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ABSTRACT

Porous materials such as zeolites and Metal-Organic Frameworks are widely used for molecular sep-
arations based on adsorption and enthalpy/entropy characteristics. Ideal adsorption solution theory
(IAST) predicts mixture adsorption behaviour on the basis of pure component isotherms of adsor-
bents in porous media. Mixture data at all mole fractions are required for breakthrough simulations.
The use of IAST avoids the expensive computations of mixtures with Monte Carlo methods. Match-
ing outcomes from computational physics studies to experimentally measurable properties is the
foundation of the materials design pipeline. Here, we report the regression of an Invertible Autoen-
coder (IAE) for the forward and backward mapping of pure and mixture isotherms. The invertible
autoencoder is defined as a soft-invertible neural network, which can be used as mapping function.
Pure component isotherms are modelled using a 3-site Langmuir-Freundlich model, with a broad
range of equilibrium pressure and heterogeneity factors. A synthetic dataset is generated from pure
component isotherms and mixture isotherms calculated with RUPTURA. The IAE predicts pure and
mixture isotherms with high precision over a large fugacity range, for up to 6 components and 3-site
isotherms. This work contributes to inverting the full design pipeline from physical gas separation to
adsorbate design, enabling property-guided materials discovery.
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1. Introduction

Chemical separations based on heat cost approximately
20% of the world’s energy [1], highlighting the need for
more energy-efficient alternatives. Finding ways to sepa-
rate chemicals at ambient temperatures and pressures is
key to the global energy transition. Porous materials such
as zeolites and metal-organic frameworks (MOFs) are
indispensable for separations based on shape and affin-
ity characteristics [2-4]. Nanoporous materials are used
to great success for many separations, such as branched
alkanes and paraffins [5, 6], but effective materials are yet
to be discovered for other challenging mixtures, such as
carbon capture from flue gases and perfluoroalkyl and
polyfluoroalkyl substances [7-9].

Recent developments have led to the availability of
databases with lots of nanoporous material structures,

Mixture Isotherm

such as the CoORE MOF database [10]. The vastness of the
available chemical space requires data-driven method-
ologies to effectively find materials with favourable
adsorption properties [11, 12]. Adsorption properties,
especially for mixtures, are essential for evaluating the
ability of a candidate material to separate target com-
ponents at industrially relevant conditions. Whereas
single-component isotherms can be modelled with rela-
tively straightforward adsorption models (e.g. Langmuir,
Langmuir-Freundlich) or computed through molecular
simulations [13], mixture adsorption introduces con-
siderably more complexity [14-16]. Thermodynamically
consistent models such as Ideal Adsorbed Solution The-
ory (IAST) or advanced simulations with RUPTURA
are used to predict mixture loadings at process con-
ditions. However, running simulations increases the
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computational cost for large-scale screening. In many
practical scenarios, mixture isotherms are more readily
measured than pure component isotherms, or a target
mixture behaviour is defined in a material design work-
flow, motivating an invertible formulation of IAST.

Machine learning models assist in predicting adsorp-
tion properties from descriptors of chemical composition
and pore structure, whereas inverse design tasks identify
materials that meet desired property targets [17-23]. It
is important to note that an ongoing challenge remains:
bridging the gap between accurately describing adsorp-
tion isotherms for the entire pressure range spanning
the Henry regime at low loading through to saturation
at high fugacity, and enabling a truly invertible frame-
work that can transition seamlessly between adsorptive
properties and the structural/chemical design space.

Here, we report the regression of an Invertible Autoen-
coder (IAE) for forward and backward mapping of both
pure and mixture adsorption isotherms. This is the first
part of a computational pipeline that we are develop-
ing that in the future hopefully will be able to extract
mixture and pure component isotherms from (experi-
mental) breakthrough data. For now, we focus on the
invertibility (back and forth) of pure component and
mixture data. In generating our training data, we build on
a 3-site Langmuir-Freundlich isotherm to model pure-
component adsorption for a broad range of fugacities and
heterogeneity factors. We compute synthetic isotherms
using RUPTURA [16], creating a large and diverse
dataset (Appendix 1). We demonstrate that the proposed
IAE achieves high accuracy in both the low-pressure
Henry regime and high-pressure saturation region for up
to six-component mixtures. By learning invertible rela-
tionships between system parameters — fugacity, com-
position and heterogeneity — and adsorption loadings
this work contributes to the design process by enabling
backward mapping of mixture isotherms onto pure
isotherms.

