
Testing Byzantine Fault Tolerant Algorithms
Evaluating the correctness of Tendermint protocol using ByzzFuzz

Antoni Nowakowski1

Supervisor(s): Dr. Burcu Kulahcioglu Özkan1, João Miguel Louro Neto1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Antoni Nowakowski
Final project course: CSE3000 Research Project
Thesis committee: Dr. Burcu Kulahcioglu Ozkan, João Miguel Louro Neto, Dr. Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The reliability of Byzantine Fault Tolerant (BFT)
consensus protocols is critical for the robustness
of modern distributed systems, i.e., in blockchain
technologies. Testing of BFT protocols is crucial,
as consequences of faults in their implementation
can lead to malicious users exploiting vulnerabil-
ities, resulting in financial losses, data corruption,
or system unavailability. Such incidents, as seen in
real-world attacks on blockchain systems, under-
score the need for rigorous testing methodologies
to ensure protocol correctness and resilience under
adverse conditions.
This paper evaluates the implementation of the Ten-
dermint protocol in the ByzzBench framework us-
ing ByzzFuzz, a testing approach for BFT consen-
sus protocols. ByzzFuzz introduces structured mu-
tations to simulate real-world fault scenarios, en-
abling the identification of incorrect behavior. The
main question addressed in this study is: Can Byz-
zFuzz detect subtle protocol faults more effectively
than baseline testing methods, and how do mutation
strategies influence fault detection performance?
Through extensive testing, ByzzFuzz successfully
uncovered violations in the Tendermint implemen-
tation, demonstrating its capability to detect sub-
tle protocol faults. A comparative analysis with
baseline testing methods revealed that ByzzFuzz
provides greater fault coverage, identifying nu-
anced issues that the baseline approach missed.
Furthermore, the study evaluated the effectiveness
of small-scope and any-scope message mutations,
where they change a value incrementally and arbi-
trarily respectively. This study found that small-
scope mutations perform better in finding faults.

1 Introduction
The increasing reliance on applications such as online bank-
ing, e-commerce, and blockchain-based cryptocurrencies ne-
cessitates highly available systems capable of maintaining
uninterrupted, accurate service. One solution is the use of
replicated systems that rely on consensus protocols to enable
agreement on a shared state, even in the presence of faults
or malicious actors. Over the years, numerous Byzantine
Fault Tolerant (BFT) protocols have been developed to ad-
dress these challenges, ensuring continued functionality de-
spite a fraction of faulty or malicious nodes.

Blockchain technology exemplifies the critical role of BFT
protocols, with consensus mechanisms like Proof-of-Work
(PoW) and Proof-of-Stake (PoS) underpinning their opera-
tion. While PoW has been a cornerstone for early blockchain
systems [1], its environmental impact has driven the adop-
tion of PoS, which offers a more sustainable alternative [2].
Among PoS-based protocols, Tendermint has emerged as a
prominent solution, powering systems such as Cosmos Hub.
Tendermint, however, like any other consensus protocol is not

immune to vulnerabilities stemming from implementation is-
sues. For example, a Binance cross-chain hack leveraging
Tendermint-powered systems resulted in the loss of 100 mil-
lion USD [3], illustrating the risks of protocol implementa-
tion flaws.

Despite decades of development, consensus protocols im-
plementations remain susceptible to violations. Issues such
as agreement failures and liveness violations continue to sur-
face, even in mature implementations. For instance, termina-
tion violations in the Ripple XRP Ledger Consensus Protocol
were discovered years after its deployment [4]. These exam-
ples demonstrate the need for rigorous testing to uncover hid-
den vulnerabilities, as undetected flaws can lead to significant
security and financial consequences [5].

This research aids in addressing the gap in reliable auto-
matic testing frameworks, by evaluating the effectiveness of
ByzzFuzz [4], a fuzzing-based testing approach, in uncover-
ing violations in BFT protocols. ByzzFuzz introduces struc-
tured mutations to simulate diverse fault scenarios, enabling
the identification of liveness and agreement violations. This
study also benchmarks ByzzFuzz against a baseline random-
ized testing method to assess its relative performance in de-
tecting faults under controlled conditions and compares the
performance of different mutation types in detecting viola-
tions.

The remainder of this paper is organized as follows: Sec-
tion 2 provides the necessary background on consensus proto-
cols, the main research questions, and the methodology. Sec-
tion 3 details the contributions we have made for this paper,
including the literature review as well as the description of
necessary changes to implement Tendermint in ByzzBench.
Section 4 presents the experimental setup and results, fol-
lowed by a discussion of their implications. Section 5 dis-
cusses the ethical aspects of the research conducted in this
paper. Finally, Section 7 concludes the paper and Section 8
outlines directions for future research.

2 Problem Statement
This section presents background information to understand
the problem, methodology, and terminology relevant to this
research. The first subsection provides an overview of con-
sensus protocols and their significance. This is followed by
the research questions and the methodology.

2.1 Consensus Protocols
Consensus protocols have been instrumental in shaping mod-
ern distributed systems by solving a critical challenge: en-
abling machines in a network to agree on some data. This
ensures synchronization across multiple nodes. For example,
consider a banking application where millions of transactions
are processed daily. Servers distributed across different parts
of the world must provide reliable service. Without consen-
sus protocols, ensuring that all servers agree on the outcome
of transactions would be nearly impossible.

Two key properties underpin consensus protocols:

• Agreement: ”No two nodes in the system can decide
differently” [6]. If violated, issues like double spend-
ing of a customer can occur, where one node records

a transaction as complete while another erroneously re-
flects that the funds are still available.

• Liveness: It is defined as ”something good must even-
tually happen” [6]. In the context of this research, it can
be characterized as ensuring that all the nodes can still
execute an action. Considering the banking app example
mentioned earlier, this would mean that all valid trans-
actions eventually get processed and recorded across all
servers. Even if some servers experience temporary de-
lays or network issues, the protocol ensures that the
transaction is eventually confirmed, allowing the cus-
tomer and merchant to proceed with confidence.

