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EXECUTIVE SUMMARY

This report presents an attempt to define joint statistics of waves and water

levels at the -20 m depth contour offshore the coast of the Netherlands. It

covers

— 1listing and definition of relevant hydraulic parameters

— combinations of hydraulic parameters for which statistics will be produced

— the type(s) of statistics of these parameter combinations, the exact
definitions of these statistics

- parameterization of these statistics, needed in order to estimate them
from available field data and numerical hindcast data

For statistics at the -20 m contour, it is proposed to focus on the parameters
high tide level, significant wave height, mean wave period, mean wave
direction, wind speed, and wind direction. In addition, spectral width and
directional spreading of the waves, as well as current can be considered.
Joint statistics should pertain to the combination of the six most important
parameters. Estimation of these from data is not feasible in practice, so some
simplifying assumptions are required.

Since for assessment of the safety of the coast storm events with very low
frequencies of occurrence are of interest, there is no difference between mean
number of occurrences per year and probability of occurrence in an arbitrary
year. Statistics of failure or damage of a water retaining structure can be
derived from a single type of joint statistic of hydraulic parameters in cases
of practical interest. This statistic is independent of failure mechanism, and
can be estimated at the -20 m contour and then translated to the coast. Some
ideas are presented about how to take limitations on the number and quality of
available data into account into final estimates.

It is recommended to use methods for Jjoint statistics of hydraulic parameters
that are consistent with the most recent approach to statistics of high tide
levels, based on a peak-over-threshold approach to data selection and the use
ol a Generalized Pareto distribution to specify exceedance frequencies.
Two different approaches are discussed:
- the current approach known as the method of Bruinsma/Van Aalst, which
is based on simplification of the physics of generation of surges and waves
- direct estimation of the required statistics from data using the
asymptotic shape for the probability that several hydraulic parameters
simultaneously exceed high levels during a storm
It is recommended to test these approaches separately to identify strengths
and weaknesses of each method, and then to compare them. Tests can be based on
hindcast (NESS) data and on measured data. Based on this experience,
improvements can be implemented and the final choice of method can be made.



1. Introduction

This report presents the results of a study aiming at the definition of joint
statistics of waves and water levels at the -20 m depth contour offshore the
coast of the Netherlands. The final goal is to come to a single consistent set
of statistics to be used for evaluation of the safety of the coast of the
Netherlands. Numerical models will be employed to translate these statistics
at the -20 m contour to statistics at locations near the coast. At each
location, the failure mechanisms pertaining to the protecting structure
determine which statistic(s) are finally derived from the basic statistics.

The starting point for the development of a method for assessment of
statistics of hydraulic boundary conditions at the -20 m contour is the
approach developed at Ri jkswaterstaat [Vrijling and Bruinsma, 1980; Bruinsma,
1982; Van Aalst, 1983]. This approach is considered valuable because it
recognizes wind as the common source of surges and waves in the North Sea.
Since that time, however, new sets of data became available, both measurements
and numerical hindcast data. Moreover, developments in statistics of extreme
events have taken place, and there appears a need for more rigorous
definitions of parameters and statistics. This report covers

— listing and definition of relevant hydraulic parameters
— combinations of hydraulic parameters to be considered

— the type(s) of statistics of these parameter combinations, the exact
definitions of these statistics

— methods for parameterization of these statistics, needed in order to
estimate them from avallable field data and numerical hindcast data

Some attention is paid to estimation of statistics from data and to the
accuracies of estimates. Also certain aspects of selection and validation of
measured data and hindcast data are discussed that are related to estimation.
In the conclusions, the various choices are summarized, and an outline is
given of the proposed approach. New results presented in this report are
preliminary in the sense that thorough checking of correctness and feasibility
remain to be done.
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figure 1: logical model for determining the requirements on statistics at -20
m depth. -

An alternative approach would be to interpolate available historical (measured
or hindcast) data over the -20 m contour, and to generate historical data at
all coastal locations using numerical models. Then at each separate location,
the statistics required for the relevant failure mechanisms are estimated from
these data. The advantage of this approach is that statistics do not need to
be generic (applicable to all failure mechanisms). Several objections to this
approach have already been indicated, which have lead to the decision to
produce a single set of statistics for relevant environmental parameters at
the -20 m contour, applicable to all failure mechanisms.

In the following chapters, some requirements will be discussed in more detail
than is possible in this introductory chapter.



2. Requirements

The safety of the coast 1s threatened by extreme storm events generating high
water levels and high waves, the combination of which can cause failure of
dunes, sea walls, dikes and storm surge barriers.

In principle, there are no limits to the magnitudes of wave heights or water
levels that may occur. As a consequence, safety criteria are based on an
acceptable probability or frequency of fallure of the protecting structure,
rather than on the requirement of absolute safety. Therefore, statistics of
the hydraulic conditions controlling failure of the structure must be
assessed.

These hydraulic conditions involve water level and wave parameters such as
wave height and wave period. Since the combined effect of waves and water
level on a structure is generally complex, joint statistics of wave and water
level parameters are required. The exact specification of the required
statistics at coastal locations depends on the relevant failure mechanisms.
Therefore, the set of statistics computed at the coastal locations should be
general enough to cover all possible requirements.

In general, failure of a structure is not instantaneous. To assess the effects
of hydraulic conditions on a structure, nowadays dynamical models are used.
This implies that not only the magnitudes of certain hydraulic parameters, but
also the persistence (duration) of extreme conditions has to be modeled
statistically in order to assess the expected frequency of failure of the
structure.

Waves undergo transformations when propagating from relatively deep water to
the coast. Variation in coastline and depth close to the shore cause
considerable variation in wave conditions nearshore. In order to obtain
statistics of waves and water levels that are relatively invariant in space
and time”, they are preferably specified at relatively deep water, but not
too far from the coast. Traditionally, the -20 m contour is chosen as a
compromise. Another reason for specifying the statistics at relatively deep
water is that it simplifies the description of wave spectra.

Shallow water wave models are used to translate environmental parameters at
the -20 m contour to wave parameters near the coast. Therefore, the set of
statistics to be specified at -20 m depth is determined by the required
statistics near the coast, as well as by the model input data required to
compute all relevant hydraulic parameters near the coast.

The dependence of the required statistics at the -20 m contour on safety

criteria and failure mechanisms is summarized in the following diagram.

1i.e. invariant to changes in morphology of the sea bottom



3. Definition of parameters and statistics

3.1 Selection and definition of parameters

List of parameters

For statistics at the -20 m contour, it is proposed to restrict the set of
physical parameters to:

high tide level
significant wave height
mean wave period

mean wave direction
wind speed

wind direction

e WN =

Of these, extrapolation of statistics beyond the range of available data is
necessary only for high tide level, significant wave height, mean wave period
and wind speed; directions are limited to the interval [-m,n]. In addition,
statistical information about

spectral width parameter
directional spreading of the waves
current speed

0. current direction

= O 00 =

may be required. However, these parameters are not considered critical. The
purpose of statistics of these parameters is merely to get an impression about
the range of values occurring, in order to define proper boundary conditions
for the shallow water wave models that are used to translate wave statistics
from the -20 m contour to the shore.

Motivation

—>1: For the water levels, a number of options are available besides high
tide levels. The surface elevation measured at a fixed point in the plane is
the basis of all definitions related to water level.

The first step is in general to exclude sea surface waves with periods of less
than say 30 s, so when we talk about water level, a filtered surface elevation
signal is meant in which all periods below 30 s are suppressed.

This signal is still not very useful for computation of statistics since it
oscillates with the astronomical tide; since the astronomical components are
predictable, there is a lot of redundant information in these data. So the
first step is to remove the astronomical oscillation from the data. The most
straightforward approach is to simply subtract the astronomical signal (as
determined by tidal analysis) from the water level signal. However we will



still find features related to the astronomical tide, due to interactions
between astronomical tide and variations caused by wind and by atmospherical
pressure gradients. During a storm, it is in fact impossible to make a
unambiguous distinction between astronomical tide and "meteorological tide"

at every instant. However by focusing on high tide level (maximum of the

water level between to tidal minima) only, the oscillation due to astronomical
tide is removed. Moreover, it is much easier to make a meaningful distinction
between astronomical and meteorological components: the meteorological
component is simply the difference between measured high tide level and
astronomical high tide level, and we do not have to bother about interactions
(as far as the definition is concerned). The meteorological component thus
defined can be the result of different physical mechanisms: we can distinguish
set-up (slope of the surface of the North Sea built up by wind stress or
atmospheric pressure gradients), and oscillations on different time scales,
associated with the set-up, wave-wave interactions, etc. This implies that all
variations on time-scales slower than those normally considered for sea
surface waves contribute to the meteorological component. Currently, the water
level signal is filtered by computing 10 minute averages. This means that all
oscillations with periods suppressed by this filter are excluded from the
analysis, and statistics of this fast component (short waves, long waves) have
to be made separately. In this report, we will focus on high tide levels and
short sea surface waves (with periods below say 30 s). Longer waves can be
important too in practice (seiches). For statistics of long waves, see for
example [Vogel and De Valk, 1991; De Valk, 1991]. Statistical relationships
between long waves and high tide level can be treated in a similar way as
discussed for short waves in this report.

The joint statistics to be produced will be of high tide level and wave
parameters rather than of set-up and wave parameters (or astronomical tide and
wave parameters). The motivation is that high tide level is the relevant
parameter for the design of constructions. Statistical relationships between
waves and set-up or astronomical tide may or may not be used at intermediate
stages of the estimation procedure, but are not of practical relevance in the
end.

—>2&3: Most important wave parameters near the construction are a wave

height parameter, and a wave period parameter, together also determining (by
means of the dispersion relationship) a measure of wave steepness. Shallow
water wave models describe the wave field in terms of wave spectra (variance
spectra or action spectra). Therefore, the relevant parameters at the -20 m
contour are spectral parameters. In wave models like HISWA [Holthui jsen

et al. 1989), a parameterization of the wave spectrum is employed, which means
that a few parameters are sufficient to fix the boundary conditions at the -20
m contour. This approach is probably also valid for models which do not
parameterize the spectrum. Analyses of wave measurements and numerical wave
hindcasts at -20 m depth produce spectral parameters too, so no problems are
expected. For design purposes, relevant parameters are not always spectral
parameters. For example, the maximum wave height or the wave height exceeded
by the highest two percent of the waves can be more relevant. In general, such
parameters can be computed once the shape of the spectrum is known, which
usually depends on depth and possibly also on current.

—»4: Information about wave direction is important mainly because wave



directionality affects wave propagation in shallow water (in particular in the
case of a complex bathymetry such as in estuaries) but also because this
parameter is relevant for certain faillure mechanism(s).

—>58&6: Wind speed and direction determine wave growth on shallow water.
Moreover, wind speed statistics are used in the method for estimation of jolnt
statisti~s of waves and water levels employed until now by R1i jkswaterstaat
[e.g. Bruinsma, 1985].

An impression of the sensitivities of wave parameters nearshore computed by
HISWA to wind, wave parameters and set-up at a deep-water boundary is given in
[Booij and Holthui jsen, 1991].

