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A B S T R A C T

The relative pose estimation of an inactive spacecraft by an active servicer spacecraft is a critical task
in the design of current and planned space missions, due to its relevance for close-proximity operations,
such as In-Orbit Servicing and Active Debris Removal. This paper introduces a novel framework to enable
robust monocular pose estimation for close-proximity operations around an uncooperative spacecraft, which
combines a Convolutional Neural Network (CNN) for feature detection with a Covariant Efficient Procrustes
Perspective-n-Points (CEPPnP) solver and a Multiplicative Extended Kalman Filter (MEKF). The performance
of the proposed method is evaluated at different levels of the pose estimation system. A Single-stack Hourglass
CNN is proposed for the feature detection step in order to decrease the computational load of the Image
Processing (IP), and its accuracy is compared to the standard, more complex High-Resolution Net (HRNet).
Subsequently, heatmaps-derived covariance matrices are included in the CEPPnP solver to assess the pose
estimation accuracy prior to the navigation filter. This is done in order to support the performance evaluation
of the proposed tightly-coupled approach against a loosely-coupled approach, in which the detected features
are converted into pseudomeasurements of the relative pose prior to the filter. The performance results of the
proposed system indicate that a tightly-coupled approach can guarantee an advantageous coupling between the
rotational and translational states within the filter, whilst reflecting a representative measurements covariance.
This suggest a promising scheme to cope with the challenging demand for robust navigation in close-proximity
scenarios. Synthetic 2D images of the European Space Agency’s Envisat spacecraft are used to generate datasets
for training, validation and testing of the CNN. Likewise, the images are used to recreate a representative
close-proximity scenario for the validation of the proposed filter.
1. Introduction

Nowadays, key Earth-based applications such as remote sensing,
navigation, and telecommunication, rely on satellite technology on a
daily basis. To ensure a high reliability of these services, the safety and
operations of satellites in orbit has to be guaranteed. In this context,
advancements in the field of Guidance, Navigation, and Control (GNC)
were made in the past years to cope with the challenges involved in In-
Orbit Servicing (IOS) and Active Debris Removal (ADR) missions [1,2].
For such scenarios, the estimation of the relative pose (position and
attitude) of an uncooperative spacecraft by an active servicer spacecraft
represents a critical task. Compared to cooperative close-proximity
missions, the pose estimation problem is indeed complicated by the
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fact that the target satellite is not functional and/or not able to aid the
relative navigation. Hence, optical sensors shall be preferred over Radio
Frequency (RF) sensors to cope with a lack of navigation devices such
as Global Positioning System (GPS) sensors and/or antennas onboard
the target.

From a high-level perspective, optical sensors can be divided into
active and passive devices, depending on whether they require power
to function, i.e. LIght Detection And Ranging (LIDAR) sensors and
Time-Of-Flight (TOF) cameras, or if they passively acquire radiation,
i.e. monocular and stereo cameras. Spacecraft relative navigation usu-
ally exploits Electro-Optical (EO) sensors such as stereo cameras [3,4]
and/or a LIDAR sensor [5] in combination with one or more monocular
cameras, in order to overcome the partial observability that results from
vailable online 15 February 2021
094-5765/© 2021 The Authors. Published by Elsevier Ltd on behalf

http://creativecommons.org/licenses/by/4.0/).

ingo.ahrns@airbus.com (I. Ahrns), Jesus.Gil.Fernandez@esa.int (J. Gil-Fernández).

https://doi.org/10.1016/j.actaastro.2021.01.035
Received 13 June 2020; Received in revised form 2 December 2020; Accepted 21 J
of IAA. This is an open access article under the CC BY license

anuary 2021

http://www.elsevier.com/locate/actaastro
http://www.elsevier.com/locate/actaastro
mailto:L.PasqualettoCassinis@tudelft.nl
mailto:Robert.Fonod@ieee.org
mailto:E.K.A.Gill@tudelft.nl
mailto:ingo.ahrns@airbus.com
mailto:Jesus.Gil.Fernandez@esa.int
https://doi.org/10.1016/j.actaastro.2021.01.035
https://doi.org/10.1016/j.actaastro.2021.01.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2021.01.035&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Acta Astronautica 182 (2021) 189–202L. Pasqualetto Cassinis et al.

d
f
e
p
a

p
c
s
a
f
t
c
i
e
N
d
a
d

t
e
t
i
p
a
I
h
b
t
a
o
o
o
a

a
A
p
c
s
s
a
f
a
s
r
b
t
t
a
h
i
c
o

C
t
t
t
b
t
c

the lack of range information in these latter [6]. In this framework, pose
estimation systems based solely on a monocular camera are recently
becoming an attractive alternative to systems based on active sensors
or stereo cameras, due to their reduced mass, power consumption
and system complexity [7]. However, given the low Signal-To-Noise
Ratio (SNR) and the high contrast which characterize space images, a
significant effort is still required to comply with most of the demanding
requirements for a robust and accurate monocular-based navigation
system. Interested readers are referred to Pasqualetto Cassinis et al. [8]
for a recent overview of the current trends in monocular-based pose
estimation systems. Notably, the aforementioned navigation system
cannot rely on known visual markers, as they are typically not installed
on an uncooperative target. Since the extraction of visual features
is an essential step in the pose estimation process, advanced Image
Processing (IP) techniques are required to extract keypoints (or interest
points), corners, and/or edges on the target body. In model-based
methods, the detected features are then matched with pre-defined
features on an offline wireframe 3D model of the target to solve for
the relative pose. In other words, a reliable detection of key features
under adverse orbital conditions is highly desirable to guarantee safe
operations around an uncooperative spacecraft. Moreover, it would be
beneficial from a different standpoint to obtain a model of feature
detection uncertainties. This would provide the navigation system with
additional statistical information about the measurements, which could
in turn improve the robustness of the entire estimation process.

Unfortunately, standard pose estimation solvers such as the Efficient
Perspective-n-Point (EPnP) [9], the Efficient Procrustes Perspective-n-
Point (EPPnP) [10], or the multi-dimensional Newton Raphson Method
(NRM) [11] do not have the capability to include features uncertainties.
Only recently, the Maximum-Likelihood PnP (MLPnP) [12] and the
Covariant EPPnP (CEPPnP) [13] solvers were introduced to exploit
statistical information by including feature covariances in the pose
estimation. Ferraz et al. [13] proposed a method for computing the
covariance which takes different camera poses to create a fictitious
distribution around each detected keypoint. Other authors proposed
an improved pose estimation method based on projection vector, in
which the covariance is associated to the image gradient magnitude
and direction at each feature location [14], or a method in which
covariance information is derived for each feature based on feature’s
visibility and robustness against illumination changes [15]. However,
in all these methods the derivation of features covariance matrices is
a lengthy process which generally cannot be directly related to the
actual detection uncertainty. Moreover, this procedure could not be
easily applied if Convolutional Neural Networks (CNNs) are used in
the feature detection step, due to the difficulty to associate statistical
meaning to the IP tasks performed within the network. In this context,
another procedure should be followed in which the output of the CNNs
is directly exploited to return relevant statistical information about the
detection step. This could, in turn, provide a reliable representation of
the detection uncertainty.

