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Chapter 1

Introduction

1.1 Magnetism and electron transport

Since the discovery of the compass, as the earliest application of magnetism, by
the Chinese nearly one thousand years ago [1], magnetism and magnetic ma-

terials have attracted much attention in basic and applied research. The ferromag-
net, as a many-particle condensate of angular momentum, has a preferred direc-
tion, the orientation of the order parameter or magnetization direction [2, 3, 4]. In
the presence of an external field (such as Earth’s magnetic field) that is misaligned
with the order parameter, the magnetization responds by minimizing its free energy,
which leads to magnetization dynamics. Aided by fast developing modern nano-
technology, a ferromagnetic particle can be fabricated down to sizes at which the
formation of multiple magnetic domains is energetically costly. A single domain
nanoparticle can be modelled as a single macroscopic spin that describes the co-
herent collective precession of the magnetization.

The transport of electrons in various materials, particularly metals, has been
studied for a long time as well. The electron, as an elementary particle, carries both
a charge and an intrinsic angular momentum known as spin. Electric currents are
generated by applying a voltage bias, or equivalently an electric field, over a piece of
metal. Ohm’s law says that the current (I) is proportional to the applied voltage (V )
and inversely proportional to the resistance (R) between two measuring points, i.e.,
V = IR. In the late 1980’s, electron transport in a hetero-structure combining a fer-
romagnet (F ) and an ordinary normal metal (N ) was found to display a new effect
called giant magneto-resistance (GMR) [5, 6], in which the magnetic configuration
plays an important role in determining the resistance of the structure. It can be
understood in terms of electrons of different spins, relative to the magnetization di-
rection of the F metal, experiencing different resistances: the so-called two-channel
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resistor model. GMR quickly lead to innovations in data storage technologies, such
as hard disk drives (HDD). Magnetic structures are usually disordered, meaning that
the electrons experience many random scattering processes when passing through
a device. The transport is therefore well-described by semi-classical diffusion equa-
tions [7].

1.2 Mean field theory of ferromagnetism

It is the interactions in a system that lead to the appearance of the magnetism. This
section briefly describes a model of metallic ferromagnetism that serves as the ba-
sis for the development of the rest of this thesis, based on a mean field theory or
Hartree-Fock approximation. The simplest picture of the free electron gas is said
to be free, but in fact the Coulomb interaction correlates the electrons and gener-
ates new phases. The competition between the Pauli exclusion principle and the
Coulomb interaction leads to the metallic ferromagnetism as desired here [8]. In
many-body systems, the interactions between particles are so complicated that it
is impossible to calculate every wave function associated with each particle using
Schödinger’s equation. In some cases, for one particle, the influence from others
due to interaction can be averaged out giving rise to the so-called mean field, which
is carefully selected in combination with symmetry considerations in order to min-
imize the free energy. Consequently a many-body Hamiltonian is reduced to a new
effective single particle Hamiltonian, where certain operators generate non-zero ex-
pectation values with respect to the new ground-state. These operators are called
order parameters [8].

The metallic ferromagnet studied in this thesis can be described by a Hamilto-
nian including an electron gas (free electrons) and a Coulomb repulsive interaction:

H =
∫

d3r

[∑
σ

φ†σ(r)
(
−~

2∇2

2m
− µ

)
φσ(r) + Uφ†↑(r)φ

†
↓(r)φ↓(r)φ↑(r)

]
, (1.1)

where φ†σ (φσ) is the creation (annihilation) operator for an electron of spin σ. The
chemical potential is introduced as µ. The first part in the Hamiltonian is the kinetic
energy of the free electron gas. The second term, i.e. the Coulomb interaction, is
chosen to be δ-function like [8]. Introducing a spinor field operator and its hermitian
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conjugate as

φ(r) =
(

φ↑(r)
φ↓(r)

)
, and φ†(r) =

(
φ†↑(r), φ

†
↓(r)

)
, (1.2)

the interaction term can be divided into two parts [9, 10, 11]:

Uφ†↑(r)φ
†
↓(r)φ↓(r)φ↑(r) =

U

4
[
φ†(r)φ(r)

]2 − U

4
[
φ†(r)σ ·mφ(r)

]2
, (1.3)

where σ is the Pauli matrices and the unit vector m describes the orientation of
the magnetization. At this stage, in order to decouple the interaction Eq. 1.3, we
employ the so-called Hubbard-Stratonovich transformation to introduce two dy-
namic fields. These are the charge density field with mean value given by 〈n(r)〉 =
〈φ†(r)φ(r)〉, which can be absorbed into the definition of chemical potential [10],
and the spin density field with mean value given by 〈M(r)m〉 = U

2 〈φ†(r)σφ(r)〉. This
semi-classical spin density field serves the function of order parameter, as discussed
in the beginning of this section. The appearance of non-vanishing expectation val-
ues of such order parameters is a signal that the system experiences a phase tran-
sition and therefore develops a new ground state [8]. In the current case, the new
ground state is spin polarized. The magnitude of the magnetization is determined
by the saddle point approximation. It is beyond the scope of this thesis to discuss the
derivation of the exact values, which can be found in various references [8, 11]. In
the saddle point approximation, the magnitude of the exchange interaction is given
by [8, 11]:

M = U

∫
d3k

(2π)3

[
f

(
εk − µ− M

2

)
− f

(
εk − µ +

M

2

)]
, (1.4)

where f(ε) is the Fermi distribution function. The introduction of the spin density
field yields the Stoner mean-field model for metallic ferromagnetism, which is de-
scribed by an effective Hamiltonian as:

Heff =
∫

d3r

[∑
σ

φ†σ(r)
(
−~

2∇2

2m
− µ

)
φσ(r) +

M

2

∑

σσ′
φ†σ(r) (m · σ)σσ′ φσ(r)

]
.

