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Slab track-bridge interaction subjected to a moving train: an 
improved matrix formulation and truncation method
Qiang Zhanga, Xuehui Zhangb and Lei Xuc,d

aSchool of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi, China; bDepartment of 
Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands; cDepartment of Railway 
Engineering, Central South University, Changsha, Hunan, China; dNational Engineering Laboratory for High Speed 
Railway Construction, Central South University, Changsha, Hunan, China

ABSTRACT
Modelling slab track-bridge interaction subject to a moving train usually 
involves solving complex high-dimensional matrix equations which is 
time-consuming. This research works to optimize the auto-assembling 
process in the slab track-bridge coupling matrices formulation and 
improve the computational efficiency by truncating the dynamic matrices 
used in time integral scheme. To achieve the above goals, the key issue is 
to appropriately couple the systems’ dynamic matrices in conditions 
where the elemental sizes of the track slab and the bridge are inconsistent 
in 3-D space. Besides, by firstly clarifying the degrees of freedom vector of 
the rail, the track slab and the bridge girder participated in each time step, 
dynamic matrices characterizing the train-slab track-bridge interaction are 
truncated with time to reduce the matrix size. This present study has 
demonstrated the solutions for above problems. Apart from model valida-
tions, some numerical examples are presented to show applicability of the 
proposed methods.
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1. Introduction

Bridge structure is widely used in railway engineering, as an elevated rail line can help reduce land 
occupation and mitigate adverse settlement of rail line compared with on ground embankment. In 
some rail lines, the bridge length could occupy 80% of the total rail line length or even above, for 
example the portion of bridge of Beijing-Shanghai High Speed Railway line reaches as high as 
86.5%, which indicates the tremendous popularity of bridge in railway engineering [1]. In recent 
years, high-speed railway has achieved rapid development in China, and slab track system, as the 
main track system type used in high-speed railway, is widely adopted because of its high stability, 
less maintenance demand and low structural deformation, etc. From structure viewpoints, the 
track-bridge system provides fundamental supports to the moving train, and basically influences 
the train dynamic performance; inversely, the dynamic loading of a moving train deteriorates the 
track-bridge service performance. Hence it is of great importance to take an in-depth work into the 
modelling of train-track-bridge interaction.

Compared to the modelling of a train-ballasted track-bridge system [1–6], it is generally a more 
complex work to depict the slab track-bridge interaction since the track-bridge contact has been 
changed from the node contact (in ballasted track) to the interface contact, and more complicated 
plate elements shall be applied instead of beam elements (in ballasted track system). In the 
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representative work of Zhai et al. [7], the dynamic vibration of the slab tracks is characterized by the 
mode superposition method (MSM), and the coupled interaction between the slab track and the 
bridge is characterized by the track-bridge interaction forces. This innovative model is also verified in 
experiment by Zhai et al. [8], which help provide insights into the complex train-track-bridge system.

Considering the parametric and geometric non-uniformity, nonlinearity, and the modelling 
efficiency, finite element method (FEM) is generally a more useful tool for track-bridge interaction 
analysis. Yang et al. [9] made pioneering work on developing vehicle-bridge coupling elements with 
the proposal of a dynamic condensation method to improve the computational efficiency and 
stability [10]. Later, Cheng et al [11]. and Lou et al [12]. presented a vehicle-rail-bridge coupling 
element in the framework of finite element theory. Moreover, Lou et al. [13] developed a modelling 
method considering the inconsistent length of the rail element and bridge element was developed, 
where the rail directly connects to the bridge with continuous supports. To analyse the interaction 
between the rail and the non-uniform continuous bridge, Yang [14] further presented an integrated 
wheel-rail coupling element using similar approaches as in [9–12]. All these previous studies 
contribute to a better understanding of track-bridge interaction. However, in the aforementioned 
work [9–14] on the analysis of track-bridge interaction subject to a moving train, only vertical 
vibration is modelled where the system lateral vibration was ignored. Besides, for simplicity the 
wheel-rail elastic compression is mostly neglected [9–12] in the analysis, which was not consistent 
with practical conditions.