—78&8: parameters related to spectral shape at deep water may be relevant
for computation of wave propagation in shallow water. Near a construction,
spectral width may be needed to compute wave height parameters other than H
(see definitions below) such as the maximum wave height over a time interval.

—9&10: current speed and direction are important for wave propagation in
tidal inlets.

Definitions of parameters

The following notation will be used:

The symbols for parameters are placed between brackets (+), the units of
parameters Retween square brackets [-].

The symbol = means "is defined as".

For spectral parameters: in general, the notation is consistent with the IAHR
list of sea state parameters [IAHR, 1986]. Among others,

f = frequency [Hz]
2] direction of wave propagation [degrees]
S(f,8) = directional spectrum (spectral density)

To simplify the notation, the inner product of two functions a and b on the
spectral domain

<a,b> & [[ at£,0) b(£,0) df de

will be employed frequently.

The definitions are:

; High tide level (h) [m]
maximun of the water level between twc minima of the dominant (~12.5
hour) cycle of the astronomical tide.

related parameters:
la. water level [m]:
10-minute average of sea surface elevation relative to NAP



1b. Astronomical tide (a) [m]
sum of astronomical frequency components in water level signal (result of
tidal analysis on long data records). Defined at every instant of time.
lc. Set-up (s) [m]:
difference between high tide level and the maximum of the astronomical
tide between two minima of the dominant cycle (in Dutch: schuine opzet).
1d. Persistence of high tide p_ [tidal periods]:
length in no. of tidal per?ods over which the high tide level rcmains
above the level h.

2. Significant wave height (H;o) [m]

H 2 am)?
mo 0
m [mzl is the 20 minute average of the variance of the sea surface
elevation (usually only for frequencies above a threshold, e.g. (30s)
In general, m_1is stored only every 3 hours (for example), but this is
not part of tRe definition of the parameter, it pertain only to
availability of the data.

The averaging interval is fixed here at 20 min. It can also be different
in practice, usually within the range (10 min, 30 min].

L is related to the spectrum by the definition of the i-th spectral
moment

m, 44 o

-1].

related parameter:
2a. Persistance of significant wave height (pH) [hours]:
length in hours of excursion of H-o above a certain level.

3. Mean wave period {Tb 2) [s]

1/2
)

a (m /m (see also 2.)

0,2 0 2

alternative definitions of wave period which are also based on the spectrum
are:

iy

3a. g m /m
0,1 0 4
3b. 4 m _/m
-1,0 -1 0
4, Mean wave direction (eo) [degrees]
@ = atan (si,co)
0 2
A A
with si = <sin@, S>/<1, S> and co = <cos@, S>/<1, S>

(atan2 is the mapping of sine and cosine to angle).



8.

Wind speed (u1 ) [ms™ ')
wind speed at 90 meters above the sea surface, averaged over 10 minutes.

Wind direction (8 ) [degrees]

10 min. average di?ectlon of wind at 10 meters above sea surface.
Zero for wind vector pointing to the South, increasing with vector
pointing toward S—» W—- N— E.

Spectral width parameter v, (-]

A -2
v = (mmm -
2 021

1)1/2

determines amplitude of complex envelope = one half of individual wave
height in case of narrow band spectrum.
possibly useful for determination of other wave height parameters besides

Hmo'

Directional spreading of the waves ¢_ [degrees]

or "circular standard deviation":

o2 A < 2(1-cos(6-8)), S>
o <1, S>

2 .2.1/2
2(1 - [al+b1) )

In fact: 02
0

ne

with a & <cos @, $>/<1, > and b, 8 (sin 0, S>/<1, S>

1

Current speed (v) [ms ']
averaged over same interval as wave spectrum

10. Current direction (8 ) [degrees]

hd
averaged over same interval as wave spectrum



3.2 Listing of parameter combinations to be considered

In principle, a sufficient set of statistics would consist of a joint
statistic of at least the first 6 parameters listed in 3.1. In practice it is
impossible to assess such kind of statistic with reasonable accuracy.
Therefore it is proposed to start with the following combinations of one or
two parameters:

a. Univariate statistics of h, H;o' T ,86,u , 86
and joint statistics of the pairs

high tide level h and significant wave height Huo
significant wave height H-o and mean wave direction 90
significant wave height Huo and mean wave period Tb,z
wind speed u, and wind direction 910

significant wave height Hm0 and wind speed u.

significant wave height Hno and wind direction a10

g m = 0 A o0 o

. mean wave direction 80 and wind direction alo

B Hmo To,z 6o ulo e10
X h
X X X X H
m0
To,z
X e
o
X u10

The rationale behind this choice is that it is considered difficult enough to
estimate joint statistics of two parameters; in the case of three parameters,
it is expected that results will already be poor. When during execution of
the study, it appears that it is possible to make meaningful estimates of

statistics of more than two parameters, an attempt can be made, in the first
place of

i. high tide level h, significant wave height H o and mean wave direction 60
m



and of
j. high tide level h, significant wave height HnO and mean wave period T0 5

To complete the joint statistics of all six parameters, simplifying
assumptions like conditional independence can be tested, and applied if found
to be appropriate. Physical arguments will be important in this process. Such
assumptions are for example assumptions of complete dependence or
independence. Also the sensitivities of the model that is used to translate
parameters at the -20 m contour to parameters nearshore are important in
determining which approximations are to be made.

Finally persistence statistics are important. In principle, we will focus on
k. persistence of high tide level

The reason for this choice is that a high water level is a necessary condition
for other (wave) parameters to affect failure of a construction. Of course it
is of interest to compare it with persistence of significant wave height. More
detailed information on the behavior of water level and wave parameters as a
function of time can be valuable for dynamical simulation of the behavior of a
dune or dike during a storm. The results of such simulations can then be
reduced to a more simple description of the behavior in terms of basic
hydraulic parameters as mentioned in 3.1.

Of course the validity of the proposed restrictions on parameter combinations
remains to be checked.

10



3.3 Summary of chapter 3

For statistics at the -20 m contour, it is proposed to focus on the following
environmental parameters:

1.high tide level h

2.significant wave height H
w0

3.mean wave period T

4.mean wave direction’ 60

5.wind speed u10

.wind direction 910

In addition, spectral width and directional spreading of the waves, as well as
current can be considered.

(o))

Joint statistics should pertain to the combination of all parameters 1-6.
Estimation of these from data 1s not feasible in practice, so some
simplifications are required. It is recommended to start with the following
combinations of two parameters

(h,HmD). (Hmo'T

), (H_,60), (H ,u ), (H_,6 ), (8,6 ), (u,6 )

0,2 10 10" 10

and then to see if statistics of three parameters can be estimated for

(h,H ,8 ) and (h,H ,T )
mo’ 0 mo’ 0,2

The required joint statistics should be based on the results for combinations
of not more than three parameters, using assumptions that have been thoroughly
tested on available data.

11



4. Choice of statistics to be estimated

4.1 Probabilities and expected frequencies of occurrence of extreme
conditions

Statistics of the frequencies or probabilities of occurrence of extreme (rare)
events can take different forms.

The first starts with a subdivision of the time axis into equidistant
intervals, say with a length of one year, and considers the probability of
occurrence of an event during such an interval.

Usually it is assumed that these probabilities for different intervals of
equal length are equal. This is valid if the process is seasonally stationary
(as is the case for all phenomena related to the weather, when climate change
is neglected), and the length of the interval is an integer number of years.
Classical extreme value statistics deals with this kind of statistic.

Another kind of statistic is the expected number of occurrences per unit of
time, for example the expected number of exceedances of a high level a per
unit time. Again, this statistic can be converted to a probability if we
consider only exceedances of a certain threshold uws, namely the probability of
an exceedance of o« during an excursion above the threshold w.

The advantage of a threshold is that the statistic is not so much affected by
small fluctuations, so it ensures that (generally) the maxima during different
excursions above w are independent, so only independent events are counted.
The significance for statistics of hydraulic parameters is that a single storm
does not show up several times in the statistics.

It may be even better to use two thresholds instead of one: a high threshold
to mark the beginning of a storm event and a lower threshold to mark the end.
This to make absolutely sure that small fluctuations do not affect the
selection of storm events.

This idea of frequencies of occurrence and thresholds can be generalized
straightforwardly to more than one parameter, e.g. high tide level and wave
height. We will discuss this later.

In general, these two statistics are different. From both, a socalled return
period can be computed, but these are different too:

For the first case, the probability of occurrence of an event in a fixed
time-interval of length t, this is

n = PIk® =111t (1)

N%E? t the length of the interval considered (say one year for example), and
k'~ the number of occurrences of the extreme condition in the interval of
length t. Apparently, this return period depends on t.

12



The return PFriod in terms of expected number of occurrences per unit of time
is simply p ', with pu the expected number of exceedances of u per unit of
time. Observe that

o Y
n Z M (2)

When considering exceedance frequencies using a threshold ws, the return
period Py is

_ -1 -1
Py = My P[kw z1] (3)

with Kw the number of exceedances of a during an arbitrary excursion above
the threshold w, and My the expected number of crossings of the threshold
per unit of time.

Traditionally, the choice of statistic has been considered as a problem of
choice of method, rather than as a choice of principle. In principle, the
statistic should be used that is most relevant for the application. For
example, if an oil production platform is designed which should be operational
for a period of 30 years at most, than the user of the platform wants to know
the probability that the construction will be damaged during its intended
lifetime of 30 years. So the required statistic is n with t equal to 30
years.

If it is not clear a priori that a statistic should apply to a fixed finite
time, then it does not make sense to chose an arbitrary value of t (such as
one year) and compute a statistic. Rather, the expected number of upcrossings
should be computed, since this is the statistic that is invariant to the
choice of time-unit (the expected no. per 10 years is 10 times the expected
no. per year). However, quite generally, provided ut is small enough, there is
practically no difference between exceedance frequency and probability of
exceedance within a time-interval of fixed length t (see for example [Cramer
and Leadbetter, 1967], p.54). This applies to the problem of assessment of the
safety of the coast. For example, suppose that upcrossings of a high level u
are a realization of a Poisson process (in appendix b, weaker assumptions

are given that are more appropriate for hydraulic parameters, but the result
is the same). Let the time-interval t be fixed at 1 (one year), and let the
frequency of failure be only 10 (yr '), then

Plk'= 1] = (u)'exp(-p)zit = p'/it vi (5)
which means that
1

p= Plk=1] = Plkz 1] (6)

so in this case, there is practically no difference between mean number of

13



occurrences per year and the probablility of at least one occurrence in a year.
Frequencies of failure in the order of 107* [yr-IJ are typical values used

in the design of coastal protection measures, so in the present context, there
is essentially no difference between the two types of statistics.

In appendix b, the mathematical relationship between these two different

concepts of extreme condition statistics is discussed in some more detail, and
the implications for parameterization of these statistics are reviewed.