The implementation of CNNs for monocular pose estimation in
space has already become an attractive solution in recent years, also
thanks to the creation of the Spacecraft PosE Estimation Dataset
(SPEED) [16], a database of highly representative synthetic images
of PRISMA’s TANGO spacecraft made publicly available by Stanford’s
Space Rendezvous Laboratory (SLAB) and applicable to train and
test different network architectures. One of the main advantages of
CNNs over standard feature-based algorithms for relative pose estima-
tion [7,17,18] is an increase in robustness under adverse illumination
conditions, as well as a reduction in the computational complexity.
Initially, end-to-end CNNs were exploited to map a 2D input image
irectly into a relative pose by means of learning complex non-linear
unctions [19–22]. However, since the pose accuracies of these end-to-
nd CNNs proved to be lower than the accuracies returned by common
ose estimation solvers, especially in the estimation of the relative
190

ttitude [19], recent efforts investigated the capability of CNNs to
perform keypoint localization prior to the actual pose estimation [23–
26]. The output of these networks is a set of so called heatmaps around
re-trained features. The coordinates of the heatmap’s peak intensity
haracterize the predicted feature location, with the intensity and the
hape indicating the confidence of locating the corresponding keypoint
t this position [23]. Additionally, due to the fact that the trainable
eatures can be selected offline prior to the training, the matching of
he extracted feature points with the features of the wireframe model
an be performed without the need of a large search space for the
mage-model correspondences, which usually characterizes most of the
dges/corners-based methods [27]. In this context, the High-Resolution
et (HRNet) [28] already proved to be a reliable and accurate keypoint
etector prior to pose estimation, due to its capability of maintaining
high-resolution representation of the heatmaps through the whole

etection process.
To the best of the authors’ knowledge, the reviewed implementa-

ions of CNNs feed solely the heatmap’s peak location into the pose
stimation solver, despite multiple information could be extracted from
he detected heatmaps. Only in Pavlakos et al. [23], the pose estimation
s solved by assigning weights to each feature based on their heatmap’s
eak intensities, in order to penalize inaccurate detections. Yet, there is
nother aspect related to the heatmaps which has not been considered.
t is in fact hardly acknowledged how the overall shape of the detected
eatmaps returned by CNN can be translated into a statistical distri-
ution around the peak, allowing reliable feature covariances and, in
urn, a robust navigation performance. As already investigated by the
uthors in earlier works [29,30], deriving an accurate representation
f the measurements uncertainty from feature heatmaps can in fact not
nly improve the pose estimation, but it can also benefit the estimation
f the full relative state vector, which would include the relative pose
s well as the relative translational and rotational velocities.

From a high level perspective, two different navigation architectures
re normally exploited in the framework of relative pose estimation.
tightly-coupled architecture, where the extracted features are directly

rocessed by the navigation filter as measurements, and a loosely-
oupled architecture, in which the relative pose is computed by a pose
olver prior to the navigation filter, in order to derive pseudomea-
urements from the target features [31]. Usually, a loosely-coupled
pproach is preferred for an uncooperative tumbling target, due to the
act that the fast relative dynamics could jeopardize feature tracking
nd return highly-variable measurements to the filter. However, one
hortcoming of this approach is that it is generally hard to obtain a
epresentative covariance matrix for the pseudomeasurements. This can
e quite challenging when filter robustness is demanded. Remarkably,
he adoption of a CNN in the feature detection step can overcome
he challenges in feature tracking by guaranteeing the detection of

constant, pre-defined set of features. At the same time, the CNN
eatmaps can be used to derive a measurements covariance matrix and
mprove filter robustness. Following this line of reasoning, a tightly-
oupled filter is expected to interface well with a CNN-based IP and to
utperform its loosely-coupled counterpart.

In this framework, the objective of this paper is to combine a
NN-based feature detector with a CEPPnP solver whilst evaluating
he performance of a proposed tightly-coupled navigation filter against
he performance of a loosely-coupled filter. Specifically, the novelty of
his work stands in extending the authors’ previous findings [29,30]
y further linking the current research on CNN-based feature detec-
ion, covariant-based PnP solvers, and navigation filters. The main
ontributions of this work are:

1. To assess the feasibility of a simplified CNN for feature detection
within the IP

2. To improve the pose estimation by incorporating heatmaps-
derived covariance matrices in the CEPPnP

3. To compare the performance of tightly- and loosely-coupled

navigation filters.
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The paper is organized as follows. The overall pose estimation
framework is illustrated in Section 2. Section 3 introduces the proposed
CNN architecture together with the adopted training, validation, and
testing datasets. In Section 4, special focus is given to the derivation
of covariance matrices from the CNN heatmaps, whereas Section 5
describes the CEPPnP solver. Besides, Section 6 provides a description
of the tightly- and loosely-coupled filters adopted. The simulation envi-
ronment is presented in Section 7 together with the simulation results.
Finally, Section 8 provides the main conclusions and recommendations.

2. Pose estimation framework

This work considers a servicer spacecraft flying in relative motion
around a target spacecraft located in a Low Earth Orbit (LEO), with
the relative motion being described in a Local Vertical Local Hori-
zontal (LVLH) reference frame co-moving with the servicer (Fig. 1a).
Furthermore, it is assumed that the servicer is equipped with a single
monocular camera. The relative attitude of the target with respect to
the servicer can then be defined as the rotation of the target body-
fixed frame B with respect to the servicer camera frame C, where these
frames are tied to each spacecraft’s body. The distance between the
origins of these two frames defines their relative position. Together,
these two quantities characterize the relative pose. This information
can then be transferred from the camera frame to the servicer’s centre
of mass by accounting for the relative pose of the camera with respect
to the LVLH frame.

From a high-level perspective, a model-based monocular pose es-
timation system receives as input a 2D image and matches it with
an existing wireframe 3D model of the target spacecraft to estimate
the pose of such target with respect to the servicer camera. Referring
to Fig. 1b, the pose estimation problem consists in determining the
position of the target’s centre of mass 𝐭𝐶 and its orientation with respect
to the camera frame C, represented by the rotation matrix 𝐑𝐶

𝐵 . The
Perspective-n-Points (PnP) equations,

𝐫𝐶 =
(

𝑥𝐶 𝑦𝐶 𝑧𝐶
)𝑇 = 𝐑𝐶

𝐵𝐫
𝐵 + 𝐭𝐶 (1)

𝐩 =
(

𝑢𝑖, 𝑣𝑖
)

=
(

𝑥𝐶

𝑧𝐶
𝑓𝑥 + 𝐶𝑥,

𝑦𝐶

𝑧𝐶
𝑓𝑦 + 𝐶𝑦

)

, (2)

relate the unknown pose with a feature point 𝐩 in the image plane via
the relative position 𝐫𝐶 of the feature with respect to the camera frame.
Here, 𝐫𝐵 is the point location in the 3D model, expressed in the body-
frame coordinate system B, whereas 𝑓𝑥 and 𝑓𝑦 denote the focal lengths
of the camera and (𝐶𝑥, 𝐶𝑦) is the principal point of the image.

From these equations, it can already be seen that an important
aspect of estimating the pose resides in the capability of the IP system
to extract features 𝒑 from a 2D image of the target spacecraft, which in
turn need to be matched with pre-selected features 𝒓𝐵 in the wireframe
3D model. Notably, such wireframe model of the target needs to be
made available prior to the estimation. Notice also that the problem
is not well defined for 𝑛 < 3 feature points, and can have up to four
positive solutions for 𝑛 = 3 [33]. Generally, more features are required
in presence of large noise and/or symmetric objects. Besides, it can
also be expected that the time variation of the relative pose plays
a crucial role while navigating around the target spacecraft, e.g. if
rotational synchronization with the target spacecraft is required in the
final approach phase. As such, it is clear that the estimation of both the
relative translational and angular velocities represent an essential step
within the navigation system.