(1.5)

The mean field appears in the system as an exchange field felt by the conducting
electrons. Hamiltonian Eq.1.5 is usually referred to as the well-known Stoner model,
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often serving as the starting point of the discussion on interaction between con-
ducting electrons and the ferromagnet. The magnitude of the exchange interaction
is proportional to the magnetization, which is usually constant at saturation magne-
tization (Ms). The above mean field theory does not provide information about the
direction of the magnetization, since the exchange interaction exhibits rotational in-
variance. The direction of the magnetization is determined by various factors such
as relativistic interaction (spin-orbit interactions) and external magnetic fields. The
dynamics of the magnetization is likewise a large field which has beeb intensively
studied for a long period. A brief discussion of dynamics is the content of the follow-
ing section.

1.3 Magnetization dynamics and the Landau-Lifshitz-
Gilbert equation

Suppose that a quantum spin Ŝ of a particle, e.g. a spin- 1
2 particle Ŝ = ~σ̂/2 (with

Pauli matrix σ̂), is immersed in a magnetic field B and disregard the interaction of
the orbital degrees of freedom with the magnetic field. Then the non-dissipative
dynamics of the spin operator are governed by the Heisenberg equation of motion,
determined by the Hamiltonian Ĥ = µBσ̂ ·B (with µB the Bohr magneton) [12]:

i~
dŜ
dt

=
[
Ŝ, Ĥ

]
= 2iµBB× Ŝ. (1.6)

If the left-hand side of Eq. (1.6) is viewed as the rate of change of an angular mo-
mentum, then the right hand side can be regarded as a torque. The magnetic mo-
ment (M) of an electron is proportional to its spin by a gyromagnetic ratio γ < 0, i.e.
M = γS. Therefore the equation of motion, i.e. Eq. (1.6), also governs the dynam-
ics of magnetic moments of a magnetic sample. Moreover, classical objects (such as
the magnetization as derived in Sec. 1.2) can also be described using Eq. (1.6) by
replacing the operators with their expectation values [14].

Consider here the case that the magnetism originating from the exchange in-
teraction, as results from the symmetry of the wave function and the electrostatic
interaction of electrons, is independent of the direction of total spins. In a mag-
netic body at equilibrium, the magnetization M, defined as the magnetic moment
density, is fixed by the exchange interaction. Therefore at temperatures far below
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the Curie temperature, the magnitude of magnetization can be regarded as constant
and is called the saturation magnetization Ms. When only the low energy excitations
of the ferromagnet are concerned, the wavelength of spin waves is large compared
to the size of the magnetic body (as achieved by the status quo fabrication tech-
niques), and the slow motion of the magnetization can be described by the macro-
spin model. [13]. In ferromagnetic materials the magnetic moments are in contact
with the environment, interacting not only with the external field, but also with the
lattice, other magnetic moments, phonons, and other types of excitations. These in-
teractions give rise to an effective field as well as dissipation. To determine the equa-
tion of motion when the dissipation is absent, in thermal equilibrium, the change of
free energy F (M) responding to an infinitesimal variation of the magnetization, at
constant temperature and volume V , is found to be [13]

δF = −
∫

dV Heff ·M, (1.7)

(where we have used the effective field Heff ), which leads to the equation of motion
of a magnetic moment:

dM
dt

= γM×Heff . (1.8)

In a ferromagnetic body, there also exists, in addition to the exchange interaction,
the interactions of relativistic origin. These are described macroscopically as the
anisotropy energy, which depends on the orientation of the magnetization direc-
tions [13, 4]. This anisotropy also gives rise to the effective fields appearing in the
equation of motion, contributing to the magnetization dynamics. Since the mag-
netic moments are coupled to the environment consisting of various microscopic
processes, the energy transfer from the magnetic system to the environment intro-
duces damping to the magnetic system and guides the system to a lower energy
state. The microscopic processes conducting the energy transfer between the sys-
tem and the environment are complicated, and therefore a phenomenological pa-
rameter(experimentally measurable) containing all the information about dissipa-
tion processes is more convenient to describe the dynamics than the microscopic
subtleties [14]. This phenomenological description of the magnetization dynamics
is governed by the well-known Landau-Lifshitz-Gilbert (LLG) equation:

dM
dt

= γM×Heff − α

Ms
M× dM

dt
(1.9)
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where the last term (the so-called Gilbert term) captures the damping torque origi-
nating from all possible dissipation, and the coefficient α is called the Gilbert damp-
ing parameter. This dynamic equation of magnetization was first proposed by Lan-
dau and Lifshitz in a slightly different form [13]. In order to describe a large damping,
Gilbert derived the damping torque using the Lagrangian with a Rayleigh dissipation
functional [14]. When the damping parameter α is small, it can be shown that the
two forms of the damping torque, i.e. the Landau-Lifshitz and the Gilbert form, are
actually equivalent [14]. For an isolated ferromagnetic metal, the damping parame-
ter is a sample property.