Consensus protocols prevent such violations by ensuring
all nodes agree on the validity of transactions, even in the
presence of failures or conflicting data. While this example
focuses on financial systems, consensus protocols underpin
various applications, including e-commerce platforms and so-
cial networks.

2.2 Research Questions
In order to determine the performance of ByzzFuzz in testing
BFT protocols, the following questions had been formulated.

RQ1. Can ByzzFuzz find any bugs in the implementation
of Tendermint?

RQ2. How does the bug detection performance of Byz-
zFuzz compare to a baseline testing method that arbitrarily
injects network and process faults?

RQ3. How do small-scope and any-scope message muta-
tions of ByzzFuzz compare in their performance of bug de-
tection for Tendermint?

By answering these questions, this study provides insights
into the performance of ByzzFuzz in testing BFT protocols,
with a focus on Tendermint. The findings additionally con-
tribute to the broader goal of creating a platform which al-
lows for different testing approaches to be compared and for
benchmarking the performance of various implementations
of protocols.

2.3 Methodology
Process
To address the research questions, the Tendermint protocol
from Buchman et al. [7] was implemented in the ByzzBench
framework, which is a tool which facilitates the testing and
allows for benchmarking of BFT protocol implementations
with different testing approaches. This implementation was
then subjected to various configurations to test its behaviour
and identify potential violations. Tests were conducted us-
ing multiple approaches, including baseline and ByzzFuzz,
to simulate different fault scenarios. The results from these
tests were collected and analysed to evaluate the protocol’s
performance and to derive insights that answer the research
questions.

Tendermint
Tendermint is a BFT consensus protocol designed to address
the high energy costs of blockchain security mechanisms like
those in Bitcoin. Tendermint operates in rounds, where each
round has an elected proposer determined in a round-robin

fashion based on the stake in the network. Once participating
nodes in the network reach a consensus regarding the pro-
posed block, they commit the block to the blockchain at the
current height, advance the height by one and reset the rounds
to 0 [8][7].

Each round consists of three stages:
• Proposal: The proposer suggests a block to be added to

the blockchain.
• Prevote: Nodes vote on the validity of the proposed

block.
• Precommit: Nodes confirm their agreement on the

block to finalize the decision.
The protocol defines specific message types—PROPOSAL,

PREVOTE, and PRECOMMIT—to facilitate communication dur-
ing these stages. Figure 1 illustrates the Tendermint consen-
sus process.

p1

p2

p3

p4
PROPOSAL PREVOTE PRECOMMIT

Figure 1: Tendermint Consensus Process

The protocol assumes n > 3f , where n is the total vot-
ing power of all nodes and f is the aggregate voting power
of faulty nodes. To ensure fault tolerance, the total voting
power of faulty nodes must be less than one-third of the to-
tal. Tendermint also relies on synchronous message delivery
and a reliable gossip protocol, which guarantees that if a cor-
rect replica p sends some message m, all correct replicas will
eventually receive it [7]. This communication property is cru-
cial for the BFT property of this algorithm as without it it can-
not guarantee that the necessary aggregate stake of messages
received will be over 2f + 1.

Testing Approaches
This research utilized the ByzzBench framework to imple-
ment and test the Tendermint protocol. ByzzBench is de-
signed to facilitate the evaluation of BFT protocols by sup-
porting multiple testing approaches. For this study, two pri-
mary approaches were employed:

• Baseline Testing: This approach arbitrarily injects
faults into the protocol’s execution. Messages are either
mutated using predefined mutator structures or dropped
entirely. This diverges from Winter et al. [4], as we
wanted to be able to compare the performance of dif-
ferent mutations in the baseline approach. Still, no struc-
tured fault injection is applied. Baseline testing provides
a straightforward method for identifying general issues
in protocol behaviour.

• ByzzFuzz: This approach introduces structured, round
based randomized faults, including network and pro-
cess failures. As Tendermint terminology also utilises

rounds to track the process of consensus, from now on
the rounds in the context of ByzzFuzz will be referred
to as Message-Rounds. An example of progress of
those rounds in regards to Tendermint can be found in
Appendix A. ByzzFuzz simulates real-world conditions
such as network partitions and process crashes to un-
cover nuanced violations in safety and liveness proper-
ties using structure aware mutations [4]. To compare
their performance we have decided to use the the ones
originally defined for ByzzFuzz in the baseline testing
method too.

ByzzBench supports these testing methods for the same
implementation, eliminating the need to modify the proto-
col to suit each approach. This feature streamlines the test-
ing process and allows for consistent comparisons across
methodologies.

3 Contributions
This section presents the main contributions of this research,
starting with a review of existing literature on testing BFT
protocols in general and Tendermint specifically. It then de-
scribes the implementation of the Tendermint protocol within
the ByzzBench framework, detailing the modifications and
design choices made to enable effective testing.

3.1 Literature Review
The testing of BFT protocols is critical for ensuring correct-
ness and robustness in distributed systems. This section re-
views key studies on methodologies and tools for analysing
and testing BFT protocols and explores Tendermint related
studies.

Testing BFT Protocols
Many testing approaches have been developed to analyse and
validate consensus protocols, each with a distinct focus. Cru-
cially, these methods target various aspects which often differ.
While some tools emphasize deterministic testing or state-
aware fuzzing, others specialize in generating Byzantine at-
tack scenarios or behaviour-divergent models.

Testing approaches that do not focus on Byzantine-specific
faults, such as Netrix [9] and LOKI. [10], provide valuable
tools for analysing protocol correctness under certain fault
conditions. Netrix is a domain-specific language for deter-
ministic testing of consensus implementations, and LOKI is
a state-aware fuzzing framework that dynamically models
protocol states to generate targeted test cases. For example,
LOKI successfully uncovered 20 vulnerabilities, primarily re-
lated to memory and consensus logic bugs.