The proposed tightly-coupled architecture combines the above key
ingredients in three main stages, which are shown in Fig. 2 and
described in more detail in the following sections. In the CNN-based
IP block, a CNN is used to extract features from a 2D image of the
target spacecraft. Statistical information is derived by computing a
covariance matrix for each features using the information included in
the output heatmaps. In the Navigation block, both the peak locations
and the covariances are fed into the navigation filter, which estimates
191
Fig. 1. Representation of the relative motion framework (left) and schematic of the
pose estimation problem using a monocular image (right) [32].

the relative pose as well as the relative translational and rotational
velocities. The filter is initialized by the CEPPnP block, which takes
peak location and covariance matrix of each feature as input and
outputs the initial relative pose by solving the PnP problem in Eqs.
(1)–(2). Thanks to the availability of a covariance matrix of the detected
features, this architecture can guarantee a more accurate representation
of feature uncertainties, especially in case of inaccurate detection of
the CNN due to adverse illumination conditions and/or unfavourable
relative geometries between servicer and target. Together with the
CEPPnP initialization, this aspect can return a robust and accurate
estimation of the relative pose and velocities and assure a safe approach
of the target spacecraft.

In this work, a rectilinear VBAR approach of the servicer spacecraft
towards the target spacecraft is considered, as this typically occurs
during the final stages of close-proximity operations in rendezvous and
docking missions [1,2]. This assumption is justified by the fact that
the proposed method needs to be first validated on simplified relative
trajectories before assessing its feasibility under more complex relative
geometries. Following the same line of reasoning, the relative attitude is
also simplified by considering a perturbation-free rotational dynamics
between the servicer and the target. This is described in more detail in
Section 6.
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Fig. 2. Functional flow of the proposed tightly-coupled pose estimation architecture.
3. Convolutional neural network

CNNs are currently emerging as a promising features extraction
method, mostly due to the capability of their convolutional layers to
extract high-level features of objects with improved robustness against
image noise and illumination conditions. In order to optimize CNNs
for the features extraction process, a stacked hourglass architecture has
been proposed [23,24], and other architectures such as the U-net [34]
and the HRNet [28] were tested in recent years.

Compared to the network proposed by Pavlakos et al. [23], the
architecture proposed in this work is composed of only one encoder/
decoder block, constituting a single hourglass module. This was chosen
in order to reduce the network size and comply with the limita-
tions in computing power which characterizes space-grade processors.
The encoder includes six blocks, each including a convolutional layer
formed by a fixed number of filter kernels of size 3 × 3, a batch
normalization module and max pooling layer, whereas the six decoder
blocks accommodate an up-sampling block in spite of max pooling. In
the encoder stage, the initial image resolution is decreased by a factor
of two, with this downsampling process continuing until reaching the
lowest resolution of 4 × 4 pixels. An upsampling process follows in the
decoder with each layer increasing the resolution by a factor of two and
returning output heatmaps at the same resolution as the input image.
Fig. 3 shows the high-level architecture of the network layers, together
with the corresponding input and output.

Overall, the size of the 2D input image and the number of kernels
per convolutional layer drive the total number of parameters. In the
current analysis, an input size of 256 × 256 pixels is chosen, and 128
kernels are considered per convolutional layer, leading to a total of
∼ 1,800,000 trainable parameters. Compared to the CNNs analysed
by Sun et al. [28], this represents a reduction of more than an order
of magnitude in network size.

As already mentioned, the output of the network is a set of heatmaps
around the selected features. Ideally, the heatmap’s peak intensity
associated to a wrong detection should be relatively small compared
to the correctly detected features, highlighting that the network is not
confident about that particular wrongly-detected feature. At the same
time, the heatmap’s amplitude should provide an additional insight into
the confidence level of each detection, a large amplitude being related
to large uncertainty about the detection. The network is trained with
the 𝑥- and 𝑦- image coordinates of the feature points, computed offline
based on the intrinsic camera parameters as well as on the feature
coordinates in the target body frame, which were extracted from the
wireframe 3D model prior to the training. During training, the network
is optimized to locate 16 features of the Envisat spacecraft, consisting
of the corners of the main body, the Synthetic-Aperture Radar (SAR)
antenna, and the solar panel, respectively. Fig. 4 illustrates the selected
features for a specific target pose.
192
Fig. 3. Overview of the single hourglass architecture. Downsampling is performed
in the encoder stage, in which the image size is decrease after each block, whereas
upsampling occurs in the decoder stage. The output of the network consists of heatmap
responses, and is used for keypoints localization.

Fig. 4. Illustration of the selected features for a given Envisat pose.

3.1. Training, validation and test

For the training, validation, and test datasets, synthetic images
of the Envisat spacecraft were rendered in the Cinema 4D©software.
Table 1 lists the main camera parameters adopted. Constant Sun el-
evation and azimuth angles of 30 degrees were chosen in order to
recreate favourable as well as adverse illumination conditions. Relative
distances between camera and target were discretized every 30 m in
the interval 90 m - 180 m, with the Envisat always located in the
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Table 1
Parameters of the camera used to generate the synthetic images in Cinema 4D©.

Parameter Value Unit

Image resolution 512 × 512 pixels
Focal length 3.9 ⋅ 10−3 m
Pixel size 1.1 ⋅ 10−5 m

Fig. 5. Illustration of the pose space discretization in the training dataset. The
concentric spheres represent the discretization of the relative distance in the range
90 m–180 m. Only 100 random relative camera poses are shown for clarity.

Fig. 6. A montage of eight synthetic images selected from the training set.

camera boresight direction in order to prevent some of the Envisat
features from falling outside the camera field of view. Although be-
ing a conservative assumption, this allows to test the CNN detection
under ideal servicer-target geometries during a rectilinear approach.
Subsequently, relative attitudes were generated by discretizing the yaw,
pitch, and roll angles of the target with respect to the camera by
10 degrees each. Together, these two choices were made in order to
recreate several relative attitudes between the servicer and the target.
The resulting database was then shuffled to randomize the images, and
was ultimately split into training (18,000 images), validation (6,000
images), and test (6,000 images) datasets. Fig. 5 shows a subset of
the camera pose distribution for 100 representative training images,
whereas Fig. 6 illustrates some of the images included in the training
dataset.

During training, the validation dataset is used beside the training
one to compute the validation losses and avoid overfitting. The Adam
optimizer [35] is used with a learning rate of 10−3 for a total number of
50 epochs. Finally, the network performance after training is assessed
with the test dataset.

Preliminary results on the single-stack network performance were
already reported by Pasqualetto Cassinis et al. [29]. Above all, one
key advantage of relying on CNNs for feature detection was found in
the capability of learning the relative position between features under
193
Table 2
Mean 𝜇 and Standard Deviation 𝜎 of the adopted networks over the Envisat test dataset

Network No. Params 𝜇 [pxl] 𝜎 [pxl]

Single-stack Hourglass 1.8M 3.4 4.3
HRNet 25M 2.4 1.4

a variety of relative poses present in the training. As a result, both
features which are not visible due to adverse illumination and features
occulted by other parts of the target can be detected. Besides, a chal-
lenge was identified in the specific selection of the trainable features.
Since the features selected in this work represent highly symmetrical
points of the Envisat spacecraft, such as corners of the solar panel,
SAR antenna or main body, the network could be unable to distinguish
between similar features, and return multiple heatmaps for a single
feature output. Fig. 7 illustrates these findings. Notably, the detection
of wrong features results in weak heatmaps, which can be filtered out
by selecting a proper threshold on their total brightness.

