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Abstract 
The original Link Transmission Model as formulated by Yperman et al. (2006) simulates traffic 

according to Lighthill-Whitham-Richards theory with a very small numerical error, yet only supports 

triangular fundamental diagrams. This paper relaxes that restriction in two steps. Firstly, we extend 

the model to handle any continuous concave fundamental diagram, and prove that this extension is 

still consistent with Lighthill-Whitham-Richards theory. Secondly, we extend the theory and model to 

handle a capacity drop, explicitly looking into the handling of both the onset and release of 

congestion. The final model is still first-order and suitable for general networks. Numerical examples 

show that it qualitatively improves on the original model due to uniquely featuring complex traffic 

patterns including stop-and-go waves, with crisp shockwaves between traffic states, as well as 

acceleration fans. 

Keywords: Link Transmission Model, Lighthill-Whitham-Richards theory, first-order model, capacity 

drop, node model, stop-and-go wave. 

1. Introduction 
Lighthill-Whitham-Richards (LWR) theory or kinematic wave theory, introduced by Lighthill and 

Whitham (1955) and Richards (1956), consists of two main equations: the conservation of vehicles 

and the equilibrium flow-density relationship. Assuming that traffic is always in an equilibrium state, 

these combine into a single partial differential equation for the propagation of traffic along a 

network link. Traditionally, this partial differential equation has often been solved by the Cell 

Transmission Model (CTM) (Daganzo, 1994), that discretizes roads into small cells according to the 

Godunov (1959) scheme. The Lagged Cell Transmission Model (LCTM) (Daganzo, 1999) and its later 

enhancement (Szeto, 2008) are variants of this method, reducing the numerical error. 
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Newell (1993) proposed a very different solution scheme, using cumulative numbers of vehicles as 

the primary variable. Later, this idea led to the development of the Link Transmission Model (LTM) 

(Yperman et al., 2006; Yperman, 2007), which does not discretize space and consequently leads to 

substantially smaller numerical errors (or computation time) than both the CTM and the LCTM. 

Daganzo (2005a; 2005b) and Jin (2015) show implicitly and Han et al. (2016) show explicitly that this 

numerical procedure indeed solves the partial differential equation as the time step tends to zero, 

but only for triangular fundamental diagrams (FDs). 

However, the requirement of triangular FDs is restrictive in multiple ways. Edie (1961) already 

identified that the speed in subcritical traffic decreases as traffic density increases. It is important to 

capture this relationship for the modeling of travel times in light traffic, yet a triangular FD does not 

do so. A non-linear free-flow branch in the FD furthermore captures platoon dispersion (Geroliminis 

and Skabardonis, 2005). Edie also recognized that there may be a discontinuity between the free-

flow capacity and the queue discharge rate. This is commonly referred to as the capacity drop, i.e. 

the effect that the presence of congestion reduces the maximum flow. Papageorgiou (1998) 

mentioned this as an important aspect of traffic flow that models should be able to reproduce, 

particularly when considering traffic control. This is especially relevant when testing or optimizing 

traffic control measures aimed at preventing or postponing the occurrence of the capacity drop, like 

many ramp metering installations, or at dissolving stop-and-go waves or wide moving jams, like 

SPECIALIST (Hegyi et al., 2008). While Hajiahmadi et al. (2013) propose an extension to the LTM for 

variable speed limits and ramp metering, the lack of a capacity drop in triangular FDs thus 

significantly restricts its usability, e.g. in assessing control strategies. Separate modeling of a free-

flow capacity and a queue discharge rate can furthermore be expected to benefit strategic 

assessments of intelligent in-vehicle systems designed to intervene specifically in case of congestion, 

such as the Congestion Assistant (Van Driel and Van Arem, 2010). 

Unlike the continuous-space LTM, these issues have mostly been addressed for the discrete-space 

models. General continuous FDs can be handled by the CTM and LCTM with proven convergence to 

LWR theory (Daganzo, 1995; Daganzo, 1999; Szeto, 2008) and have been incorporated into CTM-

based optimization problems (Nie, 2011; Carey and Watling, 2012). Multiple different modifications 

of the CTM have been proposed to deal with a capacity drop (see Section 4). None of this has so far 

been the case for the LTM. 

Hence, the purpose of this paper is to overcome the aforementioned limitations of the shape of the 

FD in the LTM. More specifically, we extend the LTM to handle general concave FDs, optionally 

including capacity drops. The resulting model, which we show to converge to LWR theory if there is 

no capacity drop, is applicable to general networks and features both standing queues, with a head 

initially fixed at the bottleneck that may move upstream later, and stop-and-go waves that can both 

grow and dissolve. Qualitative properties of this model are demonstrated with numerical examples. 

This paper is structured as follows. First, Section 2 will briefly introduce the structure of the LTM, 

consisting of a link model and a node model. Then, in Section 3, we derive a link model algorithm for 

the general case of a continuous concave FD, proving its consistency with LWR theory, and compare 

it to other link model formulations previously proposed in literature. Next, in Sections 4-6, we review 

previous work extending first-order models with capacity drops and subsequently extend LWR 

theory, the previous link model and a node model to allow for a capacity drop. Section 7 
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demonstrates the final model with two numerical examples. Finally, we list our conclusions in Section 

8. 

2. Structure of the LTM 
The starting point of this paper is the LTM for dynamic network loading, as formulated by Yperman et 

al. (2006) and Yperman (2007). Its primary components are a link model and a node model, that 

together are used to update in time steps of size t  the cumulative number of vehicles  ,N x t  at 

the entrance ,0ix  and exit ,i Lx  of each link i . 

The link model is used to determine the sending and receiving flows, which for each time step 

indicate the number of vehicles that could potentially exit and enter the link respectively. For link i , 

these quantities are denoted  iS t  and  iR t  respectively. The procedures for determining them are 

similar and will be discussed in more detail below. 

The node model then considers the interactions of traffic at intersections to derive transition flows 

 ijG t , the number of vehicles that succeed in crossing the intersection, where different node models 

can be used to represent different types of intersections. They indicate how much of each turn-

specific sending flow  ijS t  will actually pass the node during the time step. 

The node model also needs to know the turning fractions    /ij iS t S t  as input, which can be either 

specified exogenously or modeled endogenously by splitting the traffic into multiple so-called 

commodities with different routing behavior. Yperman et al. (2006) and Yperman (2007) assumed 

the latter option in their model formulation. Although we do not consider the specification of turning 

fractions in this paper, the results of this paper can be used in both these cases. 

Algorithm 1 below summarizes the overall process, showing how the link model and the node model 

together specify the traffic flow propagation. 

Algorithm 1. Link Transmission Model. 

 For each time step t  for each node: 

 Using the link model, determine sending flow  iS t  for each incoming link i . 

 Using the link model, determine receiving flow  jR t  for each outgoing link j . 

 Determine turning fractions 
 

 
ij

i

S t

S t
 for each turn ij . 

 Using a node model, determine transition flows  ijG t  for each turn ij . 

      , ,, : ,i L i L ij

j

N x t t N x t G t    for each incoming link i . 

      ,0 ,0, : ,j j ij

i

N x t t N x t G t    for each outgoing link j . 

 
The LTM discretizes only time, not space. Because due to the Courant-Friedrichs-Lewy (1928) 

condition, the maximum possible time step of a node depends on the length of the attached links, 

Yperman (2007) suggested that different nodes may be operated with different time step sizes to 

retain a high computational efficiency without being restricted by the smallest link in a (large) 
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network. In this paper we explicitly incorporate this suggestion by writing 
0xt and 

Lxt  for the time 

step sizes of the upstream and downstream nodes of a link respectively and only using t  without 

subscript if the node under consideration is obvious. 

Note that two close variants of the explicit forward simulation scheme of Algorithm 1 have been 

proposed recently. Himpe et al. (2016) turned it into an implicit iterative scheme, permitting the use 

of larger time steps. At least Section 3 of this paper regarding continuous concave FDs is also 

compatible with this variant. Alternatively, Hajiahmadi et al. (2016), Van de Weg et al. (2016) and 

Long et al. (2016) turned Algorithm 1 into optimization problems, with points of the cumulative 

curves as decision variables and the link and node models as constraints. Because for non-triangular 

FDs we find constraints that only apply conditionally, this paper is likely not compatible with that 

variant. Further discussion of these two variants is outside the scope of this paper. 

3. Link model for continuous concave FDs 

In this section, we will define a link model for the case of a continuous concave FD  Q k , i.e. without 

capacity drop. First, Subsection 3.1 introduces our notation and axioms. Next, we derive a method to 

compute sending and receiving flows in Subsection 3.2 resulting in the algorithms listed in Subsection 

3.3. Finally, Subsection 3.4 compares this newly proposed model with other models in literature. 

3.1. Notation and axioms 

A general continuous concave FD  Q k  is depicted in Fig. 1 below. Here  ,C Ck q  denotes the 

capacity point and Jk  denotes jam density. Note that we omit link indices on all variables for brevity. 

 
Fig. 1. Example fundamental diagram satisfying Eq. (2). 
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As an alternative to a function  Q k , the FD may be written as two functions  K q  and  K q , 

describing the free-flow branch and the congested branch respectively. For each branch, we define a 

set of relevant wave speeds, indicating the speeds at which traffic states propagate, as 

 

inf im ,supim

inf im ,supim

dq dq
Z

dK dK

dq dq
Z

dK dK

 
  
 

 
     

. (1) 

The prime notation indicates the congested branch rather than a derivative and im  is used to denote 

the image of a function. We impose the following restriction on the shape of the FD: 

    min ,max ,min ,m , ,x 0aZ Z Z Z      . (2) 

Note that contrary to this restriction, from a traffic flow theory point of view, min 0Z   and 

max 0Z    could be permitted, which would allow the FD to be horizontal at the capacity point. 

However, we will later see that the full restriction allows to compute sending and receiving flows 

efficiently and exactly on the link level. Note that we do not require the branches of the FD to be 

continuously differentiable, e.g. piecewise-linear FDs can be used if desired. 

