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Abstract

The theory of graphs is important not only for combinatorial problems but in physics, electrical

engineering, chemistry, social psychology, and research of operations. Labeled trees find application

in probability theory. These objects were first successfully counted by Cayley in 1889. Vines

generalize trees. They were introduced by Cooke in 1997 and they have been applied in uncertainty

analysis. More recently applications in statistics have been developed in which distinguishing vines

according to their graphical structure is of importance [1], [2], [3], [4], [5]. In this paper, previous

results about the number of labeled trees on n nodes will be discussed. Some of the ideas previously

used to characterize trees will be extended to characterize vines on n nodes. Algorithms to build

vines, together with a result about the number of vines on n nodes will be presented.

1 Introduction

Men has always been fascinated by counting all sorts of different objects1. The problem of
counting graphs has been undertaken in the past[8]. Trees find many applications in proba-
bility theory, decision analysis and optimization. These have also been the object of study for
combinatorial problems and results have been presented regarding the number of labeled trees
on n nodes.

Vines are graphical models that extend the idea of a tree [9]. These objects have found
application in probability theory and uncertainty analysis (see for example [10]). More recently
they are becoming popular in statistical analysis of data [1], [2], [3], [4], [5].

In this paper previous results concerning the number of trees on n nodes are briefly discussed
in section 2. Section 3 presents two ways to characterize vines on n nodes. The first method
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Delft, the Netherlands. Tel: +31 1527 84563. Email: o.moralesnapoles@ewi.tudelft.nl

†The authors would like to thank Sandra Gáytan-Aguilar and Etienne de Klerk for their useful ideas for the
completion of this paper.

1Calculating prodigies have counted many things along history, Jedediah Buxton (1702) an illiterate man
from Elmton, England kept a mental record of all the free beer and ale he was given since the age of 12 and
that averaged out to 5 or 6 ounces a day. When taken to see Richard III at the Drury Lane Playhouse in
London “he declared after a fine piece of music, that the innumerable sounds produced by the instruments had
perplexed him beyond measure, and he attended even to Mr. Garrick only to count the words that he uttered,
in which, he says, he perfectly succeeded”[6]. Thomas Fuller, an African man shipped to America as a slave
in 1724 “began his application to figures by counting to ten, and then when he was able to count a hundred,
he thought himself (to use his own words) “a very clever fellow”. His first attempt after this was to count the
number of hairs in a cow’s tail, which he found to be 2872”[7]
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counts the total number of vines on n nodes and extracts the regular vines by discarding those
vines which are non-regular. The second method constructs all possible regular vines on n
nodes using line graphs at each level in the vine. Neither method yields the number of regular
vines on n nodes as a function of n.

Section 4 characterizes regular vines as triangular arrays, and finds the number of regular
vines on n nodes by extending a regular vine on n − 1 nodes. This enables us to express the

number of regular vines on n nodes as
(
n
2

)×(n−2)!×2
(n−2

2 )
. The results from section 3 may be

contrasted with the result from section 4. For example, there are 11 unlabeled trees on 7 nodes
each of which admits a number of regular vines. From these 11 trees, the one where every node
has degree at most equal to 2 admits only one regular vine and can be labeled in 2,520 different
ways. Other trees may be analyzed similarly to enumerate regular vines. In general for trees on
seven nodes there are 1× 2, 520 + 9× 2, 520 + 19× 5, 040 + 840× 33 + 630× 80 + 2, 520× 168 +

840×168+1, 260×342+420×1, 452+210×29, 28+7×23, 040 = 2, 580, 480 =
(
7
2

)×5!×2
(7
2) .

Interestingly, the number of extensions of a regular vine on n− 1 nodes to a regular vine on n
nodes does not depend on the particular regular vine on n− 1 nodes being extended. The final
section gathers conclusions.

A graph will be denoted by G = (E, N) where N is the node set and E the edge set of
the graph which is a subset of pairs of N . Graphs in which individual nodes have no distinct
identifications except through their interconnectedness are called unlabeled graphs. Without
loss of generality in this presentation when N = {1, 2, ..., n} we speak of labeled graphs.

2 Trees

A tree is an undirected acyclic graph. The graph isomorphism problem consist on deciding
whether there exists a mapping from the nodes of one graph to the nodes of a second graph
such that the edge adjacencies are preserved.

Definition 2.1. Two labeled graphs Gi = (Ei, Ni) and Gj = (Ej , Nj) are isomorphic if
there is a bijection ϕ : Ni → Nj such that for all pairs (a, b) ∈ Ei ⇐⇒ (ϕ(a), ϕ(b)) ∈ Ej. If two
graphs are isomorphic they are the same unlabeled graph.

A connected graph T = (N, E) is called a labeled tree with nodes N = {1, 2, ..., n} and
edges E, where E is a subset of pairs of N with no cycle.

In this section labeled trees will be briefly discussed. These structures have been used to
represent high dimensional probability distributions [9] and they are often called dependence
trees. This section however will be concerned with the properties of trees only as graphs. For
an account of dependence trees see [11]. We begin our presentation with a well known result
about trees.

2.1 The Number of Labeled Trees on n Nodes and the Prüfer Code

Two different labeled trees on 5 nodes are presented in figures 2.1 and 2.2. The reader may
observe that permuting nodes 1 and 5 in T1 transforms it into T2 and hence they would be
considered the same unlabeled tree. In this section the interest will be mainly in labeled trees.