2. Methods
2.1. Isotherm models

Adsorption behaviour can be accurately represented
through the usage of functional forms that describe
adsorption. Sharma et al. have provided an excellent
review on isotherm and mixture models accompanying
the RUPTURA code [16]. In the simplest case, adsorp-
tion is modelled as a monolayer adsorbing onto open
sites (Sopen) ON a surface, as proposed by Langmuir [24].
The adsorption isotherm q(f) describes the loading as a
function of the fugacity f. The Langmuir model relates
the adsorption rate g,qs = kfsopen, and the desorption

rate gqes = k'q for total sites sioral = Sopen + g At equi-
librium, the adsorption and desorption rates are equal,
yielding

(*Z(f) = ({sat % (1)
for the rate constant b = %, and saturation loading equal
to the total number of sites (gsat = Stotal)- One feature of
the Langmuir equation is that at low fugacity the par-
tial derivative lim¢_, o dq/df equals the rate constant, also
named the Henry constant b. The Langmuir equation can
be solved for 50% adsorption g(fso) = %qsat, which yields
fs0 = % When plotting the Langmuir equation on the
semi-logarithmic scale an inflection point can be found at
exactly fso, as the derivative has a maximum at that point.
A multisite adsorption isotherm can easily be obtained by
a summation over multiple sites

Nsites

_N . bf
Q(f) = ;q:,satl T bzf (2)

The Freundlich isotherm accounts for the heterogene-
ity of the different modes of adsorption by posing that
the adsorption rate, g,qs does not increase linearly with
fugacity, but has a power law scaling determined by
factor v. Incorporating this into the multisite Lang-
muir equation yields the multisite Langmuir-Freundlich
equation. The Langmuir-Freundlich equation is the most
common model describing isotherms in nanoporous
materials.

Nsites b 1fU
= : sat ———— 3
q(f) ; QZ,satl o (3)
While this is an accurate description of the behaviour in
the inflection points and high fugacity ranges, this model
no longer yields a correct theoretical limit in the Henry
regime, as the derivative lims_,¢ dq/df yields oo for v <
land 0 forv > 1.

2.2. Ideal adsorbed solution theory (IAST)

The aforementioned isotherms assume the adsorption of
a single component, but for many practical applications it
is necessary to evaluate the competitive adsorption of two
or more components. Theoretical descriptions of mix-
ture isotherms, i.e. competition at a binding site, have
appeared for simple systems, such as two Langmuir com-
ponents with identical g¢,¢ parameters. For more complex
mixtures and adsorption processes an alternative pro-
cess has been developed, named Ideal- Adsorbed Solution
Theory (IAST) [25-28].

IAST provides relatively simple calculations for esti-
mating multicomponent adsorption from single-com
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Figure 1. Schematic overview of the structure of the IAE. (a) A mapping from the pure isotherms x to the mixture isotherms y, using
neural network ¢ and the reverse mapping ¢~ occur as a series of matrix-vector products and non-linear transformations. The forward
(b) and reverse (c) operation is given by a matrix-vector product with weight matrix A and A’ respectively. (d) A non-linear transformation
is done with the leaky RELU operation, doubling all positive and halving negative values.

ponent isotherms and is widely applicable across diverse
gas mixtures. However, it assumes ideal solution beha
viour in the adsorbed phase and neglects possible com-
petitive effects and surface heterogeneity, which can
lead to inaccuracies in systems with strong adsorbate-
adsorbent interactions. While more complex mixture
adsorption may occur, captured for example by non-ideal
activity coeflicients [29] or size-dependent isotherms
[30], this work restricts to adsorption that is modelled
by IAST. In modelling the adsorption of fluid mixtures
within porous materials, the reduced grand potential, v,
is used. It is defined as