Let us now define function  v  that indicates where a tangent line of slope v  to the free-flow 

branch would intersect the density axis. Likewise, we define function  v   for the congested 

branch. The corresponding formulas, domains and images are 

 

       

       

dom

dom

min , dom 0,max , im ,0

max , dom min ,0 , im ,

q K

J
q K

q
v K q Z

v

q
v K q Z k

v

  

  





 
     

 

 
          

 

. (3) 

Conversely, by appropriately taking the upper and lower envelopes of these tangent lines, we get 

back the FD: 

 

   

   

          

dom : max

dom : min

0, : min min ,min

v Z

v Z

J
v Z v Z

q
q K K q v

v

q
q K K q v

v

k k Q k v k v v k v





 



 

  

 
    

 

 
        

      

. (4) 

We furthermore define  V q  and  V q  as the sets of positive and negative tangent line slopes 

compatible with the FD at flow q : 

 

       

       

arg max

arg min

v Z

v Z

q q
V q v v Z v K q

v v

q q
V q v v Z v K q

v v

 

 



 

  
       

   

  
              

    

. (5) 
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The theoretical basis for traffic propagation along the link is formed by LWR theory. Traditionally, this 

takes the form of the following scalar conservation law, which combines conservation of vehicles 

with the FD: 

 
 

0
dQ kk k

t dk x

 
 

 
. (6) 

However, it is more convenient to replace this differential equation with the following Hamilton-

Jacobi equation, that also works if  Q k  is not continuously differentiable: 

 0, ,
N N N N

Q q k
t x t x

    
      

    
. (7) 

This differential equation states the FD in a way that implicitly guarantees conservation of vehicles 

(Newell, 1993): 

 
2 2

0
k q N N

t x x t t x

   
    

     
. (8) 

The differential equation is combined with the Lax (1957) shock admissibility or entropy condition to 

get a unique weak solution, eliminating alternative solutions where acceleration fans are replaced 

with shocks. This is achieved by prohibiting shocks from emanating waves, thus allowing 

discontinuities in flow or density only when they absorb waves or run parallel to them1. Then, 

because Hamiltonian  /Q N x    is convex in /N x  , the Hamilton-Jacobi equation, and thus the 

propagation of traffic along a link, can be solved with relative ease using variational theory (Evans, 

2002; Daganzo, 2005a). We use this in the next subsection to determine the sending and receiving 

flows, assuming that the link is initially empty. 

3.2. Computing sending and receiving flows: solution networks 
The sending and receiving flows will be solved in terms of cumulative numbers of vehicles. More 

precisely, our algorithm relies on finding the maximum possible  , xN x t t  at the considered end of 

the link  0 , Lx x x  at the end of the time step under consideration, so that    , ,xN x t t N x t   is 

the maximum number of vehicles exiting or entering the link during the time step, which are the 

sending flow  S t  and the receiving flow  R t  respectively. 

We thus rephrased the traffic propagation problem into finding the maximum possible value of 

 , xN x t t  for  0 , Lx x x . To do so, we apply the variational theory developed by Daganzo (2005a; 

2005b). The boundary condition for this application is formed by the values of the cumulative curves 

in previous time steps at both link ends. We build a solution network, as defined by Daganzo (2005a), 

that indicates how each boundary point may constrain the cumulative number of vehicles N  at our 

solution point  ,
PP xP x t t  . This applies to the determination of both the sending and receiving 

flow, hence we derive both solution networks simultaneously in the ensuing. 

                                                           
1
 If a discontinuity runs parallel to waves on both sides, it is a contact discontinuity. If it absorbs waves from 

one or both sides, it is a shockwave. 
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Fig. 2 illustrates the concept of using solution networks. After each time step, the boundary condition 

is extended with the newly found solution and the solution network is shifted to compute the next 

time step. Since we assume the link is initially empty, we can disregard the initial condition by 

moving it sufficiently far to the left while extending the boundary conditions into the past with 0N  . 

 
Fig. 2. Concept of a solution network for the sending flow, showing its boundary condition and 

space-time paths. 

 

Considering what space-time paths to include in our solution network, Fact 3 of Daganzo (2005b) 

states that we only need to consider straight space-time paths from the boundary to the solution 

point, reducing the solution network construction problem to selecting which boundary points to 

include. For the part of the boundary on the same link end as the solution point, the only possibly 

relevant path originates from the beginning of the time step, namely      , , ,
PP P P P xx t x t x t t   . 

Its constraint is    , ,
PP P P C xN x t N x t q t   . 

Next, let 0LL x x   denote the link length, and let us consider the part of the boundary at the 

opposite link end. First of all, space-time paths originating from any point B  for which 

 

0

if 
max

if 
min

P L

B P

P

L
x x

Z
t t

L
x x

Z




  
 

 

 (9) 

should not be included because, by Daganzo (2005a), these paths are not valid as the necessary slope 

exceeds the range of possible wave speeds  min ,maxZ Z . For the other boundary points, the path 

to the solution point has a slope of    /P B P Bx x t t  , and, using Daganzo (2005a), its constraint 

imposed on  ,P PN x t  thus equals 
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   
 

 

   
 

 

 

 
 

 

 
 

 

 

0,

0,

0,

,

, , max

, max

max if 

,

min if 

,

P

J

B

J

C

C J

t

P B

P P B B
k k

P Bt

P B

B B P B
k k

P B

P B

P B P B
k k

P B

B B

P B

P B P B
k k k

P B

B B

x x
N x t N x t Q k k dt

t t

x x
N x t t t Q k k

t t

t t
x x Q k k x x

x x
N x t

t t
x x Q k k x x

x x

N x t









 
   

 

 
    

 

  
    

  
  

 
     

 



   

   

 

 

 

 

dom

dom

max if 

min if 

if 

,

if 

, if 

L

P B

P B P B
q K

P B

P B

P B P B
q K

P B

P B

P B P B

P B

B B

P B

P B P B

P B

B B

x B

t t
x x q K q x x

x x

t t
x x q K q x x

x x

x x
x x x x

t t
N x t

x x
x x x x

t t

L
N x t L

t t t











  
    

  


       

  
   

  
  

      

 
  

    


 
0

0, if 

P L

B B P

x B

x x

L
N x t L x x

t t t








  
        

. (10) 

 

Due to Theorem 1 below, we only need to include paths from the opposite boundary with wave 

speeds within Z  (sending flow) or Z   (receiving flow). This is illustrated in Fig. 3. 
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Fig. 3. Solution network for the sending flow, highlighting the relevant part of the boundary 

condition and the space-time paths corresponding to these origins. 

 

Theorem 1. Paths originating from points  ,B Bx t  on the opposite part of the boundary with 

/ minB Pt t L Z   (sending flow) or / maxB Pt t L Z    (receiving flow) can be excluded from the 

solution network. 

Proof. Consider all points  ,B Bx t  with / minB Pt t L Z   (sending flow) or / maxB Pt t L Z    

(receiving flow), imposing the constraints 

 

 

 

 

 

 

   

   

0

0

, if 

,

, if 

, if 

, if 

, if 

, if 

B B P L

P B

P P

B B P

P B

P B

B B C C P L

P B

B B C C P

B B C C P B P L

B B C C P B P

L
N x t L x x

t t
N x t

L
N x t L x x

t t

t t
N x t k q L x x

L

t t
N x t k q L x x

L

N x t k L q t t x x

N x t k L q t t x





  
   

  
 

      

  
    

  
 

       

   


    0x





. (11) 

Because  , /B CN x t t q   , the point with / minB Pt t L Z   (sending flow) or 

/ maxB Pt t L Z    (receiving flow) is always the most constraining one. ∎ 
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Finally, we observe that, due to the time discretization of the LTM, N  is piecewise-linear along the 

boundary. Therefore we can split the relevant part of the boundary at the opposite link end into a 

finite set of open intervals with defined, constant flows /N t   and a finite set of points. This is 

illustrated in Fig. 4. 

 

 

Fig. 4. Opposite boundary of solution network split into open intervals and points. 

 

For the open intervals, instead of investigating all valid paths originating from it, we need only to look 

at those valid paths with a wave speed compatible with the known boundary flow. More specifically, 

this means that the wave speed corresponding to the slope from the boundary point to the solution 

point can be used to construct a tangent line to the FD passing through the traffic state 

corresponding to the known flow at the boundary. The reason for this is that in order to be 

constraining, a valid path must be a wave emanated from the boundary (Daganzo, 2005a), and in 

order for that wave to be emanated, its traffic state must match the traffic state at the boundary. 

Theorem 2 below shows that this results in only one extra closed-form constraint per open interval, 

that, together with the above formulas and considerations, allow us to compute  ,P PN x t  exactly if 

the boundary conditions are exact. 

Theorem 2. If, along the opposite boundary Bx , an open interval  1 2,t t  with flow 

      2 1 2 1, , /B Bq N x t N x t t t    constrains  ,P PN x t  unlike its infimum 1t  and its supremum 2t , 

then 

 
   

   

1 2min max

1 2 0max min

if 

if 

L L
P P LV q V q

L L
P PV q V q

t t t x x

t t t x x
 

    


    

 (12) 

and 

  
     

     
0 1 1

1 1 0

, if 
,

, if 

P P L

P P

L P P

N x t q t t K q L x x
N x t

N x t q t t K q L x x

     
 

    
. (13) 

Proof. The constraint imposed by the interval equals 
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 
 

   

 
   

   

     

1 2

1 2

1 2

0 1 1
,

1 1 0
,

0 1 1

,

if constraining
 otherwise

inf , if 

,

inf , if 

inf ,

B

B

B
P B

B P L
t t t

P B

P P

L B P
t t t

P B

P B

B
L

t t t V q
t t

L
N x t q t t L x x

t t
N x t

L
N x t q t t L x x

t t

t t
N x t q t t K q q

L









 




   
           

 
  

          


    



   

     

   

      

   

      

1 2

1 2

1 2

1 1 0

,

0 1 1

,

1 1 0

,

if 

inf , if 

inf , if 

inf , if 

B
P B

B
P B

B
P B

P L

P B

L B P
L

t t t V q
t t

P P L
L

t t t V q
t t

L P P
L

t t t V q
t t

L x x

t t
N x t q t t K q q L x x

L

N x t q t t K q L x x

N x t q t t K q L x x


 



 



 



   
   

  


              

     



 
    



. (14) 

Since the argument of the infimum is independent of Bt , this reduces to the constraint 

  

         

         

0 1 1 1 2

1 1 1 2

0

, if , :
if 

otherwise
,

, if , :
if 

otherwise

P B

P B P L

P P

L P B

P B P

L
N x t q t t K q L t t t V q

t t x x

N x t
L

N x t q t t K q L t t t V q
t t x x


      

 
 

 
          



. (15) 

Instead of looking whether there exists a point  ,B Bx t  in the interval that can reach 

 ,P Px t , we can look whether  ,P Px t  lies within the total area reached by the interval. This 

turns the constraint into 

  

         

         

0 1 1 1 2max min

1 1 1 2min max

0

, if 
if 

otherwise
,

, if 
if 

otherwise

L L
P PV q V q

P L

P P
L L

L P PV q V q

P

N x t q t t K q L t t t
x x

N x t
N x t q t t K q L t t t

x x
 

        



 

       




. (16) 

Finally, if    1/ max / minPL V q t t L V q    (sending flow) or 

   1/ min / maxPL V q t t L V q       (receiving flow), then this constraint of the open 

interval  1 2,t t  is equal to the constraint of its infimum 1t . Likewise, if 

   2/ max / minPL V q t t L V q    (sending flow) or    2/ min / maxPL V q t t L V q       

(receiving flow), the constraint is equal to that of its supremum 2t . This completes the 

proof. ∎ 
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3.3. Computing sending and receiving flows: algorithms 
The following sending and receiving flow algorithms implement the described solution networks. For 

brevity of notation, we use a compound assignment operator :a b meaning  : min ,a a b  and a 

floor-to-multiple-of operator 
b

a    meaning /a b b   . 