The first proof about the number of labeled trees on n nodes is due to Cayley in 1889 [12].
Since then several proofs have been presented [13].

Theorem 2.1. The number of labeled trees on n nodes is nn−2.
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Figure 2.1: T1 a tree on 5 nodes. Figure 2.2: T2 a tree on 5 nodes.

One of various proofs due to Prüfer in 1918 [14] of this theorem provides a very useful
result for representing labeled trees. The argument is to notice that there is a one to one
correspondence between the set of trees with n labeled nodes and the set of ordered (n − 2)-
tuples (A1, A2, ..., An−2) where each Ai is an integer not greater than n.

Definition 2.2. Every sequence of numbers R(Tk) = (A1, A2, ..., An−2) where each Ai is an
integer not greater than n is a Prüfer Code for some tree Tk on n nodes.

In his paper Prüfer obtains the correspondence by the following procedure: For a given tree,
remove the endpoint2 with the smallest label (other than the root3) and let A1 be the label of
the unique node which is adjacent to it. Remove the endpoint and the edge adjacent to it and
a tree on n − 1 nodes is obtained. Repeat the operation with the new tree on n − 1 nodes to
obtain A2 and so on. The process is terminated when a tree on two nodes has been found. The
reader may check that the trees from figures 2.1 and 2.2 have Prüfer codes R(T1) = (4, 1, 1) and
R(T2) = (5, 4, 5) respectively. The procedure described above may be easily reversed, that is,
suppose you start with a sequence of (n− 2)-tuples R(Tk) = (A1, A2, ..., An−2) then to obtain
the only tree corresponding to the sequence one applies algorithm 2.1:

Algorithm 2.1. Decoding a Prüfer code.

1. Take a sequence R(Tk) = (A1, A2, ..., An−2) for k = 1, 2, .., nn−2 where each Ai, i =
1, 2, ..., n− 2 is an integer not greater than n.

2. Write the root in the right most position of R(Tk). Notice that R(Tk) has now length
n− 1 which is |E|.

3. Write another row of integers on the bottom of R(Tk) from left to right. Each entry Bi

in this new row is the smallest integer that has not been already written in this new row
(the row of B′

is) nor in the first row (the row of A′is) in the position exactly above it or
every other position to the right.

4. The resulting code S(Tk) is the Extended Prüfer Code. Each column in the extended
Prüfer code represents an arc in the unique labeled tree corresponding to it.

S(Tk) =
(

A1 A2 A3 ... n
B1 B2 B3 ... Bn−1

)

Take the two Prüfer codes R(T1) = (4, 1, 1) and R(T2) = (5, 4, 5). Apply algorithm 2.1 to
decode each sequence into the extended Prüfer code. The reader may check in equation 2.1
that S(T1) corresponds to figure 2.1 and S(T2) to figure 2.2.

2The endpoints are nodes with degree one in the tree, they are sometimes referred to as leafs.
3Without loss of generality we will choose node n as the root of all labeled trees on n nodes. Choosing any

other node as the root makes no difference except that the algorithm and the procedure to find the Prüfer code
for a given tree must be modified.
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S(T1) =
(

4 1 1 5
2 3 4 1

)
, S(T2) =

(
5 4 5 5
1 2 3 4

)
(2.1)

Prüfer then gives an induction argument to show that for each (n− 2)-tuple there is some
tree which determines the given sequence by the above procedure. From the code one can see
that a node with degree m would occur exactly m − 1 times in the code. Labeled trees are
interesting not only as objects that can be counted and subject of combinatorial problems.
They find application in optimization, probability theory and uncertainty analysis ([9], [11]).
In next section vines will be discussed and the ideas presented in this section will be extended
to deal with these graphical objects.

3 Vines

A vine [9] is a set of nested trees. Just as labeled trees, vines have been used to represent high
dimensional probability distributions [15] and [11] with applications in uncertainty analysis.
More recently they are being applied in statistical analysis of multivariate data sets [1], [3],
[2] and [5]. These last references are concerned with choosing an optimal vine to represent
multivariate data sets. Algorithms for enumerating all possible regular vines on n nodes will be
needed for this purpose. All trees in a vine may be thought of as labeled trees. In this section
some results about the number of vines on n nodes will be presented.

3.1 The Number of Vines on n Nodes and the Prüfer Code

The ideas presented in section 2.1 can be extended to count the number of vines (and regu-
lar vines) that are possible on n nodes. This will be shown in the present subsection. The
presentation begins with the definitions of vine and regular vine.

Definition 3.1. V (n) is a labeled vine on n elements if:

1. V (n) = (T1, T2, T3, T4, ..., Tn).

2. T1 is a labeled tree with nodes N1 = 1, 2, ..., n and edges E1. For i = 2, ..., n, Ti is a labeled
tree with nodes Ni = Ei−1. Ei−1 has been given a unique labeling.

If in addition for i = 2, ..., n− 1, if (a, b) ∈ Ei, then |a4b| = 2, where 4 denotes the symmetric
difference, then V (n) is a labeled regular vine. In other words, if a and b are nodes of Ti

connected by an edge in Ti, where a = {a1, a2} and b = {b1, b2}, then exactly one of the ai

equals one of the bi. This condition is called the proximity condition.