14



4.2 How to define statistics of simultaneous occurrences of high tide levels
and high waves

Suppose that the probability of failure of a construction during a storm is
only determined by the most unfavorable condition occurring during that storm
(so the duration of a storm is not relevant). Let’s say that the total load on
a construction is determined by two hydraulic parameters u_ and u_, such as
significant wave height and high tide level. The total load at anzinstant t
can be written as

f(ultt},uz(t)]

In this case, contours of equal total lcad in the parameter space can be
determined, for example

The probability of failure PF in a time interval of fixed length, say [0,1]
(for example one year) is the probability that the maximum of total load over
(0,11,

me = tel0,1] f(ul{t),uz(tll (7a)

exceeds the strength of the construction, so PF is given by the convolution

PF = I Plmé& >s] dH(s) (7b)
seR

with H the distribution function of the strength: strength is assumed
statistically independent of load because it is the result of uncertai:ity
about the properties of the construction.

By (7), the required statistic of the hydraulic parameters is:

15



Plme >s] = p[te[O,ll

f(ul(t).uz(t]] > s ] (8)

This statistic depends on the failure mechanism. However, we need generic
statistics, independent of falilure mechanism, because these statistics will be
determined at the -20 m contour, and then translated to the particular
structure. Moreover, we want to avoid having to start the estimation of
statistics from data all over again with every update of the model of the
failure mechanisms. So what is needed is a statistic which is independent of
failure mechanism and provides enough information to compute (8) for every
relevant f.

In general, (8) above is computed from the probability that the load exceeds s
during a single storm. Let a storm be defined as a time interval I_ during
which (u ,u ) are in some region B in the plane which is far away from zero.
In the case’of wave height and high tide level, B contains only those wave
height/high tide level combinations that occur during severe storms, so its
boundary 8B serves as a threshold. For example,

a8

B should have such a shape that for all relevant fallure mechanisms, all
points in the plane corresponding to loads that may cause damage or fallure
are included in 8. In other words

{ (al,aa): f{al,az]> s }c3B (9)

for those values s of practical interest.
Now if the probability that the load f exceeds a value s during an arbitrary
storm,

P[ f{ul(t).ua(t)) > s for some t in IB ] (10)

is known, then the expected number of storms per year during which

16



f(u (t),u (t)) exceeds s can be computed by multiplying (10) with the expected
number of°“storms per year. Then also (8) can be computed (see appendix b). In
the present context, (8) is practically identical to (10) multiplied by the
expected number of storms per year (see section 4.1 and also assumption (1)

in appendix b). Observe that deriving statistics like (8) from (10) is similar
to the approach called the POT (peak over threshold) method. In this case, the
boundary of the set B acts as the threshold.

So for a particular type of construction, (10) is needed in order to compute
statistics like (8). Under rather weak assumptions explained in appendix a,
(10) can be computed for all relevant failure mechanisms from the statistic

A
Fc(ai.az} = P[ ul(t]>a1 n uz(tba2 for some t in IB ] (11a)

given as a function of a and a, provided s is large enough for (9) to hold
(see appendix a). The formula t5 compute (10) from (11a) is

P[ f(ulit).ua(t]] > s for some t in IB 1=

RZI ul f[al.az}~s 1 ch[al,az) (11b)

with u the unit step function defined as follows: u(x)= 1 if x>0 and u(x)= 0
otherwise. It can expected (11) is valid for all f of practical interest (see
appendix a).

The function F 1is independent of failure mechanism. It can be determined at
the -20 m contSur; the probabilities of failure of a construction near the
coast can be computed if we assume that the transformation from the -20 m
contour to the coast is instantaneous (in view of 3.1, at least within a
single interval between two tidal minima). Note that for waves, this
assumption is implicit when the model HISWA [Holthuijsen et al.,1989] is used
to translate wave parameters from deep to shallow water.
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The meaning of Fc is explained graphically in the following diagram.

u, path of the hydraulic u, points exceeded simultaneously
parameters during a during the same storm
storm

1 0
3B o8
b Yy
(a) (b)

It shows a curve of the parameters u_ and u_ during a storm (see (a)) and the
points that are simultaneously exceeded during that storm (see (b)). Defining
a function which is unity at these points and zero everywhere else, then F_1is
simply the expectation of this function. N

Note that F need not to correspond to a proper probability measure on the
plane, that®is, its density may take negative values. However, this density
is expected to be nonnegative in practice. In particular if u and u, always
reach their maxima at the same time, then

max max

Fc(ai.azl = P[ teB ul(t)>a1 N teB u.z(t]>a2 | (12)

the "joint survivor function" of the maxima of u_and u_ during a storm. This
makes the work easier in practice since we only have to°deal with one
observation per storm. (12) is however not essential. Another simple situation
is that the hydraulic parameters are completely dependent. In that case, F_ in
(11b) is nonzero only along a single curve in the plane. This simplifies the
translation from one location to another considerably. For certain parameters
like wave height and wave period this may turn out to be the case.

Generalization to the case of more than two hydraulic parameters is
straightforward.

If one of the hydraulic parameters is a direction (mean wave direction, wind
direction, current direction), then the approach as sketched above is not
valid. However it can be modified to deal with directional data; statistics
like the probability that during a (well-defined) storm H  exceeds a certain
value while the mean wave direction 6 1is in a particular'?nterval can again
be derived from a single statistic 1n3ependent of failure mechanism. It will
take us a little too far to discuss the technical aspects here.
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Another more simple approach is to divide the circle into sectors of equal
length and to consider for each sector the maximum of H over the time in
which 8 has been in that sector during a storm. In thigoway, the problem has
been reduced to determining a univariate distribution for each directional
sector. This type of statistic is not completely generic however, unless 90
remains in just one directional sector during a storm.

If failure depends on the time that a dune or dike has been under the attack
of waves and surge, the approach sketched above will not be valid. There are
two possible approaches in this case.

The first one is to specify completely the statistics of the time series of
all relevant hydraulic parameters during a storm. Then a dynamical model
computing the response of the structure can be run with all possible time
series of these hydraulic parameters as input data to compute the statistics
of failure or damage. This is only feasible if rather strict assumptions are
imposed on the variation of the hydraulic parameters during a storm in order
to simplify it.

The other approach is use the model first to find out exactly which
characteristics of the time-series are essential for determining failure or
damage. This results in a simplified description of the model’s response in
terms of a few parameters, which may include persistence. This description
can be combined with the statistics of these parameters to obtain a
probability of failure or damage.

The advantage of the second approach is that the results do not depend so
much on assumptions on the variation of the hydraulic parameters during a
storm. Moreover, the effort can be spent to obtain reliable statistics of the
essential parameters rather than to figure out how to simplify a set-up curve,
for example.

However, more detailed insight into the temporal variation of hydraulic
parameters during a storm can be valuable in order to provide representative
inputs for model simulations.

In this section, it has been shown that a rigorous definition of joint extreme
condition statistics is possible in practically all circumstances. Elsewhere,
parameterization (section 5.3) and estimation (appendix d) of these statistics
is discussed; it appears that some modification of statistical methods is
necessary. If the situation is relatively simple, that is, when the different
hydraulic parameters reach their maxima during a storm at the same time,
statistics like (12) are suitable and standard statistical methods can be
used. The recommended strategy is therefore to see first if statistics like
(12) are applicable. If not, then this section provides guidelines to obtain
results without having to resort to ad hoc methods.
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4.3 Dealing with the limited accuracies of estimates

Normal procedure in assessment of statistics of hydraulic parameters 1s to
give an estimate of a probability (e.g. (9)) or expected frequency of
occurrence, together with an indication of the accuracy of the estimate,
usually a confidence interval. The engineer is then left with the problem what
to do with this confidence interval, that corresponds to a statement like:
“there is a probability of 0.05 that the level exceeded by the annual maximum
wave height with a probability of 10™% is higher than 6 m".

In this sentence, the word probability refers in the first instance to
uncertainty due to the limited number of data with limited accuracies, and in
the second instance to the unpredictable character of the weather in an
arbitrary year in the future. Yet, for the engineer, the sources of these
uncertainties do not matter; all that matters is the final uncertainty about
whether or not the construction will fail, based on the information that is
available.

This final estimate of a probability, including the uncertainty due to
limitations on number and accuracies of data, is the conditional probability
relative to the available data (or: conditioned on the available data). It is
explained in detail in appendix e.

Normally, to estimate the probability that say wave height will exceed a level
a in an arbitrary year, the data, for example of annual maximum wave height,
are fitted by a distribution function of a certain shape, by estimating the
parameters of this distribution by the maximum likelyhood method. The
conditional probability relative to the data, however, is a weighted average
of the probabilities obtained with different values of the parameters,
reflecting the uncertainty in these parameters due to limitations on number
and quality of the data. This implies that if only few inaccurate data are
available, the probability of exceedance of a level tends to be high. By
increasing the number and accuracy of the data, this probability may become
lower (unless the values of the added data indicate otherwise).

This type of estimate is also quite robust to errors in assumptions on the
general shape of the distribution: if the data are not fitted well by any
distribution within the class considered, e.g. the Generalized Pareto
distributions, then relatively high probabilities of exceedance result. This
is a very important property of an estimator: it corrects errors in
assumptions to a certain extend. In estimation of statistics of extreme
conditions, the objective ls to extrapolate a distribution beyond the range of
available data. This implies that the selected class of distributions chosen
should in the first place be suitable for the extrapolation. However another
class of distributions may give a better fit to the data, for example because
the data set is not representative, but may be unsuitable on theoretical
grounds. If just the quality of fit is considered, then the second class of
distributions is preferred. However it gives relatively low probabilities of
exceedance because apparently the uncertainty associated to data volume and
quality is small, whereas the first class, due to poor fit, leads to
relatively high estimates. A cautious engineer will regard the low
probabilities of exceedance with some suspicion.
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Other properties of conditional estimates relative to the data are that data
from different sources can be weighted according to their error statistics,
and that prior knowledge can be incorporated straightforwardly.

An error analysis of the available data is required to assess the statistics
of these data. Water level measurements can probably be regarded as error
free: they are very accurate compared to other data. This may also be assumed
for the astronomical tide; the accuracy of the tidal analyses needs to be
checked. So errors in measurements are mainly limited to wave and wind
parameters. The error statistics of wave parameters depend in general on
spectral shape, and can be approximated. Other errors such as for example
interpolation errors may be considered too. Hindcast errors should be
determined by comparison with measurements from sensors with known error
characteristics, taking the measurement errors into account. So there is a
strong link between data validation and the estimation of statistics.

It is recommended to address the issues discussed in this section only after a
satisfactory basic method for estimation of joint extreme condition statistics
has been developed. In the mean time, the maximum likelyhood estimator (or
equivalent methods) can be used.
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4.4 Summary of chapter 4

The statistics that are ultimately required are statistics of a function of
one or several hydraulic parameters near a water retaining structure. This
function is the total load (in case failure is not dependent on the duration
of a storm), or some equivalent which is also a function of persistence (see
section 4.2). It is determined by the failure mechanisms.

In section 4.1, we found that these statistics can be the probability that

the total load exceeds a level in an arbitrary year, or the expected

number of exceedances of this level per year. In the present context, there is
no difference between these two statistics.

In section 4.2, a method is presented to compute the probability that the
total load exceeds a level s in an arbitrary year from a statistic which is
independent of failure mechanism, given in equation (11a). Therefore (11la) is
the statistic to be estimated at the -20 m contour and then translated to the
coast.