Algorithm 2. Sending flow. 

 Apply the outflow capacity constraint. 

   , : ,
L LL x L C xN x t t N x t q t    . 

 1 : / min
Lxt t t L Z   . 

 Apply the constraint of the point 1t . 

     0 1, : , min
LL xN x t t N x t Z L   . 

 
0

2 1:
xt

t t


    . 

 Loop: 

 Find the next 2t . 

 
02 2: min , / max

Lx xt t t t t L Z    . 

 If 1 2t t : 

 Exit the loop. 

    0 2 0 1

2 1

, ,
:

N x t N x t

t t
q




 . 

 If 
   1 2min maxL

L L
xV q V q

t t t t     : 

 Apply the constraint of the open interval  1 2,t t . 

       0 1 1, : ,
L LL x xN x t t N x t q t t t K q L       . 

 Apply the constraint of the point 2t . 

     
2

0 2, : ,
L xL

L
L x t t t

N x t t N x t L
 

   . 

 Move 1t   to 2t . 

1 2:t t . 

 Set the sending flow. 

     : , ,
LL x LS t N x t t N x t   . 

 
Algorithm 3. Receiving flow. 

 Apply the inflow capacity constraint. 

   
0 00 0, : ,x C xN x t t N x t q t    . 

 
01 : / maxxt t t L Z    . 

 Apply the constraint of the point 1t . 

     
00 1, : , maxx LN x t t N x t Z L   . 

 
2 1:

xL
t

t t


    . 

 Loop: 
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 Find the next 2t . 

 
02 2: min , / min

Lx xt t t t t L Z    . 

 If 1 2t t : 

 Exit the loop. 

    2 1

2 1

, ,
: L LN x t N x t

t t
q




 . 

 If 
   01 2max min

L L
xV q V q

t t t t
 

     : 

 Apply the constraint of the open interval  1 2,t t . 

       
0 00 1 1, : ,x L xN x t t N x t q t t t K q L        . 

 Apply the constraint of the point 2t . 

     
0 2

0 2, : ,
xL

L
x L t t t

N x t t N x t L
 

   . 

 Move 1t  to 2t . 

1 2:t t . 

 Set the receiving flow. 

     
00 0: , ,xR t N x t t N x t   . 

 
For Algorithm 1, the Courant-Friedrichs-Lewy (1928) condition requires that the time step sizes of 

nodes are chosen such that for each link, 

 
0 min maxLx x

L L
t t

Z Z


   


. (17) 

Note that these algorithms thus give us exact results according to LWR theory, insofar the input 

boundary condition is represented exactly as series of time steps with constant flows each. 

3.4. Comparison with literature 
Now, let us compare this result with discrete-time algorithms previously reported in literature: 

 In case of a triangular FD, our algorithms reduce to the algorithms given by Yperman et al. 

(2006) and Yperman (2007). 

 In case of a piecewise-linear concave FD that is not triangular, our algorithms include more 

constraints on the sending and receiving flows than those proposed by Yperman (2007): we 

include more paths originating from the boundary at the opposite link end. This difference 

becomes visible in the model output in case of acceleration fans or rarefaction waves, which 

the Yperman formulation cannot correctly reproduce. Fig. 5 demonstrates this graphically, 

where a sudden increase in link inflow results in an outflow spike rather than a 

monotonically increasing outflow. Bliemer et al. (2016) show a similar example. 

 In case of a continuously differentiable concave FD, we can compare our algorithms with the 

LTM formulation of Gentile (2010). Actually, our algorithms require a discontinuity in the 

derivative at the capacity point. While this might appear to be a difference with the Gentile 

formulation, we see upon closer inspection of his algorithms that he constrains the travel 

times of waves on a link by limiting his look-ahead window. Our restriction on the shape of 
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the FD makes this implicit constraint explicit. The models are hence similar, e.g. on p. 161-

162, Gentile proofs that the constraints resulting from our Theorem 2 represent valid paths 

(without using that terminology). A difference however is that Gentile uses linear 

interpolation of cumulative curve in acceleration fans producing constant flows at the 

opposite link end during the fan. Because each branch of the FD has more than two slopes, 

this is not correct, as noted by Gentile in his original work. Instead, our algorithms 

interpolate only within time steps rather than over the entire fan, yielding a more accurate 

representation of acceleration fans with piecewise-constant flows. A final difference is that 

our algorithms do not require all nodes to have the same time step size. 

 For any concave FD, Mazaré et al. (2011) have previously studied the boundary value 

problem of LWR theory with N  piecewise-linear along the boundary. The main difference 

with our model is that we do not know the traffic states at the link ends a-priori but compute 

these endogenously for a network, according to Algorithm 1. Another difference is that we 

added the previously mentioned restriction to the shape of the FD near the capacity point, 

enabling us, via Theorem 1, to prevent the computation time from increasing more than 

linearly with the time horizon of the simulation. Note that our algorithms, derived from 

variational theory (Daganzo, 2005a) with a solution network with an infinite number of direct 

paths from the boundary to the solution point, qualify as Lax-Hopf algorithms rather than 

dynamic programming in the terminology of Mazaré et al. Hence the proposed formulas are 

both grid-free within the link. The result of our Theorem 2 matches with their Eqs. (24) and 

(27). 

 
Fig. 5. Reproduction of acceleration fans by the Yperman (2007) model formulation on the left and 

our model formulation on the right, when both are used with the same piecewise-linear FD. The 

middle figures indicate the most restrictive paths of each solution network. The analytical solution 

is indicated with a dashed line in the top figures. 

 

We conclude that according to LWR theory, our proposed algorithms compute the sending and 

receiving flows exactly on the link level, proven using variational theory. Compared to our 
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formulation, all variants of the discrete-time LTM previously proposed in literature have either 

additional restrictions on the shape of the FD, or errors or limitations resulting in inexact solutions, or 

both. 

On the network level, this means that when using our algorithms, the only source of error is the 

simplification that node flows be constant within time steps, i.e. the time discretization of the 

boundary conditions that are input to the algorithms above. Since the exactness of the algorithms is 

naturally subject to the exactness of their input, the network-level solution is generally not exact but 

converges to the exact solution as the time steps tend to zero, creating a trade-off between 

numerical accuracy and computational efficiency. For a single invocation of either algorithm, the 

computational complexity is  1O t . With respect to t , this yields a complexity of  2O t  for the 

dynamic network loading process as a whole: the same as Gentile (2010). These complexities reduce 

to  1O  and  1O t  respectively in case the FDs are triangular, which are the same as Yperman et 

al. (2006). 

Finally, we remark that in the specific case of a triangular FD, the discrete-time algorithms can be 

replaced with event-based algorithms as proposed by Raadsen et al. (2016) which are able to 

produce exact solutions on a network level. However, the current extension of that approach to 

general concave FDs (Raadsen et al., 2014) incorrectly replaces acceleration fans with shocks, 

yielding an inadmissible weak solution to the differential equations. Thus, while our discrete-time 

approach cannot provide the exact network-level solution, it does have the advantage of being able 

to approximate it by using small time steps. Note that in the future such an approximation may 

become possible for the event-based approach as well if discretization of FDs into piecewise-linear 

ones (Bliemer et al., 2016) turns out to be feasible at high resolutions. 

4. Capacity drop theory for first-order models 
We proceed to extend our model with support for capacity drops. Before we do so, let us review 

previous work extending first-order models with a capacity drop. As observed by Chung et al. (2007), 

the capacity drop can be related to the traffic density. Many previously proposed models indeed 

modify the capacity based on the current density, e.g. in cell transmission models by having the 

demand function decrease past the critical density (Monamy et al., 2012; Muralidharan et al., 2012; 

Roncoli et al., 2015). Alvarez-Icaza and Islas (2013) proposed to select the capacity based on the sign 

of the time derivative of density. In case the capacity can only attain two values, i.e. a free-flow 

capacity and a queue discharge rate, Srivastava and Geroliminis (2013) proposed to use two 

threshold densities, where the capacity retains its previous value between the threshold densities 

and only switches when both thresholds are exceeded. Torné et al. (2014) instead look at whether 

downstream traffic conditions restricted the flow for a particular location in the previous time step, 

and set the capacity to the queue discharge rate if so. Jin et al. (2015) specify a kinematic wave 

theory with capacity drop that constrains the flow over a one-to-one node to the queue discharge 

rate if congestion is unavoidable. 

The previously mentioned models turn out to be difficult to formulate correctly for inhomogeneous 

roads and general networks. The reason is that the queue discharge rate is defined as the outflow of 

an active bottleneck, whereas a standing queue is located in front of this bottleneck, on a road with a 

potentially different free-flow capacity or queue discharge rate itself. For example, if the queue 
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discharge rate is larger upstream of a bottleneck than downstream, the flow through the bottleneck 

will be too large if the model is not specified carefully. One could work around this problem by 

inserting a special transition cell at discontinuities, that could have the free-flow capacity of the 

upstream cells and the queue discharge rates from the downstream cells. Monamy et al. (2012) 

indeed propose inserting a special cell to handle the capacity drop at merges. Alternatively, Torné et 

al. (2014) have cells modify the capacity of neighbors, in addition to using special cells for merges. 