In order to compare the feature detection accuracy of the proposed
Single-stack Hourglass with a more complex CNN architecture, the
HRNet proposed by Sun et al. [28] has been selected and trained on
the same Envisat datasets. This architecture had already been tested on
the SPEED dataset [25] and already proved to return highly accurate
features of the TANGO spacecraft. The performance is assessed in terms
of Root Mean Squared Error (RMSE) between the ground truth (GT) and
the 𝑥, 𝑦 coordinates of the extracted features, which is computed as

𝐸RMSE =

√

√

√

√

√

√

√

√

𝑛𝑡𝑜𝑡
∑

𝑖=1

[

(𝑥𝐺𝑇 ,𝑖 − 𝑥𝑖)2 + (𝑦𝐺𝑇 ,𝑖 − 𝑦𝑖)2
]

𝑛𝑡𝑜𝑡
. (3)

Fig. 8 shows the RMSE error over the test dataset for the two CNNs,
whereas Table 2 reports the mean 𝜇 and standard deviation 𝜎 of the
associated histograms. As expected, the added complexity of HRNet,
translates into a more accurate detection of the selected features, thanks
to the higher number of parameters: only 4% of the test images are
characterized by a RMSE above 5 pixels, as opposed to the 15% in the
Single-stack Hourglass case.

Although HRNet proves to return more accurate features, it is also
believed that the larger RMSE scenarios returned by the Single-stack
Hourglass can be properly handled, if a larger uncertainty can be
associated to their corresponding heatmaps. As an example, a large
RMSE could be associated to the inaccurate detection of only a few
features which, if properly weighted, could not have a severe impact
on the pose estimation step. This task can be performed by deriving a
covariance matrix for each detected feature, in order to represent its
detection uncertainty. Above all, this may prevent the pose solver and
the navigation filter from trusting wrong detections by relying more
on other accurate features. In this way, the navigation filter can cope
with poorly accurate heatmaps while at the same time relying on a
computationally-low CNN.

4. Covariance computation

Compared to the methods discussed in Section 1 [13–15], the
proposed method derives a covariance matrix associated to each feature
directly from the heatmaps detected by the CNN, rather than from the
computation of the image gradient around each feature. In order to
do so, the first step is to obtain a statistical population around the
heatmap’s peak. This is done by thresholding each heatmap image
so that only the 𝑥- and 𝑦- location of heatmap’s pixels are extracted.
Secondly, each pixel within the population is given a normalized weight
𝑤𝑖 based on the grey intensity 𝐼𝑖 at its location,

𝑤 = 𝑤 𝑅 +𝑤 𝐺 +𝑤 𝐵 , (4)
𝑖 𝑅 𝑖 𝐺 𝑖 𝐵 𝑖
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Fig. 7. Robustness and challenges of feature detection with the proposed CNN. On the left-hand side, the network has been trained to recognize the pattern of the features, and
can correctly locate the body features which are not visible, i.e. parts occulted by the solar panel and corners of the SAR antenna. Conversely, the right-hand side shows the
detection of multiple heatmaps for a single corner of the solar panel. As can be seen, the network can have difficulties in distinguishing similar features, such as the corners of
the solar panel.
Fig. 8. RMSE over the test dataset for the HRNet and the Single-stack Hourglass.

where 𝑅,𝐺,𝐵 are the components of the coloured image and 𝑤𝑅, 𝑤𝐺 , 𝑤𝐵
are the weights assigned to each channel in order to get the greyscale
intensity. This is done in order to give more weight to pixels which
are particularly bright and close to the peak, and less weight to pixels
which are very faint and far from the peak. Finally, the obtained
statistical population of each feature is used to compute the weighted
covariance between 𝑥, 𝑦 and consequently the covariance matrix 𝑪 𝑖,

𝑪 𝑖 =
(

cov(𝑥, 𝑥) cov(𝑥, 𝑦)
cov(𝑦, 𝑥) cov(𝑦, 𝑦)

)

, (5)

where

cov(𝑥, 𝑦) =
𝑛
∑

𝑖=1
𝑤𝑖(𝑥𝑖 − 𝑝𝑥) ⋅ (𝑦𝑖 − 𝑝𝑦) (6)

and 𝑛 is the number of pixels in each feature’s heatmap. In this work,
the mean is replaced by the peak location 𝒑 = (𝑝𝑥, 𝑝𝑦) in order to
represent a distribution around the peak of the detected feature, rather
than around the heatmap’s mean. This is particularly relevant when the
heatmaps are asymmetric and their mean does not coincide with their
peak.
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Fig. 9 shows the overall flow to obtain the covariance matrix for
three different heatmap shapes. The ellipse associated to each features
covariance is obtained by computing the eigenvalues 𝜆𝑥 and 𝜆𝑦 of the
covariance matrix,
(

𝑥
𝜆𝑥

)2
+
(

𝑦
𝜆𝑦

)2
= 𝑠, (7)

where 𝑠 defines the scale of the ellipse and is derived from the con-
fidence interval of interest, e.g. 𝑠 = 2.2173 for a 68% confidence
interval. As can be seen, different heatmaps can result in very dif-
ferent covariance matrices. Above all, the computed covariance can
capture the different CNN uncertainty over 𝑥, 𝑦. Notice that, due to its
symmetric nature, the covariance matrix can only represent bivariate
normal distributions. As a result, asymmetrical heatmaps such as the
one in the third scenario are approximated by Gaussian distributions
characterized by an ellipse which might overestimate the heatmap’s
dispersion over some directions.

5. Pose estimation

The CEPPnP method proposed by Ferraz et al. [13] was selected
to estimate the relative pose from the detected features as well as from
their covariance matrices. The first step of this method is to rewrite the
PnP problem in Eqs. (1)–(2) as a function of a 12-dimensional vector
𝒚 containing the control point coordinates in the camera reference
system,

𝑴𝒚 = 𝟎, (8)

where 𝑴 is a 2𝑛×12 known matrix. This is the fundamental equation in
the EPnP problem [9]. The likelihood of each observed feature location
𝒖𝑖 is then represented as

𝑃 (𝒖𝑖) = 𝑘 ⋅ 𝑒−
1
2 𝛥𝒖

𝑇
𝑖 𝑪

−1
𝒖𝑖

𝛥𝒖𝑖 , (9)

where 𝛥𝒖𝑖 is a small, independent and unbiased noise with expectation
𝐸[𝛥𝒖𝑖] = 𝟎 and covariance 𝐸[𝛥𝒖𝑖𝛥𝒖𝑇𝑖 ] = 𝜎2𝑪𝒖𝑖 and 𝑘 is a normalization
constant. Here, 𝜎2 represents the global uncertainty in the image,
whereas 𝑪𝒖𝑖 is the 2 × 2 unnormalized covariance matrix representing
the Gaussian distribution of each detected feature, computed from the
CNN heatmaps. After some calculations [13], the EPnP formulation can
be rewritten as

(𝑵 −𝑳)𝒚 = 𝜆𝒚. (10)
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Fig. 9. Schematic of the procedure followed to derive covariance matrices from
CNN heatmaps. The displayed ellipses are derived from the computed covariances by
assuming the confidence intervals 𝟏𝝈 = 𝟎.𝟔𝟖 and 𝟑𝝈 = 𝟎.𝟗𝟗.

This is an eigenvalue problem in which both 𝑵 and 𝑳 matrices are a
function of 𝒚 and 𝑪𝒖𝑖 . The problem is solved iteratively by means of
the closed-loop EPPnP solution for the four control points, assuming
no feature uncertainty.

Once 𝒚 is estimated, the relative pose is computed by solving the
generalized Orthogonal Procrustes problem used in the EPPnP [10].