As the simplest example, consider a ferromagnetic particle in a static magnetic
field pointing in the z-direction: upon perturbing the magnetization direction away
from the z-direction, the damping torque drags the magnetization in the direction
of the external field, i.e. the energy minimum. In experiments such as ferromagnetic
resonance (FMR), where the magnetization is resonantly excited by microwaves (an
rf -field) to precess around a static magnetic field, the parameter α is proportional to
the line-width of measurement of the intensity of microwaves. Consequently FMR
is one of the standard techniques to study the damping parameter of a ferromagnet
[4].

The LLG phenomenology implies that the rate of the magnetization change is
caused by the torques on the magnetization. These torques, not necessarily origi-
nating from the magnetic field, can also come from other mechanisms transferring
angular momentum to the magnetization, such as the so called spin-transfer torque
discussed in the next section [17, 18]. In the presence of conduction electrons, the
angular momentum transfer between two spin systems gives rise to an extra torque
that appears in the LLG equation. The interplay among the field induced torque,
spin-transfer torque, and the damping torque induces intriguing magnetization dy-
namics. The absorption of angular momentum from conducting electron can re-
verse the magnetization direction once the damping torque is overcome. In addition
to the intrinsic damping, the loss of angular momentum or energy to the conduction
electrons introduces extra damping, such as through the spin pumping mechanism
[34].
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1.4 Spin injection and non-local detection in metals

The first step towards spin manipulation in metals is spin injection. In a seminal
experiment, Johnson and Silsbee investigated spin injection into a normal metal by
electric means [15]. As shown in Fig. 1.1, two ferromagnets are attached to a param-
agnetic metal (normal metal). The injector is biased and the detector is connected
to a voltage meter. Assuming that an electric current is driven into the normal metal

Paramagnetic metal (Al)

V

Bias

Detector
Injector

Figure 1.1: Schematic view of non-local electric spin injection and detection in metallic struc-

tures.

(Al) through the ferromagnet, at the ferromagnet-normal metal (F|N) interface, the
density of states of electrons at Fermi energy is different for electrons in majority and
minority spin bands. Therefore the current injected into the normal metal is spin
polarized, i.e. there is an imbalance between the majority and minority-spin elec-
trons, and the polarization is parallel to the magnetization direction of the injector
[15]. The imbalance induced by a spin polarized current creates a non-equilibrium
distribution with respect to different spins, which is usually referred to as spin ac-
cumulation. The spin-flip scattering in the normal metal, e.g. due to spin-orbit in-
teraction or spin-dependent impurities, relaxes the spins and so diminishing the
non-equilibrium spin accumulation. As long as the size of the normal metal in the
transport direction is shorter than the spin flip length (lsf ), the spin accumulation
does not, however, vanish. In this case, the spin transport can be entirely described
by spin diffusion equation for the spin accumulation. The spin accumulation at the
detector-normal metal interface drives spin current into the detector, and the de-



8 1. Introduction

tected voltage signal is proportional to the projection of the spin accumulation in
N to the magnetization direction of the detector. Johnson and Silsbee initially pro-
posed this method to measure the spin relaxation time in the normal metal [15],
which can be well described in terms of spin diffusion equation as shown later by
Jedema et al. in newly developed multi-terminal non-local measurements [27, 28].

1.5 Spin-transfer torque and structures

Slonczewski [17] and Berger [18] predicted the spin transfer torques mentioned ear-
lier. Substantial experimental and theoretical effort has since been invested in con-
firming and quantifying the effect [19, 20, 21, 22, 23, 24, 25, 26]. The setup under
investigation usually consists of two magnetic layers separated by a normal metal,
i.e. a fixed layer with strong magnetization known as polarizer, and a free layer with
a low coercivity field that allows relatively easy excitation of the magnetization (Fig.
1.2). In the original proposal by Slonczewski [17], the instantaneous magnetization

Polarizer

Normal metal

Free layer

Electrons

q

Figure 1.2: Schematic view of the multi-layer device employed to investigate the spin transfer

torque, in so-called pillar structures. This type of device usually consists of a ferromagnetic

layer with a large coercivity field serving as a polarizer (with magnetization M1), which is

separated by a normal metal spacer from a free layer ferromagnet (M2) with lower coercivity.