The nodes reachable from a given edge in a regular vine are called the constraint set of
that edge. When two edges are joined by an edge in tree Ti, the intersection of the respective
constraint sets form the conditioning set. The symmetric difference of the constraint sets is
the conditioned set. Formal definitions may be found in [11]. Vines (and regular vines) may
be classified according to the unlabeled tree used at each level in the vine. For this reason the
following definition is introduced.

Definition 3.2. If a bijection as in definition 2.1 may be found for each Ti ∈ Vk(n) and
Ti ∈ Vj(n) then we speak of the same tree-equivalent vine and accordingly the same tree-
equivalent regular vine when the proximity condition holds.

4



Figure 3.1: Non-regular vine on 5 nodes.
Figure 3.2: Regular vine on 5 nodes.

In figures 3.1 and 3.2 respectively a non-regular and a regular vine on five nodes are gen-
erated. The edge that makes figure 3.1 a non-regular vine is indicated by an arrow. The
conditioned set is separated from the conditioning set by a vertical line “|” in figure 3.2. Ob-
viously these two vines are different labeled vines. However, according to definition 3.2 they
are the same tree-equivalent vine. Observe that by permuting the numbers in T1 in figure
3.2 we would generate different labeled regular vines but according to definition 3.2 the same
tree-equivalent vine.

Since every labeled tree can be represented by a Prüfer code, then every sub-tree in the vine
may also be represented by a Prüfer code and in this way the vine may be generated. A way
to write all possible vines on n nodes is presented in algorithm 3.1.

Algorithm 3.1. Constructing all possible vines on n nodes.

1. Set i = 1.

2. Construct all Prüfer codes possible for Ti.

3. The edges of each one of the nn−(i+1) trees in step 2 become nodes in Ti+1. Hence, for
each tree in step (2):

(i) Label the n − i edges of each tree giving the label 1 to the edge appearing in the
first column in its extended Prüfer code, 2 to the edge in the second column and so
on until all edges have been labeled 4.

(ii) Construct all Prüfer codes possible for Ti+1 and connect the new labeled edges (from
Ti) as nodes according to these new Prüfer codes.

4. Set i := i + 1 and go to step (3) until two edges must be connected in the n − 1th tree.
At this point there is only one way to connect them and no Prüfer code is required.

From algorithm 3.1 it may be observed that to write any vine on n nodes all is required are
n− 2 Prüfer codes. The first one of length n− 2, the second one of length n− 3 and so on until
the last one of length 1. A vine on n nodes may be represented by an upper triangular array
of size (n− 2)× (n− 2) whose first row represents the Prüfer code of the first tree in the vine,
the second row the second tree of the vine and so on. For example V1(5) represents the vine
from figure 3.1 and V2(5) the one in 3.2 :

V1(5) =




4 1 1
3 2

1


 , V2(5) =




4 1 1
3 2

2


 (3.1)

4This labeling is not unique and any other labeling would work equally well as long as all nn−2 trees are
labeled in the same way.
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Corollary 3.1. The number of vines on n nodes is
n∏

i=1

ii−2.

Proof. The proof is in fact algorithm 3.1. This is a consequence of theorem 2.1 and definition
3.1.¤

Regular vines are most interesting in uncertainty analysis. Implementing Algorithm 3.1 in
a computer is very easy and it provides a simple way to construct all possible regular vines
on n nodes by simply discarding those that are not regular. However, this method incurs an
excessive burden of searching all vines (see table 1). According to corollary 3.1 the number of
vines grows extremely fast with n and it could be very restrictive in time to find all regular
vines even for a modest number of nodes (8 or 9). Another possibility to construct only regular
vines will be discussed in the next subsection.

3.2 Regular vines and the line graph

As stated at the end of previous section, another possibility is available to produce only regular
vines as opposed to producing all possible vines and discarding those that are not regular as in
algorithm 3.1. The idea is to use the line graph5 of each tree in the vine. Harary notes in [17]
that the concept of the line graph of a given graph is so natural that is has been rediscovered
independently by many authors.

Definition 3.3. [16] The line graph LG(G) of a graph G has as its nodes the edges of G,
with two nodes being adjacent in LG if the corresponding edges are adjacent in G.

If the edges of the first tree of figure 3.2 are labeled according to the second step in algorithm
3.1 then the line graph of this tree can be found according to definition 3.3. This line graph
corresponds to figure 3.3. Nodes 1, 2, 3 and 4 in figure 3.3 corresponds to edges (4,1), (1,3),
(1,4) and (5,1) respectively in figure 3.2.

If in the same way we label the nodes of the second tree in the vine in figure 3.2 accordingly,
then the line graph in figure 3.4 may be obtained. In this new line graph, nodes 1, 2, 3
correspond respectively to nodes (2, 1|4), (3, 4|2) and (3, 5|1) in figure 3.2.

Figure 3.3: Line Graph of the first tree in fig-
ure 3.2

Figure 3.4: Line Graph of the second tree of
the vine from figure 3.2.

Definition 3.4. [18] A spanning subgraph T of a graph G is a subgraph with the same set
of nodes as G. If T is a tree, it is called a spanning tree of G.

It is clear from definitions 3.3 and 3.4 that in order to find all regular vines on n nodes, all
the spanning trees of the line graphs of all subtrees in the vine most be found. This result is
summarized in algorithm 3.2.

Algorithm 3.2. Constructing all possible regular vines on n nodes.
5Line graphs are also known as derived graphs, interchange graphs, adjoint and edge to vertex dual[16].
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1. Set i = 1.

