
Investigating scaling
techniques and the
cost-efficiency of

distributed to single
FPGA compositions
for Full Waveform

Inversion
by

Luc Dierick
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday July 7, 2022 at 10:00 AM.

Student number: 4445120
Project duration: November 8, 2021 – July 7, 2022
Thesis committee: Prof. Dr. Z. Al-Ars, TU Delft, supervisor

Prof. Dr. M. A. Zuñiga Zamalloa, TU Delft
Ir. J. Petri-König, AMD
Ir. G. Gunay, ALTEN

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
During my studies, my interests shifted from high-level software engineering to embedded systems.
This eventually led me to fulfill my thesis with the Accelerated Big Data Systems (ABS) group of the
Computer Engineering (CE) department. I stepped out of my comfort zone by taking on a hardware-
oriented project. Exploring the complexities of hardware design sometimes left me clueless, but in the
end proved to be a very rewarding journey. Fortunately, I was not facing the endeavors of this project
alone. I would like to thank my parents, girlfriend, brother, sister, and friends who have supported my
decisions and provided me with motivation and opportunities to decompress during these sometimes
stressful times. Throughout this project, my supervisors provided me with unwavering support, men-
toring, and motivation. For that, I express my sincere gratitude to Zaid Al-Ars, Jakoba Petri-König, and
Gokhan Gunay. A special thank you is to Jakoba as she continued to supervise my work, respond to
my countless messages, and provide me with excellent feedback even after leaving the TU Delft and
starting a new job. Lastly, I would like to thank Joost Hoozemans and André Prins for their involvement
in the choice of topic for this project and ALTEN for providing me with a place to work, fun colleagues
and an introduction into the technical consulting industry.

Luc Dierick
Rotterdam, June 2022

ii

Abstract
In recent years, the big data era has produced an increasing volume and complexity of data that re-
quires processing. To analyze and process these large amounts of data, applications are being scaled
on large clusters using distributed data processing frameworks. A more recent trend utilizes hardware
accelerators to offload computationally intensive tasks and reduce compute time and energy consump-
tion. As a result, a rapid growth of data center deployment containing heterogeneous compute infras-
tructures is observed. Alternative to the more commonly used general-purpose GPUs (GPGPUS), the
field programmable gate array (FPGA) is becoming an increasingly popular choice of accelerator. Its
effectiveness to accelerate highly parallel applications in combination with the flexibility due to its recon-
figurable nature make it well suited for a wide range of applications. As a spatial compute resource, the
problem size a single FPGA can process is bounded by the available programmable logic and mem-
ory. However, applications that do not require the full resources of an FPGA can be vertically scaled
by instantiating multiple instances of the hardware design on a single node. A barrier in the adoption
of FPGAs is formed by the complexity of hardware design which requires in depth hardware-specific
expertise. Additionally, integrating FPGAs in distributed data processing frameworks is a challenge on
itself.

These challenges are being addressed in two directions. High level synthesis (HLS) tools and com-
pilers are being developed to decrease the complexity of hardware design by allowing users to develop
FPGA designs in high level languages. Additionally, there is an increased availability of ready-to-use
FPGA designs for common applications in hardware libraries such as Vitis libraries [1].

To aid the adoption of FPGAs and improve their accessibility, this work presents OctoRay: a python
framework with a focus on ease-of-use that allows users to flexibly and transparently scale applications
both vertically and horizontally on FPGA clusters. Scaling a binarized convolutional neural network
(CNN) with OctoRay resulted in performance improvements linear to the number of nodes, or copied
instances applied. The framework was also used to analyze the cost-efficiency of a cluster of low-end
PYNQ-Z1 FPGAs compared to a data center class Alveo U280 FPGA. A partly in hardware acceler-
ated implementation of Full Waveform Inversion (FWI), a seismic imaging algorithm, was developed
and used to conduct the investigation. It was concluded that 32 PYNQ-Z1s are required to match the
performance of a single Alveo U280 FPGA. An important bottleneck in the performance of the PYNQ-
Z1s was the low-performance host processor on which a significant portion of FWI was executed. The
small number of resources available on a PYNQ-Z1 limited the attainable accuracy of FWI to a bare
minimum. The FWI hardware design with the same specifications made for the high-end FPGA only
utilized a fraction of its resources, far from harnessing its full potential. It was concluded that, unlike
FWI, applications that do not require the abundance of resources a high-end FPGA offers, but do ben-
efit from rapid development cycles and low energy consumption are suited for a distributed low-end
FPGA composition.

iii

List of Acronyms
ADAS Advanced Driver-Assistance Systems.

ASIC Application Specific Integrated Circuit.

CLB Configurable Logic Block.

CPU Central Processing Unit.

DAG Directed Acyclic Graph.

DNN Deep Neural Network.

FPGA Field Programmable Gate Array.

FWI Full Waveform Inversion.

GPU Graphics Processing Unit.

HDL Hardware Description Language.

HLS High Level Synthesis.

IC Integrated Circuit.

IP Intellectual Property.

RTL Register Transfer Level.

SoC System on Chip.

VHDL Very high speed integrated circuit Hardware Description Language.

iv

List of Figures

2.1 Simplified visualization of the components of an FPGA, figure altered from [15] 6
2.2 FPGA design flow phases . 7
2.3 Dependency graph of parallelism example application. 9
2.4 High level schematic of task parallelism. 10
2.5 High level schematic of data parallelism. 11

3.1 A high-level overview of the FWI algorithm. 14
3.2 The synthetically generated acousticmodel with a homogeneous background of 𝑐0 = 2000𝑚/𝑠,

embedded in the background are four layers with constant velocities from top to bottom
of respectively 2200, 2233, 2300 and 2266 m/s. The differences are displayed by means
of the contrast function and represent chi values. The grid is scaled where 1 grid length
in the figure represents 5 meters. 14

3.3 A high-level overview of the FWI algorithm. 15
3.4 Visualization of the outline of a CNN, altered from [36] 17

4.1 A high-level representation of the stack necessary to scale applications on FPGAs. . . . 20
4.2 An overview of the Xilinx Runtime Library (XRT) adapted from [40] 22
4.3 The different classes of Dask modules and how they relate, figure adapted from [42] . . 24
4.4 A visualization of the solution architectures for FWI on Alveo U280 and PYNQ-Z1 and

CNN on Alveo U280. 26

5.1 An overview of the percentage of run time occupied by the forward, cost, and com-
bined functions and the iterative loop for grid sizes 500, 1000, and 10000 and resolutions
(sources*receivers*frequencies), 100 = (5 ∗ 5 ∗ 4), 1000 = (10 ∗ 10 ∗ 10), 6000 = (15 ∗ 15 ∗ 20)
and 10000 = (20 ∗ 20 ∗ 25). 28

5.2 The Zynq Processing System IP, taken from [44] . 30
5.3 Visualization of block and cyclic array partitioning of an 8-element array with factor 2,

taken from [46] . 32
5.4 A visualization of the effect of pipelining, taken from [48]. 33
5.5 The general architecture of the OctoRay framework, figure ada[ted from [53] 39

6.1 Topology of hardware platforms and applications. 44
6.2 An overview of the power measurement setup for PYNQ-Z1 from the DTG group of

University of Kassel. 45
6.3 The real subsurface grid of the Delphi temple (left), the reconstructed grid (center), and

the difference between the real and reconstructed grid (right) are expressed in chi. The
C++ FWI implementation was applied on the full data set of grid size 64 ∗ 32 = 2048 with
a resolution of sources, receivers, and frequencies 20 ∗ 20 ∗ 15 = 6000. 48

6.4 The real subsurface grid of the Delphi temple (left), the reconstructed grid (center), and
the difference between the real and reconstructed grid (right) are expressed in chi. The
C++ FWI implementation was applied on the full data set of grid size 64 ∗ 32 = 2048 with
a resolution of sources, receivers, and frequencies 7 ∗ 7 ∗ 6 = 294. 48

6.5 The real subsurface grid of the Delphi temple (left), the reconstructed grid of four inde-
pendently inverted layers merged back together (center) and the difference between the
real and reconstructed grid (right) is expressed in chi. The C++ FWI implementation was
applied four times on 64 ∗ 8 = 512 grid size layers of the total data set. Each layer was
inverted with a resolution of sources, receivers and frequencies 7 ∗ 7 ∗ 6 = 294 and are
separated by white lines in the figure. 49

v

vi List of Figures

6.6 The accuracy of the CPU implementations is expressed through the contrast function chi
(left). The execution time of the C++ implementation for the independent and summed
layers of the merged model with a resolution (R) of 294 and of the complete data set with
resolutions R=294 and R=6000 (right). 49

6.7 An overview of the execution time spent in the hardware-accelerated functions for the
PYNQ-Z1 and AlveoU280 FPGAs andCPU python implementations. The high utilization
PYNQ-Z1 hardware design from Table 6.1 with resolution 294 was used. The python
FWI implementation was used for both CPU and PYNQ-Z1. These results do not take
initialization and downloading the bitstreams to the FPGAs into account. 51

6.8 The left plot shows the performance of FWI with a resolution of 300 and grid size 100
when scaled on 1, 2, and 4 PYNQ-Z1s. The right plot shows the performance of the
same FWI configuration for the python and C++ CPU implementation, the Alveo U280,
and 32 PYNQ-Z1s. 51

6.9 A comparison of vertical, horizontal, and no scaling for 1000 and 5000 resolution FWI
configurations on Alveo U280. R denotes the resolution, G the batch of grid cells per
compute unit or per node, and CU the number of compute units. 53

6.10 The performance of an 8000 resolution and 100 grid size FWI configuration. The compar-
ison is made for the C++ and python implementation on CPU, the former in combination
with OpenCL and the latter in combination with OctoRay and subsequently pynq, on an
Alveo U280 FPGA. 53

6.11 The overhead in milliseconds induced by Dask for 100, 1000 and 5000 total subsurface
grid sizes executed by an 8000 resolution 100 grid size FWI configuration. 54

6.12 The total design-build duration is divided into kernel synthesis and the remaining build
duration for three hardware designs of FWI. 56

6.13 The global trends in user internet traffic, data center workload, and energy consumption.
The numbers in this graph are relative to 2010. Data was taken from IEA [58] 57

6.14 The power and energy consumption of the PYNQ-Z1, and Alveo U280 FPGAs. The
power is measured for total grid sizes 100, 1000, and 5000, decomposed in batches of
100 grid cells. The energy is calculated by using the time spent in the accelerated part
of the algorithm as the power is also only measured over that part. 58

6.15 The throughput in images per second of 1 dask worker executing the CNN application
with a 1 instance hardware design for batch sizes 1, 100, 500, 1000, and 10000 of
32x32 RGB images. The dask scheduler and client were on the HACC alveo3b with IP
10.1.212.126 and the dask worker on alveo3c with IP 10.1.212.127. 59

6.16 The total execution time and throughput for CNN designs with 1,2,4,8 and 10 CUs on 1
node with 1 dask worker and a CNN design with 1 CU on 4 nodes and dask workers.
The numbers represent the average of 5 runs for batch sizes 1000, 5000, 10000, 50000,
and 100000 of 32x32 RGB images from the cifar-10 dataset. 59

6.17 The design-build duration for 1, 2, 4, 8, and 10 CU CNN designs decomposed into the
different components of the total design-build. 60

6.18 The throughput in images per second of 1 dask worker executing the CNN application
with a 1 instance hardware design for batch sizes 1, 100, 500, 1000 and 10000 of 32x32
RGB images. 61

A.1 A diagram of the ALTEN provided implementation of FWI using the finite difference for-
ward model and a conjugate gradient descent inversion model. 68

Contents

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 2

1.2.1 Accessibility. 2
1.2.2 Cost-efficiency . 2

1.3 Problem statement & research questions . 3
1.4 Solutions and contributions . 3
1.5 Thesis outline . 4

2 Background 5
2.1 Field programmable gate arrays . 5

2.1.1 Design flow . 6
2.1.2 SoC FPGAs. 7
2.1.3 Platform resources . 8
2.1.4 Direct memory access . 8

2.2 Frameworks and toolchains . 8
2.2.1 Vivado design suite. 9
2.2.2 Vitis unified software platform . 9

2.3 Scalability . 9
2.3.1 Task parallelism. 9
2.3.2 Data parallelism . 10

2.4 Related work . 11

3 Application domains 13
3.1 Full Waveform Inversion . 13

3.1.1 Background & implementation . 13
3.1.2 Scalability characteristics . 16

3.2 Convolutional Neural Network . 17
3.2.1 Background & implementation . 17
3.2.2 Scalability characteristics . 18

4 Alternative solutions 19
4.1 Hardware-design . 20

4.1.1 Custom hardware design. 20
4.1.2 Hardware designs from libraries . 21
4.1.3 Compiler-generated hardware designs . 21
4.1.4 Evaluation. 21

4.2 Hardware communication . 22
4.2.1 XRT . 22
4.2.2 OpenCL . 23
4.2.3 PYNQ . 23
4.2.4 Evaluation. 23

4.3 Parallelization framework . 23
4.3.1 Apache Spark. 24
4.3.2 Dask. 24
4.3.3 Evaluation. 24

4.4 Interface. 25
4.4.1 Programming languages . 25
4.4.2 Evaluation. 25

vii

viii Contents

4.5 Conclusion . 26
4.5.1 FWI on PYNQ-Z1. 26
4.5.2 FWI on Alveo U280. 26
4.5.3 CNN on Alveo U280 . 26

5 Solution architectures and implementations 27
5.1 FWI hardware design. 27

5.1.1 Algorithm analysis . 27
5.1.2 Hardware kernels. 28
5.1.3 Design implementation . 29
5.1.4 Design optimization . 31

5.2 Hardware communication . 34
5.2.1 PYNQ . 34
5.2.2 OpenCL . 36
5.2.3 Multiple compute units . 37

5.3 Interface. 38
5.4 OctoRay. 38

5.4.1 Deployment . 40
5.4.2 Flexibility and usability . 41
5.4.3 Accessibility. 43

6 Results 44
6.1 Experimental setups for FWI. 44

6.1.1 CPU . 44
6.1.2 PYNQ-Z1 OctoRay . 45
6.1.3 PYNQ-Z1 power measurement . 45
6.1.4 Alveo U280 . 46

6.2 Experimental setup CNN. 47
6.3 FWI results . 47

6.3.1 Domain decomposition . 47
6.3.2 Scalability . 50
6.3.3 Performance . 53
6.3.4 Cost and utilization . 54
6.3.5 Design-build duration. 56
6.3.6 Power . 56

6.4 CNN results . 58
6.4.1 Scalability . 59
6.4.2 Build design time . 60

7 Conclusions and future work 62
7.1 Conclusions. 62

7.1.1 Accessibility. 62
7.1.2 FWI acceleration . 63
7.1.3 Cost-efficient compositions . 63
7.1.4 Scalability . 64

7.2 Future work . 64

A Full Waveform Inversion 66
A.1 Cost Function C++ . 66
A.2 Forward Function C++ . 67
A.3 Implementation diagram . 68

1
Introduction

1.1. Context
With the growing deployment of data centers and heterogeneous compute infrastructures, the Field Pro-
grammable Gate Array (FPGA) is becoming a serious contributor to the Big Data processing paradigm.
This has been emphasized in recent years as leading chip-makers Intel and AMD have, respectively,
acquired FPGA vendors Altera and Xilinx. Cloud computing giants such as Amazon AWS, Microsoft
Azure, and Google Cloud have adopted FPGAs into their infrastructures right next to silicon alterna-
tives, CPUs, and GPUs. Microsoft, for example, exploits FPGAs for its low-latency performance in
Deep Neural Network evaluations and even Bing’s search ranking [2].

FPGAs have shown in the past that they are a promising alternative to further accelerate applica-
tions, especially highly parallelizable ones. For example, in research areas such as genomics, FPGAs
are used to accelerate key algorithms that need to process increasingly larger data sets [3]. Also in dis-
tributed Big Data applications FPGAs have shown their worth, for instance, to accelerate compression
and decompression algorithms that reduce data storage space and data transmission bandwidth [4].
Unfortunately, due to the high complexity of FPGA development, exploitation of FPGAs used to be re-
served for the relatively small group of engineers with in-depth hardware knowledge. Companies such
as AMD and Intel have been releasing software tools and frameworks to enable developers with little
to no hardware knowledge to use FPGAs. Additionally, in the academic world efforts are being made
to further integrate FPGAs into heterogeneous compute infrastructures. Hoozemans et al. provide an
overview of the current opportunities, challenges, and their potential solutions for Big Data Analytics
acceleration with FPGAs in [5].

Despite these initiatives, there is still a lot to be done to lower the entry barriers and improve accessi-
bility. Compared to CPUs and GPUs, the FPGA ecosystem is still very much in its infancy. Frameworks
such as InAccel [6], are proprietary and designed to support expensive data center-class FPGAs. It
should be noted that historically, the electrical engineering (EE) community, contrary to the software
(SW) community, has been averse to the concept of open-source work [7]. To aid combat this aversity
and grow the FPGA ecosystem in a healthy way, there is a need for more open-source frameworks to
help a broader public scale and accelerate applications on FPGAs.

In 2020 the largest share of the FPGA market was held by low-end accelerators [8]. This trend is
predicted to continue due to different benefits such as low cost, higher energy efficiency, and reduced
complexity when using low-end FPGAs compared to their data center-class counterparts. Some ap-
plication classes, used in sectors like the automotive business and Internet of Things require low-end
FPGAs for the previously mentioned benefits. Other classes require the computing performance high-
end FPGAs have to offer.

A common aspect, the entire range from low to high-end FPGAs have, is their potential to accelerate
highly parallel applications. The size and parallelism available in modern-day Big Data applications

1

2 1. Introduction

often exceed the computing power of a single FPGA node. By scaling these applications on multiple
FPGA nodes, the parallelism can be further exploited resulting in potentially even more significant
benefits. This work was performed in collaboration with ALTEN Netherlands and the Accelerated Big
Data Systems (ABS) group from TU Delft. ALTEN provided a computationally demanding application
with highly parallel features called Full Waveform Inversion to conduct the investigations in this thesis.

1.2. Challenges
Two of the main challenges in scaling data analytics applications on FPGAs are accessibility and cost-
efficiency.

1.2.1. Accessibility
The FPGA market has known its challenges since the invention of the FPGA in the early 1980s. In the
first 2 decades of development, customer demand dictated the need for FPGAs with more resources to
fit their designs. Vendors reacted to this demand by developing modern-day data center-class FPGAs
that offer sufficient capacity for the majority of applications [9].

Due to these technological developments, the challenges have shifted from capacity to accessibility
and large-scale integration in the data processing paradigm. This challenge is two-fold, due to the com-
plexity and steep learning curve of FPGA design, it is reserved for experienced hardware designers.
In addition, there is an absence of support in the form of open-source tools and frameworks for the
adoption of application scaling on FPGAs. Developers and engineers with little to no hardware knowl-
edge should be able to transparently and seamlessly scale applications by exploiting the capabilities
of FPGAs.

There are current initiatives to increase the accessibility of FPGAs through the introduction of tools
such as High Level Synthesis (HLS). HLS enables developers to synthesize FPGA designs from C-like
code. Although a step in the right direction, designs generated with HLS are non-optimal implemen-
tations and still require in-depth hardware knowledge to fine-tune them into efficient FPGA designs.
Another initiative is the concept of build-once, re-use often, where efficient FPGA designs for com-
mon applications such as Neural Networks are developed by experienced hardware designers to be
made available for the general public. While this concept offers a lot of potential in FPGA adoption,
there remains a need for frameworks and support in the data processing toolchains to exploit these
ready-to-use hardware designs in a scalable way.

1.2.2. Cost-efficiency
Modern-day data center-class accelerator cards like the Alveo family offer a lot of resources that, if
used correctly, can attain enormous performance, throughput, and latency boosts compared to CPUs
[10]. At first sight these high-end accelerators may seem adequate for most application classes, but
there is no free lunch in engineering and the benefits come at costs such as higher power consumption,
costly manufacturing, and expensive development cycles.

Costly manufacturing
Manufacturing very large integrated circuits is inherently more costly than smaller integrated circuits
due to the larger amount of silicon, wafer, and other materials needed. Furthermore, there is a higher
chance of defects and yield problems in larger circuits.

Expensive development cycle
Not only does the cost of manufacturing increase when working with large FPGAs, but other stages
of the development cycle also become more expensive. The FPGA design flow, more elaborately
discussed in Chapter 2, consists of 4 main phases: design entry, synthesis, implementation, and, pro-
gramming. In the first phase, a hardware design is written in a Hardware Description Language. In
the synthesis phase, this design is translated to a netlist, a collection of logic elements, interconnection
resources, and other components necessary to build the design. The implementation phase places
and routes the elements from the netlist on the FPGA resources while taking timing, location, and other

1.3. Problem statement & research questions 3

constraints into consideration.

The synthesis and implementation phases are optimization problems that increase drastically in
complexity as the size of the FPGA and design grows. This results in considerably longer, memory
and computationally demanding development cycles, often orders of magnitude larger than low-end
FPGAs experience. While the development cycle of a low-end FPGA can be performed on an average
personal computer, data center-class FPGAs require server-grade machines.

Power consumption
Even though FPGAs are considered a silicon alternative that consumes little energy, especially com-
pared to GPUs, there is still a significant difference between small and large FPGAs. Larger FPGAs
such as an Alveo U280 have a maximum total power of 225W [11]. A smaller data center-class FPGA,
the Alveo U50 has a maximum total power of 75W, which is significantly less, but still an order of
magnitude larger than the 10W maximum total power of a low-end accelerator like the PYNQ-Z1 [12].

1.3. Problem statement & research questions
In this work, two challenges in the adoption of FPGAs in the data processing paradigm are investigated.
There is a lack of tools, frameworks and support for users to easily accelerate and scale data analytics
applications on FPGAs. By solving this challenge and enabling seamless scalability over multiple FPGA
nodes it becomes possible to consider an alternative cost-efficient composition of multiple low-end
FPGAs instead of a single high-end FPGA. This project aims to provide recommendations and solutions
to these challenges by using FWI as the primary use case. More precisely, the following research
question are answered in this thesis:

1. How can FPGAs be used to scale data analytics applications in a transparent and accessible
way?

2. Can FWI be accelerated and scaled on FPGAs?

3. Is a composition of low-end FPGAs a viable alternative to a data center-class FPGA in terms of
performance, power efficiency, and cost when accelerating FWI?

4. How does vertical and horizontal scaling affect the performance of FPGA accelerated applica-
tions?

1.4. Solutions and contributions
To answer the above-stated research questions several solutions were implemented. The challenge of
FPGA accessibility and adoption was addressed by developing OctoRay, a python-based framework
that enables users to transparently scale applications on FPGA clusters. A hardware design for the FWI
use case was developed and used in combination with OctoRay to accelerate and scale the application
on multiple FPGAs. Subsequently it was possible to investigate the viability of using multiple low-end
FPGAs alternative to a high-end FPGA for FWI acceleration. The effect of horizontal and vertical scal-
ing was investigated for FWI. An application with different scalability characteristics, a Convolutional
Neural Network (CNN) for image classification, was introduced to extend the investigation.

In summary, the contributions of this work are:

1. OctoRay, a flexible framework that enables users to scale applications horizontally and vertically
with a focus on ease-of-use.

2. Design, implementation and evaluation of the FWI algorithm for low-end PYNQ-Z1 and high-end
Alveo U280 FPGAs.

3. An analysis of the effect of horizontal and vertical scaling for applications with different scalability
characteristics CNN and FWI.

4. An evaluation of the viability of a multiple low-end FPGA composition as alternative to a high-end
FPGA for FWI acceleration.

4 1. Introduction

1.5. Thesis outline
In Chapter 2, the concepts, tools, and complementary subjects that serve as a foundation for the un-
derstanding of the choices, solutions, and implementations presented in this work are introduced. In
Chapter 3, the two applications that were used to benchmark and validate the solutions are presented.
This chapter also discusses the characteristics of these applications in terms of scalability. Chapter 4
presents the solutions space considered, successively the chosen solution architectures and imple-
mentations are explained in Chapter 5. The experiment setups and the gathered results are presented
and discussed in Chapter 6. In Chapter 7, the final chapter of this work, the conclusions made are
discussed and recommendations for future work are proposed.

2
Background

This chapter explains the concepts, tools, and other subjects that were used to analyze the problems
stated in Chapter 1 and to build the proposed solutions. First, Section 2.1 introduces the Field Pro-
grammable Gate Array followed by a description of the design flow and the resources for the targeted
platforms in this work. Secondly, the tools from AMD used to implement the solution architectures
are discussed in Section 2.2. Having established the platforms and tools required for a single node
implementation, concepts to apply scalability are introduced in Section 2.3. Lastly, work related to the
adoption of FPGAs with similar approaches as applied in this work are discussed in Section 2.4

2.1. Field programmable gate arrays
Field Programmable Gate Arrays were invented in the early 1980s with the goal to accelerate the de-
sign process of Application Specific Integrated Circuits (ASIC). The use of FPGAs enabled engineers to
design, program, validate and verify hardware designs without having to manufacture actual Integrated
Circuits.

As FPGA development matured over the years, they appeared to be useful for much more than
simply accelerating ASIC design. In modern days, there are use cases in many different industries for
FPGAs. Data centers nowadays are made up of heterogeneous computing infrastructures that aim to
make optimal use of the different available hardware options. Like GPUs and ASICs, FPGAs comple-
ment CPU clusters in this infrastructure by processing computationally demanding workloads. FPGAs
differentiate themselves from ASICs in applications that require rapid development cycles and from
GPUs in applications that require low latency as well as energy efficiency [13]. In the automotive in-
dustry, FPGAs have taken the upper hand over ASICs when developing Advanced Driver-Assistance
Systems, especially due to the reconfigurability characteristic that allows ADAS engineers to easily
build on previous designs and reduce the time to market tremendously [14]. As the focus of this work
is not on the optimization of FPGA design, only a high-level overview of the internals of an FPGA are
presented, the design flow approach, and finally, we introduce the two specific FPGAs that were used
during experiments.