Other tools, such as Twins [11], Tyr [12], and Byzz-
Fuzz [4], focus explicitly on detecting Byzantine-specific
faults, though they employ different strategies to emulate ad-
versarial behaviours. The Twins framework, systematically
generates Byzantine attack scenarios by duplicating node be-
haviours to emulate malicious actions. Tyr is a behaviour-
divergent model for identifying consensus failure bugs in
blockchain systems. It identified 20 previously unknown vul-
nerabilities across multiple platforms. And lastly Winter et

al. [4] introduce ByzzFuzz, a randomized testing tool that de-
tects liveness and safety violations in BFT protocols, includ-
ing Tendermint. ByzzFuzz employs structured fault injection
to uncover subtle vulnerabilities.

Beyond tools, some studies highlight specific vulnerabil-
ities in BFT protocols without implementing testing frame-
works. For instance, Berger et al. [13] analyze a 20-year-
old optimization in PBFT’s [14] read-only request handling.
They demonstrate an attack where a Byzantine leader can iso-
late replicas, breaking the liveness guarantees of the protocol.

Tendermint and Related Work
Tendermint, a BFT consensus protocol, has been extensively
analysed for its theoretical correctness and fault tolerance.
Amoussou-Guenou et al. [15] rigorously studied Tender-
mint under synchronous and eventually synchronous mod-
els, proving its correctness while highlighting critical mech-
anisms such as proposer replacement for ensuring fault toler-
ance under adversarial conditions.

Other studies have also contributed to formal proofs of
Tendermint’s safety and liveness properties. Kwon’s origi-
nal work [8] established its foundational correctness under
partial synchrony. Buchman [16] formalized Tendermint’s
design and proved its guarantees for safety and liveness in
practical deployments. Collectively, these works demonstrate
that Tendermint adheres to the theoretical principles of BFT
consensus, ensuring consistent and fault-tolerant behaviour.

Conclusion
Numerous testing approaches, such as Netrix, LOKI, and
Twins, have been developed to detect violations in BFT pro-
tocols, each with unique strengths. ByzzFuzz in particular
introduces a different testing approach which focuses on ran-
domly injecting faults into the execution of the protocol to
find faults. Its use of precise mutation strategies, like small-
scope mutations, makes it especially effective at targeting
state-specific faults.

Tendermint, as a widely adopted BFT protocol, has been
extensively analysed through both theoretical and practi-
cal evaluations. Theoretical works have established its
foundational guarantees of safety and liveness under par-
tial synchrony [8][16], while testing efforts, including Netrix
and ByzzFuzz, have uncovered protocol deviations and
implementation-specific bugs in Tendermint.

3.2 Implementation of the Tendermint Protocol in
ByzzBench

Replica Initiation
The implementation was written in the ByzzBench frame-
work. The most important parts are included in the report,
however for conciseness, certain logic is omitted or simpli-
fied. The main component which had been implemented
was the TendermintReplica which handled the majority of the
logic which was necessary for the protocol to function prop-
erly.

This implementation makes use of the voting power struc-
ture. As previously mentioned, Tendermint utilizes the PoS
mechanism, in which participating nodes may have a differ-
ent stake in the network. This implies that they are supposed

to be more likely to be elected a proposer for a round and
given a chance to propose a block to be committed, if they
have a higher stake in the network. In order to implement this
functionality, the Tendermint Replica stores the stake of all
the replicas in the votingPowers map, which is only used to
determine the order of proposers, however in this implemen-
tation all of the replicas have the same voting power when it
comes to reaching a consensus, so each replicas vote is worth
the same voting power. The initialization of the Tendermint
Replica can be found in the Algorithm 1.

Algorithm 1 Tendermint Replica initialization

function TENDERMINTREPLICA(nodeId, nodeIds, sce-
nario, tolerance, votingPowers)

height← 0
round← 0
step← PROPOSE
lockedV alue← NULL
lockedRound← −1
validV alue← NULL
validRound← −1
messageLog ← New MessageLog()
tolerance← 1
TIMEOUT ← 10 seconds
votingPowers← votingPowers
ByzzFuzzRounds← 0

end function

Handling requests from the client
To further conform the implementation to ByzzBench, the
protocol had to be modified to deal with the client requests.
The original implementation, allows replicas to come up with
their own values. However, ByzzBench makes use of clients,
which send requests to replicas for them to decide whether to
commit the block to the chain or not.

Because of this, the changes to the protocol were made that
upon receiving a request from the client, a replica will buffer
and share this request to all of the other replicas, which sub-
sequently also buffer it for future use. Then when a replica
is set to propose a value to other replicas it fetches a value
from the buffered requests. A request is then removed from
the buffer upon being committed by a replica.

Messages
In order to implement Tendermint in ByzzBench, certain
changes had to be made to the already defined message types
in Tendermint and can be found in Table 1. The id field spec-
ifies the sender of the PROPOSAL, which is crucial in verifica-
tion whether the received PROPOSAL is coming from a valid
proposer. The h and r correspond to the height and round at
which the message had been sent accordingly. The vr stands
for validRound and the v stands for the block which replicas
are attempting to commit to the blockchain.

The logic which allows for utilisation of ByzzFuzz, is
based heavily on those messages and can be found in Ap-
pendix A. This directly corresponds to how Winter et al. [4]
used ByzzFuzz.

Messages
PROPOSAL(id, h, r, vr, v)
PREVOTE(id, h, r, v)
PRECOMMIT(id, h, r, v)
GOSSIP(id, message)

Table 1: Overview of messages

Message Log
The MessageLog, found in Algorithm 2, allows for storing
all received messages for a replica. It is a crucial part of the
implementation as upon receiving a message, it attempts to
add it to the appropriate SortedMap. The choice to use a
SortedMap, where the key is the block from the message and
the value is a SortedSet provided guarantees that a message
would only be considered once in the process of reaching a
consensus. Additionally it simplified the necessary logic for
fetching all the messages for a certain block and ensured a
deterministic approach.