2. Construct all Prüfer codes possible for Ti.

3. The edges of each one of the nn−(i+1) trees in step 2 become nodes in Ti+1. Hence, for
each tree in step (2):

(i) Label the edges of each tree giving label 1 to the edge appearing in the first column
in its extended Prüfer code, 2 to the edge in the second column and so on until all
edges have been labeled 6.

4. Construct the line graph of each one of the trees from step 2.

5. For each line graph from step 3 find all possible spanning trees. Connect the edges of
each tree in step 1 according to all spanning trees from its line graph. This will give all
possible Ti+1 for each Ti.

6. Set i := i + 1 and go to step (2) until two edges must be connected in the n − 1th tree.
At this point there is only one way to connect them and no Prüfer code is required.

Notice that the vines generated by this procedure may still be stored in an (n− 2)× (n− 2)
upper triangular array as in equations 3.1 once a way of labeling the edges from each tree in the
vine is specified. Algorithm 3.2 does not produce any irregular vine as opposed to algorithm 3.1.
However it involves a greater programming effort and more operations as all possible spanning
trees of the line graphs in all trees in the vine must be found. Several algorithms for finding all
spanning trees of a given graph have been proposed and examined [19], [20], [21], [22] and [23].
In general finding all possible spanning trees of a given graph other than a complete graph 7 is
demanding in terms of time and space [22].

Table 1 presents a summary with the number of labeled trees, vines and regular vines on 3,
4, 5, 6, 7 and 8 nodes8. The second column presents the number of unlabeled trees on n nodes.
The third column corresponds to the values obtained by applying the formula in theorem 2.1
and the fourth to values obtained by applying the formula in corollary 3.1. Algorithms 3.1 and
3.2 allow to count the number of regular vines on n nodes. The number of regular vines on
up to 7 nodes was found using algorithm 2.1 and the values for 8 nodes using algorithm 3.29.
The results of counting regular vines with algorithms 2.1 and 3.2 are presented in column 5.
To implement algorithm 3.2, MATGRAPH [24] was used to find line graphs for each of the 23
unlabeled trees on 8 nodes. A version of the Mayeda-Seshu algorithm was used [22] to find all
spanning trees of each of the 23 line graphs.

Column six in table 1 presents the number of tree-equivalent regular vines on n nodes.
Algorithm 3.1 may be used to list the number of tree-equivalent vines (or tree-equivalent regular
vines) on n nodes by checking for isomorphism at each level in the vine. Also, algorithm 3.2
can be used to count the number of tree-equivalent regular vines on n nodes by checking tree
isomorphism at each level of the vine10. All possible tree-equivalent vines with at most 5 nodes
in T1 are presented in figure A.1 in appendix 1.

6As before, this labeling is not unique and any other labeling would work equally well as long as all nn−i+1

are uniquely labeled.
7For a complete graph all possible spanning trees are the nn−2 Prüfer codes
8For 1 and 2 nodes there is exactly one of each object.
9Actually algorithm 3.2 does not need to be implemented completely to count the number of regular vines

on 8 nodes. Observe that it is sufficient to know how many spanning tress of each unlabeled class in n−1 nodes
does a line graph of a tree in n nodes contain.

10As for counting regular vines algorithms 3.1 and 3.2 do not need to be implemented completely to count
the number of tree-equivalent regular vines on 8 and 9 nodes. Observe that it is sufficient to know how many
spanning tress of each unlabeled class in n− 1 nodes does a line graph of a tree in n nodes contain.
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Nodes Trees Vines
Aa Bb Cc Dd Ee

3 1 3 3 3 1

4 2 16 48 24 2

5 3 125 6,000 480 5

6 6 1,249 7,776,000 23,040 22

7 11 16,807 130,691,232,000 2,580,480 136

8 23 262,144 34,259,922,321,408,000 660,602,880 1,464

Table 1: Number of unlabeled and labeled trees, vines, regular vines and tree-equivalent vines
in 3, 4, 5, 6, 7 and 8 nodes.

aNumber of unlabeled trees
bNumber of labeled trees
cNumber of labeled vines
dNumber of labeled regular vines
eNumber of tree-equivalent regular vines

Table 2 presents a catalogue with non-isomorphic trees on 1, 2, 3, 4, 5, 6 and 7 nodes and
some relevant characteristics of each one. A similar catalogue was presented in [13] for trees
with at most five nodes. In [25] a catalogue of non-isomorphic tress with at most 8 nodes may
be found11. None of the above catalogues presents results for vines. An extended catalogue
for non-isomorphic trees with up to 9 nodes similar to the one in table 2 is available from the
authors on request.

The concept of the line graph also allows to obtain bounds for the number of regular vines
admissible by unlabeled trees on n nodes. These results are presented next as lemmas. Lemma
3.2 that is rather evident has been stated in [9] without a proof.

Lemma 3.1. If the first tree of a vine on n nodes has one node with maximal degree, then the
number of labeled regular vines possible with this tree equals the number of labeled regular vines
on (n− 1) nodes.

Proof. Since every edge in T1 is adjacent to each other then the line graph of this tree is
a complete graph on (n − 1) nodes that has (n − 1)n−3 possible spanning trees. These are all
possible labeled trees on n − 1 nodes each of which admits a fixed number of labeled regular
vines.¤

Lemma 3.2. If the first tree of a vine on n nodes has (n − 2) nodes with degree 2, then the
number of regular vines possible with this tree equals 1.