In recent years, train-track-bridge interaction analysis has gained great achievements from the 
simplified static analysis [15] to the real-time dynamic analysis subjected to a moving train [1–14], 
and the research dimension has extended from the two-dimensional vertical dynamics analysis [9– 
14] to the three-dimensional lateral/vertical coupled dynamics analysis [1–5,7,16–20]. In the three- 
dimensional dynamics model for characterizing the train-track-bridge interaction, Dinh et al. [21] 
formulated a three-dimensional train-bridge interaction model, where an iterative solution scheme 
based on Newmark-β method is developed for satisfying the compatibilities at the wheel-rail 
interfaces. Besides, Zeng and Dimitrakopoulos [22] developed a train-bridge interaction model, 
where the bridge is modelled by finite element method at 3-D space and the contact-detachment 
transition along the normal direct of contact is treated as a linear complementarity problem with 
hypothesis of wheel-rail rigid contacts. However, in the above two studies [21,22], the parametric 
vibration of the track slab is neglected. Zeng et al. [23] applied the wheel-rail keep-contact method 
and presented the finite elemental formations for train-track-bridge interaction using energy 
principle; however, the elemental size of track slab and the bridge is set to be consistent for 
modelling convenience, which is inconsistent with reality.

From above literature review, it can be cognized that the modelling method and technics for realizing 
track-bridge interaction analysis have achieved tremendous development within the finite element 
theory framework. Objectively, the complex slab track-bridge system subjected to a moving train can 
be built by hybrid modelling of the commercial software, such as ANSYS® and ABAQUS®, etc. However, 
the general commercial software encounters fatal flaws in the computational efficiency if solving large 
scale problems. Generally the CPU time consumed at each time integration step is significantly increased 
by the expansion of the total degrees of freedom (dofs) of the model [24], and in some advanced models 
the dofs can be as high as above a hundred thousand, which is quite time-consuming.

To improve the computational efficiency while guaranteeing an acceptable precision has been an 
essential task in advanced train-track-bridge numerical modelling. Accordingly, there are general 
two possible solutions to this task:

● Reducing the system dofs with a guarantee of the solution precision. Generally the require-
ment for the finite element size is decreased from the rail, the track slab to the bridge since the 
main frequency of the substructures is gradually lowered, and accordingly the finite element 
size can be meshed from fine to coarse level. However, there is co-node and tie-node limits in 
the commercial software such as ANSYS® and ABAQUS®, causing modelling inconvenience.
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● Reducing the matrix size participated in the model solution, i.e., by truncating the matrix and 
hence reducing the number of dofs involved in the time integral scheme in the case where the 
boundary effects can be ignored.

Aiming at solving above two issues and accordingly mitigating the modelling deficiency 
faced in current research, this work develops an improved matrix formulating and truncation 
method based on previous work. This improved method works effectively to boost the 
numerical simulation efficiency while assuring a high precision. The rest of this paper is 
organized as below: in Section 2, the methods for the establishment of the train-track-bridge 
interaction model are presented, where the improved matrix formulation and truncation 
methods are introduced and specified; in Section 3, extensive numerical examples are pre-
sented to show the application of this proposed model in analysing a series of engineering and 
parametric problems, followed by a detailed results discussion; in Section 4, conclusions are 
derived from the numerical studies.

2. Construction of a train-track-bridge interaction model

2.1. Modelling description

A typical train-slab track-bridge system is depicted in Figure 1. In this section, a layered-modelling- 
method (LMM) [25,26] is introduced and applied to establish the finite-element model of slab 
track-bridge system. Here, the rail and the bridge girder, the track slab, and the bridge pier are firstly 
modelled as the Bernoulli-Euler beam, thin-plate and rotatable bar, respectively, and all track 
structures (rail and slab track) and substructures (bridge girder and pier) are coupled by spring- 
dashpot elements.

Besides, a train including a series of multi-rigid-body vehicles moves on the track-bridge system, as 
illustrated in Figure 2. Each vehicle consists of a car body, two bogie frame and four wheel sets, and 
the rigid bodies are connected by the primary and secondary suspension systems. The wheel-rail 

Figure 1. Schematic of a typical train-slab track-bridge system.

INTERNATIONAL JOURNAL OF RAIL TRANSPORTATION 3



interaction is characterized by Hertz normal contact, Kalker’s linear creep theory with nonlinear 
saturated modifications [5], more complete studies on wheel-rail interaction and model coupling can 
be found in Zhai [27] and Xu [28].

2.2. Matrix formulation of the track-bridge girder interaction

Following methodologies presented in [25,26], the general matrices for the train, the track- 
substructures, and wheel-rail interactions can be constructed. In this model, the slab track is 
regarded as the unit slab. When analysing the effects of slab spacing on the system vibration 
response, the spacing distance is in the range of 100–500 mm in Section 3.2. Therefore, considering 

Figure 2. Three-dimensional model for train-track-bridge interaction (a. side view; b. end view).
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the discontinuity of the track slabs, the difficulty for the automatic assemblage of track slab-bridge 
girder interaction matrices is dramatically increased because of: (1) the non-equality of elemental 
length for the track slab at the ends and middle sections (of bridge girder) and (2) the discontinuity 
of the number of the degrees of freedom (dofs), as shown in Figure 3.