"an
/

for pure component adsorption g* and pure component
fugacity f*, and hence can be easily computed from the
adsorption isotherm. When applying IAST, the equilib-
rium criterion is that the fugacity of each component in
the bulk phase equals the corresponding fugacity in the
adsorbed phase. Expressing this in terms of i shows that
all components share the same reduced grand potential
at equilibrium. The TAST balance for an ideal solution is

vilf) = df, (4)

yipT = xip; () (5)

where y; is the bulk-phase mole fraction, x; the adsorbed-
phase mole fraction, pr the total pressure, and p; () the
pure component pressure corresponding to the same .
This equation can be solved by imposing that the sum of
all x; equals unity.

2.3. Invertible neural net

The invertible autoencoder is used as defined in [31] and
is schematically represented in Figure 1. The IAE is a
neural network ¢ : R” — R", which has an inverse ¢! :
R* — R". The network is optimised to, but not equal to,
pp~! = 1.

The pure and mixture isotherms are calculated as
a set of isotherms for six components as described
in Appendix 1. The training data therefore consists of
Mirain Sets of pure and mixture isotherms gpure(c, f) and
qmix (¢, f), for component ¢ and fugacity f.

The fully connected linear layer has a forward defined
by hiy1 = Al and an inverse defined as hy_; = ATh;.
This is not an exact inverse as AT only equals A~! for
orthonormal matrices. Restricting the learning process
to just orthonormal matrices is not practical for train-
ing and restricts the neural net by disallowing dimen-
sional reduction and expansion. By training reversibility
by mapping the reverse with AT the network will achieve
a soft reversibility AAT ~ 1.

A leaky ReLU is a non-linear activation function that
still preserves reversibility:

1 . .
~hi, hi<0
a

aki, hi>0

(6)

i
hl+1 -

where hf is the i-th value of the input vector h;. The
inverse is found by replacing a with a~! (here a = 2).
Weight parameters are optimised using the Adam opti-
miser [32], using gradient clipping, L2 weight decay and
k-folding. Hyperparameters are listed in Appendix 2. The
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optimal joint likelihood is defined as the geometric mean
between the likelihood of finding the forward mapping
and the reverse mapping

LK, YV|X,Y,0)= \/.C(X|X,0)£(f’| Y,0) (7)

Where the prediction X = ¢~ (Y) and ¥ = ¢(X). Opti-
mizing the log-likelihood of this function is equal to
minimizing a mean squared error

Ntrain

L& YIXY,00= D (&) —y)* + (@7 00) —x)°

i=0
(8)

3. Results

Figure 2 illustrates the mean squared error (MSE) of the
IAE on the test set as a function of the number of train-
ing samples. For fewer than 6 x 10* training samples the
MSE is relatively high, indicating that only limited map-
ping information is captured with limited training data.
In the range of samples [6 x 10%, 10°], the MSE decreases
according to the expected trend 1/, /#rain, indicating that
increased training data improve accuracy. Beyond 10°
samples, the MSE does not further decrease following the
expected 1/,/Mirin trend, showing diminishing returns
for increased costs. Any training size within the interval
[6 x 10%,10°] is sufficient to achieve accurate represen-
tation, with MSE values reaching 3 x 10™° per sample.
The training is considered converged when the valida-
tion loss shows no improvement larger than & = 1073 for
5 epochs, as shown in the training curves in Figure Al.
This results in a model that accurately predicts isotherms,
as shown in the parity plots in Figure 3.

1074

10-°

Test set MSE

1076

10 105 108
Training set size, Nain

Figure 2. Mean Squared Error (MSE) loss of the model with
respect to the size of the training set.

3.1. Statistical significance

Although the random sample from the test set provides
an indication of performance, a more rigorous approach
requires analysing the coefficient of determination R? at
each fugacity over the test set. These overall R? values
on the test set appear in Figure 4. In our dataset, the
highest density of inflection points occurs around 10* Pa,
explaining the lower R? values in that range. We also
observe that the model performs best for 3-5 component
systems and is not as effective for 2-component systems.