Such approaches, even if done correctly, are clearly not very useful for extending the LTM, as it does 

neither discretize links nor nodes into small cells. Jin et al. (2015) are not affected by this issue, but 

their model formulation can only apply a capacity drop at a pre-specified one-to-one node and 

neither elsewhere within links nor at more general nodes. 

There are however more problems with the driving behavior implied by existing models. For the 

models that use the average density within each cell to select the cell capacity, the cell size will now 

influence how the capacity of the road changes over time. This is difficult to understand in terms of 

driving behavior, which now depends on the discretization of the road, and it is impossible to use 

these approaches in the LTM due to the lack of such a discretization. Finally, all of the models imply 

some kind of memory effect in the capacity of a road segment, which may or may not exist in reality. 

In particular, many models effectively yield a trapezoidal FD when the capacity drop is active, 

including the extended kinematic wave theory proposed by Jin et al. (2015). As a consequence, traffic 

at a congested road segment cannot recover to a free-flow state unless the demand for entering that 

road segment drops and the queue dissolves from its tail. The head of a queue is thus unable to 

move upstream, while this is observed in reality for so-called wide moving jams or stop-and-go 

waves. To solve this, one must ensure that the queue discharge state is a point on the free-flow 

branch. Fortunately, an inverted-lambda style FD (Koshi et al., 1983) can be employed to achieve 

this, as demonstrated by Hegyi et al. (2008) and Schreiter et al. (2010). However, as pointed out by 

Torné et al. (2014) and Schreiter et al. (2010), a severe difficulty lies in the possibility of infinite-speed 

backward shockwaves that can then occur during the onset of congestion. Instead of investigating an 

inverted-lambda style FD, Lu et al. (2009) mathematically analyzed the solutions of unmodified LWR 

theory with a simpler jump discontinuity in the FD, which did not result in a capacity drop but did 

result in the infinite-shockwave-speed problem. 

Because of the previous considerations, mere modification of the node model as proposed by Jin et 

al. (2015) will not be sufficient to describe the capacity drop: the link model must be modified as 

well, with an inverted-lambda style FD. By extending LWR theory this way, we can correctly account 

for the capacity drop both when a queue is standing in front of a bottleneck node and when a queue 

is moving upstream within a link. We will do so in this section. 

Firstly, Subsection 4.1 formulates the dynamics for an infinite link in free-flow and in congestion, and 

Subsection 4.2 defines how the interface between these areas behaves. Next, Subsection 4.3 extends 

this theory to handle finite links. Subsection 4.4 provides an example of the link dynamics. Next, 

nodes are discussed in Subsection 4.5. Finally, Subsection 4.6 compares the newly developed traffic 

flow theory with some of the papers cited above. The results from this section will be added to our 

model in Sections 5 and 6. 



17 

 

4.1. Link dynamics in free-flow and in congestion 

 
Fig. 6. Example fundamental diagram including a capacity drop. (

Eq  will be introduced in 

Subsection 4.5.) 

 

An inverted-lambda style FD is shown in Fig. 6. Clearly,  Q k  ceases to exist as a function. 

Consequently, we cannot directly use the differential equations from Section 3 to describe traffic 

flow on a link. However, for space-time areas in free-flow and space-time areas in congestion, we still 

have the following scalar conservation laws respectively: 

 

 
     

 
     

0, 0, , 0,

0, 0, , ,

C C

D D J

dK qq q
q q K q k

x dq t

dK qq q
q q K q k k

x dq t

 
   

 

   
     

 

. (18) 

Note the time and space axes have swapped roles compared to Eq. (6). The equivalent Hamilton-

Jacobi equations are 

 

   

 
 
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       

    

    
        

      

. (19) 

Because Hamiltonians  /K N t   and  /K N t    are convex in /N t  , the weak solutions within a 

free-flow space-time area and within a congested space-time area can be found the same way as 

before. A definition of the boundary between free-flow and congestion, which provides a boundary 

condition for both Hamilton-Jacobi equations, now completes our traffic flow theory with capacity 

drop for the link. 
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4.2. The interface between free-flow and congestion 
To describe the separation between free-flow and congestion, we can use the concept of a 

separating shock  Sx t , which is a generalized characteristic that divides space-time in a free-flow 

area upstream and a congested area downstream (Han et al., 2016). Let     ,S SN t N x t t  denote 

the cumulative number of vehicles at the separating shock, and let us describe an infinite link with 

initial conditions satisfying 

    
  

 
 

  
 

 

0

0
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,0 0
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S

S

x

S
x

S x

S
x

K f x dx x x
N x N

K f x dx x x

 


  
 






 (20) 

for some  0Sx ,  0SN  and initial flows  f x . This means we have the queue discharge traffic state 

 ,D Dk q  between congested traffic states and downstream of the last congested state. To ensure 

that moving observers on both sides of the shock pass vehicles at the same rate, the Rankine-

Hugoniot condition (Evans, 2002) requires 

 

 

S S S

S

dN dx dx
q k q k

dt dt dt

dx
q q k k

dt

    

    

 (21) 

where  ,k q  and  ,k q   are the traffic states upstream and downstream of the shock respectively. 

Let us now state the following differential equations for the separating shock: 
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 
  

   
  

. (22) 

In the first case, the separating shock is actually a shock and its speed follows from the Rankine-

Hugoniot condition. In the second case, the traffic state  ,D Dk q  behind the separating shock lies on 

the intersection of the free-flow branch and congested branch of the FD, and a speed of max Z  is 

chosen so that the separating shock is too fast to be an actual shock. Traffic state  ,D Dk q  can then 

be emanated from the boundary into the free-flow space-time area. Any interaction between traffic 

state  ,D Dk q  and other free-flow states will thus be handled within the free-flow space-time area by 

its Hamilton-Jacobi equation, rather than by the separating shock itself. 

In the above differential equations, the following definitions ensure that the traffic states upstream 

and downstream of a space-time point are defined at the shock location: 
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, ,
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k x t q x t K k x t

h

N x t N x h t
k x t q x t K k x t

h









 
 

 
    

. (23) 
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With the semi-derivatives chosen as above, this forms a causal description of the separating shock 

and hence of the complete link. While this works fine for FDs with    , ,D D C Ck q k q , this leads to 

two problems if the upstream flow q  is larger than the queue discharge rate Dq . The first problem is 

the possibility that the separating shock violates the Lax (1957) shock admissibility condition, as it 

may travel upstream too fast for kinematic waves corresponding to downstream state  ,k q   to keep 

up. Hence there exists no solution. The second problem is the infinite-speed shockwave problem 

described earlier if the downstream flow is also relatively high. 

We solve these problems by selecting some fixed point  ,S Sk q  on the congested branch of the FD 

with C S Jk k k   and modifying the shock admissibility criterion for backward shocks whenever an 

upstream state  1 1,k q  and a downstream state  2 2,k q  make contact in space-time, to allow and 

require shocks emanating traffic state  ,S Sk q  from the shock into the downstream space-time area, 

provided that 

1. this would not violate the Rankine-Hugoniot condition (conservation of vehicles), and 

2. there is no solution without a backward shock (flow maximization). 

To ensure that this always defines a solution everywhere, it is necessary that the congested branch of 

the FD is linear between  ,D Dk q  and  ,S Sk q , as in Fig. 6. We then have the following implications 

for our previous coupling of the two Hamilton-Jacobi systems: 

 within the free-flow space-time area, no backward shocks are needed and hence there is no 

change; 

 within the congested space-time area, backward shocks are only needed when 
1 2k k , in 

which case shocks emanating  ,S Sk q  are not possible without violating the Rankine-

Hugoniot condition, so there is no change either; 

 at the separating shock, backward shocks are only needed when  2 1min ,Dq q q , and a 

shock emanating  ,S Sk q  will occur if, subject to the Rankine-Hugoniot condition, the shock 

between  1 1,k q  and  ,S Sk q  would diverge from the shock or contact discontinuity between 

 ,S Sk q  and  2 2,k q , i.e. if        1 1 2 2/ /S S S Sq q k k q q k k      – otherwise there is no 

change. 

Since the modification of the shock admissibility criterion can only affect the separating shock, let us 

modify the definition of  ,k q   in Eq. (23) as follows, making it dependent on  ,k q : 
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. (24) 

Here, we eliminated the redundant 2 1q q  check using        2 2/ /S S D S D Sq q k k q q k k      and 

substituted       1 1, , , ,k q k x t q x t  and            , , , ,1

2 2 0 0
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previous condition for emanating  ,S Sk q . When the outcome differs from the previous definition, 

this changes the propagation of the separating shock per Eq. (22), forming a boundary condition for 

the congested Hamilton-Jacobi system that emanates  ,S Sk q  from there on where needed in 

accordance with the above. Note that  , Dk x t k  is necessary but not sufficient for the second 

inequality inside Eq. (24) to be true. 

One may wonder how to choose the values of  ,S Sk q . This traffic state manifests itself when high-

density free-flow traffic breaks down due to downstream congestion. Hence,  ,S Sk q  is the traffic 

state that occurs in a newly created stop-and-go wave in our model, which can be helpful in choosing 

appropriate values. A larger 
Sk  means stop-and-go waves become shorter and denser. If one desires 

to derive  ,S Sk q  empirically, one should consider that our model has infinite deceleration at the 

back and infinite acceleration at the head of a stop-and-go wave, so one would need to fit reality into 

this schematic representation of the wave. Additionally, one will wish to take into account that the 

choice of these values also influences the greatest possible backward speed of information 0w   

according to 

 min , ,minC S C

C S C J

q q q
w Z

k k k k

 
  

  
. (25) 

4.3. Imposing boundary conditions 
The previous theory for an infinite link can be extended to a finite link with prescribed boundary 

values  0 ,N x t  and  ,LN x t  by constraining Sx  to  0 , Lx x  and adding the following definitions of q  

and k  at 0x  and q  and k   at Lx : 
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. (26) 

Similar to before, the dynamics of the separating shock are modified. The main difference is that the 

necessity of backward shocks is now given by      
, ,

0
lim ,L LN x t h N x t

Lhh
q x t

 


 . Furthermore, note that 

 ,k q   may violate the congested branch of the FD when S Lx x . This does not matter since at such 

moments in time, the entire link is and remains in free-flow and the Hamilton-Jacobi equation for the 

congested space-time area is not needed. 
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4.4. Example 
Fig. 7 illustrates our extension of LWR theory with an example initial-boundary value problem whose 

solution can be constructed by hand. It has multiple possible choices for  0Sx  that satisfy Eq. (20), 

but they all result in the same solution for  ,N x t . The example has three time periods during which 

the flow upstream of  Sx t  exceeds Dq , i.e. is equal to Cq . The first two times,  ,S Sk q  is emanated 

from the separating shock according to Eq. (24). The third time, Eq. (22) initially ensures that the 

 Sx t  moves downstream. It is constrained to Lx  once it reaches the downstream link end, until the 

link outflow reduces to Dq . The latter causes  Sx t  to start moving upstream, emanating  ,S Sk q , 

according to Eq. (26). 