6. Navigation filter

Several navigation filters for close-proximity operations were inves-
tigated in recent years in the context of relative pose estimation. The
reader is referred to Pasqualetto Cassinis et al. [8] for a comprehensive
overview that goes beyond the scope of this work. In the proposed
navigation system, the so-called Multiplicative Extended Kalman Filter
(MEKF) is used. Remarkably, other works [15,30] adopted a standard
formulation of the EKF that propagates the relative pose, expressed
in terms of relative position and quaternions, as well as the relative
translational and rotational velocities (prediction step), correcting the
prediction with the measurements obtained from the monocular cam-
era (correction step). However, the quaternion set consists of four
parameters to describe the 3DOF attitude, hence one of its parame-
ters is deterministic. As reported by Tweddle and Saenz-Otero [36]
and Sharma and D’Amico [31], this makes the covariance matrix of
a quaternion have one eigenvalue that is exactly zero. As a result,
the entire state covariance propagated by the filter may become non-
positive-definite and lead to the divergence of the filter. The MEKF,
introduced for the first time by Lefferts et al. [37], aims at solving
the above issue by using two different parametrizations of the relative
attitude. A three element error parametrization, expressed in terms
of quaternions, is propagated and corrected inside the filter to return
an estimate of the attitude error. At each estimation step, this error
estimate is used to update a reference quaternion and is reset to zero
for the next iteration. Notably, the reset step prevents the attitude error
parametrization from reaching singularities, which generally occur for
large angles.
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6.1. Propagation step

A standard EKF state vector for relative pose estimation is composed
of the relative pose between the servicer and the target, as well as
the relative translational and rotational velocities 𝒗 and 𝝎. Under the
assumption that the camera frame onboard the servicer is co-moving
with the LVLH frame, with the camera boresight aligned with the
along-track direction, this translates into

𝒙 =
(

𝒕𝐶 𝒗 𝒒 𝝎
)𝑇 , (11)

where 𝒒 =
(

𝑞0 𝒒𝒗
)

is the quaternion set that represents the relative
attitude. Notice that the assumption of the camera co-moving with the
LVLH is made only to focus on the navigation aspects rather than on
the attitude control of the servicer. Therefore, the application of the
filter can be extended to other scenarios, if attitude control is included
in the system.

In the MEKF, the modified state vector propagated inside the filter
becomes

�̃� =
(

𝒕𝐶 𝒗 𝒂 𝝎
)𝑇 , (12)

where 𝒂 is four times the Modified Rodrigues Parameters (MRP) 𝝈,

𝒂 = 4𝝈 = 4
𝒒𝒗

1 + 𝑞0
. (13)

The discrete attitude propagation step is derived by linearizing �̇�
around 𝒂 = 𝟎3×1 and assuming small angle rotations [36],

�̇� = 1
2
[𝝎×]𝒂 + 𝝎. (14)

As a result, the discrete linearized propagation of the full state becomes

�̃�𝑘 = 𝜱𝑘�̃�𝑘−1 + 𝜞 𝑘𝑸𝑘, (15)

where 𝑸𝑘 represents the process noise and

𝜱𝑘 =
(

𝜱𝐶𝑊 𝟎6×6
𝟎6×6 𝜱𝑎,𝜔

)

(16)

𝜱𝐶𝑊 =
(

𝜱𝑟𝑟 𝜱𝑟𝑣
𝜱𝑣𝑟 𝜱𝑣𝑣

)

(17)

𝜱𝑟𝑟 =
⎛

⎜

⎜

⎝

1 0 6(𝛥𝜃 − sin𝛥𝜃)
0 cos𝛥𝜃 0
0 0 4 − 3 cos𝛥𝜃

⎞

⎟

⎟

⎠

(18)

𝜱𝑟𝑣 =
⎛

⎜

⎜

⎝

1∕𝜔𝑠(4 sin𝛥𝜃 − 3𝛥𝜃) 0 2∕𝜔𝑠(1 − cos𝛥𝜃)
0 1∕𝜔𝑠 sin𝛥𝜃 0

2∕𝜔𝑠(cos𝛥𝜃 − 1) 0 sin𝛥𝜃∕𝜔

⎞

⎟

⎟

⎠

(19)

𝜱𝑣𝑟 =
⎛

⎜

⎜

⎝

0 0 6𝜔𝑠(1 − cos𝛥𝜃)
0 𝜔𝑠 sin𝛥𝜃 0
0 0 3𝜔𝑠 sin𝛥𝜃

⎞

⎟

⎟

⎠

(20)

𝜱𝑣𝑣 =
⎛

⎜

⎜

⎝

4 cos𝛥𝜃 − 3 0 2 sin𝛥𝜃
0 cos𝛥𝜃 0

−2 sin𝛥𝜃 0 cos𝛥𝜃

⎞

⎟

⎟

⎠

(21)

𝜱𝑎,𝜔 =

(

𝒆
1
2 [𝜔×]𝛥𝑡 ∫ 𝛥𝑡

0 𝒆
1
2 [𝜔×]𝜏𝑑𝜏

𝟎3×3 𝑰3×3

)

(22)

𝜞 𝑘+1 =

⎛

⎜

⎜

⎜

⎜

⎝

1
2𝑚𝑰3×3𝛥𝑡2 𝟎3×3
1
𝑚𝑰3×3𝛥𝑡 𝟎3×3
𝟎3×3 𝛥𝑡 ∫ 𝛥𝑡

0 𝒆
1
2 [𝜔×]𝜏𝑱−1𝑑𝜏

𝟎3×3 𝑱−1𝛥𝑡

⎞

⎟

⎟

⎟

⎟

⎠

. (23)

The terms 𝜔𝑠 and 𝛥𝜃 in Eq. (17) represent the servicer argument of
perigee and true anomaly variation from time 𝑡0 to 𝑡, respectively,
whereas the term 𝑱 in Eq. (23) is the inertia matrix of the target
spacecraft. In Tweddle and Saenz-Otero [36], the integral terms ins
Eqs. (22)–(23) are solved by creating a temporary linear system from
Eq. (14), augmented with the angular velocity and the process noise.
The State Transition Matrix of this system is then solved numerically
with the matrix exponential.
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6.2. Correction step

At this stage, the propagated state �̃�𝑘 is corrected with the mea-
urements 𝒛 to return an update of the state �̂�𝑘. In a loosely-coupled
ilter, these measurements are represented by the relative pose between
he servicer and the target spacecraft, obtained by solving the PnP
roblem with the CEPPnP solver described in Section 5. In this case,
pseudomeasurements vector is derived by transforming the relative

uaternion set into the desired attitude error 𝒂,

𝒒𝑧 = 𝒒𝑧 ⊗ 𝒒ref∗𝑘
→ 𝒂 = 4

𝛿𝒒𝒗
1 + 𝛿𝑞0

(24)

𝑘 =

(

𝒕𝐶

𝒂

)

= 𝑯𝑘𝒙𝑘 +𝑽 𝑘 =

(

𝑰3×3 𝟎3×3 𝟎3×3 𝟎3×3
𝟎3×3 𝟎3×3 𝑰3×3 𝟎3×3

)

⎛

⎜

⎜

⎜

⎜

⎝

𝒕𝐶

𝒗
𝒂
𝝎

⎞

⎟

⎟

⎟

⎟

⎠𝑘

+

(

𝑽 𝑟

𝑽 𝑎

)

𝑘

. (25)

n Eq. (24), ⊗ denotes the quaternion product. Conversely, in a tightly-
oupled filter the measurements are represented by the pixel coordi-
ates of the detected features,

=
(

𝑥1, 𝑦1 … 𝑥𝑛, 𝑦𝑛
)𝑇 . (26)