3.2. Mapping of isotherms

In Figure 5 we show representative pure and mixture
isotherm for a system with four compounds. This sam-
ple has been randomly selected from the test set. The
pure isotherms (Figure 5(a)) show sigmoidal adsorption
behaviour in semi-logarithmic scale, with up to 3 inflec-
tion points. From these pure adsorption isotherms, a
mixture isotherm is calculated using IAST and shown
in Figure 5(b). Here, the compound that adsorbs best at
lower pressures (green) dominates adsorption at lower
fugacities in the mixture. The pure isotherms obtained by
the TAE mapping of the mixture isotherm closely match
the true pure isotherms. At all points, the pure adsorption
isotherm is reproduced to within a small error. However,
the model does not fully capture all inflections and their
locations for all components. When mapping the pure
isotherm to the mixture isotherm, shown in Figure 5(b),
the model generally performs well for the given sample.

Figure 6 shows the isotherms on a log-log scale, high-
lighting the low loading regimes. The mappings of both
pure to mixture and mixture to pure agree well in the
Henry regime. However, for the mapping of the pure to
mixture isotherms, an underestimation of a factor of two
in loading is observed in the dilute region.

3.3. Varying number of components

By setting the adsorption isotherm of one component
to zeros a component is knocked out and the same IAE
neural net is applied to a different number of compo-
nents. Figure 7 shows mappings of random samples from
the test set with 2-6 components. Overall, the model
performs best for a larger number of components, as
seen for the 5- and 6-component system. In contrast, for
two component isotherms, the pure component isotherm
shows an overestimated Henry coefficient, which shifts
the isotherm to lower pressures. Conversely, the map-
ping from pure to mixture the isotherms are shifted in
the opposite direction. This behaviour likely stems from
the fact that less information is captured in the isotherms,
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Figure 3. Parity plots showing the predictions of the model with respect to the actual values of the model, for (a) pure component
isotherms, predicted from the mixture isotherms and (b) vice versa. Parity plots are shown for 100 pure component and mixture isotherms

randomly selected from the test set.

0.9_00

<

J’,rf"*ﬁ

2 components

N7

3 components

N7

4 components

N |

5 components

104 108

Fugacity, f/ Pa

10°

104 108

Fugacity, f/ Pa

Figure 4. Statistical significance of the model R?> computed per pressure point for mapping mixture to pure (blue) and pure to mixture

(orange) isotherms.

invAE

Loading / -

10?

104

106 108

Fugacity, f/ Pa

(a)

Loading / -

1.0

0.8

invAE
— |IAST

Fugacity, f/ Pa

(b)

Figure 5. Arandom sample of pure (a) and mixture (b) isotherms computed by RUPTURA (solid) and the invertible autoencoder (dashed).
Langmuir-Freundlich parameters for the isotherms in this figure is shown in Table A6.
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10°

Loading / -

1071

10° 102 104 108 108
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(a)

=
o
iR

Loading / -

102
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Fugacity, f/ Pa

(b)

Figure 6. A random sample of pure (a) and mixture (b) isotherms on a log scale computed by RUPTURA (solid) and the invertible
autoencoder (dashed). Langmuir-Freundlich parameters for the isotherms in this figure is shown in Table A6.

2 components 3 components

6 components

1.0

0.8

0.6

Loading / -

0.4
0.2

0.0 +=

5 components

Loading / -

=
g

108 10° 104
Fugacity, f/ Pa

10° 104
Fugacity, f/ Pa

108 10° 104

108 10° 104 108

Fugacity, f/ Pa Fugacity, f/ Pa

Figure 7. Random samples of pure (top) and mixture (bottom) isotherms for varying component numbers computed by RUPTURA (solid)
and the invertible autoencoder (dashed). Langmuir-Freundlich parameters for the isotherms in this figure is shown in Table A4, A5, A7

and A8.

making it harder to reconstruct the map from it. The
data imbalance in the training set might also have an
influence, as shown in the prevalence listed in Table A1,
however, this does not seem to affect the 6-component
isotherms.

