.0451
CR; PCI-PID 0.3237 | 0.1283 | 0.7502 | 0.8685 | 0.0330
CR;, PCI-PID 0.3165 | 0.1229 | 0.7502 | 0.8488 | 0.0307
Parallel CR; PCI-PID 0.3426 | 0.1183 | 0.6976 | 0.8198 | 0.0271
Parallel CR, PCI-PID 0.3162 | 0.1130 | 0.6975 | 0.8230 | 0.0242
High bandwidth C; PCI-PID | 0.3112 | 0.1209 | 0.6427 | 0.7159 | 0.0327
LTT PI-PID 0.3136 | 0.1704 | 0.6660 | 0.8078 | 0.0419

frequency. The performance metrics introduced in Section 1.2 are given for the con-
trol systems in Table 6.2. For the metric T.; given in (1.8) parameters b,;, = 0 yum and
bmax = 1 pm were utilized. The results confirm that the RMS error in the settling period
can be significantly decreased with reset control, up to 44% in the case of the system
employing the parallel CR, architecture. It should be known that all controllers were
tuned to maximise the system’s tracking precision, thus minimize es,,,,. The change in
the RMS error in the tracking stage is comparatively only minor, with a maximal increase
of 9% with respect to the LTI system, given by the parallel CR; architecture system. The
difference in the maximal errors between different systems are also comparatively less
significant, with a maximal increase of 12% for the error in the transient phase and of
7% for the error in the settling and steady-state phase. Regarding settling time perfor-
mance, the resulting T,.; values illustrate that the simple PCI-PID system has on aver-



77 6. PERFORMANCE ANALYSIS VALIDATED ON SIMSCAPE MULTIBODY MODEL

age a greater settling time compared to the PI-PID system. This can be explained by the
peaks in error signal caused by the higher order harmonics. All other reset signals have a
smaller T, value, once again showcasing the effectiveness of reset control



CONCLUSION AND FUTURE WORK
RECOMMENDATIONS

7.1. CONCLUSION

In industry it is fundamental to utilize controllers which can be designed using relatively
simple tuning rules. With linear controllers, loopshaping techniques allow this. How-
ever, LTI systems are affected by inherent performance limitations. In order to meet
the ever-increasing demands for better performance, the adoption of nonlinear control
techniques is necessary. In the case of the AB383 wire bonder, performance is given
by the speed and accuracy of the motion stage, in order to increase the throughput of
the machine and allow it to be utilized for smaller chips, respectively. Feedback con-
trol is mainly required to suppress a low frequency disturbance resulting from the res-
onance of the connection between the machine’s baseframe and the environment. Rel-
evant metrics were devised to allow the assessment of the performance quantitatively.
Subsequently, the plant which was utilized to experimentally validate the findings of the
project, the X-stage of the wire bonder’s motion platform, was analyzed. The stage’s cur-
rent LTT control architecture was also described. A literature study followed, to find the
structure of controllers that would best suit industrial applications. It was established
that with a certain type of reset controllers the necessary nonlinearity to overcome LTT’s
fundamental limitations can be achieved, while also allowing frequency domain perfor-
mance (open-loop HOSIDFs and closed-loop pseudosensitivities) and stability analysis
(NSV method). Section 2.1.4 presented all possible types of reset controllers that allow
this, analyzing their advantages and disadvantages. Out of these the FORE and PCI were
deemed the most suitable. Finally, the previous implementation of reset control on the
wire bonder presented in [4] was analysed, assuring that the encountered issues would
be overcome in this project.
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The FORE was implemented to construct a CgLp, an element capable of increasing the
phase margin, of a system while having only a negligible effect on the magnitude. Us-
ing the proposed tuning procedure, a CgLp was designed that decreased the peak of
(pseudo)sensitivity of a system employing an aggressive PID from 7.4 dB to 3.7 dB. It
was however discovered that due to its high HOSIDFs at high frequencies, its NSV is
very susceptible to high frequency resonances. This is especially relevant in the high
tech industry, where the bandwidth is often maximised to increase performance, there-
fore bringing the bandwidth and high frequency resonances relatively closer in the fre-
quency spectrum. It was discovered that adding a notch filter to suppress the resonance
peak can lead to the satisfaction of the Hg-condition. Nevertheless, it may be the case
that the required notch filter introduces more phase lag than the phase advantage of the
CglLp itself.