A Field Programmable Gate Array is a unique type of IC that is made up of Configurable Logic Blocks
(CLB) and I/O cells which are all connected in a matrix form through interconnection resources, visu-
alized in Figure 2.1. To create functionality, the previously mentioned components are combined into
blocks of logic and data. In software design, functions and classes are used to increase code reusabil-
ity. In hardware design the same applies, to increase the reusability of designs the functional blocks
of logic and data are bundled into so-called Intellectual Property (IP) cores. These cores should, when
correctly designed, offer portability in a vendor-agnostic manner so that they can be easily integrated in
any design methodology. Besides design reusability, IP cores are also fundamental in enabling users
with little to no hardware design experience to utilize FPGA functionality.

5

6 2. Background

I/O Blocks

Interconnections
Logic Blocks

Figure 2.1: Simplified visualization of the components of an FPGA, figure altered from [15]

2.1.1. Design flow
Different hardware platforms adhere to different design flows to utilize them. Programming CPUs is
slightly different from GPUs, but both design flows have in common that they result in a set of software
instructions that are executed by the designated hardware platform. The design flows for ASICs and
FPGAs are different in that sense, because they result in an IC. The difference between ASICs and
FPGAs, is that the former draws the resulting circuit directly into silicon while the latter creates the
circuit by connecting the CLBs and other components.

The main phases in FPGA design flow are shown in Figure 2.2. The first phase, design entry, con-
sists of defining the requirements of the system. This can be done with schematics, where the design
is drawn with gates and wire, or the more common approach, by describing the design with a Hardware
Description Language. Specifically and unambiguously describing the behavior of an IC is not an easy
task. Historically, people started describing them on a component level and later rose to a logical level.
In the 1980’s HDLs such as VHDL and Verilog were introduced. These languages allowed engineers
to explicitly describe the behavior of large IC’s and the opportunity to simulate and test these systems.
The latter significantly reduces the cost of development because circuits could now be validated and
tested on performance before being physically created.

Quickly after the introduction of HDLs, engineers started working on tools to abstract even further
away from low-level hardware design. They introduced High Level Synthesis which takes a high-level
specification of the hardware design in a C-like programming language and compiles it into a Register
Transfer Level written in a HDL. High Level Synthesis is still a hot topic that is constantly being devel-
oped with the goal to enable software engineers to be able to accelerate their applications on FPGAs
at the same rate as experienced hardware designers would. [16]

The next phase in FPGA design flow is synthesis, where the designed system is translated from
schematics or HDL into a netlist. A netlist is the collection of logic elements, interconnection resources
and other components necessary to build your design.

2.1. Field programmable gate arrays 7

Design Entry

Synthesis

Program FPGA

Implementation

Verification & simulation

Figure 2.2: FPGA design flow phases

In the following phase, the components from the netlist are placed and routed onto the matrix of
FPGA resources. In this step, the constraints a designer may have posed such as timing, or specific
placements are taken into account. Both the Implementation and Synthesis phases apply optimization
techniques to use the resources as efficiently as possible. The time, memory, and computing resources
necessary to complete these phases increase with the complexity of the design and constraints, as well
as with the total amount of FPGA resources available. With complex designs and data center-class
FPGAs, the synthesis and implementation phase can take many hours, GBs of storage and RAM.

The final phase in the FPGA design flow is to generate a bitstream from the mapped and routed
design and implement it onto an FPGA. At this point, the FPGA is ready to be used.

Each phase of the FPGA design flow is prone to contain errors and undesired behavior. As men-
tioned before the entire design flow can take a lot of time and resources. To detect possible design
flaws and other errors at an early stage, verification and simulation are performed after each phase.
After the Design Entry phase, behavioral simulation is performed to check the functionality of the HDL
design agnostic of the type of FPGA the design is meant for. In this step, a designer can quickly identify
functional or logical errors in the code and fix them.

After synthesis another functional simulation is used to once again verify the correctness of the
netlist, but without taking the design constraints into account yet. The final simulation takes place after
the Implementation phase. A highly detailed simulation is performed on the placed and routed design.
Hardware design is a complicated process in which mistakes and errors are not easily detected. These
simulations help designers to overcome these barriers when designing systems.

2.1.2. SoC FPGAs
Like ASICs, FPGAs are often used in a heterogeneous environment where they are responsible for
handling critical parts of an application and work in harmony with processors. In such setups, com-
munication between FPGA, memory, and processor is detrimental to performance. As the leading
FPGA manufacturers identified this issue they introduced System on Chip FPGAs. A system where
the processor and FPGAs are closely integrated, considerably decreasing the number of components
and external interconnects [17]. To prevent ambiguity, the FPGA part of a SoC FPGA is called Pro-
grammable Logic (PL) and the CPU part including the main memory, is called Processing Subsystem
(PS). In this work, the proposed solutions are developed for AMD SoC FPGAs. Therefore the tools and
methodologies discussed will apply to AMD boards, it should be noted that similar tools and method-
ologies exist for Intel and other FPGA vendors. In specific, the experiments have been performed on
low-end PYNQ-Z1 and high-end Alveo U280 FPGAs.

8 2. Background

2.1.3. Platform resources
As previously mentioned, the general architecture of an FPGA consists of CLBs, I/O Blocks and inter-
connections resources. The fundamental components that are used to build a CLB are look-up tables
(LUT) and flip-flops (FF). These components can be used to store data or implement logic. They can for
example be used to define an operation or computation by implementing a truth table. Additionally, FP-
GAs incorporate different types of memory in the PL. The PYNQ-Z1 FPGA offers two different memory
types, block random-access memory (BRAM) and look-up table random-access memory (LUTRAM),
the latter is memory built from regular LUTs. The Alveo U280 FPGA contains an additional memory
component, ultra random-access memory (URAM). BRAM and URAM are made up of a coarse-grained
structure of larger memory blocks of 18Kb for the PYNQZ-1 and two 18, or one 36Kb block for the Alveo
U280 [18]. LUTRAM consists of a more fine-grained structure, both boards have 6-input LUTs that can
form different size memory blocks ranging from 64 to 512 bits. The previously mentioned memory com-
ponents are in the PL of the FPGA. The PYNQ-Z1 SoC also contains 512Mb of DDR3 memory in the
PS, which stands for Double Data Rate Synchronous Dynamic RAM (SDRAM). The stand alone Alveo
U280 has 32 Gbs of on-board DDR4 memory as well as 8 Gb of High Bandwidth Memory version 2
(HBM2). Table 2.1 displays the resources available on the PYNQ-Z1 and Alveo U280 FPGAs.

LUT
(x1000)

FF
(x1000) DSP BRAM URAM DDR

(GB)

DDR total
bandwidth
(MBps)

HBM2
(GB)

HBM2 total
bandwidth
(GB/s)

PYNQ-Z1 53.2 106.4 220 280 (18Kb) - 0.5 1050 - -
Alveo U280 1304 2607 9024 2016 (36Kb) 960 (288Kb) 32 19200 8 430
Factor 24.5 24.5 41 14.4 - 64 18.3 - -

Table 2.1: An overview of the available resources for the PYNQ-Z1 and Alveo U280 FPGA, The bottom row provides the factor
of PYNQ-Z1 to Alveo U280 utilization. [11] [19].

The performance of an application on a SoC FPGA is not entirely dictated by the FPGA resources,
the host processor contributes more or less depending on the proportion of the application that is exe-
cuted outside of the FPGA. The PYNQ-Z1 platform is a SoC FPGA with an integrated Dual-core ARM
Cortex-A9, the Alveo U280 is a standalone FPGA. The experiments in this work were performed on
the Heterogeneous Accelerated Compute Cluster (HACC) at the ETH university in Zurich, Switzer-
land, where an Intel Xeon Gold 6234 processor is connected to the Alveo card through two 100 Gbps
interfaces. Table 2.2 displays the specifications for the host processors of the targeted boards.

FPGA CPU Maximum frequency
(MHz) Cores DDR3 (Mb) DDR4 (Gb)

PYNQ-Z1 ARM Cortex-A9 650 2 512 -

Alveo U280 Intel Xeon Gold 6234 4000 16 - 128

Table 2.2: An overview of the available resources for the PYNQ-Z1 and Alveo U280 FPGA host processors [12] [20]

2.1.4. Direct memory access
Direct Memory Access (DMA) is a computer architecture component that allows direct data transfer
between the PS and the PL. AMD provides users with pre-generated DMA IP blocks that handle read
and write operations to and from different components. DMA on PYNQ-Z1 boards is used to transfer
data through the advanced eXtensible Interface 4 (AXI4) interface between the host DDR and the
kernels in the PL. The Alveo U280 utilizes DMA for several purposes. The DMAs can transfer data
between the FPGAs DDR or HBM and the host DDR through a Peripheral Component Interconnect
Express (PCIe) Gen3x16 interface. Additionally, the DMAs handle data transfer between the FPGA
DDR and HBM and the kernels in the PL.

2.2. Frameworks and toolchains
In the following sections the different frameworks and toolchains used in this MSc. project will be
discussed. AMD provides the user with several design tools and projects to target their FPGAs. These
tools can be used in combination or standalone.

2.3. Scalability 9

2.2.1. Vivado design suite
In 2012 AMD released the Vivado sesign suite, a software tool that enabled developers to analyze
and synthesize hardware designs written in HDL such as Verilog or VHDL. In addition to its prede-
cessor AMD ISE, Vivado introduces features that enable HLS and SoC development. An important
characteristic of Vivado is that its purpose is to create hardware designs for PL. To create the software
that interacts with the FPGA, AMD developed a different design suite on top of Vivado, called the Vitis
unified software platform.

2.2.2. Vitis unified software platform
Vitis is a collection of software tools that together enable users to develop and exploit ready-to-use
FPGA applications from a software oriented perspective. The platform consists of an extensive de-
velopment kit, a growing ecosystem of hardware-accelerated libraries and other FPGA development
related tools. Under the hood, Vitis uses the Vivado Design suite for the FPGA design flow. A rela-
tively new, but key-feature of the platform is the ability to seamlessly duplicate implemented kernels in
a hardware-design.

2.3. Scalability
Scalability can be defined by a system or application’s ability to increase or decrease in performance
and cost in response to changes in the processing demands [21]. In other words, howwell can a system
handle an increasing work-demand by adding resources to the system. An import aspect of the scala-
bility of an application is the type and amount of parallelism that can be applied. In other words, in how
many concurrent parts can an application be divided such that the parts can be processed by different
nodes at the same time. There are two general types of software parallelism, data and task parallelism.
This section illustrates both types of parallelism with the help of an example application containing 4
tasks that each take 1 second to execute. The dependency graph of the example application is show
in Figure 2.3.

t3

t4

t2

t1
Input Output

Figure 2.3: Dependency graph of parallelism example application.

The dependency graph shows that task 2 and 3 are dependent on the output of the first task and
that task 4 is dependent of the outputs of task 2 and 3. If this application were executed on a sequential
system where only one task can be processed at a time, it would take 4 seconds to execute.

2.3.1. Task parallelism
Task parallelism consists of dividing functional components of an application over multiple nodes such
that they can be processed concurrently. The level of parallelism that can be achieved is strongly
related to the inter-dependencies of the tasks. Task parallelism is applied on the example application
and visualized in Figure 2.4.

10 2. Background

t3

t4

t2

t1

Node 1

Node 0

Input Output

Figure 2.4: High level schematic of task parallelism.

Although the example application consists of four tasks, it only makes sense to scale it on two nodes
because of the dependencies. Executing each task on a separate node would result in tasks 2 and
3 waiting for task 1 to finish, and task 4 on its turn waiting for task 2 and 3 to finish. Essentially only
reducing the performance due to the overhead of data transfer between the nodes and increasing the
cost by using 3 extra nodes. From the dependency graph it can be read that task 2 and 3 are the only
two tasks that can be processed in parallel. Amdahl’s law, shown in Equation 2.1, can be used to show
the theoretically attainable speedup when parallelizing parts of an application. In the equation, p is the
proportion of the application that can be parallelized and is scaled, s represents the speedup of the
parallelizable proportion.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1
(1 − 𝑝) + 𝑝

𝑠
(2.1)

Equation 2.1: A formulation of Amdahl’s law [22].

In the example application, two of the four tasks are concurrently executed on 2 nodes. When
applying 𝑝 = 2

4 = 0.5 and 𝑠 = 2 in Amdahl’s law, shown in Equation 2.2, the total achieved speedup is
1.33 at the cost of one extra node resulting in an execution time of 3 seconds compared to the original
4 seconds.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1
(1 − 2) + 0.5

2
≈ 1.33 (2.2)

Equation 2.2: Amdahl’s law applied to task parallelism on the example application.

2.3.2. Data parallelism
In data parallelism the same set of instructions or tasks are applied concurrently on different data. This
is applied by splitting up the input data in several sets, processing each set concurrently and merging
the results back together. Figure 2.5 demonstrates how this is applied to the example application.

2.4. Related work 11

t3

t4

t2

t1

t3

t4

t2

t1

C
om

bi
ne

Node 0

Node 1

Sp
lit

OutputInput

Figure 2.5: High level schematic of data parallelism.

Assuming the nodes execute the application in a sequential manner, the execution of the entire
application takes 4 seconds. The application of data parallelism in this case does not increase the
performance of the application, but rather allows the throughput to increase when processing the ap-
plication multiple times. Two nodes can now process double the input size in the same execution time.
Amdahl’s law is applied on this example in Equation 2.3. As the entire application is parallelized over
two nodes, 𝑝 = 1 and 𝑠 = 2, resulting in a speedup of 2 for double the input size.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1
(1 − 1) + 1

2
= 2 (2.3)

Equation 2.3: Amdahl’s law applied to data parallelism on the example application.

By increasing the input size and adding more nodes, the speed up increases linearly as p remains
the same and s increases i.e. 1000 nodes will process an input of 1000 times larger than the original
in 4 seconds at the cost of 999 extra nodes.

Task and data parallelism are two constructs that can be used to scale an application. Task paral-
lelism is often more complex to implement because it needs to manage task-dependencies as well as
the data. Data parallelism is simpler concept to apply, but it requires an application for which the input
can be split into different parts and processed independently. The example application demonstrates
that data parallelism can theoretically be applied infinitely, being only bound by the input size and cost
of nodes. Task parallelism can increase the performance of an application but its scalability is bound
by the dependencies of the tasks. In practice, both types of parallelism can be used in combination on
different levels to scale applications.

2.4. Related work
With the introduction of standardized accelerators such as the Alveo family, FPGAs have greatly risen
in popularity. Leading chip-makers and cloud computing companies are respectively developing and
exploiting FPGAs at an increasing scale. In addition to the commercial introduction of FPGAs, large
operational clusters such as HACC [20] are available to the public. The barrier of FPGA design is being
circumvented by the introduction of open source ready-to-use hardware libraries and slowly being tore
down with the help of HLS programming tools [1] [16].

12 2. Background

Additionally, frameworks are being developed to help integrate FPGAs in widely-used programming
ecosystems. One initiative in this direction is PYNQ (abbreviated from Python Productivity for ZYNQ),
an open-source project from AMD that makes it easier to use their FPGAs [23]. The framework was
originally designed for the low-end ZYNQ SoC FPGA family, but now also supports Alveo cards and
AWS-F1 instances. The integration of FPGAs and high-level language frameworks is not naturally
efficient. For instance, Peltenburg et al. identified that the serialization bandwidth of high-level frame-
works is an order of magnitude lower than modern FPGA interface bandwidth and developed Fletcher,
a framework to efficiently integrate FPGA accelerators with Apache Arrow [5].

Other initiatives developed to increase the adoption of FPGAs are in the area of virtualization, al-
lowing the accelerators to be exploited by multiple users in a cloud environment [24] [25]. A concept
already widely applied for CPUs and GPUs.

Where virtualization allows multiple users to share FPGAs, an orthogonal research direction is
aimed at using multiple FPGAs for a single task. Fleet, a framework developed by Thomas et al.
[26], enables users to apply massive parallelization by duplicating FPGA implementations on multiple
independent data streams. A newly developed HLS resembling language based on Chisel forms the
foundation of the framework. A less sophisticated but much more accessible concept of duplicating
FPGA implementations is incorporated by AMD in the Vitis and Vivado tools [27].

Due to its high computational and memory demand, Full Waveform Inversion is only recently be-
coming a viable seismic imaging technology. Large corporations such as Shell are working together
with research groups to accelerate and improve implementations of the algorithm [28] [29]. As a highly
parallelizable algorithm, research efforts show that FPGAs and GPUs can offer significant performance
improvements compared to traditional CPUs [30] [31].

3
Application domains

This chapter introduces the applications used to answer the research question in this work, Full Wave-
form Inversion and Convolutional Neural Network. Sections 3.1.1 and 3.2.1 provide the reader with
background information about the applications and the implementations used in this work. The sec-
tions conclude by characterizing the applications in terms of scalability in Sections 3.1.2 and 3.2.2.

3.1. Full Waveform Inversion
Full Waveform Inversion (FWI) is a data fitting method that aims to reconstruct velocity models of sub-
surface grids by iteratively solving a non-linear inversion problem. In this work, a linear approach is
assumed to reduce complexity, the details of the linear approach are explained in Section 3.1.2. The
non-destructive and high-resolution nature of FWI makes it suitable for applications such as seismic
modeling and medical ultrasonic. Until recent years FWI was scarcely applied due to the heavy com-
putational power required, the difficulty to estimate a good initial model, and the non-uniqueness of
the solutions [31]. This section starts by providing background information about the algorithm and
discusses some implementation specific aspects. Lastly, the application characteristics in terms of
scalability are presented.

3.1.1. Background & implementation
Over the years, many FWI approaches have been studied to improve image quality and reduce compu-
tational complexity. Approaches mostly differ in the number of physical dimensions taken into account,
the type of waves measured and assumptions on the background of the grid. In this work an approach
developed by Peter Haffinger in his Ph.D thesis is used [32]. The approach implements FWI using
acoustic waves in a 2-D model where a homogeneous background of the measured subsurface grid
is assumed. Figure 3.3 shows a simplified diagram of the approach. Three stages are specified, the
input, the iterative inversion and the output. The input consists of gathering the recorded pressure field
data and making an initial estimate of the subsurface grid velocity model. The pressure field data is in
practice obtained by physically recording it in a subsurface grid. A common method to obtain this data
is by using sources, such as small explosions, to generate acoustic waves in the subsurface grid. For
a defined range of frequencies, the pressure field of the reflected waves is captured by receivers such
as microphones and serves as the observed input data. In Figure 3.1 an ideal case of 3D inversion is
shown.

13

14 3. Application domains

Figure 3.1: A high-level overview of the FWI algorithm.

In the figure, the surface is covered in a matrix of sources and receivers, marked as stars and trian-
gles. The subsurface is discretized into a grid, where each cell represents a grid point. The approach
in this work is based on several assumptions. First, the input measured data from the sources and
receivers, called the observed data, is synthetically generated. As mentioned previously, a homoge-
neous background with a constant acoustic velocity of 𝑐0 = 2000𝑚/𝑠 is assumed. The synthetic data
represents layers of the subsurface structure with different, also homogeneous acoustics velocities.
The contrast function of the acoustic velocities is in practice an unknown factor that is deduced from
the seismic data. In this work, the contrast function, called chi (𝜒), is displayed in equation 3.1 where
𝑐0(𝑥⃗) represents the homogeneous background velocity and 𝑐𝑥⃗ the subsurface layers’ velocity.

𝜒(𝑥⃗) = 1 − [𝑐0(𝑥⃗)𝑐(𝑥⃗)]
2

(3.1)

An example of a synthetic model is displayed in Figure 3.2, where on the left the original acoustic
model is shown, the center represents the model reconstructed by applying FWI and the right shows
the difference in chi between the original and reconstructed model. The horizontal and vertical axes
represent the subsurface grid, a grid length of 1 in the figure represents 5 meters.

0.0 2.5 5.0 7.5

0

2

4

6

8

Original acoustic model

0.0 2.5 5.0 7.5

Reconstructed acoustic model

0.0 2.5 5.0 7.5

Velocity difference

0.0004

0.0008

0.0012

0.0016

Figure 3.2: The synthetically generated acoustic model with a homogeneous background of 𝑐0 = 2000𝑚/𝑠, embedded in the
background are four layers with constant velocities from top to bottom of respectively 2200, 2233, 2300 and 2266 m/s. The
differences are displayed by means of the contrast function and represent chi values. The grid is scaled where 1 grid length in
the figure represents 5 meters.

The synthetic nature of this approach means the original acoustic model shown on the left of Fig-
ure 3.2 represents the true velocity model. To create the synthetic input data from this true model, the

3.1. Full Waveform Inversion 15

pressure field data that is normally measured is calculated by solving wave equations of the acoustic
waves generated and received from, respectively, the sources and receivers over a defined set of fre-
quencies. This process is used extensively during the iterative stage of FWI and is called the forward
model. The resulting pressure field data is a synthetic equivalent to the data measured in the field in
the case of a real implementation. Because the approach assumes a homogeneous background, the
initial estimation of the subsurface velocity expressed through the contrast function consists of zeros.
In other words, the initial estimation of the subsurface grid’s velocity is that it is equal to the homoge-
neous background at 2000 m/s.

The second stage of FWI consists of an iterative approach to improve the estimated velocity model
until an acceptable difference in chi is attained, measured by a tolerance variable. Figure 3.3 shows
the main steps that occur in the iterative inversion phase. The first step is to apply the forward model
to the estimated velocity model to retrieve pressure field data. This data is then compared with the
synthetically generated pressure field data. The difference between the calculated and synthetic pres-
sure field data, called the residual, determines the quality of the current estimated velocity model. If
the residual is larger than a predefined tolerance, the quality of the estimation is deemed inadequate.
A cost function as part of an optimization technique is used to minimize the residual and update the
estimated velocity model, this process is referred to as the inversion model. These steps are iteratively
repeated until the residual is smaller than the predefined tolerance, resulting in a realistic model of the
subsurface grid velocity. The output of the model is a reconstructed velocity model of the subsurface
grid expressed with the contrast function chi. An example is displayed in the center of Figure 3.2. The
implementation of FWI in this research, uses a Finite Difference Forward model and an inversion model
based on the Conjugate Gradient Descent cost function. These implementations were chosen because
they are less computationally intensive and highly parallelizable. An alternative for the forward model
is the integral model. Alternatives for the inversion model are random inversion, evolution inversion
and gradient descent inversion. A more in depth overview of the implementation can be found in Ap-
pendix A.3

Record pressure field
(Observed data)

Initial estimate of
subsurface grid
velocity model

Residual <= Tolerance

False

Realistic model of
subsurface grid

velocity

True

Residual =
Observed - Estimated

Calculate pressure
field from estimated

velocity model

Improve estimation by
minimizing the residual

Output

Input

Iterative
inversion

Forward
Model

Comparison

Inversion
model

Legend

Full Waveform Inversion

Figure 3.3: A high-level overview of the FWI algorithm.

16 3. Application domains

3.1.2. Scalability characteristics
In real applications FWI needs to process incredible amounts of data. The inversion process is applied
on a kernel further referred to as kappa. Kappa is built from a four dimensional function, the number of
sources and receivers, the time measured and the number of unknown velocity values. For the sake
of simplicity, in this work the time dimension is omitted. Before determining how kappa is built, an
explanation is given of the linear and non-linear properties of FWI.

In FWI, each source produces a wave field that interacts with all the grid points in the subsurface
grid. Every grid point that is not equal to the homogeneous background reflects a scattered wave field
for every source originating field, effectively creating extra sources. The receivers measure not only
wave fields from the original sources, but also from all the secondary sources. The interaction from
the secondary sources causes a non-linear relationship between the actual velocities of the subsur-
face layers and the measured data. The kappa matrix represents the total field, where the pressure
data for all the scattered and original wave fields for each measured frequency is mapped to the grid
points. The dimensions of the matrix are 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∗ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 ∗ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 rows and the number of
grid points as columns.

This non-linear property forces FWI to use the entire input space of measured data to perform a
realistic inversion. In a real application this input space is extremely large, an example based on the 3D
model in Figure 3.1 is shown in Table 3.1. The example is based on a 5𝑥5𝑥3 = 75𝑘𝑚3 domain where
each cell is 5𝑥5𝑥5 = 125𝑚3, this means there are 6 ∗ 108 unknown velocity values in the domain. By
assuming a sample size of 8 bits the kappa kernel is 6.7 ∗ 102 Gb. Thesememory requirements become
even larger if the time dimension is taken into account. The previously mentioned non-linearity results
in the entire kappa matrix needed for the computations performed in the inversion model. Without
quantum computers or much more powerful computing clusters, it is unfeasible to apply FWI for real
3D applications at this moment in time.

x
x
x

40000
40000
6 ∗ 108

of sources
of receivers
of unkowns

=
x

8.3 ∗ 1010
8 bits

samples in kernel
per sample

= 6.7 ∗ 102 Gb total kernel size

Table 3.1: Memory requirements for kappa kernel in a real application with 40000 sources and receivers, measured over a
5𝑥5𝑥3 = 75𝑘𝑚3 grid with a cell size of 5𝑥5𝑥5 = 125𝑚3 assuming 8 bits per sample. Example adapted from [32].