Algorithm 2 MessageLog Class

Attributes:
tolerance← (long)
votingPower ← SortedMap<String, Integer>
messages← SortedSet<GenericMessage>
prevotes← SortedMap<Block,

List<PrevoteMessage>>
precommits← SortedMap<Block,

List<PrecommitMessage>>
proposals← SortedMap<Block,

List<ProposalMessage>>
requests← Set<RequestMessage>

Gossip communication
In order to fulfil the Tendermints assumption of a reliable gos-
sip communication protocol, a new message type was intro-
duced, namely the GOSSIP message. It contains the id of the
sender and the message it is relaying. In order to ensure re-
liable delivery, ByzzFuzz was configured to not mutate nor
drop gossip messages. The gossip protocol specified earlier
has been implemented in the manner demonstrated in the ex-
ample below.

Assume a replica p1 sends a message M to a replica p2 and
p3. Upon receiving the message M the p2 and p3 replicas will
in turn relay this message to all the other replicas in a GOSSIP
message in order to ensure that even if any replica missed
out on the message, it will eventually receive it. Now the p2
replica upon receiving the GOSSIP from p3 will not gossip
it further as it already has received that message before, and
sent out a GOSSIP itself.

Handling of messages
In Buchman et al. [7] a set of rules is specified which upon be-
ing fulfilled execute some specified logic. In order for a more
maintainable implementation we have opted into creating a
more modular solution. A replica upon receiving a message,

calls a method which is responsible for handling this specific
message type.

Algorithm 3 Handle Proposal

function HANDLEPROPOSAL(proposalMessage)
uponRules← [false, false, false, false]
if FULFILLPROPOSALRULE0(proposalMessage) then

uponRules[0]← true
end if
if FULFILLPROPOSALRULE1(proposalMessage) then

uponRules[1]← true
end if
if FULFILLPROPOSALRULE2(proposalMessage) then

uponRules[2]← true
end if
if FULFILLPROPOSALRULE3(proposalMessage) then

uponRules[3]← true
end if
PROPOSALRANDOMORDEREXECUTE(uponRules,

proposalMessage)
end function

As an example we will consider the handleProposal
method, found in Algorithm 3. There are four rules which
take into consideration a PROPOSAL message, hence if a rule
is satisfied, based on the messages it has received in the past,
it marks that the corresponding logic should be executed.
Buchman et al. [7] specifies that satisfied rules should be exe-
cuted in a random order. For this reason, the order is shuffled
using a Random object. We used the same seed to create
this object each time and the same sequence of method calls
is made for it, hence each execution of the schedule will be
identical [17]. This way the concern of nondeterminism is
handled, and the execution order is repeatable. This is cru-
cial for testing purposes, as in the case that nondeterminism
would be introduced, a schedule that was previously marked
as one with either a liveness or agreement violation, upon ma-
terializing could go down a different order of execution and
produce a different outcome.

4 Experimental Setup and Results
This section outlines the experimental methodologies and
configurations used to evaluate the Tendermint implementa-
tion within the ByzzBench framework. It describes the mu-
tation strategies, fault scenarios, and testing parameters em-
ployed by ByzzFuzz and baseline methods. Results from
these tests are presented and used to answer the previously
established research questions.

4.1 Mutators
In order to use ByzzFuzz to test the implementation, certain
structure-aware mutations had to be implemented, and their
overview can be found in Table 2. The parameters in the mes-
sages correspond to the ones described in the Table 1. There
are two types of mutations, namely small-scope (SS) and
any-scope (AS). Small-scope mutations are mutations which
change the mutated value by one, i.e. from 1 to 2 or from 1 to
0. Any-scope mutations in turn modify the field arbitrarily.

Message Mutation
PROPOSAL(id, h, r, vr, v) PROPOSAL(id, h’, r, vr, v)

PROPOSAL(id, h, r’, vr, v)
PREVOTE(id, h, r, v) PREVOTE(id, h’, r, v)

PREVOTE(id, h, r’, v)
PRECOMMIT(id, h, r, v) PRECOMMIT(id, h’, r, v)

PRECOMMIT(id, h, r’, v)

Table 2: State aware mutations

Potential Vulnerabilities
In Winter et al. [4] there is a potential violation found in
their implementation of the Tendermint protocol. Tender-
mint’s reliance on the gossip communication introduces vul-
nerabilities in scenarios where its assumptions are violated.
For example in a faulty gossip communication, messages
may not be delivered to all nodes when under network par-
titions. This potentially leads to termination violations. In or-
der to recreate the known violation using ByzzFuzz within the
ByzzBench framework, we have ensured that a network fault
would be injected during the PRECOMMIT Message-Round,
directly following the reported potential violation. The logic
it uses is shown in Figure 2. Specifically, this partition only
allows replicas p1 and p2 to send each other PRECOMMITmes-
sages in that Message-Round.

p1

p2

p3

p4
PROPOSAL PREVOTE PRECOMMIT

Figure 2: Tendermint Consensus Process

4.2 Overall Setup
We have ran all the testing approaches with a total of 4 repli-
cas, and at most one faulty one. This satisfied the assumption
of Tendermint of n > 3f given that each replicas had an equal
stake of 1 in the network.

In the testing process, ByzzBench allows to define mul-
tiple parameters either for testing or termination purposes,
however some of them apply to multiple testing approaches
and will be described here. The parameters specific to one
approach are described in the section relevant to that ap-
proach. The termination variables always apply and are
as follows: minEvents, minRounds and samplingFrequency,
which for all of the simulated schedules were set to 1000, 10
and 1 respectively. The minEvents and minRounds are the
amount of events and rounds respectively which had to have
passed in the schedule for the simulation to terminate. The
samplingFrequency specifies how often the simulator should
check whether the conditions are satisfied, for the scheduler
to be able to determine the next action deliverMessageWeight

and deliverClientRequestWeight were set to 10000 each. This
was due to a bug found in the ByzzBench framework, which
with lower probabilities allowed the scheduler to execute a
timeout out of order, creating violations that were not due to
the implementation of the Tendermint protocol.