Usually extreme condition statistics are made by fitting some curve to the
available data. To give an impression of the accuracy of this estimate, a
confidence interval is estimated also, which depends on the number and quality
of the data. An alternative approach is described which incorporates the
uncertainty due to limitations on sample size and accuracies into the final
estimate of a probability. It is proposed to pursue this subject after a
satisfactory basic method for estimation of joint extreme condition statistics
has been implemented.
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5. Parameterizations of joint statistics of waves and high tide levels

5.1 Statistics of high tide levels

In this section, a brief summary is given of the methods used to determine the
statistics of high tide levels. This is important because the joint statistics
of waves and high tide level will have to be consistent with the accepted
approach to statistics of high tide levels.

Until recently, water level statistics were determined according to the Report
of the Delta Committee [Delta Committee; 1960]. The method is as follows. The
parameter of interest is high tide level (see section 3.2). No decomposition
into set-up and astronomical tide is made. The statistic considered is the
expected frequency of exceedance (in no. of exceedances per year) as a
function of level relative to NAP. The shape of the exceedance frequency curve
was assumed exponential (the logarithm of exceedance frequency is a linear
function of level). This cholce was made after comparison with some
alternatives. Data are selected high tide levels at Hoek van Holland observed
over the years 1888 to 1956. From the high tide levels, the maximum per storm
was selected. Only storms during the months november, december and january
were used, and of these, only the potentially dangerous storms were retained,
as determined by the path followed by the pressure low. The purpose of the
selection was to obtain a data set which can be expected to be statistically
homogeneous, in the sense that the data are taken from the same distribution.

A recently developed approach differs in several aspects [De Haan, 1990; Van
der Made et al.,1989; Dillingh, 1991]. The method of selection of 'potentially
dangerous’ storms is now rejected. Still only data collected in a particular
season are used, now october 1 to march 15, in order to obtain a homogeneous
data set. Only data of storms with set-up levels exceeding a threshold of 0.3
m above NAP are retained. Also, only data corresponding to different storm
events are selected using a time window.

Statistics of set-up and astronomical high tide are estimated separately and
then combined to statistics of high tide level instead of estimating
statistics of high tide level directly from high tide level data. Astronomical
tide and set-up are processes with very different statistical properties and
can be regarded as statistically independent, so statistics of high tide level
are easily derived from the statistics of astronomical tide and set-up.

This method is expected to yield more accurate statistics of high tide level
than can be obtained from the high tide level data directly.

In the most recent method [Dillingh, 1991], the conditional probability of the
maximum tide level during a storm given that it exceeds some level (the
average 5 times per year exceeded level) is estimated according to the
following four methods (see [De Haan, 1991] for an exposition of background
and terminology):

[1] High tide level: moment estimator for high quantiles [De Haan, 19911]
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(y free, with 7 a real number determining the curvature of the logarithm
of exceedance frequency as a function of level, see also appendix c)
Confidence bands analytical (asymptotic expression)

[2] High tide level: moment estimator for high quantiles [De Haan, 1991]
(¥ fixed)
Confidence bands analytical (asymptotic expression)

(3] Set-up: Generalized Pareto distribution, estimated by Maximum Likelyhood.
Astronomical tide: distribution estimated by simulation.
High tide level: by convolution of distributions of set-up and
astronomical tide.
Confidence bands by Monte Carlo simulation

[4] High tide level: Generalized Pareto distribution, estimated by Maximum
Likelyhood directly from tide level data.
Confidence bands analytical (asymptotic)

Also, the distribution of annual maxima of high tide level has been estimated
using the Generalized Extreme Value distribution.

All these methods yield about the same exceedance frequencies, but [3] gives a
relatively narrow confidence region (probably due to the fact that the
distribution of astronomical tide is assumed completely known, which is not
unreasonable). The method [2] yields an even narrower confidence band, but
this is not reliable because the uncertainty in 7 has been ignored. This means
that [1] and [3] are probably most accurate, with [3] probably giving the
narrowest, yet reliable, confidence bands.
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5.2 Parameterizations based on simplified physics (Bruinsma/Van Aalst)

Around 1980, Bruinsma and Van Aalst, working for Ri jkswaterstaat, developed a
method for assessment of joint statistics of significant wave height and high
tide level. This method is based on the idea that surges and waves have a
common source, the wind fields on the Atlantic Ocean and North Sea [Bruinsma,
1982; Van Aalst, 1983]

Definition of statistics

Result is a conditional distribution of significant wave height H , relative
to the maximum high tide level during a storm. The exact definitidn of H is
not specified. In particular, it is not clear weather it the H at the time of
occurrence of the maximum high tide level during a storm, or maybe the maximum
H during the excursion above a high level during a storm. Such ambiguities
are also found for other parameters used in the computation (see below).

Computation of statistics

Following [Bruinsma, 1985], the first step is to determine the conditional
distribution function of local wind speed relative to high tide level. This
distribution function is determined by making use of estimates of the range of
magnitudes ¢ of the ratio of wind set-up s and the square of the local wind
speed,

s = cu’ (16)

10
and the observation that relatively high values of high tide level are found
during spring tide.
Significant wave height is also assumed to depend on local wind speed, besides
wind duration (or fetch), depth, and wave energy propagating from directions
other than the wind direction (swell), b

2 sw ;2 ,1/72
H=( |g (d,F,u )|"+ [H"]") (17)
with
gbr[d,F.ulo) the Brettschneider formula for significant wave height of the
wind-sea
d depth (actual, including set-up and astronomical tide)
F fetch
g swell wave height

The fetch is assumed to be related to wind speed and wind duration T by
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|2 ~10/7

F(t.u10)= F|u10 /g F= 60t = g'r/u10 (18)

and T is assumed independent of wind speed and set-up (or rather in physical
terms: set-up is assumed not to depend on wind duration), and is assumed to
have a lognormal distribution.

Now from the given distribution of wind duration, the distribution of swell
wave height, and the conditional distribution of local wind speed relative to
high tide level, the conditional distribution of H relative to high tide
level h can be computed by straightforward 1ntegratlon

The conditional distribution of wind speed relative to high tide level

F[ulo|h] s assumed Weibull, and defined for u u by

A -
u 0|h} = aF[um]h]/au10 =

(a- 1]—(—10—m1n— a l:(l—a] [u . :-)-a :| (19)

op min t’-‘i'P

with a = 2.6, and u and u the minimal wind speed and the windspeed
corresponding to the mode of °P f(uxolh)' respectively. They are computed as

u =[ (h-a )/c | (20a)
top gem gem
1/2
u = [ (h-a_)/c ] (20b)
min spr max
with
aspr = maximal value of astronomical high tide
abam = mode of distribution of astronomical high tide
c?*™ and ¢™* are location-dependent parameters: c¢¥"= 0.5 ™, and c"*” is
determined as the maximal value of s|u10| , with s the local set-up level.
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summary of dependences:

local high tide

level data J
conditional N
local . statistics of wind[
astronomical tide ’
i?ﬁzldata ? conditional
»— statistics of

wave height

local depth

k4

L4

wave growth curve

Brettschneider
formula

statistics of
wind persistance

W

statistics of
swell wave height

k4

Jjoint statistics
> of high tide level
and wave helight

high tide level
statistics

Motivation for this approach: surges and waves have a common source, the wind
fields on the Atlantic Ocean and North Sea. Therefore, to determine the
conditional distribution function of H relative to the maximum high tide
level during a storm, the fact can be Used that a certain wind speed is
required to generate a set-up (or that the wind speed cannot have exceeded a
certain value otherwise the observed set-up level should have been higher).
This has led to the use of a conditional distribution of wind speed relative
to the high tide level, and a model to compute significant wave height from
wind speed. This approach is extended somewhat, resulting in the formulas
given above. Some more comments about the approach follow here.

[+]

1
All variables are conditioned on the maximum high tide level during a storm,
h. This parameter is the sum of astronomical tide and set-up. At the -20 m
contour, the relationship between waves and astronomical tide is due to the
effect of depth on wave dissipation and to wave/current interaction. The
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relationship between waves and set-up is mainly due to their common source,
wind fields, and probably less to dissipation and wave/current interaction. It
may be worthwhile to try to model these relationships separately, using the
distributions of set-up and of astronomical tide instead of one distribution
of high tide level.

o

2
It is reasonable to assume that the maximum local wind speed (or the during 9
hours continuously exceeded wind speed) has both an upper and a lower bound
for a given set-up s or high tide level h. In the Weibull distribution (?7),
only a lower bound for the wind speed u is assumed, but no upper bound.
This may be too conservative if there 18'Tndeed an upper bound. To some
extend, including wind direction explicitly may reduce the uncertainty
somewhat (that is, if it has not already been assumed implicitly that the wind
should be North-West).

30

Both set-up and waves are related to the local wind speed, which is of course
an approximation. To account for the case that the local wind speed is lower
than the effective wind speed along the fetch (in the direction of the peak of
the wave spectrum), socalled 'swell’ has been introduced. This is probably not
swell in the sense of wave energy travelling from a distant storm, since in
the extreme storm events anticipated, the wave spectrum will be a typical wind
sea spectrum. So it might be understood to take deviations of the local wind
speed from the effective wind speed along the fetch into account. Possibly the
swell term has been included after having observed that the wave height
exceeded the Brettschnelder curves in certain cases.

However, the local wind speed as derived from the set-up (i.e. by the
conditional distribution of local wind speed given the set-up) is in fact also
an effective wind speed, although ’'effective’ may have a different meaning for
set-up than for waves. Moreover, a deviation of *effective’ wind speed from
the local wind speed can be incorporated in the conditional distribution of
the local wind speed as well, instead of adding a separate 'swell’ term.

40

Brettschneider’s curve is not valid for varying wind fields. For the North-
Western storms causing high set-up levels at the coast of the Netherlands,
this may not be a big problem.

Also, it is questionable that shallow water wave growth can be modeled
universally by including scaled depth

a2 aglu |7 (21)

as an independent variable in addition to scaled fetch (or time), if depth
varies along the fetch.

]

5
Wind duration and set-up level have been assumed independent but there should
be a relationship, just as for wind duration and wave height.

[+]

6
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The method of Bruinsma and Van Aalst is based on scaling rules, both for the
waves and for set-up (or tide level). The idea behind scaling is that
(statistical) relationships should in the first place be determined among the
nondimensional variables (in which case there is a rather clear relationship
expected). Then the statistics of the independent variables used to scale the
other variables are taken into account.

Scaling using local wind speed has indeed been proven very useful when the
wind is known, as in experimental studies of wave growth. However for joint
statistics of wave height and tide level, we still need to plug in the
statistics of the wind at the end, which is uncertain just as the statistics
of wave height itself. So it is questionable whether scaling with the local
wind still offers a substantial gain. In fact, it may be even more effective
to replace the local wind-speed by the square root of set-up multiplied by a
random number, and then calibrate all distributions required directly from
data of wave height, set-up and astronomical high tide level.