Proof. Observe that the line graph of T1 will be also a tree on n−1 nodes with (n−3) nodes
with degree 2. Hence its only possible spanning tree will be itself and to preserve regularity this
tree should be used in T2. The same argument holds for all j ≥ 2 and hence only one regular
vine is possible.¤

Lemma 3.2 provides a lower bound for the number of regular vines possible for a given
unlabeled tree T1. In the same way lemma 3.1 provides an upper bound. This result may be
observed in table 2. A more general result for counting labeled regular vines is dealt with in
next section.

11This catalogue repeats a tree in eight nodes neglecting another one. In the same reference tables counting
the number of rooted trees on up to 26 nodes and the number of non-isomorphic trees on less than 26 nodes
may be found.
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In applications two kind of regular vines have been most widely used. C-Vines are regular
vines for which each tree in the vine has one node with maximal degree. D-Vines are regular
vines for which the first tree of the vine has (n − 2) nodes with degree 2. Next results about
the number of D-vines and C-vines on n nodes are presented. Both results where presented in
[1] with proofs that are slightly different to the ones presented here.

Lemma 3.3. The number of C-vines on n nodes equals the number of D-vines on n nodes and
is n!

2

Proof. For C-vines observe that there are n possible labeled trees on n nodes for which a
single node has maximal degree. Once the first tree has been fixed any of the (n − 1) edges
may be chosen so as to construct any of the (n− 1) possible labeled trees on (n− 1) nodes for
which a single node has maximal degree. Any of these would preserve regularity. The same
argument holds for all other trees on the vine until two edges need to be connected as nodes in
Tn−1. Hence there are n · (n− 1) · (n− 2) · ... · (3) = n!

2 C-vines on n nodes.
For D-vines observe that from lemma 3.2, T1 ∈ V completely determines the vine. And

since there are n!
2 ways of choosing it the result follows. ¤
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4 The Number of Regular Vines on n Nodes.

So far the number of vines has been obtained from Cayley’s theorem in corollary 3.1. Results
concerning the number of tree-equivalent and labeled regular vines on at most 8 nodes have
been presented by using Prüfer codes and line graphs. This section derives a formula for the
number of regular vines on n nodes.

Definition 4.1. If node e is an element of node f in a regular vine, we say that e is an m-
child of f ; similarly, if e is reachable from f via the membership relation: e ∈ e1 ∈ ... ∈ f , we
say that e is an m-descendent of f .

Lemma 4.1. [11] For any node M of order k > 0 in a regular vine, if node i is a member
of the conditioned set of M , then i is a member of the conditioned set of exactly one of the
m-children of M , and the conditioning set of an m-child of M is a subset of the conditioning
set of M .

Definition 4.2. If element a occurs with element b as conditioned variables in tree k, then a
and b are termed k-partners. Nodes A and B are siblings if they are m-children of a common
parent.

Regularity12 means that every node in Ti, i ≥ n − 1 must have a sibling and a common
child with its sibling. In this section, another triangular array representing a regular vine will
be introduced. One disadvantage of using a triangular array such as the one used in section
3.1 is that the information regarding the label of nodes in the first tree of a regular vine is lost
when assigning new labels to its edges when they become nodes of the next tree. The same
happens as more trees are added to a regular vine. The idea of the construction presented here
is to preserve the information concerning the labels of the first tree as lower trees in the vine
are added. In analogy to a Prüfer code a sequence of n-tuples (An, An−1, ..., A1) where each Ai

is an integer not greater than n will be called a natural order. This is defined next.

Definition 4.3. A natural order of the elements of a regular vine V (n) on n elements is a
sequence of numbers NO(V (n)) = (An, An−1, ..., A1) where each Ai is an integer not greater
than n obtained as follows: Take one conditioned element of the last tree of a regular vine (a tree
with a single node and no edges) and assign it position n; assign the other conditioned element
of the top node position (n− 1). Element An−1 occurs in one m-child of the top node with an
(n− 1)-partner in the conditioned set. Give this (n− 1)-partner position (n− 2). The (n− 2)
partner of element An−2 is assigned position (n−3). Iterate this process until all elements have
been assigned a position.

Observe that there are two natural orders for every regular vine. A representation of the
regular vine in figure 3.2 using a directed graph is presented in figure 4.1. This representation
will be useful in the rest of the chapter for explaining some of the concepts introduced. The
nodes of each tree in the regular vine are nodes in the directed graph. Observe that every
parent node has exactly two children. The conditioned set is presented to the left of a vertical
line (| sign) and the conditioning set to its right.

The element in position n occurs as conditioned variable in tree Tn (this tree has one node
and no edges). The element in position (n − j) occurs in the unique node of tree Tn−j with
conditioned set {An−(j+1), An−j}. If 5 is chosen as An, then by definition 4.3 the natural order
of the regular vine would be NO1(V2(5)) = (5, 2, 3, 4, 1). In the same way if node 2 was chosen
as element An then the natural order would be NO2(V2(5)) = (2, 5, 4, 3, 1). A regular vine may
be coded as a lower triangular array with the natural ordering on the diagonal. The natural

12Or proximity in the language of section 3
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order will be used in a triangular array similar to the one introduced in section 3.1 but that
preserves all the information needed regarding conditioned and conditioning sets in the regular
vine. In particular, the regular vine array defined below encodes all the information in figure
4.1 using single digits in each cell of the array.