4.3 Baseline Testing
To evaluate the performance of the baselines testing method,
we have run the random event scheduler with different param-
eters. The dropMessageWeight and mutateMessageWeight
are denoted by D and M respectively. The weights determine
the probability of a message being either dropped or mutated,
with the higher probabilities making it more likely for the
fault happening. The Table 3 presents the faults found by
the baseline testing method with different parameters, distin-
guishing them into liveness and agreement violations. Those
in turn are divided into small-scope and any-scope, indicating
what mutation type found those violations. The results show
an increase in violations detected that grows proportionally to
the dropMessageWeight.

D M Liveness Agreement Total

SS AS SS AS

0 0 0 0 0 0 2000
0 1000 0 0 0 0 2000
0 2000 1 0 0 0 2000

1000 0 2 2 0 0 2000
1000 1000 7 2 0 0 2000
1000 2000 8 10 0 0 2000
2000 0 31 34 0 0 2000
2000 1000 35 37 0 0 2000
2000 2000 34 30 0 0 2000

Table 3: Faults found by the baseline testing approach

4.4 ByzzFuzz
To compare the performance of those two testing approaches,
we ran the ByzzFuzz testing approach with multiple config-
urations found in Tables 4, 5 and 6(found in Appendix C).
Those investigated how ByzzFuzz would perform some con-
figuration of the assumptions of reliable gossip communica-
tion and synchronous message delivery. All of them distin-
guish two types of faults injected, where P stands for process
faults and N for network faults. The baseline setup is a setup
in which no faults are injected. Furthermore, all simulations
were run with numRoundsWithFaults set to 8, which should
schedule faults up to the eight Message-Round in the sce-
nario. This allowed scenarios to have up to two rounds with
no faults injected. This was to directly adhere to the way
ByzzFuzz was run by Winter et al. [4]. The tables present the
faults found by ByzzFuzz in different configurations, distin-
guishing them into liveness and agreement violations. Those
in turn are divided into small-scope and any-scope, indicating
what mutation type found those violations.

Faults Liveness Agreement Total

baseline 0 0 2000

SS AS SS AS

P = 0, N = 1 0 0 0 0 2000
P = 0, N = 2 0 0 0 0 2000
P = 1, N = 0 1 0 0 0 2000
P = 1, N = 1 1 0 0 0 2000
P = 1, N = 2 1 2 0 0 2000
P = 2, N = 0 4 0 0 0 2000
P = 2, N = 1 8 1 0 0 2000
P = 2, N = 2 4 2 0 0 2000

Table 4: Faults found by ByzzFuzz on the implementation fulfilling
both synchronous message delivery and gossip protocol assumptions

Faults Liveness Agreement Total
SS AS SS AS

P = 0, N = 0 0 0 0 0 2000
P = 0, N = 1 441 441 0 0 2000
P = 0, N = 2 669 701 0 0 2000
P = 1, N = 0 1 0 0 0 2000
P = 1, N = 1 397 420 0 0 2000
P = 1, N = 2 657 666 0 0 2000
P = 2, N = 0 5 0 0 0 2000
P = 2, N = 1 381 421 0 0 2000
P = 2, N = 2 644 685 0 0 2000

Table 5: Faults found by ByzzFuzz on the implementation fulfilling
the synchronous delivery of messages and using unreliable gossip
protocol

4.5 Discussion On Results
In this section, we analyse the results of the tests conducted
to answer the research questions (RQ1, RQ2 and RQ3). The
goal is to provide context for the findings, draw comparisons,
and explore the implications for the testing of BFT protocols.

Can ByzzFuzz find any bugs in the implementation of
Tendermint?
ByzzFuzz successfully identified several bugs in the imple-
mentation of Tendermint, which were deviations from its in-
tended behaviour. These bugs highlight critical issues related
to the protocol’s handling of round advancement.

One critical bug was identified in the rule responsible
for advancing a round upon receiving f + 1 messages with
a round number higher than the current round stored in a
replica. The issue arose from a divergence between the in-
tended functionality and the actual implementation. Specif-
ically, the buggy implementation mistakenly advanced the
round for any f + 1 messages where the round number dif-
fered from the replica’s current round, instead of ensuring
the new round was strictly greater. This discrepancy is high-
lighted in Algorithm 4, which shows the faulty logic.

For example, consider a mutation that changes the round
number in a message from 0 to -1. If a replica receives 2 =

f + 1 (with f = 1) such mutated messages, i.e. PROPOSAL
and PREVOTEmessages from the same faulty node, the buggy
protocol incorrectly advanced the replica to round -1. This
round should never have appeared within the protocol’s de-
sign, resulting in replicas entering an invalid state. Once in
this state, replicas are unable to recover, ultimately violating
the protocol’s liveness guarantees. This demonstrates a criti-
cal flaw in handling invalid state transitions when processing
faulty or malicious inputs.

Algorithm 4 Buggy MoveOn Rule

upon f + 1⟨∗, height, round, ∗, ∗⟩ with round ̸= roundp

The correct implementation of the rule, as shown in Algo-
rithm 5 taken from Buchman et al. [7], ensures that a replica
only advances to a new round when it receives f + 1 mes-
sages with a round number strictly greater than the current
round stored in the replica. This guarantees that replicas do
not transition to invalid or undefined states.

Algorithm 5 Correct MoveOn Rule

upon f + 1⟨∗, height, round, ∗, ∗⟩ with round > roundp

After identifying and correcting the bug, the faulty sched-
ules were retested, and no violations were observed. This
confirmed that the bug in Algorithm 4 was the root cause of
the detected liveness violations.

Another bug that ByzzFuzz successfully identified also in-
volved this method, however this time it was the way it was
calling it. One usage simply was giving the wrong height for
the comparison. Making it in certain situations unable to cor-
rectly move on to a higher round.