The FWI used in this work based on Peter Haffinger’s thesis consists of 2D model, drastically re-
ducing the kernel size. Another solution he proposed to reduce the complexity is to apply localization
of the grid. Essentially ignoring the non-linearity of the entire subsurface grid in the local inversions,
and only applying it after all the local domains have been inverted. In this work, the same concept of
domain decomposition is applied to show FWI can be scaled. For the sake of simplicity, the non-linear
conversion after inverting the local domains is not applied. It should be noted that the non-linearity due
to wave field scattering inside the local grids is taken into account.

This work addresses the scalability of FWI by decomposing the subsurface grid into smaller do-
mains. Additionally, the effect of a higher resolution, defined by the number of sources, receivers and
measured frequencies, is analyzed. By ignoring the non-linear dependencies between the local grids,
data parallelism can be applied by applying FWI independently on the local grids decomposed from the
original subsurface grid. The parameters that have an effect on the computation and memory demands
necessary to invert a local grid are the grid size and the resolution. The size of the kappa matrix can
be used as a metric of complexity for FWI. The parameter decomposed by data parallelism is the grid
size, which is only one dimension of the kappa matrix, the other three formed by the resolution. This
results in an interesting characteristic when scaling FWI. Because the complexity of the problem size is
dependent of the grid size decomposed by data parallelism and by the resolution, FWI is characterized
as a multi-input dependent application. Consequences of this characteristic are that, although a very

3.2. Convolutional Neural Network 17

large subsurface grid can be processed by applying data parallelism, the resolution forms the bounding
factor of each nodes computational and memory requirements. In Chapter 6 a more in depth analysis
of domain decomposition and FWI scalability is presented.

3.2. Convolutional Neural Network
A convolutional neural network (CNN) is a type of deep learning algorithm mostly used for image recog-
nition and classification purposes. In recent years the quality of CNNs has drastically improved, some-
times even outperforming human accuracy [33]. Many research efforts were aimed at mapping NNs
to FPGAs and ASICs of which a survey was published by Misra and Saha [34]. The FINN framework
developed by AMD enables users to build flexible and fast quantized neural networks (QNN) hardware
designs. The CNN discussed in this section is a binary NN (BNN) built with the FINN compiler.

3.2.1. Background & implementation
CNN fall in the category of supervised deep learning algorithms. As a form of an artificial neural net-
work, the terminology used is based on the same concepts present in the human brain. Supervised
learning entails that the algorithm is trained on a labeled data set, essentially learning what elements of
an input correlate to a specific label. Once the training phase is complete and the weights and biases
of the NN have been assigned, it can be used to classify new, unlabeled data. The process of making
predictions, in the case of a CNN classification, is called the inference process. The CNN in this work
is a trained algorithm that performs the inference process accelerated in hardware.

A CNN is a so-called multi-layer perceptron network where the neurons of the network are arranged
in layers. The neurons from each layer take as input the output of all the neurons in the previous layer
when fully connected. The data streams from neuron to neuron are called synapses, named after
the circuit found in the human brain. During training, weights are bound to the synapses altering the
inputs of a neuron and a bias is determined that is added to the sum of weighted inputs. Inside the
neuron, an activation function performs a calculation on the weighted and biased input. The type of
CNN discussed in this work is called binary CNN because the weights, biases, and activation functions
are represented in single or double bits format instead of floating-point numbers. As a lot of the infor-
mation held in floating-point numbers is redundant, BNNs are still able to achieve high accuracy while
decreasing the complexity significantly [35].

A CNN topology typically consists of three types of layers, a convolutional, pooling, and fully con-
nected layer. The convolution and pooling layers, often called hidden layers, are responsible for the
feature extraction while the fully connected layer uses this information to classify the input image. The
relationship between these layers is shown in Figure 3.4. A more in-depth explanation of these con-
cepts applied to bins can be found in the FINN paper [35].

Input
Convolution

Pooling
Fully Connected

Output

Feature extraction Classification

Figure 3.4: Visualization of the outline of a CNN, altered from [36]

The FINN framework [35] from AMD was used to build a binary CNN. The network is implemented
to classify 32x32 RGB images. For this particular network, a one-bit activation layer and one-bit biases
were used.

18 3. Application domains

3.2.2. Scalability characteristics
A CNN classifies images one at a time in a sequential manner. As the input size of an image is fixed,
the CNN takes approximately the same time to process each image. When applying data parallelism
to scale a CNN, this means only one parameter is decomposed, namely the number of images. Unlike
FWI, CNN can be characterized as a single-input dependent application where the problem size for
each node is fixed.

4
Alternative solutions

Scaling data analytics applications on FPGAs require solutions on different layers of the stack. Fig-
ure 4.1 depicts an abstract representation of the four layers containing the proposed alternative so-
lutions. This chapter consists of four sections that discuss the alternative solutions from the bottom
to the top layer. At the end of each section, the proposed alternatives are compared in a qualitative
table and then discussed. The last section of the chapter discusses the combinations of layer-specific
alternatives and concludes with the chosen solutions. The following chapter proceeds to describe how
the solutions are incorporated into the solution architectures and implemented.

19

20 4. Alternative solutions

Interface

Parallelization framework

Hardware communication

Hardware design

PYNQTM

XRT

Library Custom Compiler

Figure 4.1: A high-level representation of the stack necessary to scale applications on FPGAs.

As seen in Figure 4.1, the lowest layer of the stack consists of the hardware design, programmed
as a bitstream on the FPGA. This is where the hardware acceleration of the application takes place.
The next layer is the hardware communication layer, an interface between the Programmable Logic
and the software part of the application called the host code. The parallelization framework is the third
layer, which is where the scalability of the application comes into play. The top layer is the interfacing
language in which the host code is written. This layer is closely intertwined with both the hardware
communication and the parallelization framework layer.

4.1. Hardware-design
The lowest layer of the stack consists of the FPGA hardware design, the core of the application accel-
eration. For this layer, we discuss three alternative methods presented below.

1. Custom hardware design.

2. Hardware designs from libraries.

3. Compiler generated hardware designs.

4.1.1. Custom hardware design
Developing custom hardware designs is a complex and time-consuming process that offers potentially
high rewards. Experienced hardware engineers are able to express great control and precision in de-
signs to generate optimal acceleration for any kind of application.

4.1. Hardware-design 21

As explained in Section 2.1.1, the lowest abstraction level in the FPGA design flow is RTL where
the hardware design is described in a Hardware Description Language. At this abstraction level, there
are no specifications related to a type of FPGA board, rendering a vendor-agnostic and portable de-
sign. Although this approach offers many advantages in terms of flexibility, efficiency, portability, and
performance, it is inaccessible to the general public.

4.1.2. Hardware designs from libraries
Historically, the electrical engineering (EE) community is not as accepting of the open-source environ-
ment the software community has embraced. In recent years, the openness of the software community
is slowly being adopted in the form of open-source hardware libraries. AMD has launched an open-
source platform for hardware-acceleration libraries, the Vitis Accelerated Libraries platform [1]. The
platform is a collection of out-of-the-box acceleration libraries that offer the same level of abstraction
as a software library would. These libraries are mostly developed for high-end FPGAs offering support
for a large set of application domains such as data analytics, computer vision and data compression.

Specifically, machine learning and artificial intelligence have greatly risen in popularity in the data
science domain. These types of applications are well parallelizable making them excellent candidates
for FPGA acceleration. The Vitis AI development platform enables users to develop accelerated AI
applications using popular frameworks like PyTorch, TensorFlow, and Caffe [37]. Vitis AI allows devel-
opers to exploit a well-optimized deep learning processing unit hardware design in their applications
without the need for any hardware knowledge. A drawback of the Vitis Accelerated Libraries and Vitis
AI is that they are bound to AMD-specific FPGA types and versions.

4.1.3. Compiler-generated hardware designs
A hardware design compiler partially or entirely automates the processes of the FPGA design flow de-
scribed in Section 2.1.1. Most compilers, such as AMD and Intel’s HLS tools, Matlab HDL coder, and
many more, convert high-level code to an RTL written in HDL. Compared to using a hardware-library
design, the compiler offers a user more flexibility to influence the generated design since the high-level
code is custom written.

As explained in the previous section, Machine Learning and AI applications are well suited for FPGA
acceleration. For that reason, many compiler projects were developed to compile different types of Neu-
ral Networks to hardware designs[38] [39]. The FINN compiler is one of the most advanced of these
projects. It is an experimental framework from AMD that can be used to build custom Deep Neural
Network (DNN) inference accelerators [35]. FINN is different from the Vitis AI platform, as it does not
function as a generic DNN accelerator but rather offers the ability to explore design spaces of DNN
inferences.

4.1.4. Evaluation
Table 4.1 displays a qualitative comparison of three methods to obtain a hardware design in terms of
accessibility for users, configurability and portability of the design.

Method Accessibility Configurability Portability
Custom - - ++ ++
Libraries ++ - +
Compiler + + ++

Table 4.1: A qualitative comparison of different methods to acquire a hardware design.

FPGAs are suitable for many different application classes but the difficulty to engineer FPGA designs
often forms a barrier hard to overcome for the general public. Hardware-design libraries and compilers
are methods that allow hardware-inexperienced users to exploit the power of the accelerator. This ease

22 4. Alternative solutions

of use comes at the cost of configurability since libraries and compilers, to different degrees, provide
a user with less control over the specifications of the design. Although being open-source, hardware
libraries are often built for a specific vendor and board types. At the RTL abstraction level, designs are
not attached to a specific vendor or board which makes the custom and compiler base designs much
more portable over the range of market-available FPGAs.

4.2. Hardware communication
The hardware communication layer is where the application’s host code and the hardware design in-
teract. This layer of the stack is extremely vendor specific as it includes the drivers that communicate
directly with the vendor-specific FPGA. Intel FPGAs use the Open Programmable Acceleration Engine
framework to communicate with its devices, AMD provides the Xilinx Runtime Library (XRT) for this
purpose. The experiments in this work were performed on AMD FPGAs. Therefore, in this section the
focus lies on XRT and the affiliated APIs.

The Xilinx Runtime Library consists of four key functionalities listed below. The first two are nec-
essary for the deployment and maintenance of FPGA accelerated applications. The latter two, if used
correctly, can greatly influence the performance and scalability of applications.

1. Download of hardware design on FPGA

2. General board management

3. Execution management

4. Memory management

4.2.1. XRT
In Figure 4.2 an overview is given of XRT and the components it interacts with. XRT forms the bridge
between the application host-code and the accelerator. The XRT core library consists of user-space li-
braries and Linux kernel drivers that are used as amulti-thread/processmanagement system to perform
the above-mentioned functionalities. On the accelerator side, static IPs such as Direct Memory Access
(DMA) and Peripheral Component Interconnect Express (PCIe) (depending on the type of FPGA), con-
trol the accelerator’s internal memory management. XRT interacts with these accelerator components
through memory management drivers in the Linux Kernel.

Host code

OpenCL PYNQ Python/C/C++

Domain-specific APIs

User Space Library

Kernel Drivers

Host processor

Xilinx Runtime Library
(XRT)

Interfacing static IPs

(PCIe, DMA, etc.)

Hardware-design

Accelerator (FPGA)

Host code

Figure 4.2: An overview of the Xilinx Runtime Library (XRT) adapted from [40]

On the host processor side, there are four different methods grouped in different levels of abstrac-
tion to interface with XRT, as shown in the top-left of Figure 4.2. The highest abstraction level allows
domain-specific APIs such as TensorFlow and PyTorch from Vitis AI to incorporate XRT functionality.
For a more specific and custom approach, XRT provides a native API, native libraries for C, C++, and
Python, the PYNQ API, and OpenCL extensions.

4.3. Parallelization framework 23

4.2.2. OpenCL
OpenCL is an open standard for parallel programming in heterogeneous computing. There are several
reasons why OpenCL is a good choice of API to interact with XRT. Primarily, the OpenCL standard
is a well-known and developed API that many developers are familiar with. Moreover, the standard
increases application portability because it supports a diverse range of accelerators such as GPUs,
DSPs, and FPGAs.

4.2.3. PYNQ
The PYNQ API is built on top of the native Python bindings for XRT to provide a number of functional-
ities. Primarily, the 4 key functionalities of XRT are wrapped in a python interface enabling the same
functionality as the native XRT libraries. As PYNQ was originally developed for the low-end ZYNQ
platforms, the framework also provides libraries to interact with peripherals of the embedded devices
such as UART, SPI, and IIC [23].

PYNQ can be used through an interactive, web-browser and OS-agnostic IPython environment in
Jupyter notebook, or through a regular Python environment. This allows users to utilize python’s rich
ecosystem of libraries and APIs such as NumPy, OpenCV, and sci-kit-learn. The efficiency of C-code
is generally higher compared to productivity-oriented Python code. PYNQ uses CPython and allows
developers to use C-written libraries when efficiency is valued over productivity.

4.2.4. Evaluation
Table 4.2 displays a qualitative comparison of the methods to interact with XRT. The native XRT and
native C, C++ and Python libraries are bundled under the name Native libraries as the metrics of com-
parison apply approximately equally to each of them.

Method Accessibillity Configurability Portability
PYNQ ++ +/- +
OpenCL + + ++
Native Libraries - ++ -

Table 4.2: A qualitative comparison of methods to interact with the Xilinx Runtime Library (XRT).

The extra level of abstraction that OpenCL and PYNQ offer makes them considerably easier to use
than the native libraries. Python is a more accessible programming language than C/C++ which is
reflected in the accessibility score. Although a higher abstraction level results in better accessibility,
it takes away some of the control and configurability the native libraries offer. PYNQ is a less mature
and developed API compared to OpenCL directly influencing the extent of control the API currently
offers. PYNQ can be used through an interactive, web-browser and OS-agnostic IPython environment
in Jupyter notebook, or through a regular python environment. A disadvantage of PYNQ as well as the
native libraries is that they are only compatible with AMD devices. OpenCL on the other hand can be
used not only for FPGAs from any vendor, it also allows for portability across other accelerators like
GPUs.

The choice of API to exploit XRT in the Hardware communication layer is closely related to the
choice of the programming language used in the application host code. As will become clear in the
following sections, the solution choices of the hardware communication, parallelization framework, and
interfacing language layer are tightly intertwined.

4.3. Parallelization framework
The third layer in the stack facilitates the parallelization and scalability of the accelerated application.
There are many different parallelization frameworks available, in the scope of this work two widely used
frameworks are discussed, Apache Spark and Dask.

24 4. Alternative solutions

4.3.1. Apache Spark
Apache spark is a well-developed and professionally established framework written in Scala. The
framework was extended to also support Python and R but the compatibility with these languages is
not as fluid as with the intended languages Java and Scala. Spark is built on the concept of the Hadoop
ecosystem and uses the Resilient Distributed Dataset (RDD) paradigm in combination with lazy evalu-
ations and in-memory caching to deliver low-latency scalability for distributed big data tasks. Working
with Spark can be a challenge for new users as the RDD paradigm, Hadoop ecosystem and Spark way
of working are not trivial to learn. [41]

4.3.2. Dask
A pure Pythonesque alternative parallelization framework is Dask. Dissimilar to Spark, Dask was built
with the intention to smoothly integrate with python allowing users to scale their existing applications
with minimal effort. As dask is a younger and open-source project, there is less commercial support
available compared to Spark. Dask allows users to scale their applications in two ways:

1. On (heterogeneous) multi-node clusters.

2. Locally, on a single machine where it leverages multi-core CPUs and efficient data handling.

Dask consists of three classes of modules that together enable many different configurations of
parallelization and scaling. Figure 4.3 shows the different classes of modules and how they relate to
each other. Collections are modules that define how data is bundled. Dask supports collection mod-
ules for many data-oriented Python APIs such as NumPy, pandas, and sci-kit-learn as well as native
data collections called dask bags.

Collections Task graph Schedulers

Numpy Array

Dask Bags

Panda DF

Synchronous

Threaded

Multiprocessing

Distributed

Local

Figure 4.3: The different classes of Dask modules and how they relate, figure adapted from [42]

On the right side of Figure 4.3 are different types of scheduler modules. Schedulers are respon-
sible for executing Directed Acyclic Graphs (DAG) called Task Graphs, which consist of operations or
computations on the collections. The dask distributed scheduler allows parallelization and scaling over
multi-node clusters through a TCP connection. It consists of a central dask-scheduler, a dask-client,
and an arbitrary amount of dask-workers spread over the cluster.

4.3.3. Evaluation
Table 4.3 displays a qualitative comparison of the discussed parallelization frameworks. Both frame-
works offer well-developed kits that excel in terms of scalability and performance when used correctly.
Dask outscores Apache Spark in accessibility as the latter requires slightly more initial effort from the
user to work with efficiently.

Framework Accessibility Performance Scalability
Apache Spark + ++ ++
Dask ++ ++ ++

Table 4.3: A qualitative comparison of parallelization frameworks Apache Spark and Dask.

4.4. Interface 25

4.4. Interface
The interface forms the programming language in which the host code of the application is written. In
addition to the core functionality of the application, the interfacing language is used to interact with the
parallelization framework and the hardware communication layer.

4.4.1. Programming languages
Nowadays, there are hundreds if not thousands of programming languages available to code appli-
cations in. Different aspects are important when considering the correct language for an application,
and often there are multiple viable solutions. The PopularitY of Programming Language Index (PYPL)
[43] represents the popularity of programming languages based on the number of google searches
for tutorials in the language. The top 6 languages from June 2022 are shown in Table 4.4 where the
languages marked with a star are the most used and applicable in the data science community.

Rank Language Share (%)
1 Python * 27.61
2 Java * 17.64
3 JavaScript 9.21
4 C# 7.79
5 C/C++ * 7.01
6 PHP 5.27

Table 4.4: The most popular programming language from [43] * marked languages are the most popular in the data science
community

In the scope of this work, only programming languages that are commonly used for data science
and analytics are taken into account. Considering those, Python, Java, and C/C++ are possible alter-
natives for the interfacing language.

4.4.2. Evaluation
Table 4.5 gives a qualitative comparison of the different interfacing languages for the metrics important
to this work: accessibility, performance, and scalability.

Language Accessibility Performance Scalability
Python ++ + ++
Java + + ++
C/C++ - ++ -

Table 4.5: A qualitative comparison of the different interfacing languages based on accessibility, performance and scalability.

Python is an easy-to-learn extremely versatile functional language with a rich ecosystem of libraries
that makes it, amongst other things, well suited for data science applications. As can be seen in Ta-
ble 4.4, Python is the most popular language at the time of writing. This popularity impacts the acces-
sibility of the language through the largest community, documentation, and support available online.
Java and Scala are a part of the Java Virtual Machine (JVM) ecosystem. Like Python, Java is one of the
most popular languages with a similar amount of resources available online. The English resembling
the intuitive syntax of Python is the reason it outscores Java in terms of accessibility. Although C/C++
are also well documented, they are considered much harder to learn than Java or Python as they also
require knowledge of manual memory management and other low-level concepts. The low-level as-
pects of the C and C++ languages give developers great control on how to optimally write code for
the underlying hardware to optimize performance. Scaling over distributed systems is a relatively new
technology that has mostly evolved in newer languages like Java and Python. Because the languages
handle more low-level tasks automatically it is easier to seamlessly scale applications over multiple
machines, where C/C++ applications often require more manual effort.

26 4. Alternative solutions

4.5. Conclusion
The previous sections of this chapter have described and compared alternative solutions for each layer
of the stack. The evaluations of each layer were used to construct three solution architectures for the
implementation of the two chosen applications, Full Waveform Inversion, and the Convolutional Neural
Network (CNN). The solution architectures discussed one by one in the following sections are visual-
ized in Figure 4.4.

4.5.1. FWI on PYNQ-Z1
The first solution architecture is designed to implement FWI on a PYNQ-Z1 FPGA. The FWI applica-
tion is a custom-written algorithm for which no hardware libraries are available. The hardware design
was therefore created with the help of HLS tools in combination with custom implementations. The
targeted board dictated the choice of hardware communication layer to be PYNQ. The logical choice
of parallelization framework then becomes python-oriented Dask, allowing for smooth integration with
also python-based PYNQ. The implementation of the FWI algorithm provided by ALTEN was written in
C++. Although sacrificing some performance when implementing the algorithm in python, the seamless
integration with Dask and PYNQ allow the user to scale FWI on multiple boards.

4.5.2. FWI on Alveo U280
FWI was also implemented on the high-end Alveo U280 FPGA. This solution architecture is twofold,
as a version with OpenCL as well as PYNQ was implemented. The hardware design was custom built
with the help of HLS tools for the same reason as described in the previous solution architecture. As
the original algorithm was written in C++ and the targeted platform does not require the use of PYNQ,
OpenCL was used to create a high-performing single-node solution. In the discussed solution, Java
integrates well with the parallelization framework Spark but does not have an equivalent to PYNQ for
hardware communication. With the lack of a parallelization framework for C++, this solution architec-
ture also used the combination of Dask and PYNQ to scale FWI on multiple Alveo U280 nodes.

4.5.3. CNN on Alveo U280
The last solution architecture hardware design was generated with the FINN compiler. The host code
of the application, taken from an AMD repository, is written in python and interfaces with PYNQ. Again
the logical choice to scale this application became the Dask parallelization framework.

Interface

Parallelization framework

Hardware communication

Hardware design

PYNQTM

Interface

Parallelization framework

Hardware communication

Hardware design

PYNQTM

Custom Compiler

Interface

Parallelization framework

Hardware communication

Hardware design

PYNQTM

Custom Compiler Compiler

FWI on PYNQ-Z1 FWI on Alveo U280 CNN on Alveo U280

Figure 4.4: A visualization of the solution architectures for FWI on Alveo U280 and PYNQ-Z1 and CNN on Alveo U280.

5
Solution architectures and

implementations
As there are redundancies present in the solution architectures, this chapter discusses the individual
components used to build them. The chapter begins by presenting the implementation of the hardware
design for FWI in Section 5.1. The CNN application was compiled with the FINN compiler, the section
sends by presenting the resource utilization of the CNN hardware design. Having established the
hardware designs for FWI and CNN, the implementation of the hardware communication layer with
PYNQ and OpenCL is presented in Section 5.2. Additionally, this section provides an explanation how
to create hardware designs with multiple instances of kernels. The chapter finishes with an extensive
description of the old and new OctoRay framework in Section 5.4.

5.1. FWI hardware design
In this section, the implementation of the hardware design for FWI is presented. Section 5.1.1 analyzes
what components of the FWI algorithm are suited to be accelerated and incorporated into the hardware
design. Successively, Section 5.1.2 describes the suitability for the acceleration of the selected compo-
nents. The initial implementation of the decided-upon kernels is presented in Section 5.1.3 succeeded
by the optimizations leading to the final design in Section 5.1.4.

5.1.1. Algorithm analysis
Full Waveform Inversion required a custom implementation of the hardware design. An investigation
was performed to analyze the behavior of different code sections of the algorithm by scaling the input
parameters and analyzing the execution time per section. The execution time until convergence is in-
fluenced by the four dimensions of kappa, mentioned in Section 3.1.2 and the tolerance level at which
an acceptable reconstructed model is accepted.

For the investigation, the tolerance was kept constant at the default value of 10 ∗ 10−6, this value
represents the difference between the original and reconstructed model based on the contrast function,
chi. The number of frequencies, sources, and receivers multiplied by each other represents the resolu-
tion of the algorithm. In the ALTEN implementation, the number of sources and receivers are required
to be the same. The number of frequencies is an independent parameter that can differ from the num-
ber of sources and receivers. For this investigation, the number of sources, receivers, and frequencies
and the grid dimensions are scaled near equally to minimize the effect of the individual parameters on
the computational load. The impact of these independent parameters on the algorithm is outside the
scope of this work as it is dependent on geophysical properties. This investigation was performed on
a systemwith an Intel I7-8750h CPU containing 12 logical cores running at 2.20 GHz and 16GB of RAM.

Figure 5.1 shows the percentage of the total run time spent in sections of the algorithm. Two sepa-
rate code sections, used inmultiple parts of the algorithm, were quickly identified as themost expensive.

27

28 5. Solution architectures and implementations

For the sake of clarity, the two code sections are specified as the Forward function and the Cost func-
tion, which represents the overarching functionality these sections reside in. The combined function’s
parameter represents the sum of these functions. The Iterative loop parameter represents the time
spent in the core of the algorithm, iterating over the forward model and inversion model until the algo-
rithm converges.

A number of conclusions can be made from Figure 5.1. The part of the total run time that is not
incorporated in the Iterative loop parameter consists of the initialization and wrap-up of the algorithm.
As the grid size increases, it stabilizes at approximately 10% of the total run-time, nearly unchanging
with respect to the resolution. This indicates that the resolution only slightly affects the initialization and
wrap-up phases and that these phases grow linearly with the grid size.

0 5000 10000

20

40

60

80

Pe
rc

en
ta

ge
 o

f t
ot

al
 ru

n
tim

e
(%

)

Grid size 500

0 5000 10000

20

40

60

80

Grid size 1000

0 5000 10000
0

20

40

60

80

Grid size 10000

Forward function
Cost function
Combined functions
Iterative loop

Computational load of functions

Resolution (sources * receivers * frequencies)

Figure 5.1: An overview of the percentage of run time occupied by the forward, cost, and combined functions and the iterative loop
for grid sizes 500, 1000, and 10000 and resolutions (sources*receivers*frequencies), 100 = (5 ∗ 5 ∗ 4), 1000 = (10 ∗ 10 ∗ 10),
6000 = (15 ∗ 15 ∗ 20) and 10000 = (20 ∗ 20 ∗ 25).