The two magnetization directions form an angle θ.

directions of two ferromagnets (M1 and M2) form an angle θ. If the length of the nor-
mal metal spacer at the transport direction is shorter than the spin diffusion length,
the conducting electrons polarized along the magnetization direction of the fixed
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layer (M1) will be impinge on M2. The polarized electrons entering the free layer
precess about M2 with a frequency governed by the exchange splitting. By consid-
eration of angular momentum conservation, one sees that the free layer (M2) reacts
to the conduction electrons by gaining angular momentum equal to the total inward
spin flux penetrating M2 from both sides [17]. If the exchange interaction in M2 is
large, it is possible for the transverse spin component of the conduction electrons to
be completely absorbed by M2. The absorption of the transverse component by the
free layer induces a torque that causes the magnetization dynamics, and the spin
transfer torque is given by [17]:

dM2

dt
=

I

e
gm2 × (m1 ×m2) , (1.10)

where m1(2) is the magnetization direction of the polarizer (free layer). The coeffi-
cient g is a function of the polarization factor P = (N↑ −N↓)/(N↑ + N↓) in terms of
spin densities of majority (N+) and minority (N−) carriers,

g =
[
−4 + (1 + P )3(3 + m1 ·m2)/4P 3/2

]−1

. (1.11)

The Landau-Lifshitz-Gilbert equation augmented by Eq. (1.10) can be used to in-
vestigate the magnetization dynamics. This model, for a single domain magnet with
homogenous magnetization, is called a macro-spin model. Eq. (1.10) predicts that
when P < 1, the spin transfer vanishes for parallel or anti-parallel magnetization
configurations. The energy dissipation of this spin transfer torque mechanism scales
favorably under miniaturization and is believed to be useful for the next generation
of magnetic memory and storage technology.

The theoretical predictions of spin transfer torque [17, 18] were followed by sig-
nificant amount of experimental studies. The experimental setups fall mainly into
two categories: pillar structures [19, 20, 21, 22, 23, 24, 25, 26] and lateral structures
[27, 28, 29, 30, 31, 32]. In the usual pillar structures, an electric current penetrates the
magnetic layers, as schematically shown in Fig. 1.2. A typical experimental setup of
pillar device is sketched in Fig. 1.3 [21]. There are two magnetic layers (such as the
two Co layers in the figure), with the thicker one (Co2) acting as the polarizer and
the thinner one (Co1) as the free layer. When the electrons flow from Co1 to Co2, at
the interface of Co2, the reflected electrons are largely polarized antiparallel to the
magnetization of Co2, since the electrons polarized parallel to Co2 can penetrate
the polarizer. Consequently the reflected electrons induce a torque on the free-layer
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Figure 1.3: Schematic view of a pillar device with cobalt (Co) layers separated by a copper (Cu)

spacer. This figure is from Ref. [21]. The free layer (Co1) is of thickness 25Åand the fixed layer

or polarizer has thickness 100Å. The normal metal Cu in between two Co layer is of thickness

60Å.

which eventually switches the magnetization in Co1 to the direction antiparallel to
Co2. When the transport direction of the electron flow is reversed, i.e. electrons flow
from Co2 to Co1, the polarized current can switch the Co1 magnetization back to
parallel to Co2. The signal of switching of magnetization is probed using the giant
magneto-resistance (GMR) effect [5, 6] by measuring the dc resistance across the
pillar. The parallel and antiparallel magnetization directions give rise to different dc
resistances of the pillar structure: lower resistance corresponds to parallel magneti-
zations, while it is larger when they are antiparallel. In the experiments, an external
magnetic field is applied in the plane of the magnetic films. The external field serves
two purposes: to maintain the magnetization direction in the fixed layer (Co2) and
to prevent the formation of domains in the magnetic films [21]. A qualitatively satis-
factory explanation of the switching of free layer can be obtained by combining the
Slonczewski formula for the spin-transfer torque and the Landau-Lifshitz-Gilbert
equation, taking into account the anisotropy and external fields acting on the free
layer.

The experiments on lateral structures do not invoke current penetrating the mag-
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netic film but rather are non-local [15, 16, 27, 28, 29, 30, 31, 32]. Fig. 1.4 schemati-
cally shows a switching experiment performed on lateral structures by Kimura et al.
[32]. The experimental setup consists two magnetic layers (permalloy films) both

Figure 1.4: Schematic view of a lateral structure employed to investigate the spin-transfer

torque effect. This figure is from Ref. [32].

deposited on the substrate, rather than on top of each other as in the pillar struc-
tures. When the electron current is applied across I+ and I− (as in panel (c)), the
current is polarized by the spin injector (fixed layer) but there is no net charge cur-
rent through the free layer. The polarized current induces spin accumulation in the
central copper wire. The size of the copper wire is shorter than the spin diffusion
length. As discussed in Sec. 1.4, the spin accumulation in turn drives a pure spin
current that exerts a spin torque on the magnetization of the free Py layer. The ex-
periments of Kimura et al. showed that the switching of the magnetization can be
accomplished by the spin current alone. One of the advantages of the lateral struc-
ture is that the net charge current at the free layer-normal metal interface is zero.
Since the free layer is not sandwiched by the other layers, the lateral structures also
allow direct optical imaging of the magnetization dynamics, and the dipolar field
generated by the dynamic magnetization can also be employed in other applications
[33].