This leads us to conclusion that ByzzFuzz successfully
found issues in the implementation of the Tendermint pro-
tocol. While other violations are still reported we were un-
able to determine their root cause. Still, it can not be said that
those would be present in a bug-free implementation that may
be in use on a functioning system employing the Tendermint
protocol.

How does the bug detection performance of ByzzFuzz
compare to a baseline testing method that arbitrarily
injects network and process faults?
A direct comparison of the baseline testing method and Byz-
zFuzz reveals significant differences in their bug detection
capabilities. At first glance, the baseline testing method ap-
pears to perform better. However, closer examination reveals
a critical flaw: the baseline testing method directly violates
the Tendermint protocol’s assumption of a reliable gossip
communication mechanism. Specifically, while ByzzFuzz re-
stricts the dropping of messages to only PROPOSAL, PREVOTE,
and PRECOMMIT, the baseline method also drops GOSSIPmes-
sages, which breaches the protocol’s core assumptions.

To investigate the impact of improperly functioning gos-
sip communication in the presence of structured faults, Byz-
zFuzz was tested in a configuration that allowed gossip mes-
sages to be dropped (Table 5). When comparing only the

configurations that adhere to Tendermint’s assumptions, Byz-
zFuzz consistently detected more violations than the baseline
method. This finding suggests that ByzzFuzz is more efficient
in uncovering implementation-specific faults.

The disparity between the two methods highlights the ad-
vanced fault injection capabilities of ByzzFuzz. While the
baseline identified liveness violations too, ByzzFuzz detected
a broader range of issues, including agreement violations and
did not violate the assumptions of the protocol. ByzzFuzz’s
ability to simulate network partitions—a critical real-world
fault scenario where subsets of replicas are temporarily iso-
lated—enabled it to identify vulnerabilities that the baseline’s
simplistic, random fault injections failed to uncover.

How do small-scope and any-scope message mutations of
ByzzFuzz compare in their performance of bug detection
for Tendermint?
The results presented in Table 4, combined with the previ-
ously identified bug, indicate that small-scope (SS) message
mutations outperform any-scope (AS) mutations in their abil-
ity to trigger protocol violations. With only AS mutations,
the specific bug allowing replicas to transition to an invalid
round was significantly less likely to occur. This is because
AS mutations require two independent random mutations to
assign the same invalid round value, which, due to the high
range of possible values, was never observed.

In contrast, SS mutations incrementally modify values,
making it more likely for specific faults, such as invalid round
transitions, to be triggered. This advantage demonstrates the
precision of SS mutations in targeting protocol vulnerabil-
ities, particularly those that depend on small, state-specific
deviations.

Evaluating the resilience of our implementation against
known violations
As discussed in section 4.1, the identified violation was fur-
ther investigated under different configurations. In ByzzFuzz
configurations that adhered to Tendermint’s assumption of re-
liable gossip communication,specifically where GOSSIPmes-
sages were not dropped, the violation was never observed af-
ter running the scenario more than two thousand times. In
such cases, other replicas reliably relayed dropped messages
during partitions, ensuring eventual correctness.

However, in configurations where the gossip protocol was
allowed to violate its assumptions, the implementation con-
sistently failed to handle these faults across all scenarios.
Without the ability to rely on the gossip protocol to retransmit
missing messages, the system could not recover, resulting in
persistent violations. This demonstrates the protocol’s depen-
dency on reliable message delivery and highlights the critical
role of robust gossip mechanisms in ensuring liveness and
correctness.

Furthermore, we have created additional network faults
that followed the same partitions, but instead of happening
only for PRECOMMIT messages, they were extended to be
scheduled for PREVOTE messages. The results were identi-
cal to those found by running the faults mimicking the known
potential violation. Therefore, we report another potential vi-
olation stemming from the same root cause, as this violation

is only found when violating the network assumptions of the
Tendermint protocol, like the one found in Winter et al. [4].

General Insights
Apart from answering the research questions, certain obser-
vations were made. Despite the identified bugs, this Tender-
mint implementation demonstrated strong resilience to net-
work faults. Even under configurations with multiple network
faults injected, the protocol maintained its ability to recover
and continue processing. This resilience stems from its de-
sign, which heavily relies on a robust gossip communication
protocol and synchronous message delivery to propagate crit-
ical information reliably. We have tested the implementation
further by only fulfilling one of the assumptions of the Ten-
dermint protocol in Tables 5 and 6. Those results only further
highlighted the significance of those assumptions.

5 Responsible Research
This section discusses the ethical considerations, repro-
ducibility, and broader impact of the research conducted in
this paper. It highlights the adherence to responsible research
principles, the documentation of configurations for repro-
ducibility, and the limitations of the study. The section also
emphasizes the role of this work in advancing the reliability
of distributed systems and promoting sustainable practices in
consensus protocol design.

5.1 Ethical Considerations
The research conducted in this project adheres to the princi-
ples of responsible and ethical research. The implementation
and testing of the Tendermint protocol in ByzzBench focused
only on evaluating the reliability and correctness of the pro-
tocol under simulated conditions. No real-world systems or
production environments were involved in the writing of this
paper, ensuring no disruption to operational services or users.

5.2 Reproducibility
To promote reproducibility, all experiments were conducted
using the ByzzBench framework, which provides a standard-
ized environment for testing BFT consensus protocols. The
specific configurations and parameters used during the exper-
iments have been explicitly documented in the ”Experimental
Setup and Results” section.

The implementation of the Tendermint protocol, along
with the test schedules and mutation configurations, will be
available as part of the supplementary materials accompany-
ing this paper. This ensures that other researchers can repli-
cate and verify the findings presented in this work.

5.3 Limitations and Responsible Use
While the research highlights potential vulnerabilities in Ten-
dermint’s implementation, the intention is not to exploit these
weaknesses but to emphasize the importance of robust test-
ing frameworks like ByzzBench. The results should be in-
terpreted in the context of improving protocol reliability and
advancing the field of distributed systems research.