The trends of the Cost and Forward functions are approximately the same when scaling the grid
size. The percentages are the most sensitive to the increase in resolution, which makes sense as the
resolution forms three of the four dimensions kappa consists of. The purpose of this investigation is
to decide on the sections of code that will decrease the execution time the most when accelerated in
hardware. As grid size and resolution increase, the combined functions take up nearly all of the ex-
ecution time in the Iterative loop. At first glance, these functions seem the best choice to accelerate
in hardware. Before committing to a hardware design, further analysis was necessary to define the
parallelization opportunities and acceleration fitness of these functions. This analysis is presented in
the following sections where a high-level overview of the two functions is given.

5.1.2. Hardware kernels
In Chapter 3, the forward model was introduced as the FWI component used to calculate the pressure
field from the estimated velocity model. One of the operations to achieve this is applying the kappa
matrix to the current estimation of the velocity model by performing the dot product of each row with
the current estimated pressure field data vector. The vectors in the kappa matrix and current estimated
pressure field data contain complex numbers. Performing a dot product of vectors for all the rows is
a highly parallelizable operation which makes the Forward function an excellent candidate to be ac-
celerated in hardware. The C++ code of this component of the forward model is shown in Appendix A.2.

The cost function used in this FWI implementation is the Conjugate Gradient Descent function. The
goal of this function is to numerically solve a system of linear equations. In FWI that means minimizing
the residual between the observed and calculated pressure field data. In order to find the optimal solu-
tion, in each iteration, a direction in the linear space is identified and step size is calculated. The Cost
function specifies the construct to calculate the updated direction. In this function, the residual vector
containing floating-point numbers is applied to the kappa matrix. Like the Forward function, the cost
function is a good fit for hardware acceleration as the operations performed are vector operations paral-

5.1. FWI hardware design 29

lelizable over the rows of the kappa matrix. The C++ code of the cost function is shown in Appendix A.1.

5.1.3. Design implementation

The FWI algorithm analysis led to the decision to create a hardware design consisting of two kernels,
one for the Forward function and one for the Cost function. This section first presents the implementa-
tion of the hardware design for the PYNQ-Z1 SoC FPGA as this required the most manual approach.
The Vitis toolchain used for the Alveo U280 implementation automates a number of steps in the design
flow. The Alveo-specific implementation steps are discussed at the end of the section.

The kernels for PYNQ-Z1 were designed with the Vivado HLS tool. The IP blocks generated with
HLS were then linked together to a functional design in Vivado Design Suite. The design flow for this
process consisted of multiple iterations to achieve the final, optimized result.

Developing a kernel with an HLS tool consists of several steps. Firstly, the functions are extracted
from their context in the algorithm and coded as separate, independent functions. The next step is to
code a test bench that can validate the correctness of the extracted functions. Once the code has been
validated it needs to be adapted to handle the data transfer between the FPGA and host code. For
this purpose the DMA IP blocks are used, that can directly access the main memory without having to
pass through the CPU. Vivado HLS provides the hls::stream wrapper to create a data-stream be-
tween the main memory and FPGA. The header of the Forward Function where this has been applied
is shown in Listing 5.1.

Listing 5.1: Header of the Forward function kernel

1 void ForwardFunction(hls::stream<std::complex<float>> &kappa_matrix,
2 hls::stream<float> &cur_est_pressure_field,
3 hls::stream<data_struct<std::complex<float>> > &output_vector)

The output_vector is wrapped in a struct that consists of the output vector and an integer, named
last, that is necessary to inform the DMA when the last value of the vector was streamed back to the
main memory and the transfer can be closed. The test bench is also adapted with these changes and
the result is used to validate the FPGA-ready kernel code. Finally, the HLS tool is used to synthesize
and implement the validated kernel code into IP blocks for the selected hardware platform, the PYNQ-
Z1 board.

As explained in chapter 2, this hardware platform is an SoC FPGA consisting of a Processing Sys-
tem (PS) and Programmable Logic (PL). In the Vivado Design Suite, the HLS-generated IP blocks are
imported. They are linked together with other relevant components such as AXI DMAs in the PL. Addi-
tionally, the settings of the DMAs such as they write and read streams, signal properties, stream, and
memory map data width, etc. are configured. The specified data widths of the AXI DMA interfaces
need to match the size of the data types that will flow through the streams. The Cost and Forward
function inputs and outputs are of data type complex<float> or float resulting in data widths of
respectively 64 and 32 bits. Each DMA stream is configured according to the attached input or output
data type and its function as the Main Memory to Stream (MM2S) or Stream to Main Memory (S2MM)
interface. Finally, the Zynq Processing System IP is connected to the design. This IP block is a wrapper
that serves as a connection between the PL and PS. The resulting block design, shown in Figure 5.2,
is a functional but not yet optimized design that is ready to be synthesized, implemented, and turned
into a programmable bitstream.

30 5. Solution architectures and implementations

C
ostF

unction_0

C
ostfunction (P

re-P
roduction)

residual_vector_V

kappa_m
atrix_V

output_vector

C
ost_input_D

M
A

A
X

I D
irect M

em
ory A

ccess

S
_A

X
I_LIT

E
M

_A
X

I_M
M

2S

M
_A

X
IS

_M
M

2S

C
ost_input_output_D

M
A

A
X

I D
irect M

em
ory A

ccess

S
_A

X
I_LIT

E
M

_A
X

I_M
M

2S

M
_A

X
I_S

2M
M

M
_A

X
IS

_M
M

2S
S

_A
X

IS
_S

2M
M

D
D

R

F
IX

E
D

_IO

F
orw

ardF
unction_0

F
orw

ardfunction (P
re-P

roduction)

kappa_m
atrix_V

cur_est_pressure_field_V
output_vector

F
orw

ard_input_D
M

A

A
X

I D
irect M

em
ory A

ccess

S
_A

X
I_LIT

E
M

_A
X

I_M
M

2S

M
_A

X
IS

_M
M

2S

F
orw

ard_input_output_D
M

A

A
X

I D
irect M

em
ory A

ccess

S
_A

X
I_LIT

E
M

_A
X

I_M
M

2S

M
_A

X
I_S

2M
M

M
_A

X
IS

_M
M

2S
S

_A
X

IS
_S

2M
M

axi_m
em

_intercon

A
X

I Interconnect

S
00_A

X
I

M
00_A

X
I

S
01_A

X
I

S
02_A

X
I

S
03_A

X
I

S
04_A

X
I

S
05_A

X
I

processing_system
7_0

Z
Y

N
Q

7 P
rocessing S

ystem

D
D

R

F
IX

E
D

_IO

U
S

B
IN

D
_0

S
_A

X
I_H

P
0_F

IF
O

_C
T

R
L

M
_A

X
I_G

P
0

S
_A

X
I_H

P
0

ps7_0_axi_periph

A
X

I Interconnect

S
00_A

X
I

M
00_A

X
I

M
01_A

X
I

M
02_A

X
I

M
03_A

X
I

M
04_A

X
I

Figure 5.2: The Zynq Processing System IP, taken from [44]

The Alveo U280 implementation requires the Vitis platform to be used for the design flow. The
platform incorporates Vivado and automatically handles many of the lower-level design aspects such
as the linking of IP blocks and DMA configurations. Consequently, implementing the hardware design
from Alveo platforms simply consisted of configuring the correct C++ compiler for the host code and
specifying the memory banks the kernels should be connected to. All the other implementation steps
are taken care of automatically by Vitis.

5.1. FWI hardware design 31

5.1.4. Design optimization
The design optimizations in this section were initially performed for the PYNQ-Z1 FPGA, a hardware
platform with relatively few resources available. As the optimization steps were almost identical for the
Alveo U280 implementation, unless otherwise indicated, the optimizations described in this section are
also applicable to the Alveo U280 implementation.

For the initial design of the Forward and Cost functions, a small input size was used to guarantee the
design would not exceed the resources available. In the design optimization phase, multiple steps were
taken to improve the design and maximize the utilization of the FPGA resources. HLS tools provide
pragmas to optimize the design by reducing latency, increasing the throughput, and better utilization of
the resources.

The Forward and Cost kernels have a similar code structure where operations are performed be-
tween an input vector and the kappa matrix. To achieve the highest parallelization degree, the entire
kappa matrix and input vector need to be contained in an FPGA memory component. In other words,
the resolution and grid size that respectively represent the number of columns and rows of the kappa
matrix dictate the memory requirements. The Forward function consists of a dot product between the
kappa matrix and the currently estimated pressure field vector, a simple calculation that can be im-
plemented using relatively few FFs and LUTs. The Cost function applies a similar low resource set of
operations on the kappa matrix and residual vector. From this characterization, we can conclude that
when scaling the size of the kappa matrix and input vectors, memory resources will form the bottleneck.

Two optimizations techniques were applied to improve the memory resource utilization by using
HLS pragmas array_partitioning and resource, the most optimal designs per optimization level
are displayed in Table 5.2. Additionally, the pipeline pragma was used to ensure the concurrent
execution of the loops. The initial design before optimizations fit an input resolution of 125 and a grid
size of 100. The following sections first discuss how the HLS memory-related pragmas were used
to improve memory utilization and consequently increase the manageable resolution and grid size.
Secondly, the effect of the pipeline pragma to enable concurrent execution of the kernel code is
discussed.

Array partitioning
Array partitioning is the process of splitting up an array into smaller arrays. There are three forms of ar-
ray partitioning available in Vivado HLS, complete, block, and cyclic partitioning [45]. The default type is
complete partitioning, where the array is decomposed into individual elements. In a multi-dimensional
array, each dimension forms an element, in the case of a one-dimensional array, each element is stored
in an individual register. Figure 5.3 visualizes block and cyclic partitioning for an 8-element array and
a factor of 2. Block partitioning decomposes the array into consecutive blocks of equal size. By using
the factor argument, the number of blocks and sequentially the block size are configured. In cyclic
partitioning, the factor argument specified the number of arrays the original array is partitioned over.
A factor N means that the first N elements of the original array are chronologically assigned to the first
index of the N arrays. The following N elements will be assigned to the second index of the arrays, this
cyclic process continues until the original array is completely partitioned.

Cyclic partitioning showed the best results of the three techniques, an example of the use of the
array partitioning pragma is shown in listing 5.2. This optimization allowed for a design with nearly
twice the input size to be generated. The resources of the initial and optimized design are displayed in
Table 5.2.

Listing 5.2: Example use of the array partition pragma for a 2 dimensional array with cyclic partitioning using factor 20.

1 #pragma HLS array_partition variable=kappa_matrix cyclic factor=20 dim=2

32 5. Solution architectures and implementations

0

1

2

3

4

5

6

7

0

2

4

6

1

3

5

7

mem0 mem0 mem1

0

1

2

3

4

5

6

7

mem0 mem1

cyclic

block

Figure 5.3: Visualization of block and cyclic array partitioning of an 8-element array with factor 2, taken from [46]

Resource
After applying array_partitioning the design was able to manage a significantly larger input size. The
utilization numbers of the design show that 89% of the BRAM is used while the other resources are
still available in abundance. The HLS tool by default utilizes BRAM as the memory component. The
tool does apply some optimizations by default, it can be noted that by introducing array_partitioning the
LUTRAM and DSP utilization increased without any explicit user specification. The resource pragma
allows a user to allocate memory to a specific memory type of which an example is shown in Listing 5.3
[47]. To implement this, in each design the kappa matrix was decomposed into two different size ar-
rays. The size proportion of the BRAM and LUTRAM arrays was configured to maximize the utilization
of both resources.

Listing 5.3: Example use of the resource pragma with 1 port LUTRAM..

1 #pragma HLS resource variable=lutram_kappa_matrix core=RAM_1P_LUTRAM

The resource pragma is called bind_storage in the Vitis toolchain. Additionally, as mentioned
in Section 2.1.3, the Alveo U280 contains another memory type called URAM. This memory type was
primarily used for the Alveo U280 implementation as there is 35Mb of URAM and only 4.5Mb of BRAM
available on the board.

Pipeline
The previous optimization techniques were used to improvememory utilization. A third optimization was
performed to improve the latency of the design. Both the Cost and Forward function kernels consist of
a number of for loops in which operations are performed. HLS provides the pipeline pragma to allow
concurrent execution of the operations which reduces the initiation interval (II) of the loop. The II is the
number of clock cycles between each new input the loop can process, by default the pragma sets the
II to 1. If the specified II can not be achieved, the HLS tool increases the II until a viable interval was
found. An example use of the pragma is shown in Listing 5.4.

Listing 5.4: Example use of the pipeline pragma with the default II of 1.

1 for (int row = 0; row < LOW; ++row){
2 #pragma HLS PIPELINE
3 sum += kappa_matrix[row][col] * cur_est_pressure_field[col];
4 }

Figure 5.4 demonstrates how pipelining a loop allows for concurrent execution of its operations re-
sulting in reduced latency. In this example, the II is 3 clock cycles, without pipelining the execution of
the loop until the last output write, which is 8 clock cycles. By concurrently executing the operations
in a pipeline it is reduced to 4 cycles. As displayed in Table 5.1, applying pipelining to the Cost and
Forward kernels reduced the latency respectively by a factor of 9.37 and 2.95.

5.1. FWI hardware design 33

Figure 5.4: A visualization of the effect of pipelining, taken from [48].

Another effect of pipelining is the increase in operational clock frequency. In the example from Fig-
ure 5.4, sub-figure (A) processes an output every 9 clock cycles, in this example the last write operation
is also taken into account. If a clock period of 1ns is assumed, processing an output takes 9ns (1ns
* 9 clock cycles). The 9 cycles form the longest and thus critical data path in this design, dictating a
minimal operating clock frequency of 111.11MHz (1 / 9ns). In sub-figure (B) the pipeline is filled after
3 cycles. From that moment, every clock cycle and output is processed, dictating a minimal operating
frequency of 1000Mhz (1/1ns), a 9-fold increase compared to the sub-figure (A). Surprisingly, it can be
read from Table 5.1 that the estimated clock period increases, and consequently the frequency theo-
retically decreases when applying pipelining. There are many factors that affect the clock period of a
design, pipelining makes the design more complex and increases the area utilized. A larger area and
complex design with longer data paths often result in higher clock periods. Applying pipelining to the
Cost Function increased the utilization of the BRAM by 0.7%, DSP by 3.7%, FF by 1.4%, and LUT by
8.5%. Investing these resources in increasing the resolution and grid size input would only result in min-
imal improvements. When pipelining, the reduced latency significantly improves the throughput of the
design, outweighing the minimal gains when investing the resources in improving memory utilization.

Kernel Optimization Absolute latency (ms) Estimated clock (ns)

Cost Function Not pipelined 5.671 7.256

Fully pipelined 0.605 8.946

Forward Function Not pipelined 5.415 7.256

Fully pipelined 1.836 8.332

Table 5.1: Latency improvements when pipelining the PYNQ-Z1 designs.

It was previously assessed that the memory resources were the bottleneck when scaling the input
size of the design. By applying cyclic array partitioning and decomposing the memory into BRAM and
LUTRAM, the memory utilization was optimized. When utilizing nearly all the available BRAM and
LUTRAM resources, at respectively 93 and 87 percent, in combination with the implemented memory
optimization techniques, a design that can manage a resolution of 300 for 100 grid points was gen-
erated. Applying the pipeline optimization reduced the latency of the Forward and Cost function with,
respectively, a factor of 9.37 and 2.95. The last step of the hardware design is to export the bitstream

34 5. Solution architectures and implementations

and hardware handoff (HWH) file generated with Vivado. The HWH file contains information about the
target platform and design that PYNQ requires to correctly configure the system and connect internal
python methods to the corresponding features, signals, or drivers [49].

Optimization level Resolution Gridsize LUT FF DSP BRAM LUTRAM
(%)

Initial design 125 100 39 31 12 60 3
Array partitioning (cyclic) 200 125 26 16 14 89 17
LUTRAM 300 100 50 16 15 93 87

Table 5.2: The resource and design specifications of the largest fitting design per optimization level for PYNQ-Z1. The FPGA
resources are denoted as the percentage of total available resources.

The Alveo U280 FPGA’s available resources are much higher than that of the PYNQ-Z1 board,
as shown in Section 2.1.3. Table 5.3 shows the percentages of resources used for four Alveo U280
hardware designs with increasing resolution. Due to the higher available resources, it was possible to
implement designs with up to 8000 resolution for a grid size of 100, while the PYNQ-Z1 only allowed
for a resolution of 300. A complete overview of the utilization of all the FWI hardware designs made for
Alveo U280 is provided in Table 6.2.

Resolution Grid size LUT FF DSP BRAM URAM LUTRAM
1000 100 0 0 0 0 0 0
2500 100 15 11 1 30 31 5
5000 100 15 11 1 41 42 5
8000 100 16 11 1 44 71 6

Table 5.3: Resources for Alveo U280 implementation with resolutions 1000, 2500, 5000 and 8000 with 100 grid sizes.

As mentioned previously, the CNN bitstream was compiled with the FINN compiler for Alveo U280.
In Table 6.3 an overview of the utilization of all the generated CNN hardware designs is given as a
percentage of the total available resources for Alveo U280.

5.2. Hardware communication
This section describes how the kernels can be accessed from the host code through the hardware
communication layer. The PYNQ approach for PYNQ-Z1 and Alveo U280 is first discussed, followed
by the OpenCL approach for Alveo U280.

5.2.1. PYNQ
In this section, the PYNQ functions used to program the design and access the kernels are first dis-
cussed for the PYNQ-Z1 SoC FPGA and successively for the Alveo U280.

For PYNQ-Z1 FPGAs and other boards from the ZYNQ family, a PYNQ SD card image is required
to get started. Pre-compiled images with the latest version of PYNQ, version 2.7 at the time of writing,
are available on the PYNQ website [50]. A tutorial is also available to build a PYNQ image if there are
custom requirements or a pre-compiled image isn’t available for the targeted board. The pre-compiled
ubuntu-based image comes with an installation of the python package pynq for Python 3.6. This pack-
age can be used in a regular python environment, or through a convenient IPython environment in
Jupyter Notebook. At boot time, the image automatically programs a base overlay to the PL that con-
sists of IP blocks to control the peripherals of the target board and connect them to the PS. To use
PYNQ on FPGAs from the Alveo family, an image is not necessary. The requirements at the time of
writing are a version of XRT higher than 2.3, an XRT-supported operating system with python 3.5.2 or

5.2. Hardware communication 35

higher, as well as pip installed.

Accessing the hardware design is slightly different for both platforms. Listing 5.5 shows how to
program the bitstream and execute the cost kernel on PYNQ-Z1 and Alveo U280. Lines 2 through 4
use the PYNQ allocate class to allocate memory to buffers in the host memory. The user needs to
specify the shape and variable type for the buffer. It should be noted that the allocate function can take
an extra argument specifying the memory bank on which the data should be allocated. Especially for
the Alveo cards that offer HBM and DDRmemory, this can be useful. Lines 7 and 8 show how the PYNQ
Overlay class is used to download the bit file, of which the path is specified as ALVEO and PYNQZ1
in the listing, to the FPGA. In this example, the first available device found by the PYNQ Device class
is targeted. The PYNQ-Z1 implementation requires the user to transfer allocated pynq buffers directly
to the DMA channels designed in the kernels to start the computations. The DMAs are assigned in
lines 11 through 13. The Alveo implementation only requires the user to specify the kernel, shown in
line 16, and not the transfer channels as this is automatically handled when a buffer is synchronized
to the device. Lines 19 through 28 show how the cost function kernel is launched for PYNQ-Z1. The
buffers are transferred to the DMAs and wait until the computations are finished and transferred back
to the main memory output buffer. In lines 31 through 37 the cost function is launched for the Alveo
U280 implementation. As mentioned previously, the buffers are simply synchronized to the device and
the kernel is called for execution. Once execution completes, the results are synchronized back to the
host’s main memory output buffer.

Listing 5.5: Example how to execute a kernel through PYNQ for PYNQ-Z1 and Alveo boards.

1 #Allocate memory for Cost function
2 residual_buffer = allocate(shape=(resolution,),dtype=np.complex64)
3 kappa_buffer = allocate(shape=(resolution,gridsize), dtype= np.

complex64)
4 output_buffer = allocate(shape=(gridsize), dtype = np.complex64)
5
6 # Program the bitstream to the targeted device.
7 ol_alveo = Overlay(ALVEO, download=True, device=Device.devices[0])
8 ol_pynq = Overlay(PYNQZ1, download=True, device=Device.devices[0])
9
10 # Assign the DMAs for PYNQ-Z1
11 residual_dma = ol_pynq.residual_dma
12 kappa_dma = ol_pynq.kappa_dma
13 output_dma = ol_pynq.output_dma
14
15 # Assign the cost function for AlveoU280
16 cost_function = ol_alveo.cost_function
17
18 # Launch the cost function for PYNQ-Z1
19 def cost_function_PYNQ_Z1(kappa_buffer, residual_buffer,

output_buffer):
20 # Link the allocated buffers to the DMA channels and start

transferring
21 residual_dma.sendchannel.transfer(residual_buffer)
22 kappa_dma.sendchannel.transfer(kappa_buffer)
23 output_dma.recvchannel.transfer(output_buffer)
24
25 # Wait for the DMAs to finish transferring the results back to

main memory
26 residual_dma.sendchannel.wait()
27 kappa_dma.sendchannel.wait()
28 output_dma.recvchannel.wait()

36 5. Solution architectures and implementations

29
30 # Launch the cost function for Alveo U280
31 def cost_function_ALVEO_U280(kappa_buffer,residual_buffer,

output_buffer):
32 # Synchronise the allocated buffer and launch the kernel
33 kappa_buffer.sync_to_device()
34 residual_buffer.sync_to_device()
35 ol_alveo.cost_function.call(kappa_buffer,residual_buffer,

output_buffer)
36 # Synchronise the results back to main memory
37 output_buffer.sync_from_device()

5.2.2. OpenCL
The Vitis platform provides the user with the Xilinx OpenCL (XCL) extension to accelerate C and C++
applications with OpenCL. XCL is an extension that provides several mechanisms to interact with the
FPGA and hardware design through XRT. In this section, the reader is guided through the implemen-
tation steps to accelerate the FWI hardware design using XCL.

As explained in Section 4.2, the hardware communication layer is used to download the hardware
design to the FPGA and perform execution andmemorymanagement. XCL provides the user with utility
functions to perform these tasks. In Listing 5.6 the commands to initialize the hardware communication
are displayed. Error handling and device name checks have been omitted from this listing for the sake
of clarity.

Listing 5.6: XCL and OpenCL initalization.

1 // returns the connected AMD platforms
2 auto devices = xcl::get_xil_devices();
3
4 // Select device [0]
5 device = devices[0];
6
7 // returns a pointer to the bitstream
8 auto fileBuf = xcl::read_binary_file(binaryFile);
9 cl::Program::Binaries bins{{fileBuf.data(), fileBuf.size()}};
10
11 // Create the context and commandqueue
12 OCL_CHECK(err, context = cl::Context(device, nullptr, nullptr,

nullptr, &err));
13 OCL_CHECK(err, q = cl::CommandQueue(context, device, &err));
14
15 // Program the device in the context
16 cl::Program program(context, {device}, bins, nullptr, &err);
17
18 // Create the interface with the kernels in the hardware design
19 OCL_CHECK(err, krnl_cost= cl::Kernel(program, ”Cost”, &err));
20 OCL_CHECK(err, krnl_forward = cl::Kernel(program, ”Forward”, &err

));

OpenCL uses contexts to program, manage and interface with devices. Context consist of the
targeted device(s) and command queue objects. Commands can be submitted to the latter to access
the hardware kernels. The listing shows how XCL and OpenCL are used to find and select the targeted
device, create the context and command queue, program the device, and acquire the kernels from the
hardware design.

In Listing 5.7, the implementation to execute the cost function is shown. Memory is allocated for the

5.2. Hardware communication 37

input and output vectors in the host and global memory. Filling the vectors with data has been omitted
to keep the size of the listing to a minimum. To increase performance an aligned allocator is used.
The data is copied to global memory and the cost function is launched. At completion the output is
transferred back to host memory.

Listing 5.7: XCL and OpenCL implementation of the cost kernel execution.

1 // Allocate Memory in Host Memory
2 vector<complex_float,aligned_allocator<complex_float> > residual(

ROW);
3 vector<complex_float,aligned_allocator<complex_float> > kappa(ROW

*COL);
4 vector<complex_float,aligned_allocator<complex_float> >

cost_output(COL,0);
5
6 // Allocate Buffer in Global Memory
7 // Buffers are allocated using CL_MEM_USE_HOST_PTR for efficient

memory and Device-to-host communication
8 OCL_CHECK(err, cl::Buffer buffer_in_res(context,

CL_MEM_USE_HOST_PTR,sizeof(complex_float)*ROW,
9 residual.data(), &err));
10 OCL_CHECK(err, cl::Buffer buffer_in_kappa(context,

CL_MEM_USE_HOST_PTR, sizeof(complex_float)*ROW*COL,
11 kappa.data(), &err));
12 OCL_CHECK(err, cl::Buffer buffer_output(context,

CL_MEM_USE_HOST_PTR , sizeof(complex_float)*COL,
13 cost_output.data(), &err))

;
14
15 OCL_CHECK(err, err = krnl_cost.setArg(0, buffer_in_res));
16 OCL_CHECK(err, err = krnl_cost.setArg(1, buffer_in_kappa));
17 OCL_CHECK(err, err = krnl_cost.setArg(2, buffer_output));
18
19 // Copy input data to device global memory
20 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_in_res,

buffer_in_kappa}, 0 /* 0 means from host*/));
21
22 // Launch the Kernel
23 OCL_CHECK(err, err = q.enqueueTask(krnl_cost));
24
25 // Copy Result from Device Global Memory to Host Local Memory
26 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_output},

CL_MIGRATE_MEM_OBJECT_HOST));
27 q.finish();

The above-presented implementation was used to accelerate the C++ FWI implementation. The
listing provided in this thesis was adapted for the sake of clarity. The original code base used in the
experiments can be found at https://github.com/Luc-Dierick/FWI_Vitis.