In the derivation of the track slab-bridge girder interaction matrices, i.e., Ksb and Csb, see for 
instance, Ksb can be calculated by 

Ksb ¼
XNb

i¼1

Xnb

j¼1

X

Ωs

Ki;j;Ωs
sb;y þ Ki;j;Ωs

sb;z

� �
(1) 

with 

Ki;j;Ωs
sb;y ¼ksb;y

ðx2

x1

NT
sb;yNsb;ydx (2) 

Ki;j;Ωs
sb;z ¼ksb;z

ðws

0

ðx2

x1

NT
sb;zNsb;zdxdy (3) 

with 

Nsb;y¼ Vs � �Vb½ �

Nsb;z¼ Ws � �Wb½ �

�

(4) 

Ws¼ Ns
1Ns;z Ns

2Us Ns
3Ns;z Ns

4Us½ � (5) 

Ns
1 ¼ 1 � 3ζ2

þ 2ζ3

Ns
2 ¼ � ζ � 2ζ2

þ ζ3� �
ws

Ns
3 ¼ 3ζ2

� 2ζ3

Ns
4 ¼ � ζ3

� ζ2� �
ws

8
>><

>>:

(6) 

where ζ¼ y
ws

, and 

f
Ns;z ¼ Ns

1 Ns
2 Ns

3 Ns
4½ �

Us ¼ 1 � ς ς½ �
(7) 

where ς ¼ x
ls , and 

�Wb¼ Nb;z Wb �
ws
2 þ y

� �
Ub

� �
(8) 

Nb;z ¼ Nb
1 Nb

2 Nb
3 Nb

4

� �

Ub ¼ NU
1 NU

2
� �

�

(9) 

where 

Nb
1 ¼ 1 � 3��

2
þ 2��

3

Nb
2 ¼ �

�� � 2��
2
þ ��

3
� �

ltb
Nb

3 ¼ 3��
2
� 2��

3

Nb
4 ¼ �

��
3
� ��

2
� �

ltb
NU

1 ¼ 1 � ��

NU
2 ¼

��

8
>>>>>>>>><

>>>>>>>>>:

(10) 

where ��¼ rxþx
ltb , and 
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Vs¼ Ns
1 � Ns

2 Ns
3 � Ns

4½ �
�Vb¼ Nb;y HbUb

� �

Nb;y¼ Nb
1 � Nb

2 Nb
3 � Nb

4

� �

8
<

:
(11) 

where ksb;y and ksb;z denote respectively the track slab-girder lateral and vertical interaction stiffness; 
ws and ls are respectively the width and the length of the track slab along the Y- and X- axis direction 
(see Figure 3(a)); Hb and Wb are respectively the vertical and lateral distance between the girder 
centroid and the centroid of the track slab (see Figure 3(b)); ltb is the beam elemental length of the 
girder; Nb is the total number of bridge spans and nb is the total number of the finite elements for 
each girder; x1 and x2 indicate the lower and upper boundary of slab-bridge interaction area, 
respectively; rx means the distance between the slab element (front node) and the bridge element 
(front node), see Figure 3; Ωs is the assemblage of the track slab element number contacting with the 
nb -th girder element at the Nb-th span; Ws denotes the shape function describing the vertical 
motion of a track slab as a thin-plate element and Vs denotes the shape function describing the 
lateral motion of the track slab as a beam element; Wb and Vb denote respectively the shape 
function for vertical and lateral motion description of a bridge girder as a beam element.

From Equations (1) to (3), it can be seen that it is highly important to confirm the parameters Ωs, 
rx, x1 and x2. The steps below can be followed to obtain these parameters:

1) Calculate the longitudinal location of the start and end node for a bridge girder element at the 
bridge coordinate system, that is, 

Xb;1 ¼ ðNb � 1Þlbr þ Lbr;Nb þ ðnb � 1Þltb
Xb;2 ¼ ðNb � 1Þlbr þ Lbr;Nb þ nbltb

�

(12) 

where lbr is the spacing between bridge girders; Lbr;i is the sum length of bridge girders before the 
Nb-th span; ltb is the length of the bridge beam element; Xb;1 and Xb;2 are the start and the end 
position of the girder beam element respectively.

2) Calculate the longitudinal start and end locations for the track slab thin-plate elements at the 
track slab coordinate system, that is, 

Xs;1 ¼ Xb;1 þ Lsb
Xs;2 ¼ Xb;2 þ Lsb

�

(13) 

where Lsb is the total length of the track slabs before the starting of the bridge.