As already indicated, there are a number of varlations possible on the
approach of Bruinsma and Van Aalst. However, this does not imply that
significant improvements are still possible. It is not expected that the
method of Bruinsma and Van Aalst underestimates the wave height for a given
high-tide level since the approximations were chosen rather carefully in order
to obtain conservative estimates. However, with the new data sets available
now, at least some validation is possible, and more insight may be obtained as
to what choices to make.
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5.3 Simultaneous exceedance statistics: asymptotic shapes and estimation

Consider the case that statistics of failure are made for a particular
construction, assuming a certain failure mechanism in which total load f is a
function of the hydraulic parameters u and u_, as in section 4.2. Then the
statistics of interest may be 2 @

max
P[te[O,r] f(ul(t).uz(t)) >s ] (22)

for example for T equal to one year. In this case, we have to deal with only a
single parameter f as a function of time rather than with several parameters,
due to the fact that the failure mechanism is specified. The data can be
converted to data of total load, and usual methods for estimation of
statistics of the form (22) can be applied. For example, we can focus on the
probability that the load exceeds the value s during a storm, 1i.e.

max

Pl tel
w

f(ui(t),u:(t)) > s ] (23)

with I an arbitrary interval over which the load f exceeds the threshold w
serving to distinguish storms. Extreme value theory suggests to parameterize
(23) by the generalized Pareto (GP) distribution. Then its parameters (or
quantiles) can be estimated from the data and from the resulting distribution
(23), (22) can be computed. Assumptions underlying this approach (called the
peak-over-threshold (POT) method) are given in appendices b and the end of
appendix c. See in particular De Haan(1990) for a recent application to high
tide levels employing a new estimation technique.

In case the statistics to be produced should be applicable to all possible
failure mechanisms, the situation is not that simple, as was already observed
in section 4.2. In that case, the type of statistics to be produced is of the
form (11la) in section 4.2:

Fc(al,azl = P[ ul(t)>a1 n uz(t]>aa for some t in IB 1 (24)

with B a region of the plane far away from zero, used to select and to
distinguish storm events; the boundary of B serves the same purpose as the
threshold w in (23) above. In 4.2, it has already been explained how to apply
(24).

It is essentially a multivariate statistic, as opposed to (23). In this
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section, the parameterization of (24) will be discussed. Parameterization
means that the shape of (24) will be inferred from available knowledge or
assumptions that are considered reasonable. The assumptions on u1 and u2 are
given in detail in appendix b (equations (b3) and (b4)) and in appendixc
(see (c2)). They can be described in words as follows.

(1) u and u_ are seasonal processes. This means that (taking the length of
the seasonal cycle equal to 1, so one year) every statistic of the processes
is the same when applied to the processes shifted over one or more years.

(2) Consider a region in the plane bounded by thresholds w and u& as

{ (al,aa]: z-:imu1 n a2>-'.:u2 } (25a)

Again, a (randomly chosen) time-interval

I(ul,u;] (25b)
1 2

in which (u (t),u_(t)) is continuously in (25a) can be called a storm. So the
region (25a) has éssentlally the same function as the set 8 in (24). The
assumption is that the probability of more than one storm (25b) in a fixed
number of years will decrease more rapidly than the mean number of storms per
year when ws. and/or w_ are increased (this assumption ensures that a condition
similar to 16) in secfion 4.1 holds).

(3) Moreover, the probability that during a randomly picked storm (25b) in a
fixed number of years certain even higher levels are exceeded simultaneously
is practically independent of the number of storms over these years, for
sufficiently high ws. and/or w_. This implies a lack of dependence between
actual storm frequency and 1n%ensity during a randomly chosen storm in a
period of an integer number of years.

(4) The probability that during a randomly chosen storm (25b) even higher
levels are exceeded simultaneously by u and u_ converges in some sense,
explained in detail in appendix c (see 102)1, fo some function 9c.

Under these assumptions, we have the following result (see appendix c,
treating the case of an arbitrary number of variables):

The variables u1 and u2 can each be scaled as

U’x(t} = ﬁlln(?lu‘(t)ﬂ] (27a)

with some fixed real numbers 11 and 72 , such that for each pair (al,aé)
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Pl ulit)> a +es n uéft)> aé+(1—e)u for some t in 9[8”'(1_8111

—_ ?c(al,az) with u— ® (27b)
with
e =a/la+a) (27¢)
1 1 2
and ¥ defined similarly as I in (25b) but now for the scaled

Coe)

proceééé; u and U_.
1 2

The function ?c in (27b) is of the form

?c(al,aé) = exp(-(a +a )¢ _) (27d)

with ¢ some nonnegative function on [0,1].
The result is stated more precisely and proved in appendix c. See also the
following diagram.

(1-g)us+a_ —
2

(1-e)uv —

en euta
figure: illustration of (29).

What this result means is that after applying the appropriate scaling (27a) to
the variables, the probability of reaching the checkered region in the figure
will eventually decrease exponentially when this region is moved away along a
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straight line through the origin. The exponent depends on the direction of
this line, and is given by the function ¢.

In appendix c, it is shown that the number L in the scaling (27a) is a
property of the process u and is completely independent of the other process
This can be seen by taking € either equal to zero or equal to unity: the
distributions of u, and u_ converge to exponential distributions, implying
that the asymptotic distrfbutions of the original variables u,Z and u_ are
generalized Pareto distributions (see appnedix c). 3 :

The constants ¥ in (27a) are most likely nonpositive for all hydraulic
parameters. For'high tide levels or set-up levels, the value O seems the most
likely value both from data; a small negative value corresponding to a very
high absolute maximum on high tide level or set-up might be acceptable too.
In case ¥ equals zero, the transformation (28a) reduces to the identity. For
waves, a negative value of ¥, is likely to come out of the data analysis as
found in studies as for example [Muir and Al-Shaarawi, 1986]. There is a
discussion whether nonzero values of ¥, are acceptable, as negative values
correspond to the existance of a maximum on the possble values of the
hydraulic parameter.

To show how (27) can be used, an approximate expression for the statistic (24)
in terms of the scaled parameters u, and u, and for a region B’ of rather
general shape is

P ul(t)>a1 n u.z{t:bcl,2 for some t in 93. ] =

Fe. 8 exp(-(ai+az)¢e) (28a)
with € as in (27c),
re,B‘ 4 exp(u¢8) Pl ul[t]>cu n ué(t)>(1-e)u for some t in IB’ | (28b)

and & is chosen such that (es, (1-€)u) is on the boundary 8B’ of B’.

This is illustrated in the following figure:
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[l-c)u+a2 —

(1-g)s — .
'.. L\__‘_—aB:

figure: illustration of (28).

The second factor on the right-hand side of (28b) is the probability of
entering the region above the dotted line during a storm. The first factor is
the inverse of what the second factor should be if the model (27) would hold
in the entire plane and not just far away from zero. This second factor 1s not
much smaller than unity, so it can be estimated from the data easily. The
extrapolation is determined mainly by the exponent ¢ , so this is the really
critical parameter. -

(28b) is easily converted to same statistic for the original variables u and
u, by transforming a.,a, and the region B’.

A procedure to estimate the statistics required at a coastal location from
data at the -20 m contour from data only might look like this:

1° Data selection

Wave/high tide level data at the -20 m contour. Selected data are time-series
of all relevant parameters during the "storm", defined as the interval in
which the parameters are in a certain set. This approach is basically the POT
method.

Simple approaches are to use a threshold for set-up to select and distinguish
storm events, or to use a combination of high tide level and wave height.
Both approaches suppress the effect of astronomical tide on data selection.
At this stage, it should be decided whether the data can be reduced to a
single point for each storm or not (see also 4.2).

2° Marginal distributions (including the scaling (27a))

First the marginals of (27) are estimated for the original variables. These
are generalized Pareto distributions, which is consistent with the current
method for statistics of high tide levels (see section 5.1). This determines
also the scaling (27a) for each variable. Of course the agreement of the
results for high tide levels or set-up with the statistics of high tide levels
or set-up on a larger data set as described in [De Haan, 1990] and [Dillingh
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et al, 1991] should be checked.
3° Estimation of parameters in (27)

This can be done in two ways: either all parameters are estimated from the
original data, or the scaling (27a) is applied first (based on 2°) and then ¢
is estimated.

A rather straightforward method to estimate parameters is the maximum
likelyhood method as for example in [Tawn, 1988] (see appendix d), which can
be used if the data can be reduced to a single point for each storm. If not,
then the modification indicated in equation (d8) of appendix d can be used.
Experiments with different thresholds for data selection (from the data set
already selected in step 1°) are carried out to check the sensitivity and
stability.

If everything works fine, Bayesian estimates as described in 4.3 and appendix
e may be computed or approximated.

4° Computation of the statistic (24) at the -20 m contour. This amounts to
a computation similar to (28). It is rather straightforward.

5° Presentation and archiving of the joint statistics at the -20 m contour.

6° Translation of the statistics to coastal locations.

This will be reasonably straightforward if the transformation to the coast can
simply be viewed as an instantaneous transformation of parameters at the -20 m
contour to parameters at the coastal location (note that this 1s the case for
wave parameters when the model HISWA [Holthuijsen et al.,1989] is used). This
transformation should somehow be simplified, based on numerical model studies.
The accuracy of this simplification may have consequences for the final
statistics.

To translate joint statistics of wave height and high tide level (e.g. F in
(24)), first the curve of highest density of F may be translated, for a
start. Then it is early enough to decide whethér other points need to be
translated too. This is similar to translating curves of H versus high tide
level of the form given in [Technische Adviescommissie voor de Waterkeringen,
1984]. Again results should be presented graphically and numerically.

7° Computation of statistics for specific types of constructions. See
section 4.2.

8° Validation. In particular: comparison of the results with those of the
method of Bruinsma/Van Aalst (section 5.2).

A final remark concerns the relationship with existing theory of multivariate
extremes. It should be noted that the parameterization (27) cannot be compared
to the parameterization of a joint distribution as described in [De Haan,
1990], basically because it applies to a different kind of joint statistic:
the statistic considered in [De Haan, 1990; the right-hand side of his
equation (24)] would in the present context be something like
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P u1(t)>a1 v uzitba2 for some telB ] (29)

(note the symbol u denoting "and/or"), as opposed to (24) (with n denoting
"and"). The parameterizations of (29) and (24), although following by similar
arguments, are different: the tail behavior of (29) is largely determined by
its marginals, whereas for (24), there is more freedom which should be
modeled. The differences are explained in detail in appendix f. Moreover, the
approach differs also from e.g. [Leadbetter et al.,1983]: there, continuous-
time processes are transformed to discrete-time sequences by taking maxima
over intervals. This is not possible when considering simultaneous exceedances
as in this section. Moreover, the assumptions invoked in [Leadbetter et al.,
1983] are less direct than the assumptions given in this report, but seem not
very relevant to those interested in applications, since they can hardly be
verified in practice. It seems easier to test assumptions that are stated
directly in terms of the point process of occurrence of some extreme event, as
in this report.
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5.4 Summary of chapter 5

Statistics of high tide levels are currently based on data selection using a
threshold on set-up levels and the use of the Generalized Pareto Distribution
or the (related) moment estimator for set-up or directly for high tide levels.
It is recommended to follow for joint wave/water level statistics an approach
which is consistent with the methods for high tide level.

Two approaches to parameterization of the joint statistics of significant wave
height and high tide level were discussed.