5.2.3. Multiple compute units
The multiple compute unit feature from Vitis allows users to easily duplicate kernels if the FPGA re-
sources allow it [27]. Under the hood, Vitis uses a Vivado-based compiler and linker called v++. By
default, one instance of each kernel is created by v++. The connectivity setting of the v++ config-
uration file can be used to specify for each kernel how many instances should be created and to what
memory banks the instance variables should be mapped. An example for two instances of the cost
kernel connected to DDR0 and DDR1 is displayed in Listing 5.8.

38 5. Solution architectures and implementations

Listing 5.8: Connectivity settings for two instances of the Cost kernel.

1 [connectivity]
2 nk=cost:2:cost_1.cost_2
3 sp=cost_1.kappa:DDR[0]
4 sp=cost_1.cur_est_pres_field:DDR[0]
5 sp=cost_1.output:DDR[0]
6
7 sp=cost_2.kappa:DDR[1]
8 sp=cost_2.cur_est_pres_field:DDR[1]
9 sp=cost_2.output:DDR[1]

To operate on multiple compute units, the hardware communication needs to be adapted. The follow-
ing sections describe how this was done for OpenCL. In Section 5.4 this is explained for PYNQ in the
context of OctoRay.

OpenCL command by default queues submit tasks in the order they were enqueued. To concurrently
access different kernel instances on the targeted device, the command queue needs to be specified as
an out-of-order queue. In FWI, there are many interactions between the host code and the hardware
design. Multiple compute units give the possibility to execute sets of the cost and forward functions in
parallel. To fully benefit from this, the host code needs to run in parallel as well. C++ native multipro-
cessing was used to set up as many host code processes as there are duplicated cost and forward
functions.

5.3. Interface
To integrate with the pythonesque nature of OctoRay and PYNQ, a python implementation of FWI
was necessary. To that end, the C++ implementation was rewritten in python. To keep the loss of
performance to a minimum, NumPy libraries that use C-implementations under the hood were used as
much as possible. For some functions in the standard C++ library, there exists no python equivalent.
Two of these functions used in the FWI algorithm are the cyl_neumann and cyl_bessel functions
[51] [52]. To incorporate these functions in the python implementation, a wrapper class was developed
using ctypes and cross-compiled shared libraries of the functions. It should be noted that the python
implementation only incorporates the implementation of the finite difference forward model and the
conjugate gradient descent inversion model.

5.4. OctoRay
Previous to this work, the OctoRay project was a collection of Jupyter Notebooks that demonstrate how
to use Dask distributed in combination with PYNQ to parallelize data analytics applications on FPGAs
using open-source frameworks. While the concept of OctoRay is an excellent initiative to make FPGA
acceleration scalable and accessible, the initial framework served as a proof of concept and there re-
mained a lot of room for improvements. This section begins by discussing the original architecture
of OctoRay and its advantages. As the improved version of the framework has a different setup and
installation, the steps to replicate the original OctoRay are only discussed at a high level. The current
installation and environment setup are discussed in Section 5.4.3. The original framework was devel-
oped by Shashank Aggarwal, his work can be found on the TU Delft repository [53]. OctoRay exploits
the concept of data parallelism. Figure 5.5 shows the general architecture applied for two workers.

5.4. OctoRay 39

Dask client

Dask scheduler

Dask worker 0 Dask worker 1

FPGA

Dask worker 0

PYNQ

FPGA

PYNQ

Application Application

Task graph
Data / Results Data / Results

Tasks

Host 0 Host 1

IP: 192.168.2.1

IP: 192.168.2.3IP: 192.168.2.2

Figure 5.5: The general architecture of the OctoRay framework, figure ada[ted from [53]

The architecture consists of three key components, the dask client, scheduler, and workers. It
should be noted that OctoRay relies on the distributed dask library, to prevent redundancy from now
on when dask terminology is used the distributed versions are meant unless specified otherwise. To
prevent misinterpretations between the code related to the parallelization framework and to the accel-
erated application, the former is referred to as OctoRay host code and the latter as the python driver.
A python driver consists of the hardware design, called an overlay in the PYNQ context, and the ap-
plication host code. The host code incorporates the hardware communication layer to interact with the
overlay. It is assumed at this stage that the bitstreams containing the hardware design and python,
PYNQ, Dask, and other requirements are present on the FPGA-enabled nodes.

In the following steps, a high-level overview of how the original OctoRay framework was used to
scale an FPGA application on multiple nodes.

1. Instantiate a cluster by spawning one scheduler, and as many workers as necessary. To perform
this step, the user must have access to a terminal on each node to manually start the respective
dask processes.

2. Create a client in the OctoRay host code that serves as the primary entry point to the cluster.

3. The client automatically detects the number of workers available in the cluster. The input data is
divided by the number of workers and scattered among them. For each worker, the client sends
the pynq driver to the scheduler as a task. The scheduler distributes and schedules the tasks for
execution on the workers.

4. When a worker completes its task, the output is returned to the client. Once the results from all
workers have been received, they are merged together and made available to the user in the
OctoRay host code.

OctoRay was proven a working concept through two functional examples of scaled data analytics
applications available at https://github.com/abs-tudelft/octoray. Several areas of improvement were
identified. In the following sections, they are discussed and the associated implemented solutions are
presented.

OctoRay was built with the purpose of scaling a single application on multiple of the same FPGAs.
Although supporting the deployment of different types of FPGAs, it does not allow the combination of

40 5. Solution architectures and implementations

different applications and FPGAs in a heterogeneous infrastructure. With the lack of a general struc-
ture, users require a deeper knowledge of OctoRay components such as Dask cluster setup and data
and task management.

Two main components were introduced to improve the deployment and usability of the framework,
respectively, a cluster configuration and OctoRay kernels. Together, these components form the foun-
dation of the new architecture. First, the changes in the deployment of OctoRay by using the cluster
configuration are discussed. Next, the flexibility and increased usability enabled by theOctoRay kernels
are presented.

5.4.1. Deployment
Dask provides the user with multiple ways to set up a distributed cluster presented below.

1. Manual setup of dask processes through CLI.

2. Managed services such as Kubernetes and Hadoop Yarn.

3. Dask SSH cluster API.

4. Docker images

The original framework chose the manual setup of dask processes. For a small number of hosts, it
was an easy, fast but most importantly flexible manner of deployment that enabled access to low-level
functionality of the dask processes. Setting up managed services or using docker images requires
extra user effort which is exactly what OctoRay tries to minimize. A drawback of the manual setup and
tear-down of dask processes is that it inhibits large-scale deployment. For a small amount of workers
manual instantiating and tearing down workers is a feasible task, but as soon as the number of workers
exceeds double digits this becomes extremely tedious and time-consuming.

The Dask SSH cluster API is an experimental project from Dask to deploy dask clusters from python
over SSH connections [54]. A custom implementation of the Dask SSH Cluster was made to fit Oc-
toRay’s needs. OctoRay lets the user specify the deployment with a cluster configuration dictionary,
displayed in Listing 5.9.

Listing 5.9: Example cluster configuration for two hosts each containing one worker.

1 cluster_config = {
2 ”scheduler”:”10.1.212.127”,
3 ”hosts”:[”10.1.212.126”,”10.1.212.127”],
4 ”connect_options”:{”port”:22,”xrt”:XRT_ENV_PATH,”dir”:SPAWN_PATH

},
5 ”worker_options”:{”nthreads”:1,”n_workers”:1,”preload”:”

pynqimport.py”,”nanny”:”0”,”memory_limit”:0},
6 ”scheduler_options”:{”port”:8786},
7 ”worker_class”:”distributed.Worker”,
8 ”overlay”: Bitstream.xclbin
9 }

The cluster configuration is multi-functional. Primarily, it allows users to specify the IP addresses of
the machines where the dask scheduler and workers should be deployed. For automatic deployment
of the cluster, several settings must be specified, dictated by the Dask SSH Cluster implementation
[55]. In this example, a dictionary is passed as connect options indicating that these are the same for
all nodes, called hosts, in the cluster. In the case of different connection options, a list can be provided
with custom settings. In the case of a list, a dictionary of settings must be specified for each host. The
worker options behave in the same way and are used to specify the behavior of workers. The Dask SSH
Cluster was extended with two features. First, the connect options were expanded with the xrt and
dir options to specify where the XRT environment should be sourced from and in what directory the

5.4. OctoRay 41

worker processes should be spawned. Dask workers natively perform their work in a non-main thread.
PYNQ requires to be imported from the main thread to function correctly. The old OctoRay solved
this problem by spawning a new process in the python driver where the application code using PYNQ
was executed. To circumvent this user-burdening solution, a preload script is passed to the workers in
which PYNQ is imported and the specified Overlay is downloaded to the FPGA. This feature increases
usability by removing the effort to create a process for the user and automating the download of the
bitstream. Another advantage of this method is discussed in the following section when the reader is
led through an example usage of OctoRay.

5.4.2. Flexibility and usability
The second core component of the new OctoRay architecture is the OctoRay kernel. The cluster
configuration is meant to facilitate the general deployment of the cluster. OctoRay kernels are structures
that consist of all the specifications necessary to deploy an application on the cluster. Listing 5.10 shows
the function definition to create an OctoRay kernel.

Listing 5.10: Function definition to create an OctoRay kernel

1 def create_kernel(self, path:str, no_instances:int=1, batch_size:int
=0, func_specs:list=[],config=None,device:str=None):

2 ”””Creates a dictionary that represents a kernel.
3 @param device: The device name of the FPGA
4 @param path_to_bitstream: The path to the bitstream
5 @param no_instances: If there are copied instances (default =

1)
6 @param instance_id: The id of the compute unit, this is 1 or

configured based on no_instances.
7 @param batch_size: The amount of data each compute unit

should process.
8 @param func_specs: The functions inside the kernel with their

memory specifications
9 Example: A function square_numbers(double a, double b)

where a is mapped to HBM0 and b to HBM1
10 is represented as: [{”square_numbers”:[HBM0,HBM1]}]
11 @param host: We assign each kernel to a host, chronologically

by default.
12 @param config: If the python driver requires it, a

configuration file or variable can be added.
13 ”””
14 kernel = {
15 ”device”:device,
16 ”path_to_bitstream”:path,
17 ”no_instances”:no_instances,
18 ”instance_id”:1,
19 ”batch_size”:batch_size,
20 ”functions”:func_specs,
21 ”host”:None,
22 }
23 if config:
24 kernel[”config”]=config
25
26 return kernel

OctoRay kernels were developed in combination with helper functions to increase the usability and
flexibility of the architecture. The kernel specifications can be read in the function description in List-
ing 5.10. An import feature of the kernels is that they transparently support hardware designs containing

42 5. Solution architectures and implementations

multiple copied instances. A user can specify the number of copied instances a hardware design con-
tains, and the batch size per compute unit. OctoRay takes care of the rest of the configuration and
deployment. The details of this process are discussed when the helper functions are introduced in the
following paragraphs.

The framework sees an OctoRay kernel as an entity that can be executed on a host. An important
advantage of grouping all the application and execution specifications in a kernel is that this enables
users to define multiple configurations of applications in the same context. In the previous architecture,
the functions and specifications were directed at one specific application for all hosts in the cluster,
resulting in a rigid framework. With OctoRay kernels, a user can specify for each host what application
and associated bitstream and dataset should be executed.

Listing 5.11 shows how OctoRay can be used to execute two different configurations of the CNN
application. In line 5, the OctoRay object is created with arguments specifying the automatic cluster
deployment and the cluster configuration dictionary. Line 8 is where the actual cluster is deployed in
the case of automatic deployment, if the cluster is already deployed this function creates a dask client
to connect to the existing cluster. In line 11 the cifar10 data is set is loaded, which is split in batch
specified by the BATCH_SIZE macro, the actual numbers are irrelevant to this example. In line 14 a
list of CNN kernels is created, in this example, the deployment of one type of application with different
configurations is demonstrated. If the user wishes, OctoRay kernels for different applications and con-
figurations can be added to other lists. Line 17 through 19 demonstrate how OctoRay kernels of the
same configuration are created and appended to the CNN kernels list. Lines 20 through 23 demon-
strate how two differently configured kernels are added. In line 25 the worker options are specified for
each host based on the connect and worker options specified in the cluster configuration.

The function in line 28 subdivides kernels containing hardware designs with multiple compute units
into individual kernels per compute unit. Additionally, the worker options for the associated hosts
are reconfigured to match the independent compute unit kernels. This ensures that a dask worker
is spawned for each compute unit on the correct host. Note that in the case of automatic deployment,
the n_workers setting of the worker options for a host associated with a kernel containing multiple
compute units needs to align with the number of compute units. Dask workers are independent soft-
ware processes that operate in parallel. The processes need to acquire access to the hardware design
to accelerate an application. For a single instance hardware design, associated with one worker, this
is a trivial task. For designs with multiple compute units, multiple software processes need to access
the hardware design in parallel. PYNQ uses the Overlay class to program a device or to access an al-
ready programmed device. If two processes try to program a device at the same time, a race condition
occurs and PYNQ crashes in both processes. To circumvent this issue, the bitstream is downloaded
to the target device during cluster setup by using a preload script. Dask sequentially instantiates its
workers during deployment, which means no race conditions occur. The first worker actually programs
the bitstream and the following workers retrieve the bitstream’s context. As mentioned before, this also
results in the advantage of PYNQ and the bitstream context being present in the main thread of the
workers.

In line 34 the data set is transparently split into batches that match the requirements of each kernel
according to its configuration. The user does not need to differentiate a multiple compute unit design
from a single instance design as OctoRay has configured this. In line 37 the data and associated
kernels are scattered to the workers. The run_on_worker function needs to be defined and consists
of the python driver to execute the application. In line 37 the retrieved results from the workers are
sorted to match the original input order.

Listing 5.11: Example use of OctoRay kernels to accelerate two identical or different configurations of CNN

1
2 from octoray import Octoray
3
4 # Initialiaze OctoRay with automatic cluster deployment

5.4. OctoRay 43

5 octoray = Octoray(ssh_cluster=True, cluster_config=cluster_config)
6
7 # set up the cluster
8 octoray.create_cluster()
9
10 # load dataset
11 full_cifar = np.load(’cifar10.1_v4_data.npy’)
12
13 for BATCH_SIZE in BATCH_SIZES:
14 cnn_kernels = []
15
16 # Both hosts execute a kernel with a single instance of the

hardware design
17 for i in range(len(cluster_config[”hosts”])):
18 cnn_kernels.append(octoray.create_kernel(XCLBIN_PATH_SINGLE

,1,int(BATCH_SIZE/octoray.num_of_workers),[[{”idma0”:[”
HBM0”]},{”odma0”:[”HBM0”]}]], device=DEVICE_NAME_DEFAULT))

19
20 # The first host executes a single instance design, the second a

double instance design
21 cnn_kernels.append(octoray.create_kernel(XCLBIN_PATH_SINGLE,1,int

(BATCH_SIZE/octoray.num_of_workers),[[{”idma0”:[”HBM0”]},{”
odma0”:[”HBM0”]}]], device=DEVICE_NAME_DEFAULT))

22 cnn_kernels.append(octoray.create_kernel(XCLBIN_PATH_DOUBLE,2,int
(BATCH_SIZE/(octoray.num_of_workers)), [[{”idma0”:[”HBM0”]},{”
odma0”:[”HBM0”]}],[{”idma1”:[”HBM1”]},{”odma1”:[”HBM1”]}]],
device=DEVICE_NAME_DEFAULT))

23
24 # Set up the host’s worker options configured in the cluster

configuration file.
25 octoray.setup_worker_options()
26
27 # In the case of multiple instances, subdivide the kernels over

the number of instances and update the worker options.
28 kernels_split = octoray.split_kernels(cnn_kernels)
29
30 # Divide the data set over the kernels based on batch size per

instance
31 data_split = octoray.split_data(full_cifar[:BATCH_SIZE],

kernels_split)
32
33 # Launch the tasks after scattering the data and kernels to the

correct workers
34 results = octoray.execute_hybrid(run_on_worker,data_split,

kernels_split)
35
36 # Reorder the response based on the original input order
37 results.sort(key = lambda result: result[’index’])

5.4.3. Accessibility
The OctoRay project was developed with the goal to be an accessible, open-source framework aiding in
the adoption of FPGAs. To further increase the accessibility and ease of setup, the collection of jupyter
notebook examples was turned into an installable package from the Python Package Index (PyPI). The
library implements constructs and functions that improve the flexibility, accessibility, and deployment of
the framework as described in the previous sections.

6
Results

This chapter discusses the results from experiments performed on the different solution architectures
presented in Chapter 4 for the applications FWI and CNN presented in Chapter 3. Figure 6.1 displays
the topology of hardware platforms and applications that are compared and discussed in this chap-
ter. The chapter begins with a description of the experimental setups for the different applications in
Sections 6.1 and 6.2. Successively, the results for FWI are presented in Section 6.3 and for CNN in
Section 6.4.

PYNQ-Z1Alveo U280

FWICNN

Hardware platform

Application

Legend

Intel i7
CPU

Figure 6.1: Topology of hardware platforms and applications.

6.1. Experimental setups for FWI
In this section, the experimental setups for the different hardware platforms are presented. In Sec-
tion 6.1.1, the laptop and CPU used for the baseline of FWI are presented. In Section 6.1.2, the
experimental setup of multiple PYNQ-Z1 boards exploited by OctoRay is described. Subsequently,
the setup used to measure the power consumed by a PYNQ-Z1 while executing FWI is introduced.
Lastly, Section 6.1.4 describes the setups used to scale and compare FWI for different configurations
on multiple Alveo U280 FPGAs.

6.1.1. CPU
In order to evaluate the hardware-accelerated FWI implementation, experiments with the python and
C++ implementations were performed on a high-end CPU to form a baseline. An HP Z-Book studio G6
laptop with an Intel I7-8750h CPU containing 12 logical cores running at 2.20 GHz with 16GB of RAM
was used for this purpose. The C++ implementation used for the CPU is not available publicly. Permis-
sion was granted for the FPGA and OpenCL adapted C++ implementation and the python implementa-

44

6.1. Experimental setups for FWI 45

tion. They are available at, respectively, https://github.com/Luc-Dierick/FWI_Vitis and https://github.com/Luc-
Dierick/FWI-python.

6.1.2. PYNQ-Z1 OctoRay
The PYNQ-Z1 OctoRay setup consisted of a local network set up with 4 PYNQ-Z1 boards connected
through category 6 (10Gbps) ethernet cables to a Sweex SW105 5 port Gigabit switch. The host PC, an
HPZbook Studio G5 containing the previouslymentioned Intel I7 CPUwas also connected to the switch.
Internet access was shared through the host PC to the boards. On each board, the bitstreams and the
FWI-PYNQ repository were downloaded, containing the FWI-python repository, jupyter notebooks for
single machine visualization, and a pynq driver. The old OctoRay architecture was used for these
experiments. The pynq driver served as the entry point for dask workers. The driver is responsible
for downloading the bitstream to the FPGA, setting up the DMAs, and initializing and executing the
python implementation of FWI. The driver returns metrics about the run and the output of the algorithm,
a reconstructed subsurface grid velocity model.

6.1.3. PYNQ-Z1 power measurement
To investigate the power consumption of the FWI hardware design, a power-measurement setup was
used. The setup was created by the Digital Technology Group from the Department of Electrical En-
gineering and Computer Science of the University of Kassel, Germany. The explanation and figures
covering the setup were made available by the group, but are not yet publicly available. An overview
of the setup is shown in Figure 6.2.

V-Reg

ADC µC

Host PC

FPGA

reset,
clk-enable

USB

INA

L

R
Sh

un
t

R
Tr

RX CX

CH 1

CH 2

SPI

pr
og
ra
m

V R
ef

Temp.
sensor

I2C

measure

Figure 6.2: An overview of the power measurement setup for PYNQ-Z1 from the DTG group of University of Kassel.

The setup measures the dissipated power from the FPGA by using a precise shunt resistor (𝑅𝑠ℎ𝑢𝑛𝑡)
for the current measurement, followed by a potential measurement after the resistor. The voltage regu-
lator (V-Reg) measures the voltage in the 1V domain and puts additional voltage to compensate for the
voltage drop over the resistor and the inductance. This is done to inhibit the shunt resistor from having
a negative effect on the 1V-domain. A highly precise and calibrated instrumentation amplifier (INA) is
used to reduce the offset effects of measurement devices. Both the amplified voltage across the shunt
and the potential after the shunt, which is the core voltage of the FPGA, are digitized with the 24-Bit-
ADC ADS131M02 from TI. The maximal possible sampling rate is 32 kHz. The micro-controller (𝜇𝐶)
ESP8266-D1-Mini acquires the data via SPI. In addition to that, the micro-controller collects tempera-
ture measurements from a connected infrared sensor MLX90615 from Melexis for temperature mon-
itoring via an I2C-Bus. Finally, the measured values are made available to the Host PC via a USB
connection. It should be noted that only the 1 Volt domain, which supplies the PL of power is mea-

46 6. Results

sured. Other domains that power for example the DDR3 memory can not be measured in the current
setup. The DTG group is working on an extended setup that measures all the voltage domains.

The experiments performed on this setup were used to investigate the power consumption of FWI
on PYNQ-Z1. The experiments were performed for two hardware designs with differing resource uti-
lization. displayed in Table 6.1.

Design Resolution Grid size LUT LUTRAM FF BRAM DSP
High utilization 300 100 50 87 16 93 15
Low utilization 300 20 28 23 15 31 12

Table 6.1: An overview of the two designs and their utilization used for the power measurement experiments. The resources
represent the percentage of available resources used.

As established in Chapter 5, changes in resolution have a much larger effect on the number of
iterations necessary for FWI to converge. Keeping the number of iterations as constant as possible
is important for a fair comparison of the two designs. Therefore, the resource utilization was reduced
by decreasing the number of grid points processed and leaving the resolution intact. Additionally, it
should be noted that although the designs allow for a resolution of 300, in practice a resolution of 294
made up of 7 sources and receivers and 6 frequencies were used. The implementation requires the
numbers of sources and receivers to be equal which means a resolution of 300 could be built by using
10 sources and receivers and measuring over 3 frequencies. Measuring over that few frequencies
leads to unreliable results which is why it was chosen to use a resolution of 294. To further improve the
reliability of the results, all the experiments performed on this setup were replicated 5 times, and the
presented numbers are averaged over the runs.

6.1.4. Alveo U280
The Alveo experiments were performed on the HACC cluster at ETH University, Zurich [20]. The cluster
consists of multiple servers that give access to different types of FPGAs. For this work, up to four Alveo
U280 FPGAs were used that are connected by an intra-cluster high-speed network implemented by
two 100 Gbps connections to each Alveo card. In the background chapter in Section 2.1.3 an overview
was given of the server-grade host processor and Alveo U280 total resources.

The OpenCL experiments were performed on a single Alveo U280 to assess the performance of the
C++ implementation used in combination with the OpenCL hardware communication layer. The Alveo
U280 OctoRay experiments were also performed on the HACC cluster, utilizing up to 4 Alveo U280s.
In Table 6.2 an overview is given of all the different hardware designs for Alveo U280 used in this work.
The overview displays the percentage of resources used for different configurations that are defined
by the resolution, grid size, and the number of compute units.

Resolution Grid size CUs LUT LUTRAM FF BRAM URAM DSP
8000 100 1 16 6 11 44 71 1
5000 100 1 15 5 11 41 42 1
5000 100 2 18 7 13 73 82 1
2500 100 1 15 5 11 30 31 1
1000 100 1 15 5 12 23 21 1
1000 100 2 17 5 13 31 44 1
1000 200 1 15 5 12 31 29 1
300 100 1 14 4 11 17 4 1

Table 6.2: An overview of the percentage of total utilization for different Alveo U280 FWI hardware designs generated with Vitis.

6.2. Experimental setup CNN 47

6.2. Experimental setup CNN
The CNN was later introduced in this Master’s thesis, with the purpose to showcase the applicability
of OctoRay on a single-input dependent application. Therefore, the experiments performed with CNN
were only performed on up to 4 high-end Alveo U280 hardware platforms on the previously mentioned
HACC cluster. The experiments performed for the CNN applications were all performed 5 times and
the average results are presented.

In Table 6.3 an overview is provided of the utilization of all the CNN hardware designs used in the
experiments.

of CNN instances LUT FF DSP BRAM LUTRAM
1 10 7 <1 15 2
2 12 9 <1 19 3
4 21 17 <1 36 6
8 30 24 <1 58 8
10 35 27 <1 71 9

Table 6.3: An overview of the percentage of total utilization for CNN hardware designs containing different numbers of compute
units.

6.3. FWI results
Experiments were performed for different configurations of the FWI application on four hardware plat-
forms. First, in Section 6.3.1 an analysis is provided of how data parallelism can be applied to FWI using
domain decomposition and what the effects are on performance and result quality. Having established
that FWI can be scaled using domain decomposition, Section 6.3.2 provides an overview of the effects
of horizontal and vertical scaling on low and high-end FPGAs. Additionally, a distributed composition
of PYNQ-Z1 low-end FPGAs is compared to a single high-end Alveo U280 FPGA in terms of perfor-
mance. Subsequently, in Section 6.3.3, an implementation of FWI that utilizes most of the resources
available on a high-end Alveo U280 FPGA is compared to the CPU baselines. In Section 6.3.4, an anal-
ysis is provided of the cost and utilization for the distributed PYNQ-Z1 composition, Alveo U280, and
a personal laptop. Next, Section 6.3.5 presents the design-build duration of FWI for low and high-end
FPGAs. Lastly, in Section 6.3.6 the power and energy consumption of the targeted hardware platforms
are evaluated and discussed for different FWI configurations.