1.6 Landauer-Büttiker formalism and circuit theory

Electrons in metals do not move freely but experience scattering, e.g. by other elec-
trons, impurities, phonons, or defects. The mean free path parameters indicate how
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far an electron can roam in the conductor [12]. When size of the conductors is much
larger than the mean free path, the motion of electrons is predominantly diffuse, and
the resistance is governed by the bulk scattering. In very small structures, however
the resistance is determined mostly by reflections at interfaces. In that regime the-
oretical treatment should focus on what happens at the junctions between different
materials. The well-known Landauer-Büttiker formalism systematically handles the

Ferromagnet

L
ef

t 
le

ad

Scatterer

R
ig

h
t 

le
ad

Normal metalNormal metal

a L,n

b L,n a R,n

b R,n

Figure 1.5: Scattering events at a ferromagnetic particle with normal metal contact. The op-

erator aL,n annihilates an incident electron from the left lead(L), and bL,n annihilates an out-

going one in the left lead. The spin indices are suppressed for abbreviation.

electron transport in terms of the scattering processes associated with the traversal
of electrons from a source contact through a sample into a drain contact. This for-
malism was originally proposed by Landauer on the basis of the insight that trans-
port phenomena in solid state systems can be formulated as scattering problems
[37]. Let us consider a mesoscopic scattering region in the center (not necessarily
magnetic), which is connected to two reservoirs by metallic leads, as depicted in
Fig. 1.5. The reservoirs are considered to be much larger than the scattering region.
Transmission into, e.g. right reservoir from the right lead is hence reflectionless,
meaning that such an electron entering the reservoir does not return on the time
scale of the measurement. For each reservoir, the electrons are distributed accord-
ing to the Fermi-Dirac distribution at given temperature (T ) and electro-chemical
potential (µ). The formalism is most straightforward when inelastic scattering pro-
cesses in the conductor may be disregarded [38]. It is therefore usually assumed that
the size of the scattering region is smaller than the energy relaxation length. From
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a quantum mechanically point of view, an electron wave incident on an interface
splits into a reflected and the a transmitted contribution. At low temperature, the
reflection and transmission probability amplitudes are determined by the (Fermi)
energy of the incoming electron and the scattering potential, and are by definition
elements of the scattering matrix [12]. The confinement potential of the leads quan-
tizes the wave vectors perpendicular to the transport direction, giving rise to the
conducting channels analogous to waveguides for classical waves [36, 38]. General-
ization of the scattering approach to include spin degrees of freedom is an impor-
tant ingredient in the magneto-electronic circuit theory, which is a powerful method
to both qualitatively and quantitatively analyze spin and charge transport in a the
ferromagnet-normal metal hybrid structure in the presence of arbitrary magneti-
zations [39, 40]. A detailed explanation of the method and its applications can be
found in two recent comprehensive reviews [34, 35], but a brief sketch is given in the
following.

Imagine a static ferromagnetic scatterer in contact with two normal metal nodes
(or leads, denoted as L and R) connected to reservoirs, as sketched in Fig. 1.5. As
explained above, the size of the scatterer is smaller than the energy relaxation length
and the electrons originating from a given reservoir maintain their energy distri-
bution while being scattered in the conductor. The confinement in the transverse
direction defines the conducting channels described by an integer index n [38]. The
total energy of the electrons can be further partitioned as E = En + El, where the
condition that the ’longitudinal’ energy El > 0 implies that only a finite number
of quantum channels exist at a given energy. Away from the scattering region in
the outgoing direction, channels at transverse energy En larger than energy E de-
cay with vanishing amplitude. The creation and annihilation operators â†α,n,σ(E) ,
âα,n,σ(E) can be introduced for an incoming electron with spin σ and total energy
E in the transport channel n and coming from the reservoir α = L,R. Similar nota-
tion is introduced for out-going electrons, b̂†α,n,σ(E) (b̂α,n,σ(E)). The scattering states
associated with the creation and annihilation operator in the normal metal are the
eigenstates of the system (normal metal). Ref.[36] and Ref.[38] discuss spin degen-
erate systems in which the spin index can be omitted in favor of a factor two. For
a magnetic scatterer it is essential to include the spin explicitly. It is convenient to
chose the magnetization direction as the spin quantization (z)axis [39]. At an instant
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t, the current operator in the leads α = L, R in spin space can be written as

Iσσ′
α (t) =

e

h

∑
n

∫
dE

∫
dE′ei(E−E

′
)t/~

[
â†α,n,σ′(E)âα,n,σ(E′)− b̂†α,n,σ′(E)b̂α,n,σ(E′)

]
.