3) To confirm Ωs, here three sub steps are followed as:
Sub-step 1: confirm the number for the track slab 

i1 ¼ Υ Xs;1
Ls0

h i
þ 1

L0s1 ¼ Xs;1 � i1 � 1ð ÞLs0

i2 ¼ Υ Xs;2
Ls0

h i
þ 1

L0s2 ¼ Xs;2 � i2 � 1ð ÞLs0

8
>>>><

>>>>:

(14) 

where i1 denotes the i1-th track slab and i2 denotes the i2-th track slab; Ls0 is the length of a track 
slab; Υ �½ � denotes the operator rounded the element to the nearest integer towards zero.

Sub-step 2: confirm the elemental number for the i1-th and the i2-th track slab 

ns1 ¼

1 if L0s1 < ls;0
ns1;0 þ 2 if L0s1 � ls;0 þ ns1;0ls

� �

Υ L0s1 � ls;0
� �

=ls
� �

þ 2 else

8
<

:
(15) 
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ns2 ¼

1 if L0s2 < ls;0
ns1;0 þ 2 if L0s2 � ls;0 þ ns1;0ls

� �

Υ L0s2 � ls;0
� �

=ls
� �

þ 2 else

8
<

:
(16) 

where ns1 and ns2 denotes the elemental number with respect to the i1-th and the i2-th track slab; 
ns1;0 is the total number of track slab elements between two end elements of a track slab, and each 
track slab element has an elemental length of ls;

Sub-step 3: determine the track slab elements contacting with the bridge girder element 

Ωs ¼
ns1; ns1 þ 1; . . . ; ns2ð Þ if i1¼i2
ns1; ns1 þ 1; . . . ; ns1;0 þ 2; 1; 2; . . . ; ns2
� �

if i1 < i2

�

(17) 

Corresponding to Ωs, an assemblage of the track slab number each track slab with length of Ls0 can 
be obtained by 

~Ωs¼
i1; i1; . . . ; i1ð Þ

i1; i1; . . . ; i1; i2; i2; . . . ; i2ð Þ

�

(18) 

Sub-step 4: confirm parameters of rx, x1 and x2 according to the following judgement:
First, the start and end position of a track slab element can be obtained by 

Xs;1 ¼

Ls0 ~ΩsðqÞ � 1
� �

if ΩsðqÞ ¼ 1
Ls0 ~ΩsðqÞ � 1
� �

þ ls;0 þ ls ΩsðqÞ � 2ð Þ if ΩsðqÞ> 1 or ΩsðqÞ< ns1;0 þ 2
Ls0 ~ΩsðqÞ � ls;0 if ΩsðqÞ ¼ ns1;0 þ 2

� �

8
><

>:
(19) 

Xs;2 ¼

Ls0 ~ΩsðqÞ � 1
� �

þls;0 if ΩsðqÞ ¼ 1
Ls0 ~ΩsðqÞ � 1
� �

þ ls;0 þ ls ΩsðqÞ � 1ð Þ if ΩsðqÞ> 1 or ΩsðqÞ< ns1;0 þ 2
� �

Ls0 ~ΩsðqÞ � dvv if ΩsðqÞ ¼ ns1;0 þ 2
� �

8
><

>:
(20) 

where q denotes the q -th number in the assembled set of ~Ωs or Ωs.
Second, the start and end positions of a bridge girder beam element have been obtained in 

Equation (2), and finally the method for deriving the parameters rx, x1 and x2 can be got by 

rx ¼ Xs;1 � Xb;1 (21) 

x1¼
0 if Xs;1 � Xb;1
Xb;1 � Xs;1 if Xs;1 <Xb;1

�

(22) 

x2¼
�ls � Xs;2 � Xb;2

� �
if Xs;1 � Xb;1 and Xs;2 � Xb;2

�ls if Xs;2 <Xb;2

�

(23) 

with 

�ls¼
ls;0 if ΩsðqÞ ¼ 1 or ΩsðqÞ ¼ ns1;0 þ 2
ls else

�

(24) 

and the programme will display ‘error’ if Xs;1 � Xb;1 and if Xs;2 � Xb;2 , indicating that the bridge 
girder elemental length is smaller than the length of a track slab element.