6.3.1. Domain decomposition
In Chapter 3, FWI was characterized as a multi-input-dependent application. It was established that
by decomposing the input grid into local domains, data parallelism could be applied. In this section,
analysis is performed on the effects of data parallelism on FWI in terms of performance and quality of
the results.

For this analysis, FWI was applied to a synthesized input of a Delphi temple displayed as the left
plot in Figure 6.3, an example of synthetic data originating from [32]. The temple is located in a 64 by
32 subsurface grid, where 64 is the width (x) axis and 32 is the depth (z) axis. Each grid cell represents
5𝑚 ∗ 5𝑚 = 25𝑚2, resulting in a total area of 64 ∗ 32 ∗ 25𝑚2 = 51200𝑚2. The background consists
of a homogeneous medium with a constant acoustic velocity of 𝑐0 = 2000𝑚/𝑠. The temple, also a
homogeneous medium, has a constant acoustic velocity of 𝑐 = 2218𝑚/𝑠. To express the difference
in velocity a contrast function 𝜒 is used that was introduced in Equation 3.1. From this equation, the
temple’s velocity in contrast to the background is 𝜒 ≈ 0.187. Figures 6.3, 6.4 and 6.5 show three dif-
ferent configurations of FWI applied to the Delphi temple data set. The left plot in each of these figures
represents the real subsurface grid’s velocity properties. The middle plot is reconstructed by using FWI
on pressure field data that was synthetically generated from the original temple data set. The right plot
in these figures displays the differences between the real and reconstructed subsurface grid expressed
by the contrast function.

In Figure 6.3 the temple was reconstructed by applying FWI with a resolution of 6000 made up of 20
sources, 20 receivers, and 15 frequencies. In this configuration, a full inversion was performed without

48 6. Results

applying domain decomposition using the C++ implementation of FWI. This configuration will be used
as a baseline to compare the effects of lower resolutions and domain decomposition. It should be noted
that domain decomposition neglects the non-linear properties of the model which normally affects the
results in a negative way. The synthetic data sets with homogeneous velocities used in this work are
far from realistic. The purpose of this work is not to optimize or improve the results of FWI but rather
to show the possibilities of scalability, for which the synthetically generated data sets are well suited.

0 10 20 30 40 50 60

0

5

10

15

20

25

30

Real subsurface grid

0 10 20 30 40 50 60

FWI reconstructed subsurface grid

0 10 20 30 40 50 60

Difference expressed by contrast funtion chi

0.02

0.04

0.06

0.08

Figure 6.3: The real subsurface grid of the Delphi temple (left), the reconstructed grid (center), and the difference between the
real and reconstructed grid (right) are expressed in chi. The C++ FWI implementation was applied on the full data set of grid
size 64 ∗ 32 = 2048 with a resolution of sources, receivers, and frequencies 20 ∗ 20 ∗ 15 = 6000.

In Figure 6.4, the same configuration as Figure 6.3 was used except that a drastically lower resolu-
tion of 294 was used, consisting of 7 sources and receivers and 6 frequencies. From the reconstruction
and difference plots, it can be seen that the quality of the result for a resolution of 294 is much lower
than its 6000 resolution counterpart. The pillars under the temple roof are the most difficult area to
reconstruct as they are partially hidden and their orthogonal positions propagate reflected waves that
result in complex non-linear properties. From these two figures, it becomes clear that the resolution
needs to be of a high enough degree to be able to make sense of the reconstructed grid.

0 10 20 30 40 50 60

0

5

10

15

20

25

30

Real subsurface grid

0 10 20 30 40 50 60

FWI reconstructed subsurface grid

0 10 20 30 40 50 60

Difference expressed by contrast funtion chi

0.05

0.10

0.15

Figure 6.4: The real subsurface grid of the Delphi temple (left), the reconstructed grid (center), and the difference between the
real and reconstructed grid (right) are expressed in chi. The C++ FWI implementation was applied on the full data set of grid
size 64 ∗ 32 = 2048 with a resolution of sources, receivers, and frequencies 7 ∗ 7 ∗ 6 = 294.

In Figure 6.5, FWI was applied to the sample temple data set and like Figure 6.4 a resolution of 294
was used. The core difference is that in Figure 6.5 domain decomposition was applied. The input data
set was sliced into four layers, which are depicted by white horizontal lines in the figure. Each of the
four-layer is 8 grid cells deep and 64 wide, together covering the total area. FWI is applied to each of
these layers. By using a method called back-propagation, each layer can be independently inverted
irrelevant of its location in the original subsurface grid. The inverted layers were then merged back
together and displayed in the figure. The quality of the reconstructed grid has significantly increased
by applying domain decomposition as can be seen when comparing the center and right plots of Fig-
ures 6.4 and 6.5 or in Figure 6.6. As mentioned previously, for this synthetically generated data set, the
enhanced quality from domain decomposition should be taken with a grain of salt. The chi difference
plot in Figure 6.3 shows that for a full subsurface inversion with a high resolution, there is a minimal
amount of noise. Contrarily, the 300 resolution full and decomposed configurations show a high degree
of noise in random places around the grid. It can also be observed that the edges of the temple are not
as defined for the full inverted configurations as for the decomposed model. This occurs because with
the decomposed model a smaller grid size is inverted that is only affected by the non-linear properties
of that local grid, and not of the entire grid. The non-linear properties add to the blurriness around the
edges but do reduce the noise in locations further away from the edges.

6.3. FWI results 49

0 10 20 30 40 50 60

0

5

10

15

20

25

30

Real subsurface grid

0 10 20 30 40 50 60

FWI reconstructed subsurface grid

0 10 20 30 40 50 60

Difference expressed by contrast funtion chi

0.02

0.04

0.06

0.08

Figure 6.5: The real subsurface grid of the Delphi temple (left), the reconstructed grid of four independently inverted layers
merged back together (center) and the difference between the real and reconstructed grid (right) is expressed in chi. The C++
FWI implementation was applied four times on 64 ∗ 8 = 512 grid size layers of the total data set. Each layer was inverted with
a resolution of sources, receivers and frequencies 7 ∗ 7 ∗ 6 = 294 and are separated by white lines in the figure.

The three configurations presented above were produced with the C++ implementation of FWI. The
python implementation was used to reproduce these experiments and compare the results with the
C++ implementation in terms of accuracy. The left plot in Figure 6.6 displays the average difference
in chi for the three configurations executed in python and C++. As average numbers are taken for the
entire subsurface grid, these results do not differentiate whether the noise is in random places or at the
edges but they do give a general indication of the quality of the reconstruction. The right plot displays
the execution time for the different configurations for the C++ implementation. The python execution
times are not incorporated in this plot as its purpose is to show the difference in execution times for
different FWI configurations. In the following sections, an elaborate analysis of the different FWI imple-
mentations and hardware platforms will be presented.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Av
er

ag
e

di
ffe

re
nc

e
(c

hi
)

R=294 merged C++
R=294 merged Python
R=294 full C++
R=294 full Python
R=6000 full C++
R=6000 full Python

0

25

50

75

100

125

150

175

200

Ex
ec

ut
io

n
tim

e
(s

)

Top layer R=294
Top center layer R=294
Bottom center layer R=294
Bottom layer R=294
Sum of layers R=294
Complete temple R=294
Complete temple R=6000

Average accuracy and execution time of FWI

Figure 6.6: The accuracy of the CPU implementations is expressed through the contrast function chi (left). The execution time
of the C++ implementation for the independent and summed layers of the merged model with a resolution (R) of 294 and of the
complete data set with resolutions R=294 and R=6000 (right).

The right plot of Figure 6.6 shows the execution time independently and summed for the four layers
of the merged model as well as the full models with resolutions of 300 and 6000. When considering the
accuracy of the full model inversions, the left figure shows that increasing the resolution from 294 to
6000 improves the average accuracy by about 50%. This improved accuracy comes at a cost displayed
in the right figure, where the execution time of the 6000 resolution full model inversion is approximately
10 times higher than of the 294 resolution model. From the left plot, it can also be read that the average
accuracy of the merged model is the best overall. For all models, the python implementation results
are of slightly worse accuracy because the computations are performed on floats with 32-bit preci-
sion instead of doubles with 64-bit precision in the C++ implementation. The python implementation
was implemented with floats because the HLS tools used to implement the hardware designs did
not support complex doubles used to represent the pressure field data. As the C++ implementation
was already provided by ALTEN it was not altered. The right plot shows that the execution time for the
independent layers summed together is also less than that of the full model with the same resolution
of 294. Additionally, the independent layers can be processed in parallel reducing the execution time
even further.

50 6. Results

In summary, the following conclusions were derived from the experiments in this section:

• Domain decomposition can be used to divide the total subsurface grid into independently in-
vertable local grids that can be processed in parallel.

• Decreasing or increasing the resolution leads to, respectively, lower and higher accuracy.

• Decomposition neglects the non-linear properties over the total subsurface grid leading to more
dispersed noise. Because the non-linear properties of the locally inverted grid are taken into
account, the edges are better defined.

• Increasing the resolution results in a higher complexity and longer execution time.

6.3.2. Scalability
In this section, the scalability of FWI is presented. It was established that domain decomposition can
be used to divide the FWI problem size into batches that can be processed in parallel. There are three
ways in which domain decomposition can be used to scale FWI. Primarily, the decomposed domains
can be processed sequentially on one node. Next, the decomposed domains can be processed in
parallel on multiple nodes, which is called horizontal scaling. Lastly, the decomposed domains can be
processed in parallel on one node by using multiple instances of FWI in one hardware design which
is called vertical scaling. This section begins by analyzing the effect of horizontal scaling on multiple
PYNQ-Z1 nodes compared to the software baselines and a single Alveo U280 instance. Successively,
the effect of vertical scaling is demonstrated by comparing it with horizontal and sequential scaling on
Alveo U280 FPGAs.

Horizontal scaling
In Chapter 5, the hardware design for FWI was introduced. An analysis of the computational load of
different functions led to a design consisting of two kernels for the forward and cost functions. From
Figure 5.1, it was observed that the degree of resolution has the highest effect on the time spent in
the forward and cost functions relative to the total run time. Because the algorithm is only partially
accelerated in hardware, the processor that executes the host code also contributes to the total per-
formance. Consequently, the host processor’s contribution to the total performance is correlated with
the percentage of the total computational load performed in the accelerated functions. In Figure 6.7, a
similar analysis for the computational load is presented for a configuration with resolution 294 and grid
size 100 for CPU as well as PYNQ-Z1 and Alveo U280 SoC FPGAs. The figure shows the time spent
in the hardware-accelerated functions and the total execution time for increasing grid sizes. The CPU
plot can be considered as a baseline because the hardware functions and the host part of the algorithm
are performed on the same hardware platform. To make sure the comparison is reliable, the python
implementation was used for the CPU, and in combination with the pynq hardware communication layer
for the FPGAs. For the PYNQ-Z1 the host part is executed on a dual-core ARM Cortex A9 processor
and the Alveo U280 on an Intel Xeon Gold server-grade processor. For this FWI configuration, the
figure shows that the time spent in the hardware functions for the PYNQ-Z1, CPU, and Alveo U280 is
approximately constant at 9%, 68%, and 80% respectively, when increasing the grid size. It should
be noted that increasing the grid size in this context means iterating sequentially over 100 grid size
batches. As the total execution time is linear when processing an increasing amount of 100 grid size
batches, the throughput for this configuration can be computed for PYNQ-Z1, CPU, and Alveo U280 at
respectively 21, 245, and 658 grid cells per second. It should be noted that these numbers are based
on a warm start which means the overhead of programming the bitstream to the FPGA and initializing
the algorithm is left out.

The FPGA resources of the PYNQ-Z1 form a restricting factor for the resolution and grid size of FWI
configurations. It was shown that domain decomposition can be used to circumvent the grid size restric-
tion. From Figure 6.7, the throughput in grid cells per second was established for the three hardware
platforms. In Figure 6.8, the left plot displays the execution times of different numbers of PYNQ-Z1s
processing a total subsurface grid in parallel by using OctoRay. The increasing grid sizes are once
again formed by iterating over 100 grid size batches but also divided over 1, 2, or 4 nodes. The left plot

6.3. FWI results 51

0 2000 4000 6000 8000

0

50

100

150

200

250

300

350

Ti
m

e
(s

)
PYNQ-Z1 ARM cortex A9

Time spent in HW function
Total execution time

0 10000 20000 30000 40000 50000
0

25

50

75

100

125

150

175

200

CPU Intel I7
Time spent in HW function
Total execution time

0 10000 20000 30000 40000 50000
0

10

20

30

40

50

60

70

Alveo U280 Intel Xeon Gold
Time spent in HW function
Total execution time

Total subsurface grid size (decomposed in 100 grid size batches)

Figure 6.7: An overview of the execution time spent in the hardware-accelerated functions for the PYNQ-Z1 and Alveo U280
FPGAs and CPU python implementations. The high utilization PYNQ-Z1 hardware design from Table 6.1 with resolution 294
was used. The python FWI implementation was used for both CPU and PYNQ-Z1. These results do not take initialization and
downloading the bitstreams to the FPGAs into account.

shows that the throughput established in the previous section for this FWI configuration on PYNQ-Z1
scales linearly with the number of nodes in the cluster. Because it scales linearly it is possible to ex-
trapolate the throughput to discover how many PYNQ-Z1s are required to match the other hardware
platforms in throughput. In the right plot, this exercise is visualized for the fastest hardware platform,
the Alveo U280. The results show that 32 PYNQ-Z1 nodes are required to achieve the same through-
put as a high-end Alveo U280 FPGA. To match the C++ and python CPU implementations respectively
22 and 12 PYNQ-Z1s are necessary.

0 5000 10000 15000 20000 25000 30000
0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
tim

e
(s

)

1 PYNQ-Z1
2 PYNQ-Z1s
4 PYNQ-Z1s

0 10000 20000 30000 40000 50000

0

25

50

75

100

125

150

175

200 CPU Python
CPU C++
Alveo U280
32 PYNQ-Z1s

Comparison of horizontally scaled PYNQ-Z1 FWI to other single node implementations.

Total subsurface grid size (decomposed in 100 grid size batches)

Figure 6.8: The left plot shows the performance of FWI with a resolution of 300 and grid size 100 when scaled on 1, 2, and 4
PYNQ-Z1s. The right plot shows the performance of the same FWI configuration for the python and C++ CPU implementation,
the Alveo U280, and 32 PYNQ-Z1s.

The previous exercise was done to compare the total throughput of FWI on different hardware
platforms. FWI is an application that is not fully accelerated in the PL. For each iteration in FWI, data is
transferred back and forth twice to the forward function kernel and once to the cost function kernel. In
general, transferring data between host memory and PL is detrimental to performance but necessary
for this FWI hardware design. To compare the throughput of the hardware-accelerated functions on
PYNQ-Z1 and Alveo U280 the throughput is computed under the assumption that the entire algorithm

52 6. Results

is performed by the hardware functions. In other words, the time spent in hardware functions is taken
as the total execution time. The same exercise is performed for the software part and the results are
presented in Table 6.4. The table shows that the hardware throughput of the PYNQ-Z1, CPU baseline,
and Alveo U280 are respectively 408, 359, and 934 grid cells per second. These numbers are displayed
to show that for an application fully implemented in hardware the PYNQ-Z1 performs a factor of 1.36
better than the CPU baseline and only a factor of 0.44 worse than the Alveo U280. This means that
by extrapolating, 3 PYNQ-Z1s are able to achieve the same performance as an Alveo U280. It should
be noted that the comparison made is not entirely fair for several reasons discussed in Section 6.3.4,
where other metrics of comparison between low and high-end FPGAs are presented.

Throughput (grid cells / second) PYNQ-Z1 CPU Alveo U280
Total 21 245 658
Software part 23 772 2861
Hardware part 408 359 934

Table 6.4: The throughput for different hardware platforms for an FWI configuration with a resolution of 300 and grid size of 100.
The software and hardware throughput are computed under the assumption that their respective execution time was the total
execution time.

Vertical scaling
The hardware design that was used in the previous section was bounded in resolution and grid size by
the PYNQ-Z1 resources. The Alveo U280 FPGA has orders of magnitude more resources available
which makes it possible to explore the impact of vertical scaling by using copied compute units. Vertical
scaling is applying domain decomposition within one node, orthogonal to horizontal scaling where the
domain is decomposed over multiple nodes, as was done for the PYNQ-Z1s in the previous section. In
Figure 6.9 two plots are displayed to compare different combinations of vertical and horizontal scaling.
In the left plot (A) from left to right, the first configurations consist of a single compute unit design that
can process 100 grid cells on one node. The second configuration also processes 100 grid cells per
node but divides the batches over two nodes. The third configuration processes 100 grid cells per
compute unit and consists of two compute units in one hardware design on one node. The right plot
(B), consists of the same configurations for resolution 1000.

From plots A and B a number of observations can be made. First, in both plots, the configura-
tions applying vertical scaling have similar performance to the configurations with horizontal scaling.
In plot A, the configuration with two compute units performs slightly worse than the configuration with
one compute unit but two nodes. In plot B this is the other way around. In both hardware designs,
the kernels are connected to memory banks DDR0 and DDR1. This means that the FPGA internally
needs to schedule the execution of the compute units such that their data transfers do not interfere
with each other. In plot A the resolution is much higher and consequently, the data transfers between
the FPGA and host memory are larger than for the 1000 resolution design. A possible explanation that
the higher resolution design with multiple compute units slightly under-performs compared to the lower
resolution design is because the scheduling for data transfer between the two compute units and host
memory is more complicated. Despite these small discrepancies, the configurations that apply vertical
or horizontal scaling perform much better than the configurations that do not. An important conclusion
is that the choice of FWI configuration relates to a trade-off between the quality of the results and the
performance of the algorithm. The resources can be utilized to achieve high-quality results by using a
high resolution or they can be used to achieve higher throughput by using multiple compute units with
a lower resolution.

In summary the following conclusions were derived from the experiments in this section:

• Horizontal scaling of FWI results in a linear performance increase.

• Because FWI is only partially implemented in hardware, the type of host processor influences the
total performance strongly.

• 32 PYNQ-Z1s are required to match the throughput of 1 Alveo U280 for the full algorithm. Con-
sidering only the hardware accelerated part of the algorithm, 3 PYNQ-Z1s outperform the Alveo

6.3. FWI results 53

200 1000 5000
A

0

10

20

30

40

50

60

Ex
ec

ut
io

n
tim

e
(s

)
FWI vertical and horizontal scaling for 5000 resolution design

R=5000 G=100 N=1 CU=1
R=5000 G=100 N=2 CU=1
R=5000 G=100 N=1 CU=2

200 1000 5000
B

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
tim

e
(s

)

FWI vertical and horizontal scaling for 1000 resolution design
R=1000 G=200 N=1 CU=1
R=1000 G=100 N=2 CU=1
R=1000 G=100 N=1 CU=2

Total subsurface grid size (decomposed in G grid size batches)

Figure 6.9: A comparison of vertical, horizontal, and no scaling for 1000 and 5000 resolution FWI configurations on Alveo U280.
R denotes the resolution, G the batch of grid cells per compute unit or per node, and CU the number of compute units.

U280.

• The performance increases linearly when scaling vertically and horizontally. When scaling verti-
cally, a trade-off is made between performance and accuracy, defined by the resources invested
in resolution or decomposed local grids.

6.3.3. Performance
In this section, an FWI hardware design utilizing a high percentage of Alveo U280 resources is com-
pared in terms of performance to the CPU baselines. In Figure 6.10 an overview is presented of the
execution time of the python and C++ implementation on CPU and in combination with respectively Oc-
toRay and pynq and OpenCL on Alveo U280. The FWI configuration processes 100 grid size batches
with a resolution of 8000. The utilization of the hardware design is shown in the top row of Table 6.2.

100 1000 5000
Total subsurface grid size (decomposed in 100 grid size batches)

0

50

100

150

200

250

Ex
ec

ut
io

n
tim

e
(s

)

FWI performance of Alveo U280 versus CPU baselines
CPU Python
CPU C++
Alveo U280 OctoRay
Alveo U280 OpenCL

Figure 6.10: The performance of an 8000 resolution and 100 grid size FWI configuration. The comparison is made for the C++
and python implementation on CPU, the former in combination with OpenCL and the latter in combination with OctoRay and
subsequently pynq, on an Alveo U280 FPGA.

The first observation is that the CPU baseline C++ implementation is approximately twice as fast
as the python implementation. This effect is propagated in the Alveo U280 results as the OctoRay and
therefore python implementation is approximately two times slower than the C++ OpenCL implemen-
tation. Additionally, the OctoRay implementation suffers from the overhead of transferring data back

54 6. Results

and forth between the client and worker. The OpenCL Alveo U280 implementation attains the highest
performance, being more than twice as fast as the CPU C++ implementation. It should be noted that
in general high-end FPGA acceleration can result in much higher speed-ups. These higher speed-ups
were not attained with the FWI hardware implementation due to several reasons. First and foremost,
the hardware design was made by a software engineer with no prior experience in hardware design or
FPGA development. HLS tools were used to achieve a working, but far from optimal hardware design.
Secondly, FWI is not fully implemented in hardware and requires a significant part of the algorithm
to be processed on the host processor. This also causes multiple large data transfers from the host
processor’s main memory to PL during each iteration of FWI. Data transfer is a common bottleneck in
performance and should be avoided as much as possible. Consequently, there are many possibilities
to improve the created hardware design. It should be noted that the focus of this work was not to im-
plement the most optimal hardware design for FWI.

In Figure 6.11, the overhead induced by OctoRay and consequently Dask is displayed. Dask states
that the overhead of scheduling a single task is approximately 1 millisecond [56]. The rest of the
overhead is due to the data transfers between the client and workers. The total overhead consists of
respectively 0.45%, 0.081% and 0.037% of total execution time for the 100, 1000 and 5000 input sizes.
The overhead of scheduling is minimized by only scheduling a single task for the sum of batches and
decomposing them locally.

100 1000 5000
Total subsurface grid size (decomposed in 100 grid size batches)

0

5

10

15

20

25

30

35

Ov
er

he
ad

 fr
om

 D
as

k
(m

s)

Overhead from Dask
Dask overhead

Figure 6.11: The overhead in milliseconds induced by Dask for 100, 1000 and 5000 total subsurface grid sizes executed by an
8000 resolution 100 grid size FWI configuration.

6.3.4. Cost and utilization
In the previous section, the performance of several FWI configurations scaled with different techniques
was presented. To provide a better comparison of the different hardware platforms not only the perfor-
mance should be taken into account, but also the cost of the platform and whether the full potential of
the platform is utilized. In this section, the focus lies on comparing the low-end and high-end FPGAs
in terms of cost and utilization.

In Table 6.5 an overview is given of the prices, at the time of writing, for the different hardware plat-
forms targeted in this work. Additionally, the extrapolated prices for the number of PYNQ-Z1s to match
the C++ CPU implementation and the Alveo U280 implementations when considering the total through-
put and only the hardware throughput are presented. It should be noted that to utilize the PYNQ-Z1s
in parallel with OctoRay, a local network consisting of high throughput switches and ethernet cables is
also required that were described in Section 6.1.2. A standalone CPU also requires RAM and other
components to process the algorithm, which is why the price of the laptop containing the CPU has been
used in this comparison.

6.3. FWI results 55

In the throughput comparison of PYNQ-Z1s, the baseline CPU, and Alveo U280s, the hardware
throughput was introduced for a theoretical application of FWI where the entire algorithm is executed in
the PL. This theoretical scenario is introduced to be able to isolate and compare the hardware acceler-
ation of the FPGAs without interference from the host processor’s performance. The presented prices
in Table 6.5 show that a PYNQ-Z1 setup consisting of 32 nodes costs about 2000 dollars less than an
Alveo U280 in combination with a server-grade processor. This number suggests that the PYNQ-Z1
setup could be a viable alternative for this FWI configuration. It is important to understand that this
comparison is made for a hardware design that utilizes nearly the full resources of PYNQ-Z1, while
only a fraction of the Alveo U280. Additionally, two laptops at a price of 2200 dollars would outperform
both the 32 PYNQ-Z1s and the Alveo U280, but also while fully utilizing its resources.

Alveo U280 HP Zbook studio G5
(Intel I7 8750H CPU) PYNQ-Z1 3 PYNQ-Z1s 22 PYNQ-Z1s 32 PYNQ-Z1s

FPGA ($) 8.145,40 - 252,04 3 x 252,04 22 x 252,04 32 x 252,04Processor ($) 2133,79 1099
Total ($) 10.279,19 1099 252,04 756,12 5544,88 8065,28

Table 6.5: Cost overview in dollars of Alveo U280 and Intel Xeon Gold host processor, PYNQ-Z1 including dual-core cortex A9
host processor and an Intel I7 8750H processor. The prices displayed were the cheapest available in the Netherlands at the
time of writing.

Table 6.2 presents an overview of the percentage of the total utilization used for different FWI con-
figurations for Alveo U280. The bottom row of the table shows the percentage of resources used for
the design allowing for a maximum resolution of 300 while processing 100 grid-size batches. This was
the design used in the throughput compared with the other platforms. Clearly, this design utilizes only
a fraction of the total resources available in the Alveo U280.