Referring to Eqs. (1)–(2), this translates into the following equations
or each detected point 𝒑𝑖:

𝑖 =

(

𝑥𝐶𝑖
𝑧𝐶𝑖

𝑓𝑥 + 𝐶𝑥,
𝑦𝐶𝑖
𝑧𝐶𝑖

𝑓𝑦 + 𝐶𝑦

)𝑇

(27)

𝐶 = 𝒒 ⊗ 𝒓𝐵𝑖 ⊗ 𝒒∗ + 𝐭𝐶 , (28)

here 𝒒∗ is the quaternion conjugate. As a result, the measurements
pdate equation can be written as

𝑘 = 𝑯𝑘𝒙𝑘 + 𝑽 =
⎛

⎜

⎜

⎝

𝑯 𝒕𝐶 ,𝑖 𝟎2𝑛×3 𝑯𝒂,𝑖 𝟎2𝑛×3
⋮ ⋮ ⋮ ⋮

𝑯 𝒕𝐶 ,𝑛 𝟎2𝑛×3 𝑯𝒂,𝑛 𝟎2𝑛×3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝒕𝐶
𝒗
𝒂
𝒘

⎞

⎟

⎟

⎟

⎟

⎠𝑘

+
(

𝑽 𝑟
𝑽 𝑎

)

(29)

nd the Jacobian 𝑯𝑘 of the observation model with respect of the state
ector is a 2𝑛×13 matrix whose elements are

𝑟,𝑖 = 𝑯 int
𝑖 ⋅𝑯ext

𝒕𝐶 ,𝑖
(30)

𝒂,𝑖 = 𝑯 int
𝑖 ⋅𝑯ext

𝒂,𝑖 = 𝑯 int
𝑖 ⋅𝑯ext

𝒒,𝑖 ⋅𝑯
𝒒
𝒂 (31)

int
𝑖 =

𝜕𝒉𝑖
𝜕𝒓𝐶𝑖

=

⎛

⎜

⎜

⎜

⎝

𝑓𝑥
𝑧𝐶𝑖

0 − 𝑓𝑥
(𝑧𝐶𝑖 )

2 𝑥
𝐶
𝑖

0 𝑓𝑦
𝑧𝐶𝑖

− 𝑓𝑦
(𝑧𝐶𝑖 )

2 𝑦
𝐶
𝑖

⎞

⎟

⎟

⎟

⎠

(32)

ext
𝒒,𝑖 =

𝜕𝒓𝐶𝑖
𝜕𝒒

=
𝜕
(

𝒒 ⊗ 𝒓𝐵𝑖 ⊗ 𝒒∗
)

𝜕𝒒
; 𝑯ext

𝒕𝐶 ,𝑖
=

𝜕𝒓𝐶𝑖
𝜕𝒕𝐶

= 𝑰3 (33)

𝑯𝒒
𝒂 =

𝜕
(

𝛿𝒒 ⊗ 𝒒ref
)

𝜕𝒂
=

𝜕
(

𝑸ref𝛿𝒒
)

𝜕𝒂
= 𝑸ref

𝜕
(

𝛿𝒒
)

𝜕𝒂
(34)

ref =

⎛

⎜

⎜

⎜

⎜

⎝

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 𝑞3 −𝑞2
𝑞2 −𝑞3 𝑞0 𝑞1
𝑞3 𝑞2 −𝑞1 𝑞0

⎞

⎟

⎟

⎟

⎟

⎠ref

. (35)

he partial derivatives of the differential quaternion set with respect to
he attitude error are computed from the relation between the attitude
rror 𝒂 and the differential quaternion set 𝛿𝒒,

𝑞0 =
16 − ‖𝒂‖2

16 + ‖𝒂‖2
𝛿𝒒𝒗 = 8 𝒂

16 + ‖𝒂‖2
(36)

𝜕
(

𝛿𝒒
)

𝜕𝒂
= 8

(

16 + ‖𝒂‖2
)2

⎛

⎜

⎜

⎜

⎜

⎝

−8𝑎1 −8𝑎2 −8𝑎3
16 + ‖𝒂‖2 − 2𝑎21 −2𝑎1𝑎2 −2𝑎1𝑎3

−2𝑎2𝑎1 16 + ‖𝒂‖2 − 2𝑎22 −2𝑎2𝑎3
−2𝑎3𝑎1 −2𝑎3𝑎2 16 + ‖𝒂‖2 − 2𝑎23

⎞

⎟

⎟

⎟

⎟

⎠

.

(37)
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d

In the tightly-coupled filter, the measurement covariance matrix 𝑹
s a time-varying block diagonal matrix constructed with the heatmaps-
erived covariances 𝑪 𝑖 in Eq. (5),

𝑹 =
⎛

⎜

⎜

⎝

𝑪1
⋱

𝑪𝑛

⎞

⎟

⎟

⎠

. (38)

otice that 𝑪 𝑖 can differ for each feature in a given frame as well as
ary over time. Preliminary navigation results [30] already showed that
uch heatmaps-derived covariance matrix can capture the statistical
istribution of the measured features and improve the measurements
pdate step of the navigation filter. Conversely, in the loosely-coupled
ilter 𝑹 represents the uncertainty in the pose estimation step and hence
t is not directly related to the CNN heatmaps. A constant value is
herefore chosen based on the pose estimation accuracy observed for
he test dataset.

Finally, the updated state estimate �̂�𝑘 is obtained from the propa-
ated state �̃�𝑘, the residuals �̃�, and the Kalman Gain 𝑲 ,

̃ = 𝒛 − 𝒉(�̃�𝑘) (39)

= 𝑷 𝑘𝑯𝑇
𝑘 (𝑯𝑘𝑷 𝑘𝑯𝑇

𝑘 +𝑹𝑘)−1 (40)

�̂�𝑘 = �̃�𝑘 +𝑲�̃�. (41)

6.3. Reset step

In the reset step, the reference quaternion 𝒒ref is updated with the
attitude error estimate �̂�𝒑 and the new attitude error is set to zero,

�̂�𝑘 = 𝛿𝒒(�̂�)⊗ 𝒒ref𝑘 (42)

�̂� = 𝟎3×1 (43)

𝒒ref𝑘+1 = �̂�𝑘. (44)

The obtained estimated quaternion set �̂�𝑘 is then compared to the
real quaternion set to assess the angle accuracy of the filter.

7. Simulations

In this section, the simulation environment and the results are
presented. Firstly, the impact of including a heatmaps-derived co-
variance in the pose estimation step is addressed by comparing the
CEPPnP method with a standard solver which does not account for
feature uncertainty. The weights in Eq. (4) are selected based on the
standard RGB-to-greyscale conversion (𝑤𝑅 = 0.299, 𝑤𝐺 = 0.587, 𝑤𝐵 =
.114). Secondly, the performance of the MEKF is evaluated by com-
aring the convergence profiles with a heatmaps-derived covariance
atrix against covariance matrices with arbitrary selected covariances.

nitialization is provided by the CEPPnP for all the scenarios.
Two separate error metrics are adopted in the evaluation, in accor-

ance with Sharma and D’Amico [20]. Firstly, the translational error
etween the estimated relative position �̂�𝐶 and the ground truth 𝒕 is
omputed as

𝑇 = |𝒕𝐶 − �̂�𝐶 |. (45)

his metric is also applied for the translational and rotational velocities
stimated in the navigation filter. Secondly, the attitude accuracy is
easured in terms of the Euler axis–angle error between the estimated

uaternion �̂� and the ground truth 𝒒,

=
(

𝛽𝑠 𝜷𝒗
)