5, 2|1, 3, 4

²² %%LLLLLLLLLL

4, 5|3, 1

²² **UUUUUUUUUUUUUUUUUUU 3, 2|1, 4

$$IIIIIIIII

²²
3, 5|1

²² **UUUUUUUUUUUUUUUUUUUUU 1, 2|4

²² ))SSSSSSSSSSSSSSSSSS 3, 4|1

²² ""EE
EE

EE
EE

1, 5

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

²²

4, 2

²² ))TTTTTTTTTTTTTTTTTTT 1, 3

²² ((QQQQQQQQQQQQQQQQ 1, 4

ÃÃA
AA

AA
AA

A

²²
5 2 3 4 1

Figure 4.1: Representation of the regular vine in figure 3.2

Definition 4.4. A regular vine array TA(V(n)) = {Ai,j} for i, j = 1, ..., n and j ≥ i is
a lower triangular matrix with elements in {1, ..., n} indexed in ‘reverse order’ (see equation
4.1), where Aj,j equals the element in position j in NO(V (n)) and Aj−1,j equals the element
in position j − 1 in the same natural order. The echelon of element Ai,j is i and element Ai,j

codes the node (Aj,j , Ai,j |Ai−1,j , ..., A1,j)

The regular vine array TA(V2(5)) corresponding to figure 4.1 using NO1(V2(5)) is presented
in equation 4.1. Observe that the row and column indices are in their usual position but their
sense is reversed (with respect to traditional matrix indexing) in order to facilitate adding new
variables to the left. From definition 4.4, we may speak unambiguously of “node”, “element”
or “variable” Ai,j . Thus the “node Ai,j” is the set of elements “(Ai,j , Aj,j |Ai−1,j , . . . A1,j)”,
arranged to separate the conditioned elements from the conditioning elements by “|”.

TA(V2(5)) =




A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1




=




5
2 2
4 3 3
3 1 4 4
1 4 1 1 1




(4.1)

From figure 4.1 and equation 4.1 it may be observed that a regular vine may be represented
by a regular vine array as described in definition 4.4, in which the nodes of each tree in a regular
vine have children in the immediate lower order tree. Conditions for child nodes in the regular
vine array are given next.

Definition 4.5. Node Ai−1,h is a child of node Ai,j if:

(i) {Ah,h, Ai−1,h, Ai−2,h, ..., A1,h} ⊂ {Aj,j , Ai,j , Ai−1,j , Ai−2,j , ..., A1,j}
(ii) |{Ah,h, Ai−1,h, Ai−2,h, ..., A1,h}| = |{Aj,j , Ai,j , Ai−1,j , Ai−2,j , ..., A1,j}| − 1
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(iii) |{Ah,h, Ai−2,h} ∩ {Aj,j , Ai−1,j}| = 1

The reader may check for example that according to definition 4.5 A2,4 = (2, 1|4) and
A2,3 = (3, 4|1) in 4.1 are children of A3,4 = (2, 3|1, 4). According to definition 4.2, A3,4 =
(2, 3|1, 4) and A3,5 = (5, 4|3, 1) are siblings because they are children of the common parent
A4,5 = (5, 2|4, 3, 1). Similarly A2,3 = (3, 4|1) and A2,5 = (5, 3|1) are children of A3,5 = (5, 4|3, 1)
and hence siblings. Other elements may be also checked by the reader. Next it will be shown
that a matrix such as the one in definition 4.4 represents a regular vine.

We characterize first those regular vine arrays which represent regular vines.

Theorem 4.1. TA(V (n)) represents a regular vine ⇐⇒ TA(V (n)) satisfies condition R.
That is, for all i ≥ 2, element Ai,j = Ah,h or Ai,j = Ai−1,h for some h such that i ≤ h < j and
{Aj,j , ..., Ai+1,j} ∩ {Ai−1,h, ..., A1,h} = ∅

Proof. ⇒ If V (n) is a regular vine then every node Ai,j in TA(n) has two children in echelon
i− 1 one of which is Ai−1,j . Suppose the other child is in column h, then condition R follows
from (i), (ii), (iii) in definition 4.5.

⇐ Let TA(k) be a regular vine array satisfying condition R. If k = 3, the nodes of TA(k)
clearly satisfy regularity. Suppose the theorem holds for k = n − 1. Node An−1,n satisfies
regularity by definition 4.4. An induction will show that nodes An−1,n, ..., A1,n satisfy regularity.
We show first that node An−2,n has a sibling and has a common child with this sibling. By
condition R element An−2,n is equal to element An−2,n−2 or An−3,n−2. In either case, node
An−3,n−2 is a child of node An−2,n and hence node An−2,n satisfies regularity.

Suppose that for every j = n − 2, ..., k + 1, every node Aj,n, satisfies regularity. We claim
that Ak,n must also satisfy regularity.

Node Ak,n is a child of node Ak+1,n and by the induction hypothesis, node Ak+1,n satisfies
regularity, therefore, it has a second child node Ak,h and relation 4.2 must hold according to
condition R.