 

 
Fig. 7. Example initial-boundary value problem for a link with capacity drop. Letters indicate traffic 

states in the FD (left) and solution (right). In the right figure, the solution of  Sx t  is dotted for one 

possible  0Sx . 

4.5. Node model requirements 
Various first-order node models exist in literature. Our extension of LWR theory with capacity drop 

does not prescribe a specific one to be used. Nevertheless, the fact that each link may be subject to a 

capacity drop, adds more constraints to the solution of the node model, so that any chosen node 

model requires some modifications. These constraints, considering capacity drops for both incoming 

and outgoing links, are discussed in this subsection. 

Firstly, each incoming link cannot transmit a flow between its queue discharge rate and its sending 

flow, since no appropriate congested traffic state exists to represent such a solution in the inverted-

lambda FD of the incoming link. Thus, the transition flow over the node either facilitates the sending 

flow or is restricted by the queue discharge rate. We will refer to this as the “discharge rate for 

accelerating” Dq , as it refers to the discharge rate for queues standing or moving on the incoming 

link, as formulated earlier in this section. 

Secondly, it would be illogical if an overloaded outgoing link, i.e. an outgoing link with insufficient 

receiving flow to accommodate all incoming flows directed at it, would accept more flow than some 

queue discharge rate, even if permitted by its receiving flow: the overloading implies congestion at 
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its entrance and congestion implies a restriction to a queue discharge rate, which must be enforced 

as well. We will refer to this as the “discharge rate for merging” 
Eq , as it refers to the discharge rate 

for the entirety of queues standing before the outgoing link with traffic trying to enter it. Similar 

reasoning may be applied to internal node capacity constraints if one wishes to include those. 

Note that these discharge rates 
Dq  and 

Eq  may differ for the same link. This allows to account for 

different mechanisms behind, and hence different magnitudes of, the capacity drop in both 

situations. To avoid inconsistencies at redundant one-to-one nodes, we must have 
D E Cq q q   for 

each link. This is plausible, as there is generally more maneuvering space available at the entrance of 

a link compared to the interior of the link. Yuan et al. (2016) provide empirical confirmation of 

D Eq q  for a motorway link downstream of a lane drop. 

Finally, following our considerations in the introduction of this section, we opt to not include 

memory effects on nodes, thus avoiding that capacity drops in previous time steps affect the 

maximum node flows in the current time step. Nevertheless, the physical queuing process on an 

incoming link will always result in the sending flow not exceeding the queue discharge rate for some 

time if a breakdown occurred in an earlier time step. For consistency of the simulation, ceteris 

paribus, it is then desirable that the flow in the first time step of the breakdown is the same as in 

later time steps, also if the queue head is not moving upstream. This desire essentially extends the 

demand invariance principle of Lebacque and Khoshyaran (2005). Node models with capacity drop 

should adhere to this principle. 

4.6. Comparison with literature 
The capacity drop theory proposed in this section has significant advantages over the approach of Lu 

et al. (2009), who solve the entropy solution for unmodified LWR theory with a discontinuous flow-

density relationship. Both feature similar traffic breakdowns; our emanation of traffic state  ,S Sk q  

from the separating shock is directly comparable to the deceleration fans in their solution, as derived 

in Fig. 2 in their paper – it is the same traffic state appearing under the same condition. A difference 

here is that Lu et al. take the limit S Ck k , which creates the infinite-shockwave-speed problem as 

witnessed by their numerical results, whereas we intentionally chose S Ck k  to avoid this. Indeed, 

the breakdown process with S Ck k  in our model can also be reproduced with unmodified LWR 

theory with a continuous non-concave FD, as illustrated by e.g. Daganzo (1999, pp. 86-88) who labels 

 ,S Sk q  a “coasting state”. 

The most important difference however lies in the discharge process. While our model produces the 

queue discharge state downstream of congestion, Lu et al. get back the free-flow capacity state there 

via acceleration shocks, as derived in Fig. 4 and 5 in their paper. Thus, despite their discontinuous FD, 

their theory still inherits the absence of a capacity drop from unmodified LWR theory, i.e. the 

maximum flow out of a queue is not less than the maximum flow in free-flow. 

We remark that the capacity drop theory proposed by Jin et al. (2015), where queue heads do not 

move upstream and shocks do not emanate waves, can be interpreted as an extreme case of the 

more general theory formulated here, with max 0, S DZ q q    so that, unlike reality, queue heads 

cannot move upstream and with 
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being a concave function, so that traffic state  ,S Sk q  cannot be emanated from a shock. 

The node model with capacity drop proposed by Jin et al. (2015) is a special case of the model 

proposed here, with one incoming link, one outgoing link and a “dropped node capacity” equal to the 

minimum of the accelerating discharge rate of the incoming link and the merging discharge rates of 

the outgoing link. 

Finally, our capacity drop theory can be seen as a simplified version of the recent proposal by Yuan et 

al. (2017) who vary the queue discharge rate not only depending on whether the queue is a standing 

or a moving one, but also on the congestion density, thereby deviating from a fixed inverted-lambda 

FD. Our simplification is necessary for the link-level solution method that will be developed in the 

next section. Nevertheless, with a suitable choice of fixed inverted-lambda FDs, our theory exactly 

reproduces the lane-drop and on-ramp examples of Yuan et al. (2017, p. 481). 

5. Link model with capacity drop 
In this section, we adapt the solution networks for the receiving and sending flow to implement the 

link dynamics with capacity drop proposed in the previous section. Rather than computing sending 

and receiving flows by solving the previous system of differential equations directly, which is 

cumbersome, we temporarily simplify the problem by not specifying how congestion dissolves. This 

results in algorithms that are almost as simple as the algorithms presented before in Section 3.3. In 

Subsection 5.1, we start with investigating the receiving flow; the sending flow is discussed in the 

Subsection 5.2. These two subsections result in algorithms listed in Subsection 5.3. Finally, 

consequences and mitigation of the initial simplification will be discussed in Subsection 5.4. 

5.1. Computing receiving flows: solution network 

The receiving flow      
00 0, ,xR t N x t t N x t    will be estimated with a solution network that 

mimics the above traffic flow theory for an inverted-lambda style FD. Like before, this solution 

network should consist of two types of paths: paths along the upstream link end enforcing that the 

link inflow does not exceed the free-flow capacity and paths originating from the downstream link 

end propagating congested traffic states upstream, but only to the extent such congestion exists at 

the downstream link end. 

To restrict the inflow to the free-flow capacity, one path from  0 ,x t  to  
00 , xx t t  with cost 

0C xq t , 

is sufficient. Next, we need to define paths from the downstream link end to  
00 , xx t t . We create 

two types of such paths. Let T  denote the first time the downstream link end is congested, which 

will follow from the output of the node model, to the extent congestion has not dissolved yet within 

the link. If such a T  does not exist, no backward paths need to be considered at all. Otherwise, we 

firstly create paths corresponding to all wave speeds v Z   for which 
0

/xt t T L v    , 
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representing all traffic states potentially emanated from the opposite link end. We secondly create 

additional paths from all      
0

ˆ ˆ ˆ, : /L x Sx t t T L t t t V q      as if 

      ˆ ˆ ˆ: , ,L L St T N x t N x T q t T      . (28) 

This second set of backward paths serves to emanate congested traffic state  ,S Sk q  from the 

separating shock if needed, i.e. we simplify the wave emanation from the shock as if these traffic 

states originated from the downstream link end as well. These paths are collectively enforced by the 

extra constraint 

      
0 0 00 , ,  if maxx L S x S xN x t t N x T q T t t k L t t T L Z            . (29) 

Now, Theorem 3 below shows that this solution network is consistent with the Rankine-Hugoniot 

condition for shocks, allowing us to use the maximum backward information speed w  from Eq. (25) 

to truncate the boundary condition at 
0

/xt t L w   yielding the corresponding time step size 

constraint 
0

/xt L w   . 

Theorem 3. The above solution network solves  
00 , xN x t t  in a way consistent with shocks 

satisfying the Rankine-Hugoniot condition. 

Proof. This statement is only relevant when T  exists, otherwise it is theoretically impossible for 

 
00 , xx t t to be congested, and the solution network contains no backward paths either. 

If T  exists, there will always exist at least one backward path reaching  
00 , xx t t . The 

solution network also contains a stationary path along 0x  representing the free-flow 

regime. Thus, the transition of the upstream link end from free-flow to congestion is 

implicitly handled by the minimum envelope of both regimes, which is consistent with a 

Rankine-Hugoniot separating shock. Since shocks within the congested regime are also 

handled by a minimum envelope, this extends to all shocks. ∎ 

Corollary 1 and Corollary 2 below give us the additional desirable properties that shocks do not 

emanate  ,S Sk q  if their inflow does not exceed the queue discharge rate and that receiving flows 

are non-negative. 

Corollary 1. The above solution network does not simulate wave emanation from a shock if the 

flow into the shock does not exceed the discharge rate Dq . 

Proof. Since Theorem 3 ensures the solution network contains no other shocks than Rankine-

Hugoniot shocks, a necessary condition for a shock to start emanating  ,S Sk q  is that its 

inflow exceeds the queue discharge rate.  ∎ 

Corollary 2. The above solution network ensures non-negative receiving flows. 

Proof. This statement is trivial if T  does not exist. If T  exists and is the same as in the previous 

time step, Theorem 3 proves the statement, since / 0N t    in each regime and the 

Rankine-Hugoniot condition implies continuity of N  at the separating shock. The time step 

size constraint 
0

/xt L w    ensures that T  is known before its existence matters. Corollary 
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1 ensures that the simulation of wave emanation from the separating shock cannot be 

constraining immediately after a previous queue has dissolved, so an increase of T  cannot 

cause a negative jump in the permitted N  at 0x  either. ∎ 

Finally, Theorem 4 below proves that if there is no capacity drop, this solution network for the 

receiving flow produces the same result as the solution network derived in Section 3. Hence the 

solution network proposed here handles both cases with and without a capacity drop. 