In Chapter 4, included as a standalone paper, three different structures based on the PCI
were suggested. A PCI can increase open-loop gain at low frequencies even more than an
equivalent PI, thus increasing suppression of low frequency disturbances. Furthermore
it has a lower phase lag compared to an equivalent LTI PI element. Nevertheless, the low
frequency HOSIDFs can cause performance degradation in case of low frequency distur-
bances. Two different CR architectures were thus explored to reduce the HOSIDFs. The
first structure, namely a series CR architecture, involves adding a lead element F; before
the reset element % while simultaneously adding Fl‘1 after Z. The effect of the two filters
Fjpand F; ! cancels out in the overall system SIDE, affecting therefore only the HOSIDFs.
It was shown that with increased ZF;(w), the higher order harmonics excited by the n'”
HOSIDFs could be decreased at nw. Nevertheless, some issues were exposed for the se-
ries CR architecture that hinder its implementation. In fact, F; causes the amplification
of e, and é,. This affects the reset instances in an unpredictable way, possibly affecting
the transient behaviour but also the steady-state behaviour in case noise is present in
the system. Furthermore, when implemented in discrete time, aliasing can cause the
amplification of the closed-loop error when power in certain frequencies is present in
the system’s exogenous inputs. A novel structure, named parallel CR, was therefore de-
veloped to overcome the inherent issues of the series CR architecture. The parallel CR ar-
chitecture is also based on the principle of utilizing F,° ! placed in series after % to lower
HOSIDFs, however the lead element is instead placed in parallel to £. This avoids an
amplification of e, and thus avoids affecting the reset instances. On the other hand, the
SIDF is not identical to the same PCI-PID system without CR architecture. Nevertheless,
tuning guidelines were proposed that allow an even greater open-loop gain compared to
the same PCI-PID system without CR architecture, at the cost of reduced suppression at
frequencies right before the bandwidth.

Experiments, consisting of tracking a typical reference signal of the wire bonder in pres-
ence of both feedforward and feedback control, were then performed with all thre PCI-
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PID structures. The PCI-PID system without CR architecture showed how the systems
main disturbance is suppressed more effectively compared to an equivalent PI-PID sys-
tem. However, higher order harmonics led to a significant decrease in performance. Two
series CR architectures were used to expand the PCI-PID system, demonstrating their
effectiveness at lowering higher order harmonics. However, one of the two series CR
PCI-PID systems showed a worse performance compared to the LTI PI-PID system, evi-
dencing that, when tuned inappropriately, the noise can cause significant performance
degradation in systems employing the series CR architecture. Two parallel CR architec-
tures were also used to expand the PCI-PID system. These achieved the best perfor-
mance with cumulative power spectral density error reduction of up to > 30% compared
to the fully LTT system.

In Chapter 5 the final structure, a C; PCI-PID was presented. It utilizes a shaping filter to
modify the reset instances of a PCI-PID. Tuning guidelines were given to design a shap-
ing filer that not only lowers HOSIDFs at low and high frequencies, but also decreases
the magnitude peak of pseudosensitivity of the system. Nevertheless, stability could not
be guaranteed, not allowing to validate the C; PCI-PID system with real life experiments.
Instead Simulink simulations were performed, comparing all PCI-PID controllers. The
results confirmed the potential of these systems to suppress disturbances, achieving an
RMS error reduction of 29%.

Overall, open- and closed-loop HOSIDFs were successfully put at use as a predictive
performance frequency domain tool. It was demonstrated how, by reducing the magni-
tude of HOSIDFs, it is possible to treat reset control systems in a very similar fashion as
LTI controllers, allowing loopshaping techniques to be used for design. It was thus pos-
sible to relatively easily design reset controllers that were utilized in combination with
PID controllers, to improve closed-loop performance. The NSV method was instead em-
ployed to analyze the stability of reset systems. It was illustrated through the CgLp sys-
tem that, contrarily to the standard Hg-condition, the NSV phase provides information
on how a reset control system that does not satisfy the Hg-condition can be tuned in
order to guarantee stability.

In Section 2.2, the most significant open issues that prevented the adoption of reset
control in [4] were assessed as 1) The inability of the reset controllers to achieve zero-
steady state error, 2) The absence of a reset controller that allows both an open-loop fre-
quency domain predictive performance analysis and a frequency domain stability anal-
ysis method, 3) The absence of a closed-loop predictive performance analysis method.
The first and last issue were overcome for all reset controllers. However, the only imple-
mented reset controllers that allowed both a frequency domain predictive performance
analysis and a frequency domain stability analysis method were the PCI-PID and series
CR PCI-PID systems, two structures with significant drawbacks.
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7.2. FUTURE WORK RECOMMENDATIONS

Although this work highlighted the potential of reset control, it is clear that further re-
search is needed to to achieve the full potential that this technique has to offer. Some
recommendations for future research are given subsequently:

The sensitivity of the NSV to resonances when using a CgLp-PID system might
be overcome by employing a different stability method. Otherwise, reducing the
nonlinearity of the CgLp-PID system at the resonance frequency could overcome
the issue. It might be worth studying if it is possible to utilize a shaping filter for
this matter.