4. Conclusions

In this work, we have successfully implemented a map-
ping function for the reversible conversion of pure-
component and mixture loading isotherms. Now, mix-
ture isotherms can conveniently be mapped back onto
pure isotherms, possibly bypassing the need for single
component experiments. The mapping is defined as a
lightweight neural network modelled with soft invert-
ible layers, allowing up to six-component isotherms to
be mapped over a wide range of physical parameters

(qads» b and v). Overall, the invertible autoencoder
approach captures the general shape and magnitude of
both pure and mixture adsorption isotherms across a
wide range of pressures. It accurately reproduces the
dominant adsorption behaviour of the best adsorbing
component at lower fugacities and shows good agree-
ment in the Henry regime. Although it struggles with
precisely locating inflection points in certain cases, the
overall results are encouraging for accurately describ-
ing adsorption in multi-component isotherms. Building
on this model a full reversible workflow can be envi-
sioned, mapping breakthrough measurements directly
onto material properties.
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Appendices
Appendix 1. Synthetic data

For creating the pure and mixture isotherms we use the RUP-
TURA package [16]. To create pure component adsorption
isotherms, the multisite Langmuir-Freundlich isotherm is eval-
uated on 64 fugacity points evenly spaced on a logscale from
1 — 108 Pa. Langmuir-Freundlich parameters (g5, b5, v¢) are
chosen pe r component (¢) and binding site (s) such that they
represent a broad range of possible binding curves within the
physical range. g€ is chosen as (sites) ™", as this normalisation
leads to the most stable training data. A set of (g5, bS,vf) is
chosen for all six components and 3 adsorption sites, yield-
ing 54 parameters. From this, the pure and mixture isotherms
are computed and discretizations are stored as pytorch tensors
of shape (6, 64). The parameters are sampled such that most
inflection points are captured in the given fugacity region and
the adsorption is competitive.
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Figure A1. Training curves for the optimisation of 3 models of the
invertible autoencoder, using different k-folds of the data.

Table A1. Fraction ¢ of numbers of isotherms N in the training
data set given by a knockout probability of p = 0.4.

N 0 1 2 3 4 5 6
¢ 0.004 0.037 0.138 0.276 0.311 0.187 0.047

The equilibrium constant b is chosen in such a way that
the inflection points mainly fall within the evaluated pressure
range. The logarithm of the equilibrium constant log(b;) is
sampled from a uniform distribution 2/(—6, 0.5). The equilib-
rium binding constant of components per site is often seen to
be similar between components compared in experiment and
therefore log(bs) = (1 4+ 6)log(bs) and o ~ U(—¢,€), such
that small relative variations per component are generated at
a site.

The parameter v can be regarded as the conformational
entropy at a site, and represents itself in the steepness of
the isotherm curve. It also shifts the inflection point, such
that the inflection point log(fso) = % log(b). By sampling v ~
14(0.4,2.0) a physical range is represented and the inflection
points are uniformly distributed along the pressure range.

In order to create a dataset with a varied number of
isotherms of one to six components, during data creation, the
components are knocked out. This is done by setting the b
parameters of the knocked out isotherms to an arbitrarily small
positive number, 10730 Pa~! here, setting both the pure and
mixture isotherm to effectively zero for both the pure and mix-
ture. Throughout the dataset this is done with a probability
of p = 0.4, such that a set of isotherms can contain multiple
knocked out components, yielding data for 1 to 6 compo-
nent isotherms, with probabilities governed by the prevalence
factions given in Table Al.

Appendix 2. Invertible autoencoder

We employed an IAE architecture comprising eight invertible
layers, each represented by a matrix whose dimensions are
summarised in Table A2.

We employed the hyperparameters summarised in Table A3
for training. A large training set was used for the evaluations

Table A2. IAE weight matrix architecture.