Theorem 4. The above solution network is equivalent to Algorithm 3 if    , ,D D C Ck q k q  regardless 

of  ,S Sk q . 

Proof. Firstly, the Theorem of Daganzo (2005a) permits excluding backward paths corresponding 

to wave speeds  min ,0v Z   for which 
0

/xt t T L v    , without changing the solution. 

Theorem 1 is not affected by this. Secondly, Corollary 1 ensures that the extra constraint of 

Eq. (29) is void, removing the dependency on  ,S Sk q . This completes the equivalence. ∎ 

5.2. Computing sending flows: solution network 
Our next task is to specify a solution network to estimate the sending flow 

     , ,
LL x LS t N x t t N x t    mimicking the traffic flow theory for an inverted-lambda style FD. 

Paths originating from the upstream link end constrain  ,
LL xN x t t  as in Section 3. However, the 

constraint enforcing the outflow capacity in case of congestion becomes more complex with a 

capacity drop: here, the queue discharge rate should be substituted for the capacity, but this 

constraint should not be active when there is no congestion on the link so that the outflow can attain 

the free-flow capacity as well. 

Let us therefore investigate when the outflow should be constrained to the queue discharge rate. 

The constraint must be applied after the last time   the outflow was congested with a flow less than 

Dq . This constraint will last up till some time   , which will, upon creating congestion in the node 

model, initially be set to  , consistent with our simplification that we ignore the dissolution of 

congestion. Later, in Subsection 5.4 below, we will replace this with a finite value. The constraint can 

be implemented as 

  
   , if 

,
otherwise

L L

L

L D x x

L x

N x q t t t t
N x t t

         
  



 (30) 

which completes the description of the sending flow algorithm. 

Theorem 5, Corollary 3 and Theorem 6 below show that this approach is consistent with Rankine-

Hugoniot shocks, produces a sending flow not smaller than zero nor larger than the free-flow 

capacity and gives the same result as the solution network in Section 3 if there is no capacity drop. 

Theorem 5. The solution network described above solves  ,
LL xN x t t  in a way consistent with 

shocks satisfying the Rankine-Hugoniot condition. 
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Proof. Shocks within the free-flow regime and between the free-flow regime and the queue 

discharge state are handled by a minimum envelope of all valid paths that could be 

constraining at  ,
LL xx t t . ∎ 

Corollary 3. The solution network described above ensures non-negative sending flows not 

exceeding the free-flow capacity. 

Proof. Each traffic state emitted from the upstream link end, as well as the outflow capacity 

constraint, has 0 / CN t q    . Theorem 5 ensures N  is continuous at shocks as well. ∎ 

Theorem 6. The solution network described above is equivalent to Algorithm 2 if    , ,D D C Ck q k q . 

Proof. The equivalence is straightforward for 
Lxt t   , when T  exists. For other times, 

Algorithm 2 has an outflow capacity constraint which the algorithm described above lacks. 

However, Corollary 3 shows that this absence of the outflow capacity constraint cannot 

affect the solution. ∎ 

5.3. Computing sending and receiving flows: algorithms 
The algorithms listed below implement the link model with support for the capacity drop as 

previously proposed. As shown above, for    , ,D D C Ck q k q  they yield solutions identical to the 

algorithms of the Section 3 without capacity drop. Note that the extended versions presented here 

use several new variables whose values persist over time steps:  ,   and T  are persistent real 

numbers with initial values : 0   and :T   . Their meanings have been defined in Subsection 5.2, 

with the addition that we set T  to   as a placeholder when it would not exist otherwise. These 

variables are used by the node model as well, as we see later in Subsection 6. 

For brevity of notation, we use a compound assignment operator :a b meaning  : min ,a a b , a 

floor-to-multiple-of operator 
b

a    meaning /a b b    and a ceil-to-multiple-of operator 
b

a    meaning 

/a b b   . 

 
Algorithm 4. Sending flow with optional capacity drop. 

 1 : / min
Lxt t t L Z   . 

 Apply the constraint of the point 1t . 

     0 1, : , min
LL xN x t t N x t Z L   . 

 
0

2 1:
xt

t t


    . 

 Loop: 

 Find the next 2t . 

 
02 2: min , / max

Lx xt t t t t L Z    . 

 If 1 2t t : 

 Exit the loop. 

    0 2 0 1

2 1

, ,
:

N x t N x t

t t
q




 . 
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 If 
   1 2min maxL

L L
xV q V q

t t t t     : 

 Apply the constraint of the open interval  1 2,t t . 

       0 1 1, : ,
L LL x xN x t t N x t q t t t K q L       . 

 Apply the constraint of the point 2t . 

     
2

0 2, : ,
L xL

L
L x t t t

N x t t N x t L
 

   . 

 Move 1t  to 2t . 

1 2:t t . 

 If 
Lxt t   : 

 Apply discharge rate constraint. 

     , : ,
L LL x L D xN x t t N x q t t       . 

      : , ,
LL x LS t N x t t N x t   . 

 

Algorithm 5. Receiving flow with optional capacity drop2. 

 Apply the inflow capacity constraint. 

   
0 00 0, : ,x C xN x t t N x t q t    . 

 If 
0

/xT t t L w   : 

  
01 : max , / maxxt T t t L Z    . 

 Emanate congested traffic state  ,S Sk q  up to point 
1t  inclusive. 

     
0 00 1 1, : ,x L S x SN x t t N x t q t t t k L      . 

 2 1:
xL

t
t t


    . 

 Loop: 

 Find the next 2t . 

 
02 2: min , / min

Lx xt t t t t L Z     . 

 If 
1 2t t : 

 Exit the loop. 

    2 1

2 1

, ,
: L LN x t N x t

t t
q




  . 

 If 
   01 2max min

L L
xV q V q

t t t t
   

     : 

 Apply the constraint of the open interval  1 2,t t . 

       
0 00 1 1, : ,x L xN x t t N x t q t t t K q L          . 

 Apply the constraint for the point 2t . 

     0 2 0
0 2, : ,

x

L
x L t t t

N x t t N x t L
 

    . 

                                                           
2
 Use      , , ,C C D D S Sk q k q k q   and minw Z   if there is no capacity drop. 
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 Move 
1t  to 

2t . 

1 2:t t . 

      
00 0: , ,xR t N x t t N x t   . 

 

For Algorithm 1, the Courant-Friedrichs-Lewy (1928) condition requires that the time step sizes of 

nodes are chosen such that for each link, 

 
0 maxLx x

L L
t t

w Z


    . (31) 

The computational complexity of these algorithms is the same as in Section 3. 

5.4. Dissolving congestion 
As indicated before, we still need to address the dissolution of congestion. To this end, Fig. 8 shows 

example output of the previous algorithms with sufficiently small time steps, along with the implied 

traffic states within the link. Although the onset of congestion correctly follows our traffic flow 

theory with capacity drop, we can identify three problems related to the resolution of congestion, 

that occur if the inflow later again exceeds the queue discharge rate. In order of decreasing severity, 

the problems are that: 

1. for large t , the outflow Dq  is inconsistent with the inflow Cq , violating our free-flow 

differential equation; 

2. the low inflow Iq  has dissolved the queue, but the queue re-appears later, violating our 

shock admissibility criterion with an incorrectly active separating shock; 

3. the low inflow has dissolved traffic state Q  within the queue, but this traffic state re-appears 

later, violating the shock admissibility criterion with an incorrect traffic state behind the 

separating shock. 

 

 
Fig. 8. Problems related to dissolution of congestion. Letters indicate traffic states in the FD (left) 

and solution (right). 

 

The first problem is solved by setting   to its correct value rather than infinity. This also solves the 

second problem if T  is adjusted accordingly. We will investigate how to do so below. It addresses 
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the third problem as well, but does not solve it entirely if the congested branch of the FD is non-

linear. 

Essentially, the previous algorithms need to be supplemented with a mechanism that marks 

congested traffic states as dissolved, recovering the free-flow capacity. Hence, consider a point 

 0 0,x t  on the upstream link end and a point  ,L Lx t  on the downstream link end that is preceded by 

congestion, possibly including the queue discharge state. We will now investigate when we can prove 

that this congestion will be cleared. Since a queue will always grow if the inflow exceeds the queue 

discharge rate, assume that the flow prior to  0 0,x t  does not exceed Dq . Then, in the worst case, 

the link inflow will be Cq  after 0t , such that  0 0,x t  emanates an acceleration fan. The last traffic 

state in this fan not exceeding Dq  will reach the downstream link end at  0 / min Dt L V q , and the 

corresponding wave will constrain   0, / minL DN x t L V q  to     0 0, / minD D DN x t q V q k L  . Thus, 

we know the congestion will be dissolved if 

 
 

 
 

 

   

0 0 0

0 0 0

, ,
min min

, ,

D

D L L D L

D D

D D L L D L

q L
N x t k L N x t q t t

V q V q

N x t k L q t N x t q t

   
             
   

   

  (32) 

Since this analysis is based on a valid forward path with speed  min DV q , one does not need to 

verify that the flow prior to  0 0,x t  is not larger than Dq . Moreover, if the head of a moving jam 

present before  ,L Lx t  has reached the upstream link end in the time step prior to  0 0,x t , Eq. (32) 

becomes an equality so that congestion on the link is also treated as dissolved. 

If congestion is dissolved, T  can be increased to Lt , ensuring that the dissolved congestion does not 

constrain the future inflow. If the link is now free of congestion, T  can be set to   and   can be set 

to  0 / min Dt L V q , ensuring that both later inflow and outflow are unconstrained. 

The following algorithm applies this theory, increasing T  as congestion is dissolved and incrementing 

0t  otherwise, until either of them lies in the future. It must be executed for every link at the 

beginning of each time step 
0

: | |
Lx xt t t t t  , i.e. before computing the sending flow or the receiving 

flow with the previous algorithms. 0t  is a persistent variable initialized at  . 

Algorithm 6. Marking congestion as dissolved. 

 If T t : 

 Loop: 

 Ensure that the forward path reaches the downstream link end after T . 

  0

0

0 0 min
: max ,

D
x

L
xV q

t

t t T t


        
. 

 Ensure the value of  0 0,N x t  is already known. 