The stability of the parallel CR architecture can currently not be analysed using the
NSV method. However, an expansion of the NSV method in [8] allows to analyse
stability of a SOSRE, a structure that has some similarities to the parallel CR archi-
tecture as defined in (20) of Chapter 4. It can therefore be argued that a similar
expansion of the NSV method can be created for the parallel CR architecture.

The series CR architecture can provide some implementation issues due to the
effect on resetting of a lead filter before the reset element. A shaping filter can
affect resetting as well, while however leading to a different response. It might be
beneficial to study the effect of a shaping filter on the CR architecture, and more
specifically, if it can help overcoming the series CR implementation issues.

The stability of a Cs PCI-PID could not be guaranteed using the Hg-condition.
Nevertheless, due to the fact that shaping filters tuned as proposed reduce the
nonlinearity of a reset system, it can be argued that it is desirable to explore if sta-
bility can be guaranteed using a less conservative stability method. Perhaps, the it
is possible to use a variation of the H ﬁ-condition itself since in [62] it is stated that
the stability of reset systems using the Hg-condition is independent on the reset
times.

Predictive performance can thus far only be evaluated regarding steady-state be-
haviour. In case it is desired to use reset control to improve transient behaviour
instead, it is beneficial to study the relationship between reset system parameters
and transient response.

In this work the overarching goal when tuning with reset controllers was to mini-
mize HOSIDFs atlow and high frequencies. Nevertheless, it is possible that HOSIDFs
can be instead utilized to increase the performance further.

The frequency domain analysis methods employed in this work to evaluate the
closed-loop HOSIDFs analytically (Theorem I1.4), is based on some assumptions
that are often wrong, and is thus not always accurate, especially when the system
has high HOSIDFs. It would be therefore beneficial to either explore if a different
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method can be used or at least study a way to determine analytically how accurate
the method is based on the system’s parameters.

The open- and closed-loop HOSIDF analysis methods used in this work assume a
pure sinusoidal input. The nonlinear effects of desensitisation and intermodula-
tion were thus neglected. It could be valuable to study the impact of these nonlin-
ear effects on the response and perhaps develop tools to incorporate them in the
analysis procedure.
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COMPUTATIONAL ANALYSIS TOOLS

In the following appendix some of the developed MATLAB-Simulink tools are presented.

A.1. SIMULINK IMPLEMENTATION OF A RESET CONTROL SYS-
TEM

The set of state space equation describing the dynamics of a reset controller were shown
in Section 2.1. These were integrated in a Simulink model of the expended architecture
as given in Fig. A.1.
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Figure A.1: Simulink block diagram of the expanded architecture including Cpq;.

The content of the the Simulink block ‘R’, which includes the reset controller, is shown
in Fig. A.2. It can be noticed that the block uses state-space form in order to approx-
imate the discrete time implementation of & as given in (22) of Chapter 4. The reset
action is implemented by the Matrix Multiply block, which scales x, by either I if
the reset condition is not triggered or A, if the reset condition is triggered. The de-
termination whether the reset condition is triggered occurs through the algorithm im-
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plemented in the MATLAB function trigger.mat [95], in the Simulink Interpreted
MATLAB Function block ‘trigger, which can be characterized as pseudocode with the
snippet

if e'_kxe'_k-1 = 0

tr_k = eye(length(Arho));
else

tr_k
end

Arho;
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Figure A.2: Simulink block diagram of the reset controller.

A.2. OPEN-LOOP HOSIDFs

The MATLAB function hosidf0L.mat [95] computes the open-loop HOSIDFs for an ex-
tended architecture structure including Cpqr, based on (2.14) and (2.17). However the
HOSIDFs are computed as H, (jw/n) instead of H, (jw). This is due to the fact that FRF
data of G is only provided for frequencies w, thus as G(jnw) and the open-loop HOSIDFs
are given by Hy, (jw) * G(jnw).

A.3. APPROXIMATE CLOSED-LOOP HOSIDFs

The MATLAB function hosidfCL.mat [95] computes the closed-loop HOSIDFs and the
resulting pseudosensitivity for an extended architecture structure including Cp4, using
the approximate method based on (2.18) and (2.19). It is possible to choose the sam-
pling frequency of the closed-loop error signal to analyse the aliasing effect. In order
to compute the closed-loop HOSIDFs it is necessary to first compute the open-loop
HOSIDFs at frequency w, hosidf0L.mat can thus not be utilized. Instead a new func-
tion hosidfOL_interp.mat [95] is utilized. In case FRF data is provided for G, linear
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interpolation is used to find the value of G(jnw).

A.4. NYQUIST STABILITY VECTOR

The MATLAB function NSV.mat [95] computes the Nyquist stability vector for an ex-
tended architecture structure excluding Cp ;.
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