(1.12)

The matrix current operator can be expanded into the charge current Ic and the
three-component vector spin current Is, i.e. Îα = (1/2)Ic − (e/~)σ · Is [34, 39]. Dis-
regarding inelastic scattering [34, 38, 39], the incoming and outgoing channels are
related by the scattering matrix:

b̂α,n,σ(E) =
Nβ∑

m=1

∑

β

∑

σ′=↑,↓
Sσσ′

αβ;nm(E)âβ,m,σ′(E). (1.13)

With the additional assumption of the absence of spin-flip scattering by spin-orbit
interaction, let us take advantage of projection matrices to split the scattering ma-
trix into two components in spin space, i.e. spin-up and spin-down relative to the
magnetization direction m that we chose parallel to the spin quantization axis [34,
35, 39]:

Ŝαβ;nm = S↑αβ;nmû↑ + S↓αβ;nmû↓ (1.14)

where the projection matrices are û↑(↓) = (1± σ ·m) /2.
Electrons in different leads, different channels, or different energies are statisti-

cally independent[36]. Therefore the following statistical average holds:

〈â†α,n,σ(E)âβ,n′,σ′(E′)〉 = fσ′σ
α δαβδnn′δ(E − E′). (1.15)

In contrast to conventional cases, we allow a non-equilibrium imbalance between
different spin species which gives rise to the concept of a spin accumulation. The
time-averaged charge and spin currents through a given contact, in response to the
presence of a given thermodynamic imbalance, as measured at the normal metal
side of an N|F contact, can then be written as [34, 39]:

Ic =
e

2h

[
2(g↑↑ + g↓↓)(µc,R − µc,L) + (g↑↑ − g↓↓)(µR − µL) ·m]

, (1.16)

Is =− 1
8π

[
2(g↑↑ − g↓↓)(µc,R − µc,L)m + (g↑↑ + g↓↓)((µR − µL) ·m)m

+2g↑↓r m× µR ×m + 2g↑↓i µR ×m− 2t′r
↑↓m× µL ×m− 2t′i

↑↓
µL ×m

]
. (1.17)
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The spin-dependent conductances can be expressed as follows by summing over all
transport channels [38] at the Fermi energy:

gσσ′ =
∑

nn′

[
δnn′ − rσ

nn′(r
σ′
nn′)

∗
]
, (1.18)

where rσ
nn′ is the reflection amplitude of an electron with spin σ. New here is the

mixing conductance g↑↓ =
∑

nn′

[
δnn′ − r↑nn′(r

↓
nn′)

∗
]

which governs the spin deco-

herence of an incoming electron with spin polarized normal to the magnetization
direction, when penetrating the ferromagnet. The spin-transfer torque acting on
the ferromagnetic order parameter is equal to the spin current, polarized perpen-
dicular to the magnetization, that is absorbed by the ferromagnet. We can project
out this term from Eq.(1.17) and obtain

Lst =
1
4π

(
g↑↓r m× µR ×m + g↑↓i µR ×m− t′r

↑↓m× µL ×m− t′i
↑↓

µL ×m
)

. (1.19)

Allowing the thickness of the ferromagnet to be much larger than its spin coherence
length, the ferromagnetic layer is effectively reduced to two single F|N contacts. In
this case, the terms related to t′↑↓ vanish, since due to the large exchange field inside
the ferromagnet a spin accumulation can only be built up aligned with the magne-
tization direction. For interfaces between normal and transition metals, the imagi-
nary part of the mixing conductance g↑↓i is much smaller than the real part and may
be usually disregarded [41]. As such we may argue that the spin torque exerted on
the magnetization, to a good approximation is determined by [34]:

Lst ≈ 1
4π

g↑↓r m× µR ×m, (1.20)

which is clearly driven by the non-equilibrium distribution µR, i.e. the spin accu-
mulation in the normal metal node. The spin mixing conductance is a key concept
in the magneto-electronic circuit theory [39], because it not only governs the mi-
croscopic description of the spin transport in the non-collinear magnetization con-
figurations, but also the treatment of spin-transfer torque by ab initio calculations
[35, 41].
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1.7 Spin pumping

In the previous section, the magnetization of the magnetic scatterer (or the scatter-
ing potential) was static and the scattering matrix was consequently time-independent.
The scattering processes associated with the slow motion of the magnetization are
equally interesting, however. Here slow motion means that the characteristic time
scale of the magnetization dynamics is much larger than that associated with the
electronic motion. Upon moving the magnetization, the scattering matrix in spin
space acquires a parametric time-dependence, which induces spin currents. The
charge-current response to a time-dependent internal potential in the language of
the scattering matrix formalism was first discussed by Büttiker et al. [42]. Brouwer
later developed the concept of parametric charge pumping [43] in quantum dots by
time-dependent gate voltages. The mechanism of spin pumping has been proposed
and investigated by Tserkovnyak et al. in a series of papers [44, 45], initially to ex-
plain the enhancement of the Gilbert damping parameter measured in bilayers of a
ferromagnet in contact with normal metals with varying degrees of spin flip scatter-
ing [46, 47]. In the following, we explain this mechanism briefly.