The first one (section 5.2) describes H as a function of local wind speed and
fetch, and h as a function of local wind speed. Statistics of wind speed and
fetch then determine the joint statistics of wave height and high tide level,
so the joint statistics of wave height and high tide level can be computed
from the conditional statistics of wind speed and fetch length for given high
tide level. New sets of measurements and hindcast data are available now which
may be used to validate (or maybe improve) the assumptions underlying the
method. Some suggestions for possible improvement are given. An important
point is to assess the sensitivity of the statistics to assumptions, such as
the models of wave growth and set-up generation, and the distributions of wind
speed and fetch.

A quite different approach to parameterization of this far region of the
parameter space is presented in section 5.3. It is directly related to the
approach to statistics of environmental conditions at the -20 m contour given
in 4.2. The essence of the method is to estimate the required statistics
directly from data, using an asymptotic shape derived for the probabilities
of simultaneous exceedance of high levels during a storm. This is essentially
the same approach as led in the univariate case to the POT method for extreme
value statistics, using the Generalized Pareto distribution or related
approaches such as [de Haan, 1990], as also used for high tide levels.

These two approaches seem completely different, which is only an advantage at
this stage. There may also be ways to combine them and make use of the
valuable aspects of both methods, but this should not be tried before the
results both methods have been thoroughly checked and compared. For example,
information about physical bounds of the set of possible wave height/high tide
level combinations can be used in the statistical approach. On the other hand,
more rigorous definitions and statistical methods may be used in the context
of the method of Bruinsma and Van Aalst. However, combining different
approaches is still a matter of speculation. The first things to do after data
collection and validation 1s to tests both approaches on data.
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6. Conclusions and recommendations

1. For statistics at the -20 m contour, it is proposed to focus on the
parameters

1.high tide level h

2.slignificant wave height H
m0

3.mean wave period T0 .

4.mean wave direction’ 90

S5.wind speed u o

.wind direction 910

(=)

In addition, spectral width and directional spreading of the waves and current
can be considered.

In principle, joint statistics of all parameters 1 to 6 above should be
produced. Some simplifications are required: first bivariate statistics of the
combinations

[h'Hmo}' (H ,T ), {Hno'eo)’ (H_o.u

o ,0. )
mo’ 0,2

), [H;D.B to

15 (eo,em). (u

10 10 10

will be estimated. Then an attempt will be done to estimate the combinations

(h’Hmo’eo] and (h’H;o'Tb,a)

Assumptions need to be formulated and tested to derive additional statistics.

2. Since for assessment of the safety of the coast storm-related events with
very low frequencies of occurrence are of Interest, it can be assumed that
there is no difference between mean number of occurrences per year and
probability of occurrence in an arbitrary year.

3. Statistics required for evaluation of the risk of damage to or failure

of a water retaining structure can in principle be derived from a single type
of joint statistic of hydraulic parameters in cases of practical interest.
This statistic, for the case of two hydraulic parameters given by equation
(11a), is independent of fallure mechanism. The idea i1s to estimate this
statistic at the -20 m contour and to translate it to the coast.

4. In section 4.3, the advantages are explained of statistics that not only
reflect the uncertainty due to the natural variability of weather phenomena
but also reflect the uncertainty due to limitations on the number and quality
of available data. It is proposed to pursue this subject after a satisfactory
basic method for estimation of joint extreme condition statistics has been

found.

5. Methods for data selection, parameterization and estimation of jolnt
statistics of waves and high tide levels should be consistent with the most
recent approach to estimation of statistics of high tide levels adopted by
Ri jkswaterstaat (see section 5.1). It is based on a peak-over-threshold
approach to data selection and on parameterization of the exceedance
frequencies of set-up or high tide level using the Generalized Pareto
distribution.
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6. It is recommended to explore two different approaches to the assessment of
joint statistics of waves and water levels: these are

- The current approach known as the method of Bruinsma/Van Aalst, which
is based on simplification of the physics of generation of surges and waves

- Direct estimation of the required statistics from data using the
asymptotic shape for the probability that several hydraulic parameters
simultaneously exceed high levels during a storm.

First, these two approaches can be tested separately to identify strengths and
weaknesses of each method, and then the methods can be compared. Tests can be
based on measured data and on hindcast (NESS) data. Based on this experience,
improvements can be implemented and the final choice of method can be made.
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SYMBOLS

physical parameters

w T 0N O

X 'O

<

n oo
I

R T I A4 M QA ~+ @ < 9

frequency

direction of wave propagation [degrees]
directional spectrum (spectral density)

high tide level

astronomical tide

set-up

persistance of high tide level h

significant wave height

variance of sea surface elevation

i-th moment of nondirectional sea surface spectrum

mean wave period defined in terms of zeroth and
second spectral moments

idem, in terms of i-th and j-th moments
mean wave direction

wind speed

wind direction

spectral width parameter
directional spreading
current velocity magnitude
current direction

time in years

actual depth

fetch

wind duration

significant wave height
swell component of H.

gravitation constant
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mathematical symbols

e

<a,b>

P[A]

> m N

C

is defined as

inner product of functions a and b
probability of the event A

set, decribed between the braces
is a subset of .

is an element of ...

intersection of sets, or "an (depending on

context)
union of sets, or "and/or" (depending on context)

parameter of the generalized Pareto distribution
(see appendix c)

other symbols

return period based on probability of occurrence in
a time-interval of fixed length t

number of occurrences of an event in the time-
interval [O,t]

expected number of occurrences of an event per year

return period derived from u

an environmental parameter (identified by the label i)

at a particular location

total load

maximum of total load over an arbitrary year
probability of failure in an arbitrary year
distribution function of strength

general region in parameter space with boundary 838

that serves as a threshold to distinguish storm events

the boundary of B

randomly selected time-interval during which the
hydraulic parameters are in the region 8 ("storm")

randomly selected time-interval during which the
hydraulic parameter exceeds the threshold w

probability that several hydraulic parameters
simultaneously exceed certain levels during a storm

a scaled hydraulic parameter (see (27a))
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APPENDIX

a: proof of equation (11) in section 4.2

Definition: let u be the unit step function defined here as follows:
u(a)= 0 for a=0 and u(a)= 1 for a>0.
Consider the set of " jointly exceeded" points in the plane

{ [ai,aa): ul[t.)>a1 n uz(t)>a2 for some teIB } (al)

It can be written as

{ (al,az): g(al,a2]> 0} (a2a)
with
A max _ L
3(31'az) = teB min[ul(t] al,uz(t) az] (a2b)
Now let the integral
2.[ u[f(al.an - s] du[g[al,az)] (a3)

R

have the following meaning: if the curve g=0 is of the form

— (“1'“2)

g>0 g<o0

(which is the case when ul(t) and u (t) reach their maxima at the same time on
(a2b)), then the integral (a3) is ciearly defined as

sz ulf(a,a)) - s] dh(al,aa) (ad)

with A a postive measure on the plane, which in this case is simply a delta
function at the point (al.uzl. A more general curve g= 0 is for example
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.—q:O

g>0 g<o0

In this case, the measure A is the difference A*-A" of two positive measures
A" and A7: A" consists of delta peaks at the corners of the form | in the
curve g= 0, and A~ of delta peaks at the corners of the form L . For more
general curves g=0 with g of the form (a2b), (a3) is defined by approximating
the curve by one consisting of straight line segments parallel to the axes.
Now the integral (a3) equals the number of upcrossings through zero of

g along the curve f=s: assume that this number of upcrossings equals one. Then
for the straight-line approximation of the curve g=0, the measure A" of the

set

{ (31'a2): f(al.a2]> s } (a5)

is always equal to unity plus the measure A~ of the same set, as is found by
by counting the corners of the curve g=0 in this set. See e.g. the following
example in which there is a single upcrossing through zero of g

along the curve f=s:

(a)

f>s

g>0

figure: (a) example of curves f=s and g=0

Therefore, the measure A of the set (a5) always equals unity if there is
just one upcrossing through zero of g along the curve f=s (and equal to zero
if there is no upcrossing, of course). Therefore, with the meaning of (a3) as

explained,
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max
ul teIs f(ul(t].uz(t])> s ] = sz u[f(al.aa) - 5] du[g(al,aa)] (a6)

Assuming that for every f in a particular class there is with probability
one not more than such upcrossing, then by taking expectations on both sides
of (a3):

max

Pl il

" f(ul(t),ua(t])> s] =

ERJ u.[f(al.az) - s] dP[ 1.11(t31>'a1 n 1.12(?;)>a2 for some tEIﬂ ] (a7)

for all such f.
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b: Probabilities of simultaneous exceedance during a fixed time interval,
and during a storm

Consider a hydraulic parameter u at a fixed location as a stochastic process,
its stochastic character reflecting the uncertainty due to the uncertain
weather conditions affecting it. Also, u may be a scalar function of

several hydraulic parameters.

We will give some assumptions on u that are just sufficient to derive the
asymptotic shapes of statistics needed in the present context. This means in
particular, that we will only need the probability of an extreme event in a
rather short, fixed, time interval, such that the probability of occurrence of
the event in this time-interval is very small. In section 4.1, it was
mentioned that we are interested in for example the high tide levels that
correspond to probabilities of exceedance in a year of as small as 10 .
Closely related results covering also the case that these probabilities are
larger can be derived under an additional assumption. This is discussed in
appendix g.

Assume that u is a seasonal stochastic process, which means that the
statistics of u are the same as of L'u if k is an integer, with L the foreward
shift defined by

L%u(t)= ult-q) (b1)
(time is measured in years).

Consider the point process of upcrossings of a threshold w by u. The expected
number of upcrossings in a year of the threshold w by u is

Hug

Observe that since the process u is seasonal, pulcan be used to compute the
mean number of upcrossings in a time-interval only for time-intervals that are
an integer number of years, say n years.

pu  increases with increasing ws. Conversely, we can write the threshold as a
us
function of the expected number of upcrossings, as

w(p)

The advantage of this is that it is more flexible: u may for example have an
upper bound, and then we cannot give results for w— =, but we can still give

results for p— 0. Let

Oo,n
us

k

be the number of upcrossings of w by u in the time-interval [0,n].
Observe that, by the definition of pu,
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-1 @ O,n _ -
(un) " Z m P[kw[p) =m] =1 (b2)

m=1

Now the assumptions on u are the followlng.

lim

(un)-lP[ko'" >1]1 =0 for every fixed n>0 (b3)
p->0

(1) e

This means that the probability of more than one upcrossing of w(p) decreases
faster than the probablility of one upcrossing of w(p) with p going to zero.
Sufficient conditions for (i) are given in (?7).

(ii1) for an arbitrary function z=0,

P[ u(t)> z(p)+w(u) for some telO,n] | k;'(:} =1] —
P[ u(t)> z(u)+w(u) for some tEIw(u)] with u -0 (b4)

were Iw is an arbitrary (randomly chosen) interval in [0,n] (an integer number
of years) in which u(t)>w for all t in {u

What this assumption means is that say for a particular year, the probability
that u(t) reaches the level z+w during a randomly picked storm (i.e. an
interval Iw) in that year is independent of the number of storms in that year
(in the 1imit, if the threshold w becomes high enough).