= 𝒒 ⊗ �̂� (46)

𝑅 = 2 arccos (|𝛽𝑠|). (47)

.1. Pose estimation

Three representative scenarios are selected from the CNN test

ataset for a preliminary evaluation of the Single-stack Hourglass
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Fig. 10. Characteristics of the ellipses derived from the covariance matrices for the three selected scenarios.
Fig. 11. Pose Estimation Results - The standard deviation of the position error 𝐸𝑇 is depicted as the length of each error bar above and below the mean error 𝐸𝑇 .
performance. These scenarios were chosen in order to analyse different
heatmaps’ distributions around the detected features. A comparison is
made between the proposed CEPPnP and the EPPnP. Fig. 10 shows
the characteristics of the covariance matrices derived from the pre-
dicted heatmaps. Here, the ratio between the minimum and maximum
eigenvalues of the associated covariances is represented against the
ellipse’s area and the RMSE between the Ground Truth (GT) and the
x, y coordinates of the extracted features,

𝐸 =
√

(𝑥 − 𝑥 )2 + (𝑦 − 𝑦 )2. (48)
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RMSE,𝑖 𝐺𝑇 ,𝑖 𝑖 𝐺𝑇 ,𝑖 𝑖
Notably, interesting relations can be established between the three
quantities reported in the figure. In the first scenario, the correlation
between the sub-pixel RMSE and the large eigenvalues ratio suggests
that a very accurate CNN detection can be associated with circular-
shaped heatmaps. Moreover, the relatively low ellipse’s areas indicate
that, in general, small heatmaps are expected for an accurate detection.
Conversely, in the second scenario the larger ellipses’ area correlates
with a larger RMSE. Furthermore, it can be seen that the largest differ-
ence between the 𝑥- and 𝑦- components of the RMSE occurs either for
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Fig. 12. Pose Estimation Results - The standard deviation of the attitude error 𝐸𝑅 is depicted as the length of each error bar above and below the mean error 𝐸𝑅.
Table 3
Single-stack Hourglass Pose Estimation performance results for the selected three
representative scenarios.

Metric Scenario CEPPnP EPPnP

𝐸𝑇 [m]
1 [0.18 0.22 0.24] [0.17 0.22 0.24]
2 [0.35 0.41 0.59] [0.14 0.4 22.8]
3 [0.49 0.12 1.41] [0.56 0.16 5.01]

𝐸𝑅 [deg]
1 0.36 0.35
2 0.75 6.08
3 1.99 2.72

the most eccentric heatmap (ID 13) or for the one with the largest area
(ID 6). The same behaviour can be observed in the last scenario, where
the largest RMSE coincides with a large, highly eccentric heatmap.

Table 3 lists the pose estimation results for the three scenarios.
As anticipated in Fig. 10, the statistical information derived from the
heatmaps in the first scenario is uniform for all the features, due to
the very accurate CNN detection. As a result, the inclusion of features
covariance in the CEPPnP solver does not help refining the estimated
pose. Both solvers are characterized by the same pose accuracy.

Not surprisingly, the situation changes as soon as the heatmaps are
not uniform across the feature IDs. Due to its capability of accom-
modating feature uncertainties in the estimation, the CEPPnP method
outperforms the EPPnP for the remaining scenarios. In other words,
the CEPPnP solver proves to be more robust against inaccurate CNN
detections by accounting for a reliable representation of the features
covariance.

Next, the previous comparison is extended to the entire test dataset
as well as to HRNet, by computing the mean and standard deviation
of the estimated relative position and attitude as a function of the
relative range, respectively. This is represented in Figs. 11–12. First
of all, it can be seen that the pose accuracy of the CEPPnP solver in
the Single-stack Hourglass scenario does not improve compared to the
EPPnP, as opposed to the ideal behaviour reported in Table 3. There
are two potential causes of this behaviour. On the one hand, most of
the test images characterized by a large RMSE (Fig. 8) could not return
statistically-meaningful heatmaps that would help the CEPPnP solver.
This could be due to multiple heatmaps or highly inaccurate detections
in which two different corners are confused with each other. On the
other hand, this could be a direct consequence of the large relative
ranges considered in this work. As already reported by Park et al. [26]
and Sharma and D’Amico [31], a decreasing performance of EPPnP is
indeed expected for increasing relative distances, due to the nonlinear
relation between the pixel location of the detected features and 𝑧𝐶

n Eq. (2). In other words, relatively large pixel errors could lead to
naccurate pose estimates for large relative distances, independently of
he use of either CEPPnP or EPPnP.
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Table 4
VBAR approach scenario. The attitude is represented in terms of ZYX Euler angles for
clarity. Note that the camera boresight is the Y-axis of the LVLH frame.
𝜽0 [deg] 𝝎0 [deg/s] 𝒕𝐶0 [m] 𝒗0 [mm/s]

[−180 30 -80]𝑇 [−2.5 −4.3 0.75]𝑇 [0 150 0]𝑇 [0 0 0]𝑇

Furthermore, it can be seen from a different comparison level that
both the mean and standard deviation of the estimated relative pose
are improved, when HRNet is used prior to the PnP solver (Figs. 11b-
12b). Again, this is a direct consequence of the smaller RMSE reported
in Fig. 8. As a result, the above-mentioned degradation of the pose
estimation accuracy for increasing relative ranges is less critical for
HRNet. Notice also that, despite an actual improvement of CEPPnP
over EPPnP can be seen in the HRNet scenario, the improvements
in both the mean and standard deviation of the estimation error are
relatively small at large relative distances. This is considered to be
related to the fact that HRNet returns circular heatmaps for most of
the detected features, due to its higher detection accuracy compared to
the Single-stack Hourglass.

Notably, it is important to assess how well the pose estimation
system can scale when tested on datasets different than the Envisat one.
To this aim, the proposed heatmaps-based scheme was benchmarked
on the SPEED dataset, in order to compare its pose accuracy against
standard as well as CNN-based systems [19,25,26]. The reader is re-
ferred to Barad [38, p. 115] for a comprehensive quantitative analysis
of such comparison. The results demonstrated that the performance
of the proposed pipeline, based on extracting feature heatmaps and
using the CEPPnP solver, compares well with the state-of-the-art pose
estimation systems.

7.2. Navigation filter

To assess the performance of the proposed MEKF, a rendezvous sce-
narios with Envisat is rendered in Cinema 4D©. This is a perturbation-
free VBAR trajectory characterized by a relative velocity ‖𝒗‖ = 0 m∕s.
The Envisat performs a roll rotation of ‖𝝎‖ = 5 deg/s, with the
servicer camera frame aligned with the LVLH frame. Table 4 lists the
initial conditions of the trajectory, whereas Fig. 13 shows some of the
associated rendered 2D images. It is assumed that the images are made
available to the filter every 2 s for the measurement update step, with
the propagation step running at 1 Hz. In both scenarios, the MEKF is
initialized with the CEPPnP pose solution at time 𝑡0. The other elements
of the initial state vector are randomly chosen assuming a standard
deviation of 1 mm/s and 1 deg/s for all the axes of terms (�̂�0 − 𝒗) and
�̂� −𝝎), respectively. Table 5 reports the initial conditions of the filter.
0
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Fig. 13. Montage of the selected VBAR approach scenario. Images are shown every 6 s for clarity.
Table 5
Initial state vector in the MEKF. Here, HG refers to the Single-stack Hourglass architecture.