To provide an understanding of the resources utilized by the different hardware setups, Table 6.6
shows the total available resources and the factor of difference for PYNQ-Z1 and Alveo U280 in the first
four rows. The bottom four rows show the utilized resources for the FWI design used in the previous
comparisons on different hardware setups. A complete overview of the utilization of all FWI hardware
designs on Alveo U280 was shown in Table 6.2. The utilized resources numbers show that even though
using 32 PYNQ-Z1 boards can match the total throughput of an Alveo board for an FWI design with rel-
atively low resolution, the total amount of resources is much higher than that of the Alveo. This makes
sense as the Alveo applies sequential domain decomposition processing batches of 100 grid cells one
after the other utilizing the same resources for each batch. On the contrary, the PYNQ-Z1s process
the grid batches in parallel using a set of full resources for each grid batch. The bandwidth from the
PL to the main memory on an Alveo U280 card is orders of magnitude higher than than the PYNQ-Z1
bandwidth shown in Table 2.1. Additionally, the multiple PYNQ-Z1 setups suffer from overhead when
transferring data over the ethernet cables and switches to disperse and merge the decomposed grids.
When considering the theoretical scenario of FWI fully accelerated in PL, only 3 PYNQ-Z1 nodes are
required to match the Alveo U280 in hardware throughput, using a similar amount of memory resources,
half the LUTs and a fifth of the FFs.

Available resources LUT (x1000) FF (x1000) DSP BRAM URAM
PYNQ-Z1 53.2 106.4 220 280 (18Kb) -
Alveo U280 1304 2607 9024 2016 (36Kb) 960 (288Kb)
Factor 24.5 24.5 41 14.4 -
Utilized resources for FWI R=300 G=100
1 PYNQ-Z1 26.6 17.03 33 4.7 (Mb) 0
3 PYNQ-Z1s 79.8 51.01 99 14.1 (Mb) 0
32 PYNQ-Z1s 851.2 545 1056 150.4 (Mb) 0
Alveo U280 183 287 90 12.3 (Mb) 11.1 (Mb)

Table 6.6: An overview of the total available resources and the utilized resources for 1, 3, and 32 PYNQ-Z1s as well as 1 Alveo
U280 FPGA for an FWI hardware design with resolution 300 processing 100 grid size.

56 6. Results

6.3.5. Design-build duration
In the previous section low and high-end FPGAs were compared in terms of cost, utilization, and
throughput. Another metric of comparison is the design-build duration. As explained in Chapter 2,
the design flow for FPGAs is a complex, time, memory, and computationally demanding process. Be-
cause each step of the design flow is prone to errors, verification and simulation are performed after
each phase. Although these methods help trace initial errors, some errors are only discovered when
testing the final bitstream. Therefore, the design-build duration forms an important metric for the devel-
opment cycle and consequently the total time to market an application. To provide a fair comparison,
Figure 6.12 shows the design-build duration of FWI designs that utilize a high percentage of their re-
spectively targeted platforms’ resources. The figure shows the time spent to synthesize the kernels and
the time spent in the rest of the design-build. This differentiation was made because during HLS hard-
ware design the conversion from software written kernels to synthesized kernels is an important target
where a developer can validate the correctness of the kernel code. In general, this phase is iterated
over more often than the entire design-build duration during the application development cycle. The
figure shows that an 8000 resolution hardware design for Alveo U280 takes around 4 and a half hours
and a 300 resolution design takes 3 hours and 15 minutes. These designs require a total build duration
of respectively 9 and 6 times more than the PYNQ-Z1 total build duration of 35 minutes. It should be
noted that the PYNQ-Z1 bitstream was built on an HP Studio Zbook G5 personal laptop while the Alveo
U280 bitstream was built on the qce-alveo01 server from TU Delft containing 40 server-grade logical
cores and 96 GB of RAM.

These numbers show that the development cycles of applications for a low-end FPGA can be per-
formed quicker than for high-end FPGAs. It should be noted that a generated bitstream for a certain
type of FPGA can be copied to any number of FPGAs of the same type. Therefore the deployment of
an application on a multiple PYNQ-Z1 setup only requires the extra effort of setting up the distributed
execution with OctoRay. The improvements to OctoRay were important in order to reduce the effort
of setting up distributed execution to a minimum and make it reusable for different configurations and
applications.

PYNQZ1 (300,100) Alveo U280 (300,100) Alveo U280 (8000,100)
Targeted platform and type of FWI design (resolution,grid size)

0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e
(s

)

Design build duration
Rest of design build
Kernel synthesis

Figure 6.12: The total design-build duration is divided into kernel synthesis and the remaining build duration for three hardware
designs of FWI.

6.3.6. Power
Figure 6.13 displays the global trends in internet traffic, data center workload, and energy consump-
tion from the International Energy Agency (IEA). The trends are relative to 2010 but clearly show that
although internet traffic and data center workload has increased considerably in the last decade, the
energy consumption has only slightly increased. It should be noted that these are global trends. A
European Commission study shows that in Europe data centers accounted for 2.7% of the electricity
demand in 2018, with energy consumption of 76.8 TWh. The absolute increase in data center energy
consumption is expected to grow by 28% to 98.52 TWh while the relative increase of electricity demand
will reach 3.21% by 2030 [57].

6.3. FWI results 57

2010 2015 2016 2017 2018 2019 2020
Years

2

4

6

8

10

12

14

16

In
de

x
1

=
20

10

Global trends in internet traffic, data center workload
and energy consumption

Internet traffic
Workload
Energy consumption

Figure 6.13: The global trends in user internet traffic, data center workload, and energy consumption. The numbers in this graph
are relative to 2010. Data was taken from IEA [58]

The reason energy consumption is not increasing linearly with workload and internet traffic is due to
the developments in energy-efficient hardware and software as well as physical improvements in the
cooling systems of data centers [59]. From the European expected trends, it can be concluded that
the growth in workload is outpacing the developments in energy efficiency. These trends emphasize
the importance for hardware and software developers to be conscious of their application’s and imple-
mentation’s energy consumption.

In Figure 6.14 the power and energy consumption for different hardware platforms and FWI config-
urations are displayed. Power was measured with the setup from University of Kassel for the PYNQ-Z1
designs with resolution of 300 and grid sizes of 100 and 20. The setup only measured the power of the
PL and not of the ARM core. The Alveo U280 power was measured with the internal sensor and the
xbutil tool that comes with XRT, which also does not measure the host processor power consumption.
Because of this, the PYNQ-Z1 extrapolated numbers for 3 and 32 devices were based on the measured
power of the design with resolution 300 and grid size 100. The energy consumption is calculated in
Joules per 100 processed grid cells. Instead of using the total execution time to calculate the energy,
the time spent in the hardware functions was used because the power measurements are based on
the power consumed in the hardware functions.

It can be observed that an increase in total grid size does not affect the power consumption for the
FPGAs. This makes sense because in these measurements the total grid size was increased but the
algorithm processes the total grid in batches of the same size. Therefore the computational complexity
and memory demand for each batch are approximately the same resulting in constant power consump-
tion. Because the power consumption remains constant, independent of the grid size, the extrapolation
to 32 PYNQ-Z1s in terms of power is possible. In practice, the full throughput of the PYNQ-Z1s is only
achieved when they process 100 grid cells per node, to a total of 3200. Additionally, dividing a total
of 100 grid cells over 32 nodes by processing 3 grid cells per node does not make sense in practice
because a minimum grid size is necessary to achieve reliable results. Nevertheless, with the obser-
vation of constant power regardless of total grid size, it is possible to compare the PYNQ-Z1s and the
other hardware platforms. Another observation is that the impact of a lower or higher utilization is very
small on the power consumption for PYNQ-Z1 and Alveo U280. The Alveo U280 power measurement
accuracy is more coarse-grained than the PYNQ-Z1 setup which is why the difference, less than 1
Watt, could not be measured. It should be noted that the idle power consumption of the Alveo boards
is only 2 Watts less than the measured power during execution, which means that the FWI hardware
designs require little power. One of the explanations for this is that a significant part of the algorithm is
executed on the host processor of which there are no power measurements.

58 6. Results

100 1000 5000

100

101

Po
we

r i
n

W
at

t

100 1000 5000

100

101

En
er

gy
 in

 (J
ou

le
s /

 1
00

 g
rid

 c
el

ls)

Z1 measured R=300 G=100
Z1 measured R=300 G=20
Alveo measured R=8000 G=100
Alveo measured R=300 G=100
3 Z1s extrapolated R=300 G=100
32 Z1s extrapolated R=300 G=100

Power and energy consumption of FWI on different hardware platforms

Total subsurface grid size (decomposed in 100 grid size batches)

Figure 6.14: The power and energy consumption of the PYNQ-Z1, and Alveo U280 FPGAs. The power is measured for total
grid sizes 100, 1000, and 5000, decomposed in batches of 100 grid cells. The energy is calculated by using the time spent in
the accelerated part of the algorithm as the power is also only measured over that part.

Because the power remains approximately constant irrelevant of resolution and grid size, but the
execution time decreases for lower utilization designs, the energy consumption per 100 grid cells also
decreases for these designs. The higher resolution designs take longer to process batches of 100 grid
cells consequently resulting in higher energy consumption. This can be seen in the figure when com-
paring the 8000 and 300 resolution configurations for FWI on Alveo U280 and the 100 and 20 grid size
designs for PYNQ-Z1. The energy consumption for a total grid size of 100 is slightly higher than for the
1000 and 5000 grid sizes. This is because when processing one batch, the overhead of initialization is
relatively higher than when processing multiple batches. Because the power is measured for the hard-
ware functions, conclusions about power consumption can only be made for the theoretical scenario
that FWI is entirely accelerated in hardware and does not require a host processor for computations. In
this scenario, the Alveo U280 consumes 4.1 Joules per 100 grid cells which is approximately 15 times
more than the PYNQ-Z1s at 0.27 Joules per 100 grid cells. The 8000 resolution design consumes 31
Joules per 100 grid cells, which is 115 times more than the PYNQ-Z1.

In summary, the following conclusions were derived from the experiments in this section:

• The power was only measured for the PL.

• Power consumption is only minimally affected by the resolution and grid size.

• Higher resolutions lead to higher energy consumption as the execution time increases and the
power remains constant.

6.4. CNN results
This section discusses the results from the CNN experiments with OctoRay on the HACC cluster’s
Alveo U280 FPGAs. The application was included in this work to compare a multi-input dependent
application to a single-input dependent application in terms of scalability. There are two important dif-
ferences between CNN and FWI. First, unlike FWI, CNN is completely implemented in hardware and
only requires the host processor as an interface to provide input data and retrieve output data. Next,
the size of the hardware design grows based on the input for FWI inversion, while it does not for CNN.
In other words, to implement an FWI design for a higher resolution or grid size, more resources of the
FPGA are necessary.

The CNN is different in this regard, as the input is always in the same format the used resources
are independent from the number of inputs. Because a single instance of the CNN does not utilize all
the resources of the Alveo U280, multiple instances of the CNN can fit into a single hardware design,
which is referred to as vertical scaling.

6.4. CNN results 59

6.4.1. Scalability
In this section, the effect of vertical and horizontal scalability for the CNN application is displayed and
discussed. Vertical scaling is applied by introducing multiple instances of the CNN in one hardware
design, where horizontal scaling is performed with the help of the OctoRay framework by scaling on
multiple Alveo U280 nodes. To ensure the most reliable results of scalability, an analysis is performed
to find the input size for which the maximum throughput of a single instance hardware design can be
reached. In Figure 6.15, the throughput in images per second is displayed for different batch sizes in
the OctoRay setup with a single instance hardware design and 1 dask worker. The worker is located
on a different machine than where the client is run, as specified in the caption.

100 101 102 103 104

Batch size [images 32x32 RGB]

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 [i

m
ag

e/
s]

Throughput measured for increasing batch sizes

Figure 6.15: The throughput in images per second of 1 dask worker executing the CNN application with a 1 instance hardware
design for batch sizes 1, 100, 500, 1000, and 10000 of 32x32 RGB images. The dask scheduler and client were on the HACC
alveo3b with IP 10.1.212.126 and the dask worker on alveo3c with IP 10.1.212.127.

From Figure 6.15 it can be seen that the throughput of a single instance hardware design on one
node reaches its limit at approximately 3050 images per second. For a batch size of one thousand
images, the reached throughput is only 12 images per second slower than the limit of 3050 images per
second. In order to correctly analyze the benefits of vertical and horizontal scaling a batch size larger
than 1000 per compute unit is used such that the maximum throughput is reached.

1000 5000 10000 50000 100000
Batch size [images 32x32 RGB]

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
tim

e
(s

)

CNN total execution time
1 CU 1 node
2 CUs 1 node
4 CUs 1 node
8 CUs 1 node
10 CUs 1 node
1 CU 4 nodes

1000 5000 10000 50000 100000
Batch size [images 32x32 RGB]

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 [i

m
ag

e/
s]

CNN total throughput

Figure 6.16: The total execution time and throughput for CNN designs with 1,2,4,8 and 10 CUs on 1 node with 1 dask worker
and a CNN design with 1 CU on 4 nodes and dask workers. The numbers represent the average of 5 runs for batch sizes 1000,
5000, 10000, 50000, and 100000 of 32x32 RGB images from the cifar-10 dataset.

60 6. Results

In Figure 6.16 the left plot displays the total execution time and the right plot the total throughput for
5 different OctoRay configurations on one node, and one configuration on 4 nodes. The horizontal axis
displays the batch sizes of the experiments. It should be noted that the total batch size is displayed,
which means that a design with 4 compute units processes 250 images per compute unit for a total
batch size of 1000 images. Consequently, the compute units do not reach the maximum throughput
until the total batch size is 1000 fold of the amount of compute units. From the right plot in Figure 6.16,
it becomes clear that the total throughput scales linearly with the amount of compute units present in a
design. The total throughput achieved from horizontal scaling of a single instance design on four nodes
is equal to that on a vertically scaled node containing four CNN instances.

6.4.2. Build design time
In this section, the development cycle to produce CNN designs with different numbers of instances is
discussed. The CNNwas built with the FINN compiler, unlike FWI that was manually implemented. The
CNNwas implemented as a BNN, which brings several advantages. First, FPGAs are known to perform
orders of magnitude better on binary operations compared to floating point operations. Therefore,
quantizing the weights and activations to 1 or 2 bits instead of using floating points can benefit the
performance greatly. As explained in Section 3.2.1, high accuracy can still be attained with 1 or 2 bit
quantization. In addition to the performance benefits, using 1 or 2 bits instead of floating points also
requires much less memory resources. In Figure 6.17, the design build duration of hardware designs
containing different numbers of CNN instances is shown. The duration of the different stages of the build
are specified in the bars. From the figure it can be read that a single instance CNN takes approximately
2 hours and 5 minutes, the other extremity of 10 instances takes 5 hours and 23 minutes. Clearly, the
design build duration does not increase linearly.

1 2 4 8 10
Number of CNN compute units (CU) in the design

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m

e
(s

)

Design build duration
Kernel synthesis
Kernel linking
Logic optimization
Logic placement
Routing
Bitstream generation

Figure 6.17: The design-build duration for 1, 2, 4, 8, and 10 CU CNN designs decomposed into the different components of the
total design-build.

When creating designs with multiple instances, the kernel synthesis only needs to take place once
which is why it stays constant. In Figure 6.18 the percentage of the total build duration is specified
for the different phases of the build. Because the kernel synthesis duration stays the same but the
total build duration increases, the relative time spent in this phase decreases for designs with multiple
instances. Additionally, it can be observed that especially the kernel linking and routing phases are
relatively more time consuming for designs with multiple compute units. This is an expected result as
linking more kernels is complexer than fewer kernels. More kernels also means more resources of the
FPGA are used and further spread over the board. Amongst other things, this makes the routing of
interconnections a more challenging and time consuming task. It should be noted that the design build
duration was measured on the qce-alveo01 server from TU Delft. As this is a shared server, the load
may have varied depending on other users’ activity and affected the results.

6.4. CNN results 61

Kernel synthesis Kernel linking Logic optimization Logic placement Routing Bitstream generation
Components that make up the total design build duration

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Pe

rc
en

ta
ge

 o
f t

ot
al

 d
es

ig
n

bu
ild

 d
ur

at
io

n
(%

) Relative design build duration
1 CU
2 CUs
4 CUs
8 CUs
10 CUs

Figure 6.18: The throughput in images per second of 1 dask worker executing the CNN application with a 1 instance hardware
design for batch sizes 1, 100, 500, 1000 and 10000 of 32x32 RGB images.

7
Conclusions and future work

7.1. Conclusions
In this work a twofold investigation was performed. To improve the accessibility and aid the adoption of
FPGAs the OctoRay framework was developed that enables users to transparently scale applications
horizontally and vertically on FPGAs. Additionally, an FPGA implementation for FWI was developed and
used to investigate the viability of a distributed low-end FPGA composition alternative to a single high-
end FPGA. In this chapter the conclusions from these investigations are used to answer the defined
research questions.

1. How can FPGAs be used to scale data analytics applications in a transparent and accessible
way?

2. Can FWI be accelerated and scaled on FPGAs?

3. Is a composition of low-end FPGAs a viable alternative to a data center-class FPGA in terms of
performance, power efficiency, and cost when accelerating FWI?

4. How does vertical and horizontal scaling affect the performance of FPGA accelerated applica-
tions?

7.1.1. Accessibility
The scalability of data analytics applications on FPGAs was addressed by developing the OctoRay
framework that enables users to transparently scale applications. The framework was extended from
an initial collection of Jupyter notebooks that demonstrated how the parallelization framework Dask
could be used to scale applications on multiple FPGAs. The new architecture implemented into a
library in this work led to following improvements.

1. Automatic deployment: To improve the usability and large scale deployment of OctoRay the
framework now implements automatic SSH deployment of a Dask cluster over any number and
type of nodes.

2. OctoRay kernels: The initially rigid architecture was directed at scaling a single application on
same type FPGAs. OctoRay kernels were implemented to incorporate the specifications and
configurations of an application in a single entity. This allows users to create and execute endless
application types and configurations with minimal effort. Internal helper functions were developed
to handle the deployment of OctoRay kernels on the cluster. Most importantly, OctoRay kernels
form a layer of abstraction that automatically handles vertical and horizontal scaling without extra
user effort. The cluster and worker deployment for anOctoRay kernel that scales a single instance
hardware design over 10 nodes or a ten instance design on one node is completely handled
internally.

3. Library: To improve the accessibility and ease of use, the OctoRay framework was packaged
into a library and made available on the PyPI index making it pip installable.

62

7.1. Conclusions 63

7.1.2. FWI acceleration
This work was performed in a collaboration with ALTEN Netherlands and the ABS research group from
TU Delft. ALTEN provided a C++ implementation of the FWI application with the task to accelerate
it on an FPGA. Therefore, the FPGA design flow was performed to develop hardware designs for
the PYNQ-Z1 and Alveo U280 FPGAs. Different optimization techniques were applied to utilize the
FPGA resources efficiently. These efforts led to a FWI hardware design with resolution 300 and grid
size 100 for a low-end PYNQ-Z1 FPGA and an 8000 resolution and grid size 100 design for the high-
end Alveo U280 FPGA. Different solution architectures were developed that consisted of python and
C++ host code and PYNQ and OpenCL hardware communication layers. It was concluded that the
baseline python implementation performs 2 times slower than the C++ implementation. This effect
propagated in the FPGA implementations, where the OpenCL and C++ implementations performance
was measured at twice the PYNQ and python implementation. The latter performed similarly to the
C++ CPU baseline. In general, accelerating an application on a high-end FPGA should result is much
higher speedups compared to a regular personal laptop. For ease of use and reproducability, HLS
code was used to implement the hardware designs. This has its benefits but does not properly harness
the capabilities of the FPGA. In addition, FWI was only partially implemented in hardware which led
to two consequences. First, the performance of the host processor had a significant impact on the
total performance. Secondly, each iteration of FWI required multiple data transfers between the host
processor main memory and the PL of the FPGA, which is detrimental to performance. Conclusively, a
higher performance was achieved by accelerating FWI on a high-end FPGA but with the current level
of optimization a CPU implementation is a more cost-efficient alternative.

7.1.3. Cost-efficient compositions
Data center class FPGAs such as the Alveo U280 are powerful machines that can attain enormous
performance, throughput and latency boosts compared to traditional CPUs. Alternatively, under the
condition that data parallelism can be applied, a cluster of low-end FPGAs could be used as an alter-
native composition. After having established that domain decomposition could be used to divide a total
subsurface grid into independent local domains it became possible to apply data parallelism to invert
the local domains in parallel on PYNQ-Z1 low-end FPGAs.

It was shown that 32 PYNQ-Z1 devices, executing in parallel, are required to achieve the throughput
of a single Alveo U280 FPGA for a FWI configuration with a resolution of 300 and grid size 100. The
multi-node PYNQ-Z1 setup is approximately 20% cheaper than the data center class alternative. As
only a fraction of the Alveo U280s resources are required for this FWI implementation, the full potential
of the accelerator is not harnessed. Moreover, it appeared that two regular laptops outperform the
Alveo and multi-node setup at a quarter of the Alveo’s price.

To extend the analysis, a theoretical scenario was used that compared the hardware platforms
solely based on the hardware accelerated part of FWI. In such a scenario 3 PYNQ-Z1s outperformed
the laptop and achieved 44% of the Alveo U280s throughput in grid cells processed per second. From
the power measurements it was shown that PYNQ-Z1 boards consume 15 times less energy than an
Alveo U280 when processing a 300 resolution configuration.

From these results it is possible to conclude that for applications that do require only a portion of
the full potential of high-end FPGAs, rapid development cycles and low energy consumption, a device
composition of multiple low-end FPGAs can be a viable alternative. Full Waveform Inversion was
characterized as a multi-input dependent algorithm of which the quality of the results is mostly dictated
by the resolution. In this work, experiments were performed on synthesized subsurface grid data sets
with only homogeneous velocities. The non-linear properties over the entire subsurface grid were not
taken into account after applying domain decomposition. Although the implementations in this work
can not directly be applied in practice, they do show the potential of FPGA acceleration and scaling for
FWI. Additionally, this allowed to investigate the effects of deploying a multi-input dependent application
on different FPGA compositions.

64 7. Conclusions and future work

7.1.4. Scalability
The CNN application was introduced to this work to compare the potential of horizontal and vertical
scaling applied to the single-input dependent CNN and the multi-input dependent FWI.

The scalability of multi-input dependent FWI was analyzed by comparing the performance of ver-
tical scaling, horizontal scaling, and no scaling. To compare these scaling techniques, three different
hardware designs were used to invert a total subsurface grid of 200 cells at a resolution of 1000. The
vertical scaling setup consisted of a single Alveo U280 node implementing a hardware design with two
compute units each processing 100 grid cells in parallel. The horizontal scaling setup consisted of
two Alveo U280 nodes each implementing a hardware design with one compute unit processing 100
grid cells. The third setup without scaling consisted of a single Alveo U280 implementing a hardware
design processing the entire subsurface grid of 200 cells. The domain decomposed vertical and hori-
zontal scaling setups performed similarly and showed a speed up of 2 compared to the setup inverting
the entire subsurface grid. From these results it can be concluded that domain decomposition allows
for parallel execution of smaller grid sizes and the execution of the smaller grids is faster. As long as
the resources allow it, vertical scaling is a more efficient way of scaling as it does not require additional
nodes. In the case of FWI, a trade off has to be made for what purpose the resources are used, either
to improve quality of the results by increasing the resolution or in the performance of the algorithm by
investing in multiple compute units.

For the CNN application there is no such trade off between quality and performance. Therefore,
the throughput of the algorithm is dictated by the amount of compute units fitting on a single hardware
design and the number of the nodes scaled on. The results showed that the total throughput in images
classified per second scaled linearly for either type of scaling, horizontally on nodes and vertically with
multiple compute units.

7.2. Future work
In this work an FPGA implementation of FWI was developed. Additionally, OctoRay was expanded to
a scalability framework for FPGAs. This project was carried out in a specific time frame, bounding the
possible research directions that could be further explored. Therefore a number of recommendations
and idea’s for future work are provided below.

• FWI was only partially implemented for an FPGA. By fully implementing the algorithm in hardware,
the performance loss caused by the large and often occurring data transfers between the host
main memory and the PL could be mitigated by the enormous internal bandwidth of FPGAs. It
should be noted that fully implementing the algorithm in hardware would require more resources
and consequently decrease the possible resolution and grid size processed. An analysis could
be performed to investigate the viability of fully implementing FWI in hardware. Additionally, an
interesting point of comparison would be a GPU implementation of FWI.

• The kappa matrix can attain very large proportions for high resolutions and grid sizes. In the
current implementation, the matrix was kept in main memory and transferred to the PL for each
kernel computation. Because the kappa matrix does not change over the course of the iterations,
this results in a highly redundant data transmission. The current hardware design could be im-
proved by reducing these redundant transmission by storing the kappa matrix in PL after the first
transmission.

• As mentioned before, FPGAs attain much higher peak performance when processing binary in-
stead of floating point operations. An investigation of quantizing the pressure field data from
floating point to fixed point was performed for the synthetic data sets. The investigation produced
a distribution for the temple data set and concluded that a 4 bit integer with precision 27 and 1
sign bit could be used to achieve an acceptable accuracy. As the synthetic data set consisted of
only two different homogeneous velocities, these results are unreliable and left out of this work.
A future project could analyze the distribution of real data sets and potentially improve the FPGA
acceleration by applying fixed point quantization.

7.2. Future work 65

• From the FWI performance results it was shown that the OpenCL and C++ implementation per-
formed significantly better than the python and pynq implementation. OctoRay could be extended
to support the execution of C++ and OpenCL binaries.

• The OctoRay framework currently provides several CNN and FWI bitfiles for out-of-the box usage.
To further increase the range of usability, a collection of bitfiles for popular applications could be
made available such that they can easily be scaled up with OctoRay. A concept similar to the
Model Zoo available in the machine learning field.