Researchers and practitioners are encouraged to use the in-
sights from this work to strengthen the implementation and
testing of BFT consensus protocols rather than identifying
opportunities for malicious exploitation.

5.4 Broader Impact
The increasing reliance on blockchain and distributed sys-
tems underscores the importance of ensuring their correctness
and reliability. By promoting rigorous testing practices, this
research contributes to building trust in these technologies,
which are critical to modern financial, social, and operational
systems. At the same time, the energy-efficient mechanisms
explored in this paper, such as Proof-of-Stake, align with
global efforts to reduce the environmental impact of compu-
tational systems.

6 Discussion
In this section, we compare the results obtained by us to the
results from previous relevant works. Our results align with
findings from Winter et al. [4], who demonstrated the utility
of structured fault injection for detecting liveness and agree-
ment violations in Tendermint. This work expanded upon
their findings by identifying an additional potential termina-
tion violation, which was an extension of a previously re-
ported issue. The results indicated flaws in the implementa-
tion however they did not allow us to find any issues that were
previously not identified. This aligns with findings from other
works, such as Amoussou-Guenou et al. [15], who provided
formal proofs of Tendermint’s safety and liveness under syn-
chronous and eventually synchronous models, confirming its
correctness when its core assumptions are met. Additionally,
Buchman et al. [7] and Kwon [8] established Tendermint’s
safety and liveness guarantees under its core assumptions.

These validations support our conclusion that while Ten-
dermint’s theoretical design is sound, its implementation is
susceptible to flaws when assumptions about network relia-
bility or synchronous communication are violated. This em-
phasizes the importance of rigorous testing and structured
fault injection to ensure the reliability of real-world deploy-
ments.

7 Conclusions
This study utilized ByzzFuzz within the ByzzBench frame-
work to evaluate the implementation of the Tendermint con-
sensus protocol, focusing on its bug detection capabilities,
comparative performance against baseline testing, and the im-
pact of different mutation strategies.

ByzzFuzz proved effective in uncovering critical faults in
our Tendermint implementation, namely liveness violations.
Notably, it identified a significant bug related to incorrect
round advancement caused by invalid state transitions. The
study also confirmed Tendermint’s reliance on assumptions
of synchronous message delivery and a reliable gossip com-
munication protocol, with violations of these assumptions re-
sulting in persistent faults.

In comparison of ByzzFuzz with baseline testing,
ByzzFuzz demonstrated better performance in detecting
implementation-specific faults while maintaining the proto-
col’s core assumptions. The baseline testing method, al-
though effective at identifying a broader range of faults, often
violated the protocol’s design principles, leading to mislead-
ing results. This underscores the importance of structured
fault injection in testing BFT protocols.

The comparison of small-scope (SS) and any-scope (AS)
mutations revealed that SS mutations are more effective at
uncovering faults tied to state-specific transitions, such as in-
valid round advancements. By incrementally modifying val-
ues, SS mutations targeted subtle vulnerabilities more effec-
tively than AS mutations, which struggled with the high vari-
ability in arbitrary value selection.

This research also highlighted Tendermint’s resilience to
transient network faults when its core assumptions were up-
held. However, when these assumptions were relaxed, such
as allowing the gossip protocol to fail or introducing asyn-
chronous message delivery, the protocol struggled to maintain
the liveness property. These findings emphasize the critical
role of both synchronous communication and robust message
propagation in ensuring Tendermint’s reliability.

In conclusion, this study demonstrates the value of Byzz-
Fuzz as a structured testing tool for identifying nuanced vul-
nerabilities in BFT protocols. By enabling targeted fault in-
jections and precise analysis, ByzzFuzz complements other
testing methods to provide a comprehensive evaluation of
consensus protocol implementations.

8 Future Work and Improvements
While this research provides valuable insights, there remain
several areas for improvement regarding both the implemen-
tation of Tendermint and the testing approaches utilized in
this paper.

For the Tendermint implementation, one possible improve-
ment involves the incorporation of a power voting mecha-
nism. Currently, all tests were conducted in a democratic sce-
nario where each replica held equal voting power. A more re-
alistic approach would involve assigning voting power based
on the stake of each replica. This adjustment could help in-
vestigate the protocol’s behavior in scenarios where valida-
tors have unequal influence, providing insights into vulner-
abilities that may arise when a small number of nodes hold
significant power.

Improvements to the testing approaches used in this re-
search could also enhance the outcomes. The baseline testing
approach, as described in Section 4.5, allows the dropping of
all messages, which may violate the protocol’s assumptions
about reliable gossip communication. Restricting the baseline
so that critical messages, such as PROPOSAL, PREVOTE, and
PRECOMMIT, are not dropped could provide results that bet-
ter reflect real-world conditions. Additionally, the structure-
aware mutation strategy currently modifies only the height
and round fields in messages. Expanding the scope of mu-
tations to include other fields, such as the validRound could
help uncover new vulnerabilities in the implementation and
lead to a more comprehensive evaluation of the protocol.

A Mapping Tendermint Rounds to ByzzFuzz
Rounds

In the Tendermint consensus protocol, replicas attempt to
commit a block for each height through multiple rounds.
Within a height, each round has a designated proposer, and
replicas collectively proceed through three phases—Proposal,
Prevote, and Precommit—before advancing to the next round

or committing a block. If a round fails to commit a block, the
protocol advances to the next round at the same height with
a new proposer. Once a block is successfully committed, the
height increments, and the process repeats.