Consider a setup as in Fig. 1.5 and let us assume that the magnetization is in mo-
tion, such as under ferromagnetic resonance (FMR) conditions. The magnetization
can be described by a time-dependent vector parameter X(t) (the specific choice
will be given later). The scattering matrix acquires a time-dependence through the
parameter X(t). In general, the creation and annihilation operators satisfy

b̂α,n,σ(E) =
Nβ∑

m=1

∑

β

∑

σ′=↑,↓
Sσσ′

αβ;nm(E, E′,X(t))âβ,m,σ′(E′). (1.21)

Keeping the Fourier transform of the parameter X(t) to first order in its frequency ω

under the assumption that X(t) is varying slowly (adiabatically) with respect to the
characteristic interaction time of electrons (i.e. electrons always see a static param-
eter X(t)):

X(t) ≈ X(−ω)e+iωt + X(+ω)e−iωt. (1.22)

In the spirit of time-dependent perturbation theory, such an internal potential mixes
the energy sub-bands of E

′
= E − ~ω and E

′
= E + ~ω. To first order in X(±ω),
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Eq.(1.21) is expanded as

b̂α,n,σ(E) =
Nβ∑

m=1

∑

β

∑

σ′=↑,↓

[
Sσσ′

αβ;nm(E)âβ,m,σ′(E)

+ ∂XSσσ′
αβ;nm(E, E + ~ω)X(−ω)âβ,m,σ′(E + ~ω)

+∂XSσσ′
αβ;nm(E, E − ~ω)X(+ω)âβ,m,σ′(E − ~ω)

]
. (1.23)

The above equation can be substituted back into the current operator to calculate
the average current. It is found that in addition to the current corresponding to a
static magnetization as discussed in the previous section, a time-dependent correc-
tion arises that is called a pumping current :

I
(p)
α,i (t) =

i~
8π

∑

nm,β

∫
dE

df(E)
dE

Tr
[
σ̂i

(
Ŝ(E)∂X Ŝ†(E)− ∂X Ŝ(E)Ŝ†(E)

)] dX(t)
dt

,

(1.24)

where the trace acts in spin space (channel and lead indices of the scattering matrix
Ŝ are suppressed). The projection operators may again be applied in the absence
of spin-flip scattering at the interface. In the case of a simple precessional motion
around the z-axis, the parameter X can be identified to be the azimuthal angle φ of
the magnetization direction, defined by m = (sin θ cosφ, sin θ sin φ, cos θ) [44]. After
some algebra, one obtains a pumping current in terms of the mixing conductance
and magnetization direction, measured at the normal metal side, as

I(p)
s =

~
4π

(
g↑↓r m× dm

dt
+ g↑↓i

dm
dt

)
. (1.25)

The smallness of the imaginary part of the mixing conductance compared to the
real part allows us, in most situations, to discard the second term. The pumped
spin current is then perpendicular to the magnetization direction and its precession
rate (ṁ). The above mechanism pumps only spin current but no charge current,
since the latter must be conserved. The total angular momentum of the conduction
electrons does not have to be conserved, since it may relax to the lattice, e.g. by spin-
flip scattering processes. The pumping current modifies the Landau-Lifshitz-Gilbert
equation since the loss of angular momentum by the pumping current is a torque
acting on the magnetization. The real part of the mixing conductance contributes to
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the enhancement of the Gilbert damping parameter [44], as found experimentally
[46, 47]. In the absence of the spin-flip scattering, the pumped spin current entering
the normal metal builds up spin accumulation. A non-equilibrium spin accumula-
tion in the normal metal, as noted in the previous section, in turn produces a back
flow spin current that opposes the pumped one. The interplay between the pump-
ing current and back flow led to new ideas such as spin battery [48], and dc voltage
generation by spin pumping [49, 50].

1.8 This thesis

The next two chapters of this thesis, Chapter 2 and Chapter 3, describe the mag-
netization dynamics driven by a pure spin current as investigated in a three ter-
minal geometry (spin-flip transistor), using magneto-electronic circuit theory and
the Landau-Lifshitz-Gilbert equation augmented by the spin-transfer and pumping
torques. A “spin-flip transistor” is a lateral spin valve consisting of ferromagnetic
source drain contacts to a thin-film normal-metal island with an electrically floating
ferromagnetic base contact on top. The charge current is sent through the source
and drain contacts while at the floating contact the charge current is vanishing, but
the spin current generated by the spin accumulation derived from magnetized con-
tacts can interact with the thin film magnetization, thus producing the dynamics.
The relative orientation of the anisotropy fields and the source drain magnetization
direction play important roles in characterizing the dynamics.

In Chapter 2, we analyze the dc-current-driven magnetization dynamics of spin-
flip transistors in which the source-drain contacts are magnetized perpendicularly
to the device plane. Spin-flip scattering and spin pumping effects are taken into ac-
count. We find a steady-state rotation of the base magnetization at GHz frequencies
that is tuneable by the source-drain bias. In Chapter 3, the source-drain magnetiza-
tions are chosen fixed and antiparallel, with all magnetizations in the device plane,
while the third contact magnetization is allowed to move in a weak anisotropy field
that guarantees thermal stability of the equilibrium structure at room temperature.
Tunable two-state behavior of the magnetization is found.