If 0t t : 

 Exit the loop. 
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 Check whether  0 0,x t  can dissolve congestion at  ,Lx T . 

If    0 0 0, ,D D L DN x t k L q t N x T q T    : 

 See what more  0 0,x t  could dissolve of this downstream time step. 

  0 min
ˆ : min ,

LD xL

L
xV q t

T t T t


     . 

 Compute the outflow in this downstream time step. 
, ,

:
L x Lt tLx xL L

xL

N x T t N x T

t
q

 

             
   


  . 

 If the outflow is less than 
Dq , not all congestion before  ˆ,Lx T  necessarily dissolves. 

If 
Dq q  : 

 Thus decrease T̂  until    0 0 0
ˆ ˆ, ,D D L DN x t k L q t N x T q T    , by solving the 

equality. 

   0 0 0, ,
ˆ :

x xL L

xL

L D D Dt t

t

D

N x T q T N x t k L q t
T T

q q

 



         
   


. 

 If the downstream time step has been dissolved completely. 

If ˆ
LxL

xt
T T t


    : 

 If T̂  : 

 All currently known congestion has been dissolved. 

:T   . 

 The outflow should be set to recover to the free-flow capacity once the 

forward path that solved it reaches the downstream link end. 

 0 min
:

D

L

V q
t   . 

 Exit the loop. 

 Else: 

 Try dissolving the remainder of this downstream time step with the next forward 

path. 

00 0: xt t t  . 

 Mark the dissolved congestion as such. 

ˆ:T T . 

 If T t : 

 Exit the loop. 

 Else: 

 Try dissolving the congestion with the next forward path instead. 

00 0: xt t t  . 
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6. Node model with capacity drop 
As an example of how to adapt a node model to support a capacity drop, we extend the Tampère et 

al. (2011) node model for unsignalized intersections in this section. The original version of this node 

model distributes the receiving flows of the outgoing links proportional to the capacities and turning 

fractions of the incoming links, thereby supporting any number of incoming and outgoing links, 

maximizing flows to a user-equilibrium and conserving turning fractions. For simplicity, our extended 

node model will assume that the capacities used for distributing flows are the free-flow capacities. 

To accommodate the requirements from Subsection 4.5, the node model is able to modify the 

sending and receiving flows: a high sending flow is reduced to the accelerating discharge rate if it 

cannot be transmitted in its entirety, and a high receiving flow is reduced to the merging discharge 

rate if it is smaller than the sum of the sending flows directed at it. The invariance principle is 

satisfied, as proven in the Appendix. 

The extended algorithm is listed below, following the notation and structure of Tampère et al. 

(2011). iC  and iD  denote the free-flow capacities and accelerating discharge rates for incoming links 

integrated over the time step, jE  denotes the merging discharge rate for outgoing links. jR  denotes 

the unallocated portion of receiving flow jR , jU  indicates which incoming links are constrained by 

an outgoing link and J   indicates which outgoing links still need to be solved. Calculated in step 2 of 

the algorithm, ijC  denote the oriented capacities, which are the products of the free-flow capacities 

of incoming links and the corresponding turning fractions. Step 4 finds the most constraining 

outgoing links Ĵ J 3 and the corresponding reduction factor â . Then, step 5 first eliminates 

demand-constrained incoming links ( ˆ
i iS aC ). A capacity drop must then occur on the remaining 

incoming links, so iT  is set to t  and their sending flows are capped at their accelerating discharge 

rates, initializing i  and i . If some sending flows are indeed reduced, step 5 is restarted as there 

may now exist additional demand-constrained incoming links. Eventually, for the remaining incoming 

links, the outflows must be smaller than the accelerating discharge rates. If the supply-constrained 

transition flows ijG  together exceed the merging discharge rate jE  of the outgoing link, the entire 

node model is restarted from step 3, with j jR E  to incorporate the capacity drop on the entrance 

of the outgoing link as well, preserving only previous reductions of sending and receiving flows. If this 

is not needed, the algorithm simply continues with the next iteration. 

 
Algorithm 7. Node model with optional capacity drops. 

1. Retrieve link constraints and initialize supplies and sets. 

 Determine all iS , ijS  and jR . 

 i : 

 ,:i C iC q t  . 

                                                           
3
 Unlike Tampère et al. (2011), we process multiple outgoing links with identical reduction factors 

simultaneously instead of sequentially, as the arbitrary order might otherwise influence which capacity drops 
are activated. Without capacity drops, it would not change any outcome, as identical reduction factors would 
stay the same until all are processed. 
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 ,:i D iD q t  . 

 j : 

 ,:j E jE q t  . 

 :j jR R . 

  : | 0j ijU i S  . 

  : | jJ j U  . 

2. Determine oriented capacities. 

 | 0ii S  : j : :
ij

ij i

i

S
C C

S
 . 

3. Stopping criterion. 

 If J  : stop. 

4. Determine most restrictive constraints. 

 j J  : :

j

j

j

ij

i U

R
a

C





. 

 ˆ min j
j J

a a


 . 

 ˆ : arg min j
j J

J a


 . 

5. Determine flows of corresponding incoming link sets and recalculate receiving flows. 
 If 

ˆ
ˆˆ

ˆ| i ij

j J

i U S aC


   : 

 
ˆ

ˆˆ

ˆ| i ij

j J

i U S aC


   : 

 :i iG S . 

 j : :ij ijG S . 

 j J  : 

 :j j ijR R G  . 

  : \j jU U i . 

 If jU  :  : \J J j . 

 Else: 
 

ˆ
ˆˆ

j

j J

i U


  : 

 Mark the time step as congested for the incoming links. 

:iT t . 

 Activate the queue discharge rate for future time steps. 

:i   . 

 Set the starting time for applying the accelerating discharge rate. 

:i t t   . 
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 Check whether there are incoming links whose sending flows exceed their accelerating 

discharge rates, and reduce them to their queue discharge rates as needed. 
If 

ˆ
ˆˆ

| i ij

j J

i U D S


   : 

 
ˆ

ˆˆ

| i ij

j J

i U D S


   : 

 j : :
ij

ij i

i

S
S D

S
 . 

 :i iS D . 

 Re-check for demand-constrained incoming links since we have reduced sending flows. 

Restart step 5. 
 

ˆ
ˆˆ

j

j J

i U


  : 

 ˆ:i iG aC . 

 j : ˆ:ij ijG aC . 

 Check whether the receiving flow exceeds the merging discharge rate of the outgoing link, 

and reduce it to its queue discharge rate as needed. 

If ˆ ˆ
ˆˆ |

j ij
i

j J E G   : 

 ˆ ˆ
ˆˆ |

j ij
i

j J E G   : ˆ ˆ:
j j

R E . 

 Restart the entire algorithm with the reduced receiving flow. 

j : 

 :j jR R . 

  : | 0j ijU i S  . 

  : | jJ j U  . 

 Go to step 3. 
 

ˆ
ˆˆ

j

j J

i U


  : 

 j J  : 

 :j j ijR R G  . 

 If ˆj J : 

 
ˆ

ˆˆ

: \j j j

j J

U U U


 . 

 If jU  :  : \J J j . 

 ˆ: \J J J . 

 Go to step 3. 
 

The flow maximization property of the Tampère et al. (2011) model has a special benefit for our 

extension: it will prevent unnecessary activation of capacity drops. The choice of links for which to 

activate a capacity drop is not necessarily flow-maximizing however: the order of activation will be 
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dictated by the reduction factors of the outgoing links, with the most severe reduction first. As an 

example of non-flow-maximizing behavior, in case of a simple merge, the sending flow of both 

incoming links is reduced to their accelerating discharge rates simultaneously, while one such 

reduction might have sufficed. 

7. Numerical examples 
In this section, we investigate the qualitative properties of the proposed model in numerical 

examples. We start by demonstrating the elementary improvements of our model over the original 

LTM with triangular FDs in Subsection 7.1. After this synthetic example, we test the model in a real 

motorway corridor network in Subsection 7.2. 

7.1. Elementary model features 
To demonstrate the elementary features of our extended link and node models, we simulate a 

highway with two on-ramps and visualize the resulting traffic states along the highway. All links have 

identical FDs. The synthetic demand and FD, with annotated model results for the highway, are 

shown in Fig. 9, including a comparison with a model with a triangular FD. 
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Fig. 9. Simulation input and results for the example highway. 

 

Let us first look at the extended LTM. While the main road’s inflow is initially low, it quickly increases 

to the free-flow capacity, showing a forward acceleration fan. When a low flow from the 9 km on-

ramp tries to merge, this generates a stop-and-go wave whose traffic state is emanated from the 

shock at its tail. The reason that there is no standing queue is that the sum of the accelerating 

discharge rate from the main road and the low flow from the parallel road do not exceed the free-

flow capacity downstream of the merge. Nevertheless, the flow downstream of the merge still drops 

because the on-ramp flow is not equal to the capacity drop of the stop-and-go wave. A little less than 

half an hour into the simulation, the stop-and-go wave dissolves due to temporarily low inflow, so 

that when the inflow is high again later, it can continue without breaking down. 

Around the same time, the flow from the ramp increases, causing a standing queue whose outflow 

equals the merging discharge rate of the link downstream of the merge. Once the queue on the ramp 

has been dissolved, the head of the queue on the main road starts to move upstream, showing a 

backward acceleration fan at its head. This is because now the sum of the sending flows does fit into 

the free-flow capacity downstream, and the node model has no memory of the previous congestion. 

The queue eventually dissolves, recovering the free-flow capacity of the main road. 
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Meanwhile, the upstream end of this queue has encountered an inflow higher than its discharge 

rate, causing it to emanate state  ,S Sk q  from the separating shock. As remarked in Subsection 4.6, 

this can also be interpreted as a deceleration fan. While this high inflow is temporarily interrupted, 

the queue partially dissolves, starting a new deceleration fan when the high inflow resumes. 

When the head of the queue passes the 6 km on-ramp, which now has a non-zero demand, the flow 

downstream of this on-ramp increases beyond the accelerating discharge rate of that link: the 

outflow of the queue remains the same, but the on-ramp can now add more flow. When this higher 

flow reaches the downstream on-ramp, traffic breaks down again. This means bottlenecks can 

interact with each other, which can produce an oscillatory traffic pattern even if the demand is 

constant. We will see more of this in the next subsection. Note that in general the interacting 

bottlenecks need not be on-ramps. They could include e.g. lane drops, off-ramps, any other 

geometric discontinuity or even (simplified) capacity funnels (Buckley and Yager, 1974). 

