

Intro I Context I Research I Design I Conclusion 3 | 71

Intro I Context I Research I Design I Conclusion 5 | 71

Intro I Context I Research I Design I Conclusion 7 | 71

Intro I Context I Research I Design I Conclusion 9 | 71

CONTEXT

LOCATION

LOCATION

LOCATION

Intro

Conclusion

HIGH DENSITY IN THE KAMPUNG

WASTE DUMPED EVERYWHERE

RESEARCH

FIELD RESEARCH

FIELD RESEARCH

WATER FLOWS

FIELD RESEARCH

WASTE FLOWS

CASE STUDIES

WATER PURIFICATION SYSTEMS

1. ANAEROBIC BAFFLES REACTOR

2. ANAEROBIC FILTER

3. PLANT FILTER / FISH POND

FLOW PRINCIPAL

FLOW PRINCIPAL

PROGRAM

DRINKWATER Rainwater collection 2500mm/year 6,85mm/day 1,2L drinking water * 3146 people= 3775L /day Roof 3775/6,85= **550m2** Drinkingwater filter -Filtering 3775L/day -3,8m3/day -2,5m x 2m = **5m2** -height 2m -retention time 24hours Distribute In gallons 5L or 10L Distrubion/collection space

12M2

DESIGN

CONCEPT

38 | 71

39 | 71

41 | 71

Research

Intro

Context

Intro I Context I Research I Design I Conclusion 43 | 71

PLANTS AS AN ARCHITECTURAL ELEMENT

TYPE OF WATER PLANTS

ACORUS CALAMUS FILTER

RICE FIELD FILTER

REED FILTER

FISH POND

Intro I Context I Research I Design I Conclusion 48 | 71

Intro

DETAIL BAMBOO NODE

54 | 71

DETAIL BAMBOO NODE

56 | 71

DETAIL TOP CONSTRUCTION, BAMBOO / MEMBRANE

DETAIL STEEL RING

DETAIL MEMBRANE BOTTOM

Intro I Context I Research I Design I Conclusion

61 | 71

Intro I Context I Research I Design I Conclusion 63 | 71

- BRICKS REFER TO FORMAL INDUSTRY IN THE RW02/12 KAMPUNG
- BRICKS OUT OF REUSED MATERIALS
- BRICK PATTERNES GIVES EACH MODULE OWN IDENTITY

sanitation facilities

waste facilities

drinking water facilities

- CLIMATE DESIGN MODULES
- NATURAL VENTILATION
- OPEN BRICK PATTERN
- WINDOWS

CONCLUSION

BENEFITS

COMPETITION

Intro I Context I Research I Design I Conclusion 69 | 71