Through above derivations, all parameters used in Equation (1) can be obtained properly.
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2.3. The dynamic equations of motion for train-track-bridge interaction

By matrix formulations, the dynamic equations of motion for train-track-bridge interactions can be 
assembled by 

Mtt 0 0 0 0
0 Mrr 0 0 0
0 0 Mss 0 0
0 0 0 Mbb 0
0 0 0 0 Mpp

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

€Xt

€Xr

€Xs

€Xb

€Xp

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

þ

Ctt Ctr 0 0 0
Crt Crr Crs 0 0
0 Csr Css Csb 0
0 0 Cbs Cbb Cbp

0 0 0 Cpb Cpp

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

_Xt

_Xr

_Xs

_Xb

_Xp

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

þ

Ktt Ktr 0 0 0
Krt Krr Krs 0 0
0 Ksr Kss Ksb 0
0 0 Kbs Kbb Kbp

0 0 0 Kpb Kpp

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Xt

Xr

Xs

Xb

Xp

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

Ft

Fr

0
0
0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(25) 

where M, C and K denote the mass, damping and stiffness matrices respectively; the subscript ‘t’, ‘r’, 
‘s’, ‘b’ and ‘p’ denote the train, the rail, the track slab, the bridge girder and the pier respectively; X, 
_X and €X are respectively the displacement, velocity and acceleration vector respectively; F denotes 
the loading vector.

In Equation (25), the entire track-bridge system subject to a moving train has been characterized 
in a matrix coupling way. The wheel-rail interaction matrices ‘Ctr’, ‘Crt’, ‘Ktr’ and ‘Krt’ are time- 
dependent following the change of wheel-rail contact positions and possess nonlinearity. For such 
a complex system, direct time integration algorithm such as Newmark-β method can be used to 
obtain the system responses.

2.4. Matrix truncation method for improving the model solution efficiency

For a model constructed by finite elements, it generally possesses high degrees of freedom (dofs) if 
the slab track and the bridge system are very long or with small finite elemental sizes, which usually 
results in an extremely large size of dynamic matrices. Therefore, the computational efficiency will 
be significantly decreased by the large-scale size of the dynamic matrices participated in the time 
domain integration.

In the model solution, the track-bridge coupling matrices are truncated to reduce the matrix dofs in 
the numerical integration to improve the computational efficiency. The hidden criteria or philosophy for 
truncation is to properly locate the boundary where the boundary effects are quite small as to be ignored 
in modelling, and the algorithm for boundary truncation is described in detail in below sections.

2.4.1. Rail dofs vector
The start and end dof for the rail system can be respectively obtained as 

δr;1¼Ψr n1 � 1ð Þ þ 1
δr;4¼Ψr n4þ1ð Þ

�

(26) 

with 

n1¼Υ x1=lr½ � þ 1
n4¼Υ x4=lr½ � þ 1

�

(27) 
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where Ψr is half of the dofs for a rail beam element; n1 and n4 are the rail beam number where the 
first and the fourth wheelset contact with the rail, as shown in Figure 2(a); x1 and x4 denote the 
boundary positions at the X-axis; lr is the distance between adjacent rail pads.

The rail dofs vector can be obtained as δr ¼ δr;1; δr;4
� �

.

2.4.2. Track slab dofs vector
The start and end dof for the track slab system can be respectively obtained as 

δs;1¼ 3 nw þ 1ð Þ þ 2ð Þ i1 � 1ð Þ þ Ψs I1 � 1ð Þ þ 1
δs;4¼ 3 nw þ 1ð Þ þ 2ð Þ i4 � 1ð Þ þ Ψs I4þ1ð Þ

�

(28) 

With 

i1¼Υ x1=Ls0½ � þ 1
i4¼Υ x4=Ls0½ � þ 1

�

(29) 

I1¼

1 if �x1 < ls;0
ns1;0 þ 2 if �x1 � ls;0 þ ns1;0ls
Υ �x1=ls½ � þ 1 else

8
<

:
(30) 

I4¼

1 if �x4 < ls;0
ns1;0 þ 2 if �x4 � ls;0 þ ns1;0ls
Υ �x4=ls½ � þ 1 else

8
<

:
(31) 

�x1 ¼ x1 � Ls0ði1 � 1Þ
�x4 ¼ x4 � Ls0ði4 � 1Þ

�

(32) 

where nw is the lateral divisions for a track slab; i1 and i4 denote the track slab number with respect 
to locations x1 and x4; I1 and I4 denote the plate elements at the i1-th and the i4-th track slab 
respectively.

The track slab dofs vector can be obtained as δs ¼ δs;1; δs;4
� �

.