Finally, near the end of the simulation, a short platoon with a flow equal to the free-flow capacity 

originates from upstream. Because the platoon disperses into an acceleration fan, it does not break 

down when it reaches the 6 km on-ramp even though the on-ramp demand is still non-zero. 

If we look at the results of the model with a triangular FD, we see that the acceleration fans are not 

present and that the speed in free-flow conditions does not decrease with increasing traffic density. 

Albeit standing queues can dissolve into moving queues if the merging demand drops, such moving 

queues are unable to grow, since unlike in our extended LTM, the inflow into a moving queue can 

never exceed its outflow. This also precludes the formation and growth of stop-and-go waves. Finally, 

the triangular LTM does not reproduce the alternating network outflow pattern of the extended LTM 

resulting from the capacity drops affecting the merges themselves and the highway upstream of the 

merges. Note that for both our extended LTM and the triangular LTM, all shocks are crisp, showing 

that the small numerical error of the original LTM is maintained in our extension. 

7.2. Qualitative properties on a motorway corridor network 
To investigate the qualitative behavior of the model in a realistic setting, we simulate the Dutch A13 

motorway corridor from the Kleinpolderplein interchange near Rotterdam to the Ypenburg 

interchange near The Hague. This motorway stretch has a length of 12 km, with five off-ramps and 

six on-ramps. The number of lanes varies between three and four, excluding ramp lanes. We model 

the corridor as a network of 23 links and 24 nodes as depicted in Fig. 10. We base the capacities on 

the Dutch motorway capacity manual (Witteveen+Bos and TU Delft, 2011) and construct FDs with a 

capacity drop of 15% for accelerating and 10% for merging. As a comparison, we also conduct the 

same simulations with triangular FDs. 
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Fig. 10. A13 corridor network. 

 

We simulate three evening peaks in September 2012 with different patterns of congestion. In each 

simulation, the mainline demand is estimated from one-minute flow measurements of the loop 

detectors at the beginning of the corridor, and on-ramp demands and off-ramp split fractions are 

estimated from the differences between flow measurements of loop detectors downstream and 

upstream of the ramp. This estimation of demand is quite rough and hence both the extended model 

and the original model show large quantitative errors compared to reality. We nevertheless believe it 

suffices for the purpose of illustrating the qualitative properties of the model. 

The results are plotted in Fig. 11. Qualitatively, we see that our extended LTM replicates the variation 

of traffic speeds in free-flow conditions, as the used fundamental diagrams contain non-linear free-

flow branches. Moreover, the capacity drop in the extended model allows it to reproduce both the 

onset and propagation of stop-and-go waves, resulting in the structure of the congestion pattern 

being much closer to reality than the reference model. The extended LTM is able to produce complex 

mixtures of both moving queues and standing queues, whose composition can be fine-tuned by 

adjusting the capacity drop. 

 
Fig. 11. A13 measurements and simulation results for three evening peaks. 

 

Interestingly, stop-and-go waves generated from an on-ramp can be beneficial for the downstream 

flow compared to having a standing queue at the same on-ramp, because it results in the on-ramp 

flow being added on top of the queue discharge rate rather than claiming a part of it. In other words, 

a moving queue effectively meters the inflow into the original bottleneck. The consequence of this 
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mechanism is that once the moving queue passes another on-ramp, this metering effect on the 

original bottleneck will be reduced. This mechanism of interacting bottlenecks, also mentioned in 

Subsection 7.1, causes repetitive patterns of stop-and-go waves like in reality. The oscillations are a 

logical consequence of the presence of moving jams and relatively constant demand. The period of 

oscillation, which is dictated by the distance and wave speeds between the interacting bottlenecks,  

may be modified by changing the network definition, e.g. by adding explicit capacity funnels. 

We also observe that a stop-and-go wave can trigger a standing queue when passing an upstream 

bottleneck. This again matches reality and it works even though the node model has no memory of 

capacity drops in previous time steps: the stop-and-go wave creates queues on links in front of the 

bottleneck, such that after it passed, the accelerating discharge rates of these links exceed the free-

flow capacity of the motorway downstream of the bottleneck. 

8. Conclusions 
In this paper, we extended the LTM, first to handle continuous concave non-triangular FDs, and later 

to include a capacity drop as well following an extension of LWR theory. For the former case, we 

showed based on Daganzo (2005a; 2005b) that the link model matches LWR theory up to the 

accuracy permitted by the discrete time steps with constant link in- and outflows, unlike previously 

proposed formulations. Next, based on an extension of LWR theory, we modified the solution 

algorithms of both the link model and the node model to include an optional capacity drop with an 

inverted-lambda style FD, paying special attention to both the transition from free-flow to 

congestion and vice versa. Here, the node model is an extension of Tampère et al. (2011), that does 

not memorize the capacity drops in previous time steps. When the inflow into the node is too high, it 

first attempts to create stop-and-go waves on the relevant incoming links to reduce the incoming 

flows to the queue discharge rates, and switches to standing queues, restricted to at most the queue 

discharge rates of the outgoing links, if the previous reduction would be insufficient. Overall, the 

result is a computationally-efficient first-order simulation model including optional capacity drops, 

applicable to general networks, able to produce acceleration fans or rarefaction waves and able to 

simulate both the onset and propagation of both standing and moving jams. 

Both without and with the capacity drop, the numerical error is very small, leading to crisp 

shockwaves between traffic states. This is an advantage over cell-based models like the CTM and its 

previously proposed extensions, and also over second-order models with cell-based numerical 

schemes. Our numerical examples show that our extended model is the first first-order model able to 

produce traffic patterns featuring the creation, growth and dissolution of both standing queues and 

stop-and-go waves, consistent with a capacity drop. For further research, we recommend 

investigating to what extent the qualitative advantages of our extended LTM materialize as 

quantitative benefits. Since our results show considerable oscillatory interaction between 

bottlenecks, it would also be relevant to investigate how the model results are affected by details of 

the network definition, such as capacity funnels, and how this compares to higher-order traffic flow 

theory. 
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Appendix 
In this appendix, we prove that the node model formulated in Subsection 6 produces the same 

transition flows in the first time step of a breakdown as in subsequent time steps, ceteris paribus. To 

this end, we must show that if we reduce a sending flow within the Tampère et al. (2011) algorithm, 

instead of setting the sending flow directly to this lower value before starting the algorithm, the 

algorithm produces the same transition flows regardless. 

Therefore, let us define a relaxed version of the Tampère et al. (2011) algorithm, such that, at the 

beginning of step 4a4, not all incoming links with insufficient demand  ˆ ˆ| i ij j
i U S a C   need to be 

solved as demand-constrained, but for some reason only a non-empty subset of them (because the 

final values of iS  might be smaller than the current values). We now show that this change does not 

affect the outcomes. 

Lemma 1. The relaxed algorithm has a finite number of iterations. 

Proof. In each iteration, either step 4a removes at least one element from at least one jU  

(namely i  from 
ĵ

U ), or step 4b removes at least one element from J  (namely ĵ ). Since 

these operations are not reversible and all sets are finite, the stop criterion J   is 

satisfied in a finite number of iterations. ∎ 

Lemma 2. All demand-constrained incoming links are recognized as such by the relaxed algorithm. 

Proof. In the relaxed algorithm, step 4a may not empty 
ĵ

U  and then ĵ J   in the next 

iteration of the algorithm. As proven in Appendix B.1 of Tampère et al. (2011), no ja  will 

decrease over iterations (this proof also holds for our relaxed algorithm). In later iterations, 

ˆ min j J jj
a a  will therefore never be smaller than in previous iterations. This means that all 

incoming links 
ĵ

i U  satisfying ˆi ij
S a C  in a previous iteration, but that were not solved as 

demand-constrained yet, will again satisfy ˆi ij
S a C , regardless of ĵ  provided that ˆ 0

ij
S  . 

Hence, if the algorithm arrives at step 4b, it is guaranteed that ˆ ˆ| i ij j
i U S a C    and hence 

no demand-constrained incoming links are still a member of 
ĵ

U . If step 4b is never reached, 

ĵ
U  must be empty when the stop criterion is satisfied, which eventually happens due to 

Lemma 1. Hence all demand-constrained incoming links are removed from all jU . ∎ 

                                                           
4
 The equivalent position in our extended algorithm in Subsection  6 is the beginning of step 5. All further 

references to step numbers in this appendix also refer to Tampère et al. (2011). 
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Theorem 7. Each transition flow iG  produced by the relaxed algorithm gets the same value as in 

the original algorithm. 

Proof. In each step 3 following step 4, some ijG  have been subtracted from the numerator of 

each ja  and some ij ijC G  have been subtracted from the denominator, see Appendix B.1 

of Tampère et al. (2011). Since both modifications are commutative, neither the order nor 

the number of iterations in which step 4 removes incoming links from 
ĵ

U  can impact the 

first 
ĵ

a  received by step 4b, but only the set of incoming links that are removed. Hence, 

since Lemma 2 guarantees that at least all demand-constrained incoming links have been 

removed from 
ĵ

U , the relaxed algorithm can only fail by removing too many incoming links 

from 
ĵ

U . Since, by Tampère et al., a removal cannot decrease 
ĵ

a , the first 
ĵ

a  in step 4b 

can only be larger than or equal to the correct value. However, 
ĵ

a  can only get too large 

after an element from 
ĵ

U  is incorrectly removed, yet the criterion for step 4a ensures that 

an element can only be removed from 
ĵ

U  incorrectly after 
ĵ

a  is too large. Hence 
ĵ

a  is 

correct, step 4b produces the correct flows ˆi ij
G a C  for 

ĵ
i U . If there is a next iteration, 

the modifications of ja  for all remaining j J  in step 3 are therefore correct. Because all 

these modifications commute, the 
ĵ

a  in a next step 4b is again not impacted by the order 

of removal of incoming links from 
ĵ

U  by either steps 4a or 4b. Again Lemma 2 guarantees 

that all required removals from 
ĵ

U  have been carried out, and the criterion of step 4a again 

guarantees that not too many incoming links have been classified as demand-constrained 

and removed. So a next step 4b also produces correct results. By induction, all steps 4b 

together produce correct flows for all supply-constrained incoming links. By Lemma 2, the 

overall algorithm produces correct flows for all demand-constrained incoming links as well. ∎ 
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