A
Full Waveform Inversion

A.1. Cost Function C++
Listing A.1: Cost Function

1 void ConjugateGradientInversion::getUpdateDirectionInformation(
2 const std::vector<std::complex<double>> &residualVector,
3 core::dataGrid2D<std::complex<double>> &kappaTimesResidual)
4 {
5 int l_i, l_j;
6 kappaTimesResidual.zero();
7
8 core::dataGrid2D<std::complex<double>> kDummy(_grid);
9 auto kappa = _forwardModel->getKernel();
10 for(int i = 0; i < _frequencies.count; i++)
11 {
12 l_i = i * _receivers.count * _sources.count;
13 for(int j = 0; j < _receivers.count; j++)
14 {
15 l_j = j * _receivers.count;
16 for(int k = 0; k < _receivers.count; k++)
17 {
18 kDummy = kappa[l_i + l_j + k];
19 kDummy.conjugate();
20
21 kappaTimesResidual += kDummy * residualVector[l_i+l_j+

k];
22 }
23 }
24 }
25 }

66

A.2. Forward Function C++ 67

A.2. Forward Function C++

Listing A.2: Forward Function

1 void FiniteDifferenceForwardModel::applyKappa(const core::dataGrid2D<
double>

2 &CurrentPressureFieldSerial, std::vector<std::complex<double>> &kOperator
)

3 {
4 for(int i = 0; i < _freq.count * _source.count * _receiver.count;

i++)
5 {
6 kOperator[i] = dotProduct(_vkappa[i],

CurrentPressureFieldSerial);
7 }
8 }

68 A. Full Waveform Inversion

A.3. Implementation diagram

Figure A.1: A diagram of the ALTEN provided implementation of FWI using the finite difference forward model and a conjugate
gradient descent inversion model.

Bibliography
[1] VITISLIB, Vitis Libraries, en. [Online]. Available: https://www.xilinx.com/products/

design-tools/vitis/vitis-libraries.html (visited on 06/02/2022).
[2] Blackmist, Deploy ML models to FPGAs - Azure Machine Learning, en-us. [Online]. Available:

https://docs.microsoft.com/en- us/azure/machine- learning/how- to-
deploy-fpga-web-service (visited on 05/11/2022).

[3] E. J. Houtgast, V.-M. Sima, and Z. Al-Ars, “High Performance Streaming Smith-Waterman Im-
plementation with Implicit Synchronization on Intel FPGA using OpenCL,” en-US, Nov. 2017.
[Online]. Available: https://hgpu.org/?p=17808 (visited on 06/26/2022).

[4] J. Fang, J. Chen, Z. Al-Ars, H. Hofstee, and J. Lee, “An Efficient High-Throughput LZ77-Based
Decompressor in Reconfigurable Logic,” Journal of Signal Processing Systems, vol. 92, pp. 1–
17, Sep. 2020. DOI: 10.1007/s11265-020-01547-w.

[5] J. Peltenburg, J. Van Straten, L. Wijtemans, L. Van Leeuwen, Z. Al-Ars, and P. Hofstee, “Fletcher:
29th International Conferenceon Field-Programmable Logic and Applications, FPL 2019,” Pro-
ceedings - 29th International Conference on Field-Programmable Logic and Applications, FPL
2019, Proceedings - 29th International Conference on Field-Programmable Logic and Applica-
tions, FPL 2019, I. Sourdis, C.-S. Bouganis, C. Alvarez, L. A. Toledo Diaz, P. Valero, and X. Mar-
torell, Eds., pp. 270–277, Sep. 2019, Publisher: Institute of Electrical and Electronics Engineers
(IEEE). DOI: 10.1109/FPL.2019.00051. [Online]. Available: http://www.scopus.com/
inward/record.url?scp=85075629579&partnerID=8YFLogxK (visited on 06/26/2022).

[6] InAccel, FPGA deployment and scaling on distributed systems; the missing layer, en, Mar. 2020.
[Online]. Available: https://inaccel.medium.com/fpga-deployment-and-scaling-
on-distributed-systems-the-missing-layer-a8b13302e789 (visited on 05/05/2022).

[7] W. David, David Williams Is “FPGA-Curious”, en-US, Dec. 2019. [Online]. Available: https:
//hackaday.com/2019/12/06/david- williams- is- fpga- curious/ (visited on
06/10/2022).

[8] fpgamarket, FPGA Market Size, Share and Trends Forecast to 2026 | MarketsandMarkets™.
[Online]. Available: https://www.marketsandmarkets.com/Market-Reports/fpga-
market-194123367.html (visited on 05/13/2022).

[9] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA
Technology,” Proceedings of the IEEE, vol. 103, no. 3, pp. 318–331, Mar. 2015, Conference
Name: Proceedings of the IEEE, ISSN: 1558-2256. DOI: 10.1109/JPROC.2015.2392104.

[10] xilinx, Alveo, en. [Online]. Available: https://www.xilinx.com/products/boards-and-
kits/alveo.html (visited on 05/09/2022).

[11] Ultrascale-plus-fpga-product-selection-guide.pdf • Viewer • Documentation Portal. [Online]. Avail-
able: https://docs.xilinx.com/v/u/en-US/ultrascale-plus-fpga-product-
selection-guide (visited on 06/10/2022).

[12] pynqmanual, PYNQ-Z1 Reference Manual - Digilent Reference. [Online]. Available: https://
digilent.com/reference/programmable- logic/pynq- z1/reference- manual
(visited on 05/31/2022).

[13] R. Lynette, Comparing Hardware for Artificial Intelligence: FPGAs vs. GPUs vs. ASICs – Lyn-
nette Reese, en-US. [Online]. Available: http://lreese.dotsenkoweb.com/2019/03/
30/comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-
asics/ (visited on 06/10/2022).

[14] Why the Industry is Demanding FPGAs for Advanced Driver-Assistance Systems (ADAS) - News,
en. [Online]. Available: https://www.allaboutcircuits.com/news/why-the-industry-
is-demanding-fpgas-for-adas/ (visited on 05/13/2022).

69

https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.html
https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.html
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://hgpu.org/?p=17808
https://doi.org/10.1007/s11265-020-01547-w
https://doi.org/10.1109/FPL.2019.00051
http://www.scopus.com/inward/record.url?scp=85075629579&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85075629579&partnerID=8YFLogxK
https://inaccel.medium.com/fpga-deployment-and-scaling-on-distributed-systems-the-missing-layer-a8b13302e789
https://inaccel.medium.com/fpga-deployment-and-scaling-on-distributed-systems-the-missing-layer-a8b13302e789
https://hackaday.com/2019/12/06/david-williams-is-fpga-curious/
https://hackaday.com/2019/12/06/david-williams-is-fpga-curious/
https://www.marketsandmarkets.com/Market-Reports/fpga-market-194123367.html
https://www.marketsandmarkets.com/Market-Reports/fpga-market-194123367.html
https://doi.org/10.1109/JPROC.2015.2392104
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://docs.xilinx.com/v/u/en-US/ultrascale-plus-fpga-product-selection-guide
https://docs.xilinx.com/v/u/en-US/ultrascale-plus-fpga-product-selection-guide
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
http://lreese.dotsenkoweb.com/2019/03/30/comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-asics/
http://lreese.dotsenkoweb.com/2019/03/30/comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-asics/
http://lreese.dotsenkoweb.com/2019/03/30/comparing-hardware-for-artificial-intelligence-fpgas-vs-gpus-vs-asics/
https://www.allaboutcircuits.com/news/why-the-industry-is-demanding-fpgas-for-adas/
https://www.allaboutcircuits.com/news/why-the-industry-is-demanding-fpgas-for-adas/

70 Bibliography

[15] Introduction to FPGA acceleration, en. [Online]. Available: https://www.stemmer-imaging.
com/en/technical-tips/introduction-to-fpga-acceleration/ (visited on 05/15/2022).

[16] J. Anderson, “High-level synthesis - the right side of history,” in 2016 International Conference
on Field-Programmable Technology (FPT), Dec. 2016, pp. 1–1. DOI: 10.1109/FPT.2016.
7929177.

[17] I. N. Torsvik, D. Engineer, and D. Respons, SoC FPGA Evaluation Guidelines, en-US, Feb. 2016.
[Online]. Available: https://datarespons.com/soc-fpga-evaluation-guidelines/
(visited on 05/13/2022).

[18] Ug573-ultrascale-memory-resources.pdf • Viewer • Documentation Portal. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/ug573-ultrascale-memory-resources
(visited on 06/10/2022).

[19] Ds190-Zynq-7000-Overview.pdf • Viewer • Documentation Portal. [Online]. Available: https:
//docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview (visited on 06/10/2022).

[20] HACC, Heterogeneous Accelerated Compute Cluster (HACC) Program, en. [Online]. Available:
https://systems.ethz.ch/research/data-processing-on-modern-hardware/
hacc.html (visited on 06/10/2022).

[21] Definition of Scalability - Gartner Information TechnologyGlossary, en. [Online]. Available: https:
//www.gartner.com/en/information-technology/glossary/scalability (visited
on 06/11/2022).

[22] Amdahl’s law, en, Page Version ID: 1089345282, May 2022. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Amdahl%27s_law&oldid=1089345282 (visited
on 06/10/2022).

[23] PYNQ Libraries — Python productivity for Zynq (Pynq). [Online]. Available: https://pynq.
readthedocs.io/en/v2.7.0/pynq_libraries.html (visited on 06/02/2022).

[24] S. Zeng, G. Dai, H. Sun, et al., “Enabling Efficient and Flexible FPGA Virtualization for Deep
Learning in the Cloud,” en, in 2020 IEEE 28th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Fayetteville, AR, USA: IEEE, May 2020, pp. 102–110,
ISBN: 978-1-72815-803-7. DOI: 10.1109/FCCM48280.2020.00023. [Online]. Available:
https://ieeexplore.ieee.org/document/9114855/ (visited on 06/11/2022).

[25] M. Quraishi, E. Bank Tavakoli, and F. Ren, A Survey of System Architectures and Techniques for
FPGA Virtualization. Nov. 2020.

[26] Fleet | Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. [Online]. Available: https://dl- acm-
org.tudelft.idm.oclc.org/doi/10.1145/3373376.3378495 (visited on 11/10/2021).

[27] Multiple Compute Units • Vitis Unified Software PlatformDocumentation: Application Acceleration
Development (UG1393) • Reader • Documentation Portal. [Online]. Available: https://docs.
xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Multiple-
Compute-Units (visited on 05/19/2022).

[28] M. J. Huiskes, R. E. Plessix, and W. A. Mulder, “Acoustic VTI Full-waveform Inversion with 3-
D Free-surface Topography,” en, 79th EAGE Conference &;amp; Exhibition 2017, 2017,
Publisher: EAGE. DOI: 10 . 3997 / 2214 - 4609 . 201700503. [Online]. Available: https :
//repository.tudelft.nl/islandora/object/uuid%3Af80d9779-4905-4230-
89b1-73439b9088e2 (visited on 06/11/2022).

[29] Y. Cho, R. Gibson, H. Jun, and C. Shin, “Accelerating 2-D frequency-domain full-waveform in-
version via fast wave modeling using a model reduction technique,” Geophysics, T15–T32, Jan.
2020. DOI: 10.1190/geo2018-0850.1.

[30] T. Nemeth, J. Stefani, W. Liu, R. Dimond, O. Pell, and R. Ergas, “An implementation of the acous-
tic wave equation on FPGAs,” Seg Technical Program Expanded Abstracts, vol. 27, Jan. 2008.
DOI: 10.1190/1.3063943.

https://www.stemmer-imaging.com/en/technical-tips/introduction-to-fpga-acceleration/
https://www.stemmer-imaging.com/en/technical-tips/introduction-to-fpga-acceleration/
https://doi.org/10.1109/FPT.2016.7929177
https://doi.org/10.1109/FPT.2016.7929177
https://datarespons.com/soc-fpga-evaluation-guidelines/
https://docs.xilinx.com/v/u/en-US/ug573-ultrascale-memory-resources
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://systems.ethz.ch/research/data-processing-on-modern-hardware/hacc.html
https://www.gartner.com/en/information-technology/glossary/scalability
https://www.gartner.com/en/information-technology/glossary/scalability
https://en.wikipedia.org/w/index.php?title=Amdahl%27s_law&oldid=1089345282
https://en.wikipedia.org/w/index.php?title=Amdahl%27s_law&oldid=1089345282
https://pynq.readthedocs.io/en/v2.7.0/pynq_libraries.html
https://pynq.readthedocs.io/en/v2.7.0/pynq_libraries.html
https://doi.org/10.1109/FCCM48280.2020.00023
https://ieeexplore.ieee.org/document/9114855/
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3373376.3378495
https://dl-acm-org.tudelft.idm.oclc.org/doi/10.1145/3373376.3378495
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Multiple-Compute-Units
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Multiple-Compute-Units
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Multiple-Compute-Units
https://doi.org/10.3997/2214-4609.201700503
https://repository.tudelft.nl/islandora/object/uuid%3Af80d9779-4905-4230-89b1-73439b9088e2
https://repository.tudelft.nl/islandora/object/uuid%3Af80d9779-4905-4230-89b1-73439b9088e2
https://repository.tudelft.nl/islandora/object/uuid%3Af80d9779-4905-4230-89b1-73439b9088e2
https://doi.org/10.1190/geo2018-0850.1
https://doi.org/10.1190/1.3063943

Bibliography 71

[31] S. A. Abreo Carrillo, A. B. Ramirez, O. Reyes, D. L. Abreo-Carrillo, and H. González Alvarez,
“A practical implementation of acoustic full waveform inversion on graphical processing units,”
en, CT&F - Ciencia, Tecnología y Futuro, vol. 6, no. 2, pp. 5–16, Dec. 2015, ISSN: 0122-5383,
2382-4581. DOI: 10.29047/01225383.16. [Online]. Available: https://ctyf.journal.
ecopetrol.com.co/index.php/ctyf/article/view/344 (visited on 12/08/2021).

[32] P. R. Haffinger, “Seismic Broadband Full Waveform Inversion by shot/receiver refocusing,” en,
2013. [Online]. Available: https://repository.tudelft.nl/islandora/object/
uuid%3Ad2d8d264-5037-4573-8418-a079afa8d1e7 (visited on 11/25/2021).

[33] Y. Umuroglu, N. J. Fraser, G. Gambardella, et al., “FINN: A Framework for Fast, Scalable Bina-
rized Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, arXiv:1612.07119 [cs], Feb. 2017, pp. 65–74. DOI:
10.1145/3020078.3021744. [Online]. Available: http://arxiv.org/abs/1612.07119
(visited on 06/12/2022).

[34] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two decades of progress,”
Neurocomputing, vol. 74, pp. 239–255, Dec. 2010. DOI: 10.1016/j.neucom.2010.03.021.

[35] FINN, en-US. [Online]. Available: https://xilinx.github.io/finn/ (visited on 06/02/2022).
[36] S. Balaji, Binary Image classifier CNN using TensorFlow, en, Aug. 2020. [Online]. Available:

https://medium.com/techiepedia/binary- image- classifier- cnn- using-
tensorflow-a3f5d6746697 (visited on 06/12/2022).

[37] VITISAI, Vitis AI, en. [Online]. Available: https://www.xilinx.com/products/design-
tools/vitis/vitis-ai.html (visited on 06/02/2022).

[38] S. K. Venkataramanaiah, Y. Ma, S. Yin, et al., “Automatic Compiler Based FPGA Accelerator for
CNN Training,” arXiv, Tech. Rep. arXiv:1908.06724, Aug. 2019, arXiv:1908.06724 [cs, eess] type:
article. [Online]. Available: http://arxiv.org/abs/1908.06724 (visited on 06/05/2022).

[39] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “An automatic RTL compiler for high-throughput FPGA
implementation of diverse deep convolutional neural networks,” in 2017 27th International Con-
ference on Field Programmable Logic and Applications (FPL), ISSN: 1946-1488, Sep. 2017,
pp. 1–8. DOI: 10.23919/FPL.2017.8056824.

[40] XRT, Xilinx Runtime Library (XRT), en. [Online]. Available: https://www.xilinx.com/
products/design-tools/vitis/xrt.html (visited on 06/02/2022).

[41] Apache Spark™ - Unified Engine for large-scale data analytics. [Online]. Available: https://
spark.apache.org/ (visited on 06/04/2022).

[42] D. developers, State of Dask. [Online]. Available: https://blog.dask.org/2015/05/19/
State-of-Dask (visited on 05/26/2022).

[43] PYPL PopularitY of Programming Language index, en. [Online]. Available: https://pypl.
github.io/PYPL.html (visited on 06/04/2022).

[44] Zynq-7000 Processing System IP, en. [Online]. Available: https: // www .xilinx . com/
products/intellectual-property/processing_system7.html (visited on 06/08/2022).

[45] vivado_array_partition,PragmaHLS array_partition, en-us, reference. [Online]. Available: https:
//www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-array_
partition-gle1504034361378.html (visited on 06/09/2022).

[46] 05) Array Partitioning, Reshape, and Mapping, en. [Online]. Available: https://wikidocs.
net/91000 (visited on 02/03/2022).

[47] vivado_resource, Pragma HLS resource, en-us, reference. [Online]. Available: https://www.
xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma- hls- resource-
wqn1504034365505.html (visited on 06/09/2022).

[48] vivado_pipeline, Pragma HLS pipeline, en-us, reference. [Online]. Available: https://www.
xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma- hls- pipeline-
fde1504034360078.html (visited on 06/09/2022).

https://doi.org/10.29047/01225383.16
https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/344
https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/344
https://repository.tudelft.nl/islandora/object/uuid%3Ad2d8d264-5037-4573-8418-a079afa8d1e7
https://repository.tudelft.nl/islandora/object/uuid%3Ad2d8d264-5037-4573-8418-a079afa8d1e7
https://doi.org/10.1145/3020078.3021744
http://arxiv.org/abs/1612.07119
https://doi.org/10.1016/j.neucom.2010.03.021
https://xilinx.github.io/finn/
https://medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-a3f5d6746697
https://medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-a3f5d6746697
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
http://arxiv.org/abs/1908.06724
https://doi.org/10.23919/FPL.2017.8056824
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://www.xilinx.com/products/design-tools/vitis/xrt.html
https://spark.apache.org/
https://spark.apache.org/
https://blog.dask.org/2015/05/19/State-of-Dask
https://blog.dask.org/2015/05/19/State-of-Dask
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://www.xilinx.com/products/intellectual-property/processing_system7.html
https://www.xilinx.com/products/intellectual-property/processing_system7.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-array_partition-gle1504034361378.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-array_partition-gle1504034361378.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-array_partition-gle1504034361378.html
https://wikidocs.net/91000
https://wikidocs.net/91000
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-resource-wqn1504034365505.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-resource-wqn1504034365505.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-resource-wqn1504034365505.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-pipeline-fde1504034360078.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-pipeline-fde1504034360078.html
https://www.xilinx.com/htmldocs/xilinx2018_2/sdaccel_doc/pragma-hls-pipeline-fde1504034360078.html

72 Bibliography

[49] hwh, Overlay Design — Python productivity for Zynq (Pynq). [Online]. Available: https://
pynq . readthedocs . io / en / latest / overlay _ design _ methodology / overlay _
design.html?highlight=hwh#overlay-hwh-file (visited on 06/10/2022).

[50] pynq_board, PYNQ - Python productivity for Zynq. [Online]. Available: http://www.pynq.io/
board.html (visited on 06/09/2022).

[51] neumann, Std::cyl_neumann, std::cyl_neumannf, std::cyl_neumannl - cppreference.com. [On-
line]. Available: https://en.cppreference.com/w/cpp/numeric/special_functions/
cyl_neumann (visited on 06/11/2022).

[52] bessel,Std::cyl_bessel_j, std::cyl_bessel_jf, std::cyl_bessel_jl - cppreference.com. [Online]. Avail-
able: https://en.cppreference.com/w/cpp/numeric/special_functions/cyl_
bessel_j (visited on 06/11/2022).

[53] S. Aggarwal, “Scaling up data analytics in Python using multiple FPGAs,” en, 2020. [Online].
Available: https://repository.tudelft.nl/islandora/object/uuid%3Ae54bbdca-
3e9f-4c23-8c89-463751193061 (visited on 06/13/2022).

[54] SSH — Dask documentation. [Online]. Available: https://docs.dask.org/en/stable/
deploying-ssh.html (visited on 06/14/2022).

[55] Distributed, original-date: 2015-09-13T18:42:29Z, Jun. 2022. [Online]. Available: https : / /
github.com/dask/distributed/blob/344868ace6cd10f7b99e4cd2d3830fba66a2cdcf/
distributed/deploy/ssh.py (visited on 06/14/2022).

[56] e. dask efficiency, Efficiency — Dask.distributed 2022.6.1 documentation. [Online]. Available:
https://distributed.dask.org/en/stable/efficiency.html (visited on 06/28/2022).

[57] Energy-efficient Cloud Computing Technologies and Policies for an Eco-friendly Cloud Market |
Shaping Europe’s digital future, en. [Online]. Available: https://digital-strategy.ec.
europa.eu/en/library/energy-efficient-cloud-computing-technologies-
and-policies-eco-friendly-cloud-market (visited on 06/17/2022).

[58] Global trends in internet traffic, data centres workloads and data centre energy use, 2010-2020
– Charts – Data & Statistics, en-GB. [Online]. Available: https://www.iea.org/data-
and-statistics/charts/global-trends-in-internet-traffic-data-centres-
workloads-and-data-centre-energy-use-2010-2020 (visited on 06/17/2022).

[59] D. Welle (www.dw.com), Big data centers are power-hungry, but increasingly efficient | DW |
24.01.2022, en_GB. [Online]. Available: https://www.dw.com/en/data- centers-
energy-consumption-steady-despite-big-growth-because-of-increasing-
efficiency/a-60444548 (visited on 06/17/2022).

https://pynq.readthedocs.io/en/latest/overlay_design_methodology/overlay_design.html?highlight=hwh#overlay-hwh-file
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/overlay_design.html?highlight=hwh#overlay-hwh-file
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/overlay_design.html?highlight=hwh#overlay-hwh-file
http://www.pynq.io/board.html
http://www.pynq.io/board.html
https://en.cppreference.com/w/cpp/numeric/special_functions/cyl_neumann
https://en.cppreference.com/w/cpp/numeric/special_functions/cyl_neumann
https://en.cppreference.com/w/cpp/numeric/special_functions/cyl_bessel_j
https://en.cppreference.com/w/cpp/numeric/special_functions/cyl_bessel_j
https://repository.tudelft.nl/islandora/object/uuid%3Ae54bbdca-3e9f-4c23-8c89-463751193061
https://repository.tudelft.nl/islandora/object/uuid%3Ae54bbdca-3e9f-4c23-8c89-463751193061
https://docs.dask.org/en/stable/deploying-ssh.html
https://docs.dask.org/en/stable/deploying-ssh.html
https://github.com/dask/distributed/blob/344868ace6cd10f7b99e4cd2d3830fba66a2cdcf/distributed/deploy/ssh.py
https://github.com/dask/distributed/blob/344868ace6cd10f7b99e4cd2d3830fba66a2cdcf/distributed/deploy/ssh.py
https://github.com/dask/distributed/blob/344868ace6cd10f7b99e4cd2d3830fba66a2cdcf/distributed/deploy/ssh.py
https://distributed.dask.org/en/stable/efficiency.html
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centres-workloads-and-data-centre-energy-use-2010-2020
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centres-workloads-and-data-centre-energy-use-2010-2020
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centres-workloads-and-data-centre-energy-use-2010-2020
https://www.dw.com/en/data-centers-energy-consumption-steady-despite-big-growth-because-of-increasing-efficiency/a-60444548
https://www.dw.com/en/data-centers-energy-consumption-steady-despite-big-growth-because-of-increasing-efficiency/a-60444548
https://www.dw.com/en/data-centers-energy-consumption-steady-despite-big-growth-because-of-increasing-efficiency/a-60444548

	Introduction
	Context
	Challenges
	Accessibility
	Cost-efficiency

	Problem statement & research questions
	Solutions and contributions
	Thesis outline

	Background
	Field programmable gate arrays
	Design flow
	soc fpgas
	Platform resources
	Direct memory access

	Frameworks and toolchains
	Vivado design suite
	Vitis unified software platform

	Scalability
	Task parallelism
	Data parallelism

	Related work

	Application domains
	Full Waveform Inversion
	Background & implementation
	Scalability characteristics

	Convolutional Neural Network
	Background & implementation
	Scalability characteristics

	Alternative solutions
	Hardware-design
	Custom hardware design
	Hardware designs from libraries
	Compiler-generated hardware designs
	Evaluation

	Hardware communication
	XRT
	OpenCL
	PYNQ
	Evaluation

	Parallelization framework
	Apache Spark
	Dask
	Evaluation

	Interface
	Programming languages
	Evaluation

	Conclusion
	FWI on PYNQ-Z1
	FWI on Alveo U280
	CNN on Alveo U280

	Solution architectures and implementations
	FWI hardware design
	Algorithm analysis
	Hardware kernels
	Design implementation
	Design optimization

	Hardware communication
	PYNQ
	OpenCL
	Multiple compute units

	Interface
	OctoRay
	Deployment
	Flexibility and usability
	Accessibility

	Results
	Experimental setups for FWI
	CPU
	PYNQ-Z1 OctoRay
	PYNQ-Z1 power measurement
	Alveo U280

	Experimental setup CNN
	FWI results
	Domain decomposition
	Scalability
	Performance
	Cost and utilization
	Design-build duration
	Power

	CNN results
	Scalability
	Build design time

	Conclusions and future work
	Conclusions
	Accessibility
	FWI acceleration
	Cost-efficient compositions
	Scalability

	Future work

	Full Waveform Inversion
	Cost Function C++
	Forward Function C++
	Implementation diagram