2.4.3. Bridge dofs vector
The start and end dof for the bridge system can be respectively obtained as 

δb;1¼�Ψb;i þ Ψb nb;1 � 1
� �

þ 1
δb;4¼�Ψb;j þ Ψb nb;4þ1

� �

�

(33) 

With 

�Ψb;i¼Ψb
P

i
nb;i � 1
� �

þ 2iΨb � Ψb nb;i � 1
� �

þ 2Ψb
� �

�Ψb;j¼Ψb
P

j
nb;j � 1
� �

þ 2jΨb � Ψb nb;j � 1
� �

þ 2Ψb
� �

8
<

:
(34) 

nb;1¼
Υ lb;1=ltb
� �

þ 1 if lb;1 < Lb;i
nb;i else

�

(35) 

nb;4¼
Υ lb;4=ltb
� �

þ 1 if lb;4 < Lb;i
nb;j else

�

(36) 
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lb;1¼
~x1 if i ¼ 1

~x1 �
Pi� 1

k¼1
Lb;k � lbrði � 1Þ else

8
<

:
(37) 

lb;4¼
~x4 if j ¼ 1

~x4 �
Pj� 1

k¼1
Lb;k � lbrðj � 1Þ else

8
<

:
(38) 

where the symbols ‘i’ and ‘j’ denote the i-th and the j-th bridge girder; Ψb denotes half of the dofs for 
a girder beam element; �Ψb;i and �Ψb;j denote the total dofs of the girders before the i-th and the j-th 
bridge girder; nb;1 and nb;4 denote the element number for the start and end bridge girder; Lb;i and 
Lb;j denote the bridge girder length for the i-th and the j-th bridge girder; ~x1 and ~x4 denote the 
boundary positions at the bridge coordinate; Lb;k is the bridge girder length for the k-th girder.

The bridge dofs vector can be obtained as δb ¼ δb;1; δb;4
� �

. Because the dofs of the piers δP are 
relatively less, they are fully considered in the simulation.

In Summary, the dofs used in the time integration is assembled as

δ = [δr δs δb δp] ] (39)

2.5. Model comparisons

In this example, a previous model presented in [28], where the wheel and the rail are regarded as 
rigid contacts, is introduced and compared as a validation (of the model in this study). In this 
model, the wheel-rail geometric relationship is obtained by the track line method. Moreover, the 
matrix coupling method based on the Hertz nonlinear theory and saturated creep theory is used to 
construct the interaction matrix between the wheel and rail. The detailed parameters in this model, 
including the bridge, track slab and the vehicle are listed in Table A1 and A2 in Appendix. Also, the 
irregularity excitation function is presented in Figure 4.

Figure 5 shows the comparison on bridge vertical and lateral accelerations at the bridge mid- 
span between these two models, from which it can be observed that the bridge accelerations of 
these two models excited by track random irregularities coincide very well with each other and 
accordingly the effectiveness of this model has been validated. Besides, the comparison on car 
body acceleration has also been illustrated in Figure 6. It can be seen that the response curve of 
car body accelerations agrees well to each other, and the response amplitudes are a little different 
due to the difference of the wheel-rail coupling flexibility in the rigid- and elastic-contact 
scenarios.

3. Numerical studies

In the numerical studies, three examples will be presented: the first example is to investigate the 
influence of track slab element types on system responses; the second example discusses the 
influence of the discontinuity of track slabs on system responses and the last example is to show 
the influence of matrix boundary truncation length on system responses.

In the numerical solutions, it is assumed a train consisting of three identical vehicles moves on 
the simply supported bridge, the time step interval is set 0.24 ms, while the moving speed (of the 
train) is 300 km/h.
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(a)

(b)

Figure 4. Track irregularity ((a). vertical; (b) lateral).

(a)

(b)

Figure 5. Comparison on bridge acceleration at the mid-span (a. vertical acceleration; b. lateral acceleration).
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3.1. Influence of track slab element types on system responses

Conventionally thin-plate element is applied to model the track slab system but its engineering 
practicality comparing to other finite element types is rarely reported. In this study three types of 
finite elements, i.e., double-beam, thin-plate and Mindlin-Reissner plate, are introduced to model 
the track slabs. The finite element size of the track slab is set to be with the longitudinal length of 
0.325 m and the lateral width of 0.343 m.

Figure 7 shows the track slab vertical acceleration with respect to different plate element types. It 
can be observed from Figure 7(a) that the response curve of the double beam element is highly 
consistent to that of the thin-plate element, but the response corresponding to the Mindlin-Reissner 
plate element is generally smaller than those of the double beam and thin plate, i.e., the track slab 
vertical acceleration is lower when considering the shearing deformation of the track slab in the 
Mindlin-Reissner plate element, and the maximum acceleration difference between those of the 
double element/ thin plate elements and the Mindlin-Reissner reaches 2 m/s2. Besides, Figure 7(b) 
further presents the power spectral density (PSD) distribution of the track slab vertical acceleration 
with respect to various plate elements, from which it can be seen that all PSD curves against 
different element types coincide well within the frequency 83.41 Hz, above which the frequency 
response differences start to emerge between the elemental types, similarly the frequency response 
of the Mindlin-Reissner at specific high frequency ranges (>83.41 Hz) is generally smaller than 
those of the double beam and the thin plate.