{Ah,h, Ak,h, Ak−1,h, ..., A1,h} = {Ak+1,n, Ak,n, ..., A1,n} (4.2)

Two situations are possible:

(i) Ak+1,n = Ah,h or,

(ii) Ak+1,n = Ak,h

By induction node Ak,h has two children, one of which is node Ak−1,h. It will be shown
that one of these children must be a child of node Ak,n. In other words it will be shown that
Ak,n and Ak,h are siblings and have a common child which is the condition for regularity.

In case (i) node Ak−1,h cannot be a child of node Ak,n since node Ak−1,h contains element
Ah,h = Ak+1,n in its conditioned set, and element Ak+1,n cannot belong to the constraint set
of node Ak,n. The other child of node Ak,h must be node Ak−1,m for some k ≤ m < h. This
child cannot contain element Ah,h, and:

{Am,m, Ak−1,m, ..., A1,m} = {Ak,h, Ak−1,h, ..., A1,h} (4.3)

By induction, node Ak,h satisfies regularity; therefore either element Ak,h = element Am,m

or element Ak,h = element Ak−1,m, in either case by combining 4.2 and 4.3 we see that node
Ak−1,m is a child of node Ak,n.

In case (ii) element Ak+1,n 6= element Ah,h, and equation 4.2 must still hold and by induc-
tion Ak,n = Ah,h or Ak,n = Ak−1,h; in either case node Ak−1,h will be a child of node Ak,n and
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the latter will satisfy regularity.¤

We now count the number of ways of extending an n− 1 regular vine with a fixed natural
ordering. This is equivalent to adding an additional column to the left of a regular vine in the
regular vine array.

Evidently the top two elements of this new column are fixed, and the last element is fixed by
the choices for the elements above it. If there are n elements in the new column, there are n−3
elements to be chosen. It will be seen that the number of extensions is in fact 2n−3 regardless
of the regular vine being extended.

Theorem 4.2. For any vine on n− 1 elements, the number of regular vines on n nodes which
extend this vine, preserving the natural ordering of the n− 1 vine is 2n−3.

Proof. Let V (n−1) be an arbitrary regular vine on n−1 elements with a natural order and
TA(V (n− 1)) its regular vine array. TA(V (n− 1)) will be extended by adding a column of n
elements to the left whose top two entries are An,n, An−1,n.The goal is to count the number of
ways of adding a column to the left of TA(V (n − 1)), so as to preserve regularity. Node Ak,n

satisfies regularity if it has a sibling which is a child of node Ak+1,n and has a child which is
also a child of its sibling. This latter child must be a node in V (n − 1). If each node Ak,n for
k = 2, ..., n − 2, satisfies regularity, then TA(V (n)) (the extended regular vine array) codes a
regular vine which extends the original regular vine V (n− 1).

V (n − 1) has trees Tn−1, ..., T1 where Tn−1 has one node and no edges, T1 has n − 1
nodes and n − 2 edges; in general for j = 1, ..., n − 1 tree Tn−j has j nodes and j − 1
edges. After adding node An,n, T1 will have n nodes and n − 1 edges, T2 will have n −
1 nodes and n − 2 edges and so on until tree n that will have a single node An−1,n =
(An,n, An−1,n|An−2,n, ..., A1,n) This node must have two children. One child must be, evi-
dently, node An−2,n = (An,n, An−2,n|An−3,n, ..., A1,n) and the other is the top node of V (n−1)
which is An−2,n−1 = (An−1,n−1, An−1,n−2|An−3,n−1, ..., A1,n−1). To satisfy regularity, nodes
An−2,n and An−2,n−1 must have a common child. This common child cannot contain element
An−1,n = An−1,n−1 since it does not belong to node An−2,n and hence the child must be of the
form:

(An−3,n−2, An−2,n−2|An−4,n−2, ..., A1,n−2).

The situation is pictured in figure 4.2.

An−1,n

²² ((QQQQQQQQQQQQQ

An−2,n

²² ,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX An−2,n−1

²² ))SSSSSSSSSSSSSS

An−3,n
(An−3,n−1, An−1,n−1|
An−4,n−1, ..., A1,n−1)

(An−3,n−2, An−2,n−2|
An−4,n−2, ..., A1,n−2)

Figure 4.2: Regular Vine Growing

Since element An−2,n must be in exactly one of the children of the node An−2,n−1 it follows
that element An−2,n must be element An−2,n−2 or element An−3,n−2 either choice satisfying
regularity.
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Assume that elements An−1,n, ..., Ak+1,n satisfying regularity have been found. We show
that variable Ak,n can be found such that node Ak,n satisfies regularity, and that there are
exactly two choices for this element. Node Ak+1,n may be written Ak+1,n = (An,n, a|b, c, d, ..., e)
with children as in figure 4.3 below:

Ak+1,n

²²
))SSSSSSSSSSSSSSS

(An,n, X|{b, c, d, ..., e} \X) (a, f |{b, c, d, ..., e} \ f);
f ∈ {b, c, d, ..., e}

²² ((RRRRRRRRRRRRR

(f, g|{{b, c, d, ..., e} \ f} \ g);
g ∈ {b, c, d, ..., e} \ f

(a, h|{{b, c, d, ..., e} \ f} \ h);
h ∈ {b, c, d, ..., e} \ f

Figure 4.3: Regular Vine Growing

Node (a, f |{b, c, d, ..., e} \ f) exists in the original vine V (n − 1) by assumption. Node
(An,n, X|{b, c, d, ..., e} \X) satisfies regularity if X = f or X = g, either choice being possible.
No other choice is possible, as no other node can have constraint set {b, c, d, ..., e}. Note that if
k = 2 then {{b, c, d, ..., e} \ f} \ g) = {{b, c, d, ..., e} \ f} \ h) = ∅.