The function z can be an arbitrary constant; the reason for including

the case that it depends on u is to account for those cases in which u has an
upper limit. The important thing is that z is positive, so z+w is higher than
w, and therefore reaching it is an event that occurs less frequently than

reaching us.

assertion: under the assumptions (i) and (ii):

(pn)'lP[ u(t)> an(w(u)) + w(p) for some te[0,n]] —
P[ u(t)> an(w(u)) + w(u) for some tel ] (b6)

with p— 0

proof:
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(;m)'lP[ u(t)> a+w(p) for some te[O,n]] =

[+ ]

(;m]-1 T P[ u(t)> a+w(p) for some te[ﬂ.n]] k;'(:lf m] P[ k::,'(:): m] —
m=1

P[ u(t)> a+w(u) for some te[0,n]| k;'% 1] with p—0 (b7)

by (b3), using (b2). Then apply (b4).

It is straightforward to generalize the assumptions (i) and (ii) above to
more than one variable. In this case, define

w = (wi,. ; ,wk)
and define Iw as a (random) time-interval in which
ull{t)Msi for i=1,..,k for all t in Iw

The function uy— w(p) is now an arbitrary curve in Rk.

o (s (), ... u (1)

such that at each point, the expected number of entrances in the region

{ (ai,aziz al>wl(|.l) ¥i= 1...;:k ) (b8)

equals p. Then by an obvious modification of the assumptions (1) and (i1),
for any functions z1>0...,zk>0:

[}m]-lP[ ul[t)> 21(“}+w1(“] vi=1,..,k for some te[O,n] ] —
P[ ul(t)> zl(p)ﬂnl{u) vi=1,..,k for some tel |

with u-0 (b9)
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o Parameterization of probabilities of simultaneous exceedance during a

storm
Assume that u = [ui,..,uk) satisfies the assumptions as in appendix b. Let
A
w = Univ..uk]

be a vector of thresholds, and let Rn be a (random) time-interval in which
ul(t]> w ~for i= 1,..,k for all telw (c1)

Now let p— w(p) be a curve in R® such that the expected number of entrances
of the region

{ aeR": a>w (u) Vi=1,..k} (c2)

by u(t) equals p, and assume that for every point a, there is a curve
p— w(p) such that

P( ul(t)> alnl[wl[u)] + usl(l.l) vie{1,..,k} for some tEIw(p) ]
— ¥ (a)
c
withpu— 0 (c3)

for some function ¥ , with n ,...uk nonnegative functions. The curves p—
w(p) are yet unspecified. Then
[a]

g (a) = % (a) (cda)
[+ c

with a = (al,..,ak] defined by
a, g 7:11n(1lai+11 (c4b)

and ?c defined by
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A K
?c(a) = exp(-¢c z ai] (c4c)

(£ a 17'a (c4d)
=1

and ¢ some nonnegative function on the unit (k-1)-simplex (the set of points €
satisfying eIEO for i=1,..,k-1 and e+ .. e =1).

[b] The convergence in (c3) holds for example for curves of the form
cnl(p) = 111(u_7181 -1) (c5a)

and for functions ul of the form

ni(x] =7x+1 (cSb)
with 11,..,7k some real constants.

[c] Moreover, by scaling the original processes Uyees U by means of

u (t) & 37 InGru (£)+1) (c6a)
also

P[ u (t)> a +e s Vie{l,..,k} for some tef . ] — gc[a] (céb)

with v 5 ®

with $ defined as I but now for the scaled processes u_,..,u instead of
w w 1 k

Usees U, and € defined in (c4d).

proof:

Combining (c3) with (b9) of appendix b gives

(pn)'lpl ul(t)> an“iu”s(“J) + un(p) vie{1,..,k} for some te[O,n] ]

—_— ?c(a) with p— 0 (c7)

As a consequence
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-l _
M 9c(al1tl(wl(u)3 + wl(u],...] = ?c(ai....] (c8)

in which $c(al“..) is shorthand for 90(3).

Repeating (c8) m times gives

m-1
p-mﬁc(al[nlhnl(ul)]' + u&(plj?o [ulhni(u)]]j W i ?cfai,u-] (c9a)
Evaluating (c8) at u" gives
-m m m _
m ?c(ainihnl(u )) + uﬂ(p Youu i) B 3c[al,...] (c9b)

To obtain the most general representation of ? the arguments of ¥ on the
left-hand sides of (c9) are taken to be equal. Equivalently, for each point
a, we consider only one curve that satisfies (c¢3), which implies that it
should satisfy:

[ultwltu)]]' = ul(usi(u')] (c10a)
m=-1

w () T [ui(wl(u}llj = w (1) (c10b)
j=0

From (c10a),

7 (0 (W) = uPy (c11)
for some real number 7, Then the solution of (clOb) is

w () = dlB:I(p-Bi =4 (c12a)
and with (c11)

ni(x] = d_IB x + 1 for all real x (c12b)

Since m 1is a fixed function independent of the choice of curve p— w(u),
the number d B must be a constant, so defining

4 -1
11— d1 Bl (c13)
we obtain

nl(x] =7x+ 1 for all real x (cl14a)

52



and

w (p) = ?:1[M-7idl -1) (c14b)

with dl,...,d_ numbers that can be chosen to obtain different curves p— w(u).

With these particular curves and functions n, we obtain from (c8)

p'tﬁc(alu_zxdi + Izifu-wldl -1),...) = ?C{al,...] (c15)
so
p'iyc( 1;1([zial+1]p'71d1 -1) ,...) = ?c(al,_.) (c16)

Now define a function ?c by

% (lnx,...) 4 F( 7_1((x 1 -1),...) VxeRk; x >0 for i=1,..,k
c ¥ c 4 i i
(c17)
then
u‘iﬁc(z‘;‘lnu,alm -d 1n ,...) = ?c(:r;iln('rlalﬂJ....) (c18)

or (noting that 70007, are given constants) with

_ -1
a =7, 1n(71a1+1) (c19)

-—1 —
u ?c(a1 -dIn p,...) = ?c(ai,_.) (c20)

There is (in this particular case) no reason for fixing dl,...d at particular

values, since they determine paths in the plane, and for p smalf enough, the
argument @ -d 1n p of ¥ becomes dominated by -d 1ln u. So the only way to

obtain a solution is to°take (a ,..,ak] in the direction of (dl...,dk). In
particular, setting Q. seor@ to zero:
g*#c(-dlln po...) = §(0,...) =1 (c21)
Define
5 -1
e =[Z d ]d (c22)
1 ol J 1
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and let
K
w=-lnp[Z d ] (c23)
3=t )

then (c21) becomes
?c(clu....) = exp(-u4 ) (c24)

with € = (¢_,..,e. _) a point on the unit simplex (see the remark following
(c4d)),and with ¢ some nonnegative function defined on the unit simplex.
Combining (c24) with (c17) gives (c4). This proves [a]. [b] is proven by
(c14b), and noting that

o= [z 15 with z(u) = p-(df"'*dk} (c25)

Moreover, the magnitude of (d1+ .. +d ) has no effect on the curves’ image,
so it can be replaced by an arbitrary constant, for example 1.
To prove [c], note that from (c3) and (c14)

P[ ul(t)> 7:1((7la1+1)u'71d1 -1) vie{1,..,k} for some tel 1

us(p)

— ?c(a) with p— 0

The result (cé6b) follows by applying (c6a) and noting that by (c22), -dlln M=
elu with wy— ® as p— 0.

Univariate case: the generalized Pareto distributioen.

Let I be a (random) time-interval over which u(t)>w. Assume that for some
funct?on ?c:

P[ u(t)> am(w(pu))+w(p) for some teIw] — ?c(a) (c26)

with p—0 and w some function greater than zero. Then
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?c[a) = (1+a:}'¢/7 (c27)
for some real numbers ¢>0 and 7.

The reason for assuming convergence as in (c3) is that only under this
condition, the probability of u_(t)>a, n u_(t)>a_ in a fixed number of years
converges in a manner similar to (c3)1(e1tﬁer keéping the time-interval fixed,
or letting it increase too). This convergence of extremes is the kind of
regular behavior that is known to occur for many random processes satisfying
assumptions as stated in the beginning. In particular when the continuous-time
processes are replaced by a sequence of independent identically distributed
random vectors, (c3) is a quotient of the form

Flam (w )+w ,...)
R TR Chls | 1 (c28)

F hnl..-.l

c

(with F the joint survivor function of u, and u_) which converges quite
generaliy. In fact, if a condition like (53) doe? not hold, extrapolation of
statistics from limited number of data to events outside the range of
observations 1s not possible, and any attempt to do so would be useless.

In general, & (and so ¥ ) does not need to correspond to a probability
measure, whicf means thaf its density need not to be positive (remember this
is the same with F in section 4.2). Therefore, apart from nonnegativity,
there are no rules®that the function ¢ should satisfy. However, as with F ,
§ does have a nonnegative density if the maxima of u_ and u_ during a stérm
afways coincide. . e
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d: Maximum likelyhood estimation of ¥

The maximum likelyhood estimator is important as a practical tool, but also
because the likelyhood function is a component in the type of estimator
discussed in section 4.3. First we will discuss the likelyhood function and
maximum likelyhood estimation of ¥ (when the data have exponential
marginals), and then we will discuSs maximum likelyhood estimation of ?c
(arbitrary marginals).

Following [Tawn,1988], who refers to [Pickands, 1981] (he discusses a class
of models which in fact contain the limiting shape for 5;), and using the
notation of appendix c: (see (c6))

P[ ui(t]> cl(u+a) for i=1,..,k for some te.?cu ]

P e:lu1(t1> (v+a) for i=1,..,k for some te¥ |

EB
P z s > a ] (d1a)
with
& Q sup min czlul(t) (d1b)

€ ted i=1,..,k
e
so from appendix c:

1im

3o P[ z,-s > a ] = ?c{ea) = exp(-¢ea) (d2)

Therefore, the log likelyhood function for a single value €, without posing
any restrictions on the shape of ¢, is, with m the number of samples:

J
> E£¢ (zc] (d3a)
j=1 €
with
H¢€(a] = 1n ¢e - ¢8(a) (d3b)

and z; given by (dib), with j referring to the j-th sample. Therefore, the
maximim likelyhood estimator for ﬂc is
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m
a:L =m[ = zé e (d4)

)=1

Without any restrictions on ¢, this estimator may be fine, even if % is not a
proper survivor function. The data need not be points, but may be cufves.
However, it can be expected that even if % is not a proper survivor function,
¢ will be smooth in some sense, so a suffigiently flexible parametric
estimator for ¢ can be more efficlent.

A possible restriction on ¢ is that ¥ should be a proper survivor function
(which means that the corresponding dénsity is nonnegative). We will discuss
here only the bivariate case. Then e= 81' and ¢ must satisify:

w(g-¢'c) (¢p+¢’ (1-€)) + ¢"e(1-e) =z 0 Vw=0 (ds)

so taking w equal to zero:

¢" =0 (dé)

If (dé) holds, (d5) is also satisfied for all w>0, so ¢ must satistfy (d6),
i.e.¢ must be convex. [Tawn,1988] gives some examples of convex
parameterizations of ¢ for the case that ¢ =¢ = 1.

If the samples are points (as is most llke?y the case), ¥ must be a proper
survivor function so ¢ must be convex. To obtain in additfon smoothness of the
estimate of ¢, a nonsymmetric parametric model is to be preferred [see
Tawn,1988]. The maximum likelyhood estimator for the parameters 6 of a

parameterized function ¢ is

n
AML _ arg max | 7
2] 0 ji L!B(ui.uz] (d7)

with & _the logarithm of the likelyhood function of a single sample.