Moreover Figure 8 shows the influence of track slab element type on bridge acceleration, from 
which it can be observed that the track slab element type shows relatively slight influence on bridge 
acceleration, as the bridge accelerations (corresponding to the three element types) shows very 
small difference. Also, it is found that the bridge acceleration attached to the Mindlin-Reissner plate 
element is generally smaller than those attached to the elements of double beam and thin plate with 
a maximum difference of 0.05 m/s2, besides the differences between them mainly occur at the 
frequency range of above 140.4 Hz.

(a)

(b)

Figure 6. Comparison on car body acceleration at the mid-span (a. vertical acceleration; b. lateral acceleration).
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3.2. Influence of the discontinuity of track slabs on system responses

For various slab track systems, the physical configuration of the track slabs is different, e.g., some are 
longitudinally discontinuous with track slab spacing, such as the I series and III series track slab of 
China Railway Track System (referred as CRTS-I and CRTS-III type track slab), some are longitudinally 
connected such as II series track slab of China Railway Track System (referred as CRTS-II type).

(a) 

(b)

Figure 7. Track slab vertical acceleration at the mid-span of the bridge (a. time-domain response; b. frequency-domain PSD 
response).

(a) 

(b) 

Figure 8. Bridge vertical acceleration at the mid-span of the bridge (a. time-domain response; b. frequency-domain PSD 
response).
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To clarify the influence of the discontinuity of track slabs on system dynamic performance, this 
subsection considers the spacing of adjacent track slabs, denoted as lss, to be varied from 0.1 m to 
0.50 in the discontinuous track slab system, besides the longitudinally connected track slab system is 
modelled as continuous track slabs, denoted as l0ss. The train speed is set to be 300 km/h.

To clearly illustrate the influence of the discontinuity of the track slab, the additional effects 
of track irregularities are ignored here. Figure 9 shows the time-varying displacement of the 
rail and the bridge, and the wheel-rail vertical force beneath first wheelset of the moving train. 
It can be observed from Figure 9 that the maximum responses of all dynamic indices are 
gradually increased by the increase of the track slab spacing, and the maximum responses are 
increased by 2.5%, 1.3% and 1.7% for indices of rail displacement, bridge displacement and 
the wheel-rail force respectively. What’s more, it can be seen that the presented dynamic 
responses subject to longitudinally connected (continuous) track slabs are smaller than those 
subject to discontinuous track slabs.

Figure 10 shows the power spectral densities (PSD) against time domain wheel-rail forces. 
It can be observed from Figure 10 that the geometric features of the track-bridge systems have 
been clearly revealed, such as the rail pad spacing, discontinuity of track slab and bridge span 
length that cause the periodicity of support stiffness. Besides it can be observed that the 
characteristic wavelength of the track slab length is not appeared in the continuous track slabs 
due to the longitudinal connection of the track slabs. In summary, influence of the disconti-
nuity of track slabs on system responses are successfully revealed with the model in this 
study.

Figure 9. Influence of discontinuity of track slabs against different values of lss (a-b. rail displacement; c-d. bridge displacement; 
e-f. wheel-rail vertical force) (the black solid line indicates the time-domain responses against longitudinally connected track 
slabs).
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3.3. Determination of the boundary length on system performance

In this model, the train-track-bridge coupling matrices are truncated at the boundary as described 
in section 2.4, so as to improve the computational efficiency. However, it is widely known there 
exists structural wave propagation and reflection from boundaries, and thus it is significantly 
important to confirm the minimum boundary length of lb, above which length the wave reflection 
effects can be neglectable.

As shown in Figure 11, different length of lb is selected and the bridge accelerations with respect 
to various lb are presented, from which it can be observed that the vibration fluctuation at the 
boundary section are significantly more violent than others if the boundary length is small such as 
lb¼10m. More specifically, set lb to be varied from 10 m to 50 m and the span width of the simply 
supported bridge to be 20 m and 32 m, and Figures 12, 13 shows the normalized maximum rail and 
bridge vibration (by dividing the maximum responses) with respect to various boundary lengths.

Figure 10. Power spectral density distribution of wheel-rail vertical force against track slab types.

(a)

(b)

Figure 11. Effects of the boundary length on bridge acceleration at the mid-span (a. bridge vertical acceleration; b. bridge lateral 
acceleration).
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It can be clearly seen from Figure 12 that the shorter of the bridge span length, the smaller of the 
boundary length required, in the guaranteeing of the solution convergence. See for instance, the rail 
vibration is almost unchanged when lb is larger than 20 m and 32 m, namely the boundary length distance 
from the front and rear of the wheelset should be larger than the span length of the simply supported 

(a)

(b)

Figure 12. The maximum rail vibration with respect to different boundary lengths (a. rail vertical displacement; b. rail vertical 
acceleration).