It follows that for each node An−2,n, ..., A2,n there is a choice among 2 alternatives. Hence
there are 2n−3 extensions of V (n− 1) to a regular vine on n elements.¤

For the example from figure 4.1 the 26−3 possible extensions of the regular vine array from
example 4.1 are given by the tree in figure 4.4 bellow. Corollary 4.1 follows immediately from
theorem 4.2.

5

¾¾8
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88
88

¤¤§§
§§

§§
§

2

¸+̧
++

++
+

ªª¶¶
¶¶
¶¶

3

¸+̧
++
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+

ªª¶¶
¶¶
¶¶

3

µµ%
%%
%%

¯¯¼¼
¼¼
¼

4

µµ%
%%
%%

¯¯¼¼
¼¼
¼

1

µµ%
%%
%%

¯¯¼¼
¼¼
¼

2

µµ%
%%
%%

¯¯¼¼
¼¼
¼

41312441

Figure 4.4: 8 Possible Extensions of the TA(V2(5))in equation 4.1 Representing the Vine in
Figure 3.2

Corollary 4.1. The number of regular vines possible with a fixed natural order NO(n) =

An,n, An−1,n−1, ..., A1,1 is:
n−3∏
j=1

2j = 2
(n−2

2 )

Proof. Start with a regular vine on three nodes with an arbitrary natural order and extend
it to a regular vine on four nodes. Elements A4,4, A3,4 and A1,4 are fixed by the natural order
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and hence only element A2,4 may be chosen in 2 distinct ways. For each one of the 2 choices of
A2,4, from theorem 4.2 an extension to a regular vine on 5 nodes leaves two choices for each of
the two elements A3,5 and A2,5. Continue this way until a regular vine on n nodes is formed
and the result follows. ¤

Observe that corollary 4.1 implies that no regular vine would be counted twice once the
natural order has been fixed. Obviously two regular vine arrays that are equal will represent
the same vine. Once the number of regular vines that may be obtained with a given natural
order is known, all that is left to know the number of regular vines on n nodes is how many
natural orders are possible in order to produce all possible regular vines. Corollary 4.2 completes
the problem of enumerating regular vines.

Corollary 4.2. There are
(
n
2

)× (n− 2)!× 2
(n−2

2 )
labeled regular vines in total.

Proof. There are
(
n
2

)
ways of choosing the pair An,n, An−1,n−1 in a natural order and (n−2)!

ways of permuting elements An−2,n−2, .., A1,1. By corollary 4.1 the proof is completed. ¤

The results of corollary 4.2 may be observed in tables 1 and 2 which were obtained by the
methods explained in previous sections. For example, the number of regular vines on 7 nodes

is
(
7
2

) × 5! × 2
(7
2) = 2520 + 9 × 2520 + 19 × 5040 + 840 × 33 + 630 × 80 + 2520 × 168 + 840 ×

168 + 1260× 342 + 420× 1452 + 210× 2928 + 7× 23040 = 2, 580, 480.

Remark 4.1. By lemma 3.1 and corollary 4.2 it may be seen that a tree with a single node

with maximum degree admits
(
n−1

2

)× (n− 3)!× 2
(n−3

2 )
regular vines.

Finally, the results of remark 4.1 may be also observed in table 2. For example there are 7

trees with maximal degree on 7 nodes each of which admits
(
6
2

)× (4)!× 2
(4
2) = 360 + 7× 360 +

11×360+48×90+75×120+6×480 = 23, 040 regular vines which is exactly the total number
of regular vines on 6 nodes. To finalize some conclusions are presented next.

5 Conclusion

This paper investigates counting problems related to vines. Corollary 3.1 has been obtained
from Cayley’s theorem 2.1 to count the number of vines on n nodes. A way to efficiently code
and store vines on n nodes based on the Prüfer code is proposed. This consists of an upper
triangular matrix of size (n − 2) × (n − 2). An algorithm for building vines and two others
for building regular vines on n nodes have been presented. Algorithm 2.1 is easy to implement
and efficient if regular vines on less than 6 nodes are required. Algorithm 3.2 would produce
only regular vines at the cost of greater programming effort and a larger number of arithmetic
operations.

Table 1 shows the number of labeled trees, labeled vines, labeled regular vines and tree-
equivalent regular vines, on up to 8 nodes. Table 2 presents the number of labeled regular
vines and labeled trees according to unlabeled trees on at most 7 nodes. The number of ways
of extending a vine on n − 1 nodes to an vine on n nodes has been found and the number of
labeled regular vines as a function of n has been presented. Future research about efficient
implementation and storing of codes for regular vines is desirable.
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Appendix 1

D-vine: Each node in Ti C-Vine: Each tree Ti

has degree at most 2. has a unique node of degree n− i.

Regular Vine where one node in T1 Regular Vine where one node in T1

has degree 4 and each node in has degree 3 and each node in
Tj (j > 1) has degree at most 2. Tj (j > 1) has degree at most 2.

Regular Vine where one node in T1

has degree 3, one node in tree T2

has degree 3 and each node in
Tj (j > 2) has degree at most 2.

Figure A.1: Tree-equivalent regular vines with up to 5 nodes in T1.
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