If the sSamples are not points but curves, it is not straightforeward to define
a meaningful estimator for a parameterized ¢. The only sensible approach

seems

n
8= “’; k. g t;;'} 8 (u (1), u,(t)) (d8)
1=1 B

This estimator chooses on each sample curve the point with the smallest
likelyhood. There seems no reason why this estimator wouldn’t be consistent
just like the maximum likelyhood estimator in the case that the samples are
points.

Now the estimation of ¥ (for data with arbitrary marginals) will be
discussed. This ?c is of the form (again in the bivarate case)
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?c(al.az] = exp(¢8(a1+az}l € = aa/(a1+a2}
(d9)

-1
a=7, ln(11a1+1)

For given parameterizations of these marginals, it is a simple matter to write
down the likelyhood function of the data based on (d9), and maximize it to the
parameters 11 and 72 of the marginals and the parameters of ¢.

An alternative methdd [see Tawn,1988] is to estimate y ,¢ ,7_ and ¢ first,
then use these estimates to transform the data to obtain aatg with unit
exponential marginals, and then estimate ¢ under the restriction that ¢ and

¢ are already fixed. In general, this method will produce different estimates
tﬁan direct maximization of the likelyhood function of the original data.
However, this method is not necessarily worse.

When applying maximum likelyhood estimators in the present context, it is not
a matter of simply computing the estimate for a particular data set, but to
examine the behavior of the estimates as a function of the thresholds on the
data. This asymptotic behavior is what is needed to extrapolate the
statistics beyond the range of observations.

This is recognized by [De Haan, 1990], applying new moment estimators to
estimate v, The alternative is to apply the maximum likelyhood estimator over
a range of thresholds. Possible multivariate analogues of quantile estimators
as in [De Haan, 1990] do not seem useful in the present context, since ¥ 1is
needed in parametric form, in order to be translated from one location t8
another and to be applied to estimate statistics of fallure as in section 4.2.
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e: Conditional probabilities as estimators

This appendix presents a more precise treatment of the approach introduced in
section 4.3 to estimate probabilities that cover sources of uncertainty. It
complements the text of section 4.3.

A final estimate of a probability, including the uncertainty due to
limitations on number and accuracies of data, is the conditional probability
relative to the available data. For example, let the distribution function of
the annual maximum wave height be (with time in years)

max ==
P[ tel0,1] H (t)s « 1 = Fgla) (el)

for some vector of parameters 6, so by letting € run over R", we obtain all
possible distribution functions of the annual maximum wave height. Now 6 must
be estimated from the data, say y = (y_,..,y ), assumed independent annual

1 n
maxima of n years (this is just an example).
The classical maximum likelyhood estimator for € is

n
~aml _ arg max
e = ocR™ l];[i fg(yl] (e2)

with f_ the probability density function corresponding to F_.

This estimate is converted to a value a corresponding to a ?1xed probability
of Fami1(a). An (exact or approximate) confidence band about 8™ 1is then
computed, and this is converted to a confidence band around «.

The estimate including all uncertainties is the conditional probability

"[tZ?E,u B (t)s a [¥), = IFB(rx} gle|y] de (e3a)

with g(ely) the conditional probability density of 6 relative to the data
y. If we have no information about 6 besides the avallable data y, it is

-1
gle|yl = [I hly|el ds] hiy|e] (e3b)

with hly|6] the conditional probability density of the data y, relative to the
parameter vector 6.

Clearly if few data are available or the data are inaccurate, g[yIF] will be
dispersed over a large area so the effect will be that probabilities

ofexceedance will turn out high. On the other hand, by increasing the number
and accuracy of the data, g[y|9] will become more and more concentrated near
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the true value of 6 so the estimate will converge to the true value of @, and
the only uncertainty left is the uncertainty due to the meteorology.

All this is based on the assumption that there is a 8 such that the data are
drawn from a population with a distribution function of the form F_ for some
0. In reality, this is just a model for the data, a simplification. Often more
than one choice is possible for the family of distributions (although extreme
value theory can help in selecting an approppriate one). The estimate (e3) is
also robust in the sense that if the data are not fitted well by any
distribution of the form F_, for some 6, relatively high probabilities of
exceedance result because g[y|e] can never be concentrated near any value of
e.
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: 35 Joint distribution of maxima during a fixed time-interval, and during a
storm

The results in this appendix complement those of appendix c. Joint
distributions of maxima are the kind of statistics usually considered in the
literature on multivariate extreme value statistics. In this appendix, their
parameterization is derived in a way that is very similar to the derivation of
the parameterization of probabilities of simultaneous exceedance in appendix
c. This serves to show more clearly the relationship between these two
multivariate statistics.

It is straightforeward to generalize the assumptions in appendix b to the
following case: define

w = (mi,...wk)
and define Ju; as a (random) time-interval over which

max

teit, ok RN, 20 for sll te), (f1)

Consider curves

t—> (unlu),---,u&(u))

such that at each point, the expected number of entrances in the region
{ aeR": a> w (u) for some 1 =1,..,k } (£2)

equals p. Then by an obvious modification of the argument in appendix b, for
any functions zl>0,”.zk>0 and keeping n fixed:

(un) "'PI u (t)=s z (u)+w (4) Vie(1,..,k} for all tel0,n] ] —
P( ul(tlﬁ zlfu]ﬂnl(p] vie{1,..,k} for all tEIw 1

with p—0 (£3)

Now the complement of appendix c¢ for the joint distribution of maxima follows.
Assume that for each a, there is at least one curve p— w(u) as above such
that
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P[ ul{t)s alu}(wl(ul) + w*[u) vie{1,..,k} for all ter[p) 1

— 5(a) with p— 0 (f4)

for some function §, with nl,..,n nonnegative functions. The curves p—
w(p) are not yet specified. Then

§(a) = §(a) (f5a)
with a = (ai,..,al) defined by

_ -1
a =7 ln(wial-ﬁ-l) (£5b)

with 71“.,7k fixed constants, and § is of the form

1-§(a) = Rk-ljl exp(- min[d1al-x1. .. ,dk_lak_i-xk_l,dkak-rxit .+xk_1]) dA(x)
(f5c)

with d1""dk fixed constants, and A a positive Borel measure on Rk'z.

[b] The convergence in (f4) holds for example for curves of the form

w (p) = 1;1(11-(1171 -1) (fé6a)

and for functions L8 of the form

nl(x) o 1 (féb)

[c] Moreover, by scaling the original processes Uy u by means of

A -1
ul[t) =, ln(wlul(t)+1) (f7a)
also
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P[ ul(t)s a+w vie{1,..,k} and for all te}l0 ]

— §(a) with 85 o (£7b)
with $ defined as J but now for the scaled processes u_,..,u Iinstead of
us u 1 k
U e, and with 1" = (1, ..., 1).
Proof:

the proof follows most of appendix c, with ¥ replaced by 1-§ and g replaced
by 1-&. This means that (c20) is replaced byc €

pinn - §la -dlny,...)]=1-8@,..) (£8)

In this case however, there is a clear reason to select particular values of
d1""dk: setting a =  for all j unequal to i in (f8), we obtain for the
i-th marginal distribution §l of §:

-1
po[1 - g‘l(a1 —diln wl=1- Ql{a‘) (£9)

which has the solution

1 - ?l(al = exp(-d a) (£10)
This means that the constants d ...,dk are fixed by the marginal distributions
of &. This is the essential differencé with appendix c¢. Now we need to solve
(£8) with fixeg dl""dn‘ Following [De Haan, 1990], there is a positive
measure v on R such that
1-?(d;101,...] = v{ ueR*: u>a for some 1e{1,..,k} } (f11)
Let

A
= (L oy 1) (f12a)
and
18 -1, ek, 18 e mK. (£12b)
Observe that 11,..,1]‘_1 span the subspace orthogonal to d, and that
1k= -11 = e —lk_1 (£f13)
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Then by (f11): (following [De Haan, 1990])

-1 - k T min 3T _
1 §'(dl ai....) =v{ueR'| 1'u >j= ’”’k[kaj 1ju] } =
v{ ueR*| 1"u > min[ ™™ ke -1y, ka + 1Tu + .. + 1'u } (£14)
J=1,..,k-1 § "} kK 1 k

Inserting (f14) }P (f8) and generalizing, for every continuous real-valued
function z on R :

v{ ueRk] 1u > z(lIu...,lz_lu] +p}l=

exp(-p) v{ ueRk| 17 > z(lfu,..,lz_lu) } (£15)
so

v{ uenk| k'1Tu > w, kfi(lzu...,lz_iu]eﬂ } = A(B) exp(-w) (f16)

for every Borel set B, with A some borel-measure on R#-l. and

n

1-8(d'a,...)
i 1

min

v{ uERk| k_llzu > min[j a —k_llju, a+ k-llfu + ..+ k-llzu } =

=1,..,k-1 ) k

J exp(- min[ai-xi,..,c%_ -xk_l,ah+x1+..+xk_1]} da(x) (f17)

k-1 1

R

and (fS) follows. The other results follow in the same way as in appendix c.
In the two-dimensional case:

1—§(a1,a2] = RI exp(- min[dlaiwx.dza:+x]) dA(x) (£18)

Note that there is a slight error in [De Haan, 1990, the equation following
his equation (22)].

It is interesting to compare 1-5§ with ¥ of appendix c.

Since the scaling of the marginals is identical, we discuss only 1-% and % .
The thresholds defining 1-§ and 36 are of the form
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for 1-8 for ?c

reglon of Interest reglon of
interest

—threshold

o threshold

This means that 1-& is ’'tied’ to its marginals, but § is not. Information
about correllation between variables is lost in compufing 1-§, except if the
correllation is practically complete. The different character of the two
statistics is best explained with an example from the_discrete-time case,
assuming sequences of independent random vectors in R” with independent
components which have the unit exponential distribution. In that case,

?c(ai.aal = exp(-ai-az) (f19a)
and
1-§(a1.a2] = [exp(—ai) + exp(—aa1)/2 (f19b)

An application for 1-§ in coastal engineering is for example to compute the
probability that the high tide level somewhere along the coast exceeds a
critical level in an arbitrary year, with "somewhere" meaning at one
coastal location in a given set of locations. This statistic is naturally
generalized to the distribution of the maximum of a variable over a certain
time-interval and spatial region.

Applications of ¥ are different. ¥ applies to events like the entrance of
regions in the pa?ameter space of rather general shape, as discussed in
section 4.2, such as a region that corresponds to failure of a construction.

€ is always a distribution function corresponding to a probability measure on
the plane. However gc need not to be a proper survivor function.

Appendices c and f can be extended to obtain "classical" extreme value
statistics, which give the probability of (joint) exceedance in a
time-interval of n years as in (b9) but with the number of years n increasing
instead of keeping it fixed, in such a way that un remains bounded. This
requires one more assumption about asymtotic independence of nonoccurrence of

65



an 'extreme’ event in disjoint time-intervals of an integer number of years.
It is not relevant for the present application (see also section 4.1).
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