Wo W,
384 x 128 128 x 64

Wr — Ws We Wy
64 x 64 64 x 128 128 x 384

Table A3. Hyperparameters used during training of the IAE.
weight decay k-folds
27 28 10~ 1073 3

ntrain nval Ir

Table A4. Randomly sampled Langmuir-Freundlich parameters
for a 2-component isotherm.

Component Site Gsat b v

1 1 1/3 1.56 x 1074 1.30
2 1/3 3.77 x 1073 1.10
3 13 9.07 x 107> 1.09

2 1 13 140 x 1074 1.28
2 13 3.71 x 1073 1.62
3 13 123 x 1074 1.44

Table A5. Randomly sampled Langmuir-Freundlich parameters
for a 3-component isotherm.

Component Site Gsat b )

1 1 13 331 x 107> 1.36
2 1/3 7.79 x 107" 1.38
3 13 542 x 1072 1.30

2 1 1/3 3.18 x 10~ 1.26
2 13 7.82 x 1077 1.30
3 13 529 x 1072 0.91

3 1 13 441 x 1072 1.83
2 13 7.74 x 1077 0.89
3 1/3 5.54 x 1072 0.47

Table A6. Randomly sampled Langmuir-Freundlich parameters
for a 4-component isotherm.

Component Site Gsat b v

1 1 13 424 x 1073 0.93
2 13 262 x 107> 1.18
3 13 241 x 1077 0.91

2 1 13 334 x 1073 0.70
2 1/3 229 x 10~ 1.52
3 13 234 x 107! 1.21

3 1 13 3.90 x 1073 0.63
2 13 2.01 x 107> 1.57
3 13 242 x 1077 1.59

4 1 13 425 x 1073 1.45
2 1/3 2.86 x 107> 0.76
3 1/3 261 x 1077 127

reported in Figures 5-4, consistent with the relationship illus-
trated in Figure 2, which shows the mean squared error (MSE)
as a function of the training set size. Although 3-fold cross-
validation was performed, the models converged to effectively
identical solutions; hence, cross-model errors were negligible
and are not reported. Training progress is tracked through
the average training loss of the individual models shown in
Figure Al.
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Table A7. Randomly sampled Langmuir-Freundlich parameters for a 5-component

isotherm.

Component Site Gsat b v

1 1 1/3 470 x 1072 1.60
2 1/3 493 x 1074 0.41
3 1/3 6.99 x 1072 1.42

2 1 13 4,08 x 1072 1.83
2 13 481 x 1074 0.61
3 13 7.21 x 1072 1.94

3 1 13 3.92 x 1072 0.89
2 13 5.67 x 1074 1.69
3 1/3 7.38 x 1072 0.98

4 1 13 429 x 1072 1.81
2 13 6.93 x 10™* 1.68
3 13 8.51 x 1072 0.69

5 1 13 3.93 x 1072 0.87
2 13 7.02 x 10™* 0.84
3 1/3 7.05 x 1072 0.81

Table A8. Randomly sampled Langmuir-Freundlich parameters for a 6-component

isotherm.

Component Site Gsat b )

1 1 1/3 149 x 107 1.23
2 13 9.16 x 107> 0.89
3 13 3.23 x 1072 0.56

2 1 13 2.52 x 107> 1.77
2 13 9.28 x 107> 1.58
3 13 2.51 x 1072 1.81

3 1 1/3 1.52 x 107 1.09
2 1/3 132 x 1074 137
3 13 2.55 x 1072 0.72

4 1 13 3.94 x 107> 0.70
2 13 1.51 x 1074 1.10
3 13 3.15 x 1072 0.81

5 1 1/3 233 x 107> 1.26
2 1/3 173 x 1074 1.00
3 1/3 2.97 x 1072 1.06

6 1 13 1.78 x 10> 1.69
2 13 1.74 x 1074 0.42
3 13 243 x 1072 0.57

Appendix 3. Figure metadata

In this section the randomly sampled parameters to produce the pure component and mixture component isotherms are listed.
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