(a)  

(b)

Figure 13. The maximum bridge vibration with respect to different boundary lengths (a. bridge vertical displacement; b. bridge 
vertical acceleration).
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bridge. Figure 13 has further presented the normalized values of the bridge maximum vertical displace-
ment and acceleration, from which it can be also noticed that the bridge vertical vibrations are gradually 
converged to specific values once lb > Lb, where Lb is the bridge span length.

By selecting the minimum boundary length lb, the time consumption is greatly reduced in the 
modelling solution. For example, in scenario of minimum boundary length (the lb is set 10 m), the 
CPU (typed Intel(R) Core(TM) i7-10700K-3.80 GHz) time is respectively 321 seconds and 1680 sec-
onds for the solutions considering and not considering the matrix boundary truncation.

4. Conclusions

In this paper an improved modelling method for characterizing slab track-bridge interaction 
subject to a moving train is proposed, where an innovative matrix truncation method is developed 
to improve the computational efficiency. The technologically advanced aspects of this model lie in 
automatically assembling slab track-bridge coupling matrices with inconsistent finite element sizes 
and detail formula of key parameters.

Apart from the model validations, some conclusions can be drawn from the numerical studies:

(1) The double-beam and thin-plate elements have close precision in depicting the dynamic 
behaviours of track slabs. With consideration of the shear deformation, Mindlin-Reissner plate 
element can be applied, and it is shown that the track slab and bridge accelerations with modelling 
of the Mindlin-Reissner plate are slightly smaller than those by double-beam and thin-plate track 
slabs at specifically high frequency ranges.

(2) From the aspect of system stability, the longitudinally connected track slabs posse obvious 
advantages, and for discontinuous track slabs, the higher of the track slab spacing, the larger of the 
track-bridge dynamic displacements.

(3) The minimum length truncated before the first wheel and behind the last wheelset should be 
longer than the bridge span length in the system matrix truncation. What’s more, the proposed 
matrices truncation method proves effective in boosting computational efficiency.
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Appendix

Table A1. Bridge and track slab structure parameters.

Parameter Definition Value

Ksb;y Track slab-girder lateral interaction stiffness 4:0� 107N=m
Ksb;z Track slab-girder vertical interaction stiffness 6:6� 108N=m
ws Track slab width 2.5 m
ls Track slab element length 0.325 m
Lsb Track slab length 5.6 m
Hb Vertical distance between the girder centroid and track slab centroid 2.2 m
Wb Lateral distance between the girder centroid and track slab centroid 5 m
ltb Beam elemental length of the girder 1.086 m
Nb Total number of bridge spans 3
nb Finite elements numbers for each girder 30
Lsb Total length of the track slabs before the starting of the bridge 100 m
lr Distance between adjacent rail pads 0.63 m
lss Spacing of adjacent track slabs 0.1 m to 0.5 m
lb The minimum boundary length Variable between 10 to 50 m
Lb Bridge span length 32.6 m
Kbs;y Ground-pier interaction 

Stiffness (y direction)
1:0� 109N=m

Kbs;z Ground-pier interaction 
Stiffness (z direction)

1:0� 1010N=m

Cbs;z/Cbs;y Ground-pier interaction 
Damping (y and z directions)

5:0� 104N � s=m

Table A2. Vehicle parameters.

Parameters Values Unit

Car body mass 45280 kg
Car body yaw moment of inertia 2:1399� 106 kg �m2

Car body rolling moment of inertia 1:4997� 106 kg �m2

Car body pitch moment of inertia 2:2678� 106 kg �m2

Bogie mass 3300 kg
Bogie yaw moment of inertia 3300 kg �m2

Bogie rolling moment of inertia 2673 kg �m2

Bogie pitch moment of inertia 1807 kg �m2

Wheelset mass 1780 kg
Wheelset yaw moment of inertia 967 kg �m2

Wheelset rolling moment of inertia 949 kg �m2

Primary suspension longitudinal stiffness 1:468� 107 N=m
Primary suspension lateral stiffness 6:47� 106 N=m
Primary suspension vertical stiffness 1:04� 107 N=m
Primary suspension vertical damping 9800 N � s=m
Secondary suspension longitudinal stiffness 1:67� 105 N=m
Secondary suspension lateral stiffness 1:67� 105 N=m
Secondary suspension vertical stiffness 3:2284� 105 N=m
Secondary suspension vertical damping 9800 N � s=m
Bogie distance 17.5 m
Wheel distance 2.5 m
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