We created a mapping from the combination of height (h)
and round (r), to utilise ByzzFuzz’s round based approach.
For example, in Tendermint, the phases of h=0, r=0 would
map to:

• PROPOSAL(h0r0) = 1

• PREVOTE(h0r0) = 2

• PRECOMMIT(h0r0) = 3

If this round fails, the replicas move to h=0, r=1:

• PROPOSAL(h0r1) = 4

• PREVOTE(h0r1) = 5

• PRECOMMIT(h0r1) = 6

Upon successfully committing a block in h=0, r=1, the
height increments (h=1), and the process starts over:

• PROPOSAL(h1r0) = 7

• PREVOTE(h1r0) = 8

• PRECOMMIT(h1r0) = 9

This mapping illustrates how ByzzFuzz models Tender-
mint’s consensus process. Each height-round combination
corresponds to a unique sequence of PROPOSAL, PREVOTE,
and PRECOMMIT phases, allowing structured analysis of the
protocol’s fault-handling capabilities.

B Use of LLMs
During the research project, ChatGPT was used for checking
grammatical correctness and ensuring that the text is clear.
The prompts used included:

• ”What would you suggest to you improve the grammar?
[input]”

• ”Can you summarize this paragraph and tell me about
it? [input]” This prompt was used to determine whether
the main idea of the the text written was clear. If the
response summarized the paragraph incorrectly, it would
indicate that we have to write it better.

• How do you format a table in overleaf?

• How would you use passive voice in that?[input]

Additionally Grammarly and Writefull were used to ensure
correct spelling and grammar.

C Additional Results
This section presents additional results from the ByzzFuzz
evaluation of the Tendermint implementation under asyn-
chronous message delivery and a reliable gossip communi-
cation assumption.

Faults Liveness Agreement Total
SS AS SS AS

P = 0, N = 0 92 83 0 0 2000
P = 0, N = 1 81 98 0 0 2000
P = 0, N = 2 93 87 0 0 2000
P = 1, N = 0 90 79 0 0 2000
P = 1, N = 1 90 67 0 0 2000
P = 1, N = 2 73 100 0 0 2000
P = 2, N = 0 65 90 0 0 2000
P = 2, N = 1 66 77 0 0 2000
P = 2, N = 2 83 78 0 0 2000

Table 6: Faults found by ByzzFuzz on the implementation using
asynchronous message delivery and fulfilling the reliable gossip
communication assumption.

References
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system,” Satoshi Nakamoto, 2008.

[2] E. Kapengut and B. Mizrach, “An event study of the
ethereum transition to proof-of-stake,” Commodities,
vol. 2, no. 2, pp. 96–110, 2023.

[3] C. Staff, “This week in crypto: Binance experiences a
$100 million cross-chain hack,” CoinJournal, 2022. Ac-
cessed: 2025-01-07.

[4] L. N. Winter, F. Buse, D. de Graaf, K. von Gleis-
senthall, and B. Kulahcioglu Ozkan, “Randomized test-
ing of byzantine fault tolerant algorithms,” Proc. ACM
Program. Lang., vol. 7, Apr. 2023.

[5] K. John, T. J. Rivera, and F. Saleh, “Economic implica-
tions of scaling blockchains: Why the consensus proto-
col matters,” Available at SSRN 3750467, 2020.

[6] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduc-
tion to Reliable and Secure Distributed Programming.
Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg,
2nd ed., 2011.

[7] E. Buchman, J. Kwon, and Z. Milosevic, “The latest
gossip on BFT consensus,” CoRR, vol. abs/1807.04938,
2018.

[8] J. Kwon, “Tendermint: Consensus without mining.”
Draft v.0.6, 2014.

[9] C. Dragoi, C. Enea, S. Nagendra, and M. Sri-
vas, “A domain-specific language for testing
consensus implementations,” in arXiv preprint,
vol. arXiv:2303.05893v2, 2023.

[10] F. Ma, Y. Chen, M. Ren, Y. Zhou, Y. Jiang, T. Chen,
H. Li, and J. Sun, “Loki: State-aware fuzzing frame-
work for the implementation of blockchain consensus
protocols,” in Network and Distributed System Security
Symposium (NDSS), 2023.

[11] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li,
A. Ching, and D. Malkhi, “Twins: Bft systems made

robust,” in 42nd Conference on Very Important Top-
ics (CVIT), pp. 23:1–23:29, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2022.

[12] Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun,
“Tyr: Finding consensus failure bugs in blockchain sys-
tem with behaviour divergent model,” in 2023 IEEE
Symposium on Security and Privacy (SP), pp. 2517–
2532, IEEE, 2023.

[13] C. Berger, H. P. Reiser, and A. Bessani, “Making reads
in bft state machine replication fast, linearizable, and
live,” in 40th IEEE International Symposium on Reli-
able Distributed Systems (SRDS), IEEE, 2021. Preprint
version available.

[14] M. Castro and B. Liskov, “Practical byzantine fault tol-
erance,” in Proceedings of the Third Symposium on Op-
erating Systems Design and Implementation, OSDI ’99,
(USA), p. 173–186, USENIX Association, 1999.

[15] Y. Amoussou-Guenou, A. D. Pozzo, M. Potop-
Butucaru, and S. Tucci-Piergiovanni, “Dissecting ten-
dermint,” arXiv preprint, vol. arXiv:1809.09858v3,
2019.

[16] E. Buchman, “Tendermint: Byzantine fault tolerance in
the age of blockchains,” Master’s thesis, University of
Guelph, 2016.

[17] Oracle Corporation, Oracle Java 8 API Documentation:
java.util.Random, 2014. Accessed: 2025-01-11.

	Introduction
	Problem Statement
	Consensus Protocols
	Research Questions
	Methodology

	Contributions
	Literature Review
	Implementation of the Tendermint Protocol in ByzzBench

	Experimental Setup and Results
	Mutators
	Overall Setup
	Baseline Testing
	ByzzFuzz
	Discussion On Results

	Responsible Research
	Ethical Considerations
	Reproducibility
	Limitations and Responsible Use
	Broader Impact

	Discussion
	Conclusions
	Future Work and Improvements
	Mapping Tendermint Rounds to ByzzFuzz Rounds
	Use of LLMs
	Additional Results