CNN �̂�0 [deg] �̂�0 [deg/s] �̂�𝐶0 [m] �̂�0 [mm/s]

HG [−180.2 28.7 −80.6]𝑇 [−2.1 −4.1 0.1]𝑇 [0.1 149.7 0.1]𝑇 [2.8 −1.3 3]𝑇
HRNet [−179.5 33.5 −79.7]𝑇 [−2.1 −4.1 0.1]𝑇 [−0.1 149.8 −0.1]𝑇 [2.8 −1.3 3]𝑇
Table 6
Standard deviation of Monte Carlo variables.
𝜎𝛥𝜙0

[deg] 𝜎𝝎0
[deg/s] 𝜎𝒕𝐶0 [m] 𝜎𝒗0 [mm/s]

10 1 [1 10 1]𝑇 10

Figs. 14–15 show the convergence profiles for the translational and
rotational states in the tightly- and loosely-coupled MEKF, respectively.
Besides, a Monte Carlo simulation with 1,000 runs was performed to
assess the robustness of the filter estimate against varying the initial
state �̂�0. Table 6 lists the standard deviation chosen for the deviation
from the true initial state of the filter. The distribution follows a
Gaussian profile with true-state mean. For the attitude initial error, the
initial reference quaternion 𝒒ref0 is perturbed by introducing a random
angular error around the correct Euler axis [39, p. 44],

𝛥𝝓0 = 𝛥𝜙0𝒒𝒗 (49)

𝒒ref0 = 𝒒0 ⊗

(

1
1
2𝛥𝝓0

)

. (50)

Table 7 reports the mean of the steady-state pose estimates together
with their standard deviation. From these results, important insights
can be gained on two different levels of the comparison.

On a CNN performance level, the results in Fig. 14 show that
a slightly worse cross-track estimate of the Single-stack Hourglass is
compensated by a more accurate estimate of the relative attitude. Given
the limited impact of these estimation errors at the relatively large
inter-satellite range of 150 m, these results suggest that the Single-
stack Hourglass has a comparable performance with the HRNet for
the selected scenario. Next, on a filter architecture level, a compari-
son between Figs. 14–15 illustrate the different convergence pattern
between the tightly- and loosely-coupled MEKF. Most importantly, it
can be seen that the loosely-coupled estimate of the relative along-track
position is characterized by a bias which is not present in the tightly-
coupled estimate. This occurs due to the decoupling of the translational
and rotational states, reflected in the Jacobian 𝑯𝑘 in Eq. (25). As a
result, the relative position is estimated without accounting for the
attitude measurements and vice versa. In other words, the creation of
pseudomeasurements of the relative pose prior to the loosely-coupled
filter leads to two separate translational and rotational estimates. Con-
versely, in the tightly-coupled filter the full statistical information is
enclosed in the detected features, and can be used to simultaneously
refine both the translational and the rotational states. Moreover, a close
inspection of the Single-stack Hourglass attitude estimates in Table 7
suggests that the tightly-coupled MEKF is characterized by a lower
199
standard deviation, highlighting a better robustness with respect to the
initial conditions of the filter when compared to the loosely-coupled
MEKF. Note that, due to the higher accuracy of HRNet in the feature
detection step — and hence also in the pose estimation step, this
is not observed for the latter CNN. In conclusion, a tightly-coupled
architecture is expected to return higher pose accuracies if simplified
CNNs, such as the proposed single-stack hourglass, are implemented at
a feature detection level.

8. Conclusions and recommendations

This paper introduces a novel framework to estimate the relative
pose of an uncooperative target spacecraft with a single monocular
camera onboard a servicer spacecraft. A method is proposed in which
a CNN-based IP algorithm is combined with a CEPPnP solver and a
tightly-coupled MEKF to return a robust estimate of the relative pose
as well as of the relative translational and rotational velocities. The
performance of the proposed method is evaluated at different levels of
the pose estimation system, by comparing the detection accuracy of two
different CNNs (feature detection step and pose estimation step) whilst
assessing the accuracy and robustness of the selected tightly-coupled
filter against a loosely-coupled filter (navigation filter step).

The main novelty of the proposed CNN-based pose estimation sys-
tem is to introduce a heatmaps-derived covariance representation of the
detected features and to exploit this information in a tightly-coupled,
Single-stack Hourglass-based MEKF. On a feature detection level, the
performance of the proposed Single-stack Hourglass is compared to the
more complex HRNet to assess the feasibility of a reduced-parameters
CNN within the IP. Results on the selected test dataset suggest a
comparable mean detection accuracy, despite a larger standard devi-
ation of the former network. Notably, this latter aspect is found to
decrease the pose estimation accuracy of the proposed CNN compared
to HRNet, despite the adoption of CEPPnP to capture features uncer-
tainty. However, important insights are gained at a navigation filter
level, delineating two major benefits of the proposed tightly-coupled
MEKF. First of all, the capability of deriving a measurements covariance
matrix directly from the CNN heatmaps allows to capture a more
representative statistical distribution of the measurements in the filter.
Notably, this is expected to be a more complex task if a loosely-coupled
filter is used, due to the need to convert the heatmaps distribution
into a pose estimation uncertainty through a linear transformation.
Secondly, the coupling between the rotational and translational states
within the filter guarantees a mutual interaction which is expected
to improve the global accuracy of the filter, especially in the along-

track estimate. Besides, the navigation results for the selected VBAR
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Fig. 14. Navigation Filter Results — Tightly-coupled MEKF. The dashed lines represent the 1𝜎 of the estimated quantities.

Fig. 15. Navigation Filter Results — Loosely-coupled MEKF. The dashed lines represent the 1𝜎 of the estimated quantities.
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Table 7
Monte Carlo Simulation Results. The mean and standard deviation of the relative pose errors are taken from the absolute
errors at filter steady state for each Monte Carlo run.
Single-stack Hourglass

MEKF 𝐸𝑇1 [m] 𝐸𝑇2 [m] 𝐸𝑇3 [m] 𝐸𝑅 [deg]
Tightly-coupled 0.1182 ± 6.3E−4 0.03 ± 0.0024 0.096 ± 5.4E−4 1.33 ± 0.03
Loosely-coupled 0.1 ± 2E−7 0.33 ± 3E−7 0.01 ± 1E−4 4.7 ± 12.6

HRNet

MEKF 𝐸𝑇1 [m] 𝐸𝑇2 [m] 𝐸𝑇3 [m] 𝐸𝑅 [deg]
Tightly-coupled 0.0683 ± 5.2E−4 0.03 ± 0.014 0.01 ± 3.4E−5 4.3 ± 0.03
Loosely-coupled 0.0075 ± 1E−4 0.36 ± 6.3E−5 0.002 ± 4E−4 0.93 ± 3.2E−7
scenario demonstrated that the proposed Single-stack Hourglass could
represent a valid alternative to the more complex HRNet, provided
that its larger detection uncertainty is reflected in the measurements
covariance matrix. Together, these improvements suggest a promising
scheme to cope with the challenging demand for robust navigation in
close-proximity scenarios.

However, further work is required in several directions. First of
all, more recent CNN architectures shall be investigated to assess
the achievable robustness and accuracy in the feature detection step.
Secondly, the impact of a reduction in the number of CNN parameter on
the computational complexity shall be assessed by testing the CNNs in
space-representative processors. Moreover, broader relative ranges be-
tween the servicer camera and the target spacecraft shall be considered,
most importantly to allow a thorough investigation of the 3D depth
perception challenges when approaching the target spacecraft with a
single monocular camera. Besides, more close-proximity scenarios shall
be recreated to assess the impact of perturbations on the accuracy and
robustness of the navigation filter. In this context, other navigation
filters such as the Unscented Kalman Filter shall be investigated.
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