In Chapter 4, we describe a mechanism to convert the spin signal due to spin
pumping to an electric signal for a ferromagnetic (F) magnetization that is reso-
nantly excited to a steady precession around a static applied magnetic field. The
precessing magnetization pumps spin current into the adjacent normal metal (N)
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thereby induces a non-equilibrium spin accumulation. Diffusion processes in N av-
erage out the oscillating components of the spin current, leaving a static spin accu-
mulation. The back-flow spin current generated by such a spin accumulation tries to
penetrate F. The exchange field in F favors only the spin current component parallel
to the magnetization, which leads to spin accumulation in the F side. The spin-flip
scattering and the difference in conductivities for spin-up and spin-down electrons
creates a potential drop across the F|N interface, which can be detected as a dc volt-
age. This mechanism shows that FMR acts not only as source of angular momentum,
but also as an energy source. These theoretical predictions have been confirmed by
experiments [50].

In Chapter 5, we study the damping parameter of a thin magnetic film sand-
wiched by normal metal from a somewhat different point of view. The spins on the
thin film are coupled to the conducting electrons through s-d exchange. The con-
duction electrons serve as a dissipative environment for the magnetization. The
imaginary-time effective action approach is adopted. To obtain the equation of
motion for the magnetization, the conduction electron degrees of freedom are in-
tegrated out and what remains is an effective action of the magnetization. In the
spirit of the Caldeira-Leggett formalism, the dissipation, which is responsible for the
damping of the spin dynamics, is obtained by the part of the action that is non-local
in time. The excitation of electron-hole pairs by the interaction with the dynamic
spins is the channel for dissipation. In deriving the equation of motion for the mag-
netization, the Landau-Lifshitz-Gilbert equation is recovered.
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Chapter 2

Magnetization Dynamics Induced by a Pure
Spin Current

Abstract

A “spin-flip transistor” is a lateral spin valve consisting of ferromagnetic source
drain contacts to a thin-film normal-metal island with an electrically floating
ferromagnetic base contact on top. We analyze the dc-current-driven magneti-
zation dynamics of spin-flip transistors in which the source-drain contacts are
magnetized perpendicularly to the device plane by magnetoelectronic circuit the-
ory and the macrospin Landau-Lifshitz-Gilbert equation. Spin flip scattering and
spin pumping effects are taken into account. We find a steady-state rotation of
the base magnetization at GHz frequencies that is tuneable by the source-drain
bias. We discuss the advantages of the lateral structure for high-frequency genera-
tion and actuation of nanomechanical systems over recently proposed nanopillar
structures. 1

2.1 Introduction

Current induced magnetization excitation by spin-transfer torque [1, 2] attracts
considerable attention because of potential applications for magnetoelectronic

devices. The prediction of current-induced magnetization reversal has been con-
firmed experimentally in multilayers structured into pillars of nanometer dimen-
sions [3, 4, 5, 6]. The devices typically consist of two ferromagnetic layers with a high
(fixed layer) and a low coercivity (free layer), separated by a normal metal spacer.
The applied current flows perpendicular to the interfaces. Often magnetic anisotropies
force the magnetizations into the plane of the magnetic layers. Recently a number

1This chapter has been published as: Xuhui Wang, et al., Dynamics of Thin-Film Spin-Flip Transistors
with Perpendicular Source-Drain Magnetizations, Phys. Rev. B 73, 054436 (2006).
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of theoretical proposals pointed out interesting dynamics when the magnetization
of one of the layers is oriented perpendicular to the interface planes [7, 8, 9].

Fundamental studies of charge and spin transport have also been carried out in
thin-film metallic conductors structured on top of a planar substrate [7, 8, 12, 9, 10,
11]. The advantages compared to pillar structures are the flexible design and the rel-
ative ease to fabricate multi-terminal structures with additional functionalities such
as the spin-torque transistor [13]. The easy accessibility to microscopic imaging of
the structure and magnetization distribution should make the lateral structure es-
pecially suitable to study current-induced magnetization dynamics. Previous stud-
ies focused on the static (dc) charge transport properties, but investigations of the
dynamics of laterally structured devices are underway [17, 18]. Recently, non-local
magnetization switching in a lateral spin valve structure has been demonstrated
[14]. In the present paper we investigate theoretically the dynamics of a lateral spin
valve consisting of a normal metal film that is contacted by two magnetically hard
ferromagnets. As sketched in Fig. 2.1, a (nearly) circular and magnetically soft ferro-
magnetic film is assumed deposited on top of the normal metal to form a spin-flip
transistor [15]. We concentrate on a configuration in which the magnetization direc-
tion of the source-drain contacts lies perpendicular to the plane of the magnetiza-
tion of the third (free) layer. This can be realized either by making the contacts from
a material that has a strong crystalline magnetic anisotropy forcing the magnetiza-
tion out of the plane, such as Co/Pt multilayers [21], or by growing the source/drain
ferromagnetic contacts into deeply etched groves to realize a suitable aspect ratio. In
such a geometry, the magnetization of the free layer precesses around the demag-
netizing field that arises when the magnetization is forced out of the plane by the
spin-transfer torque, as has been discussed in Refs. [7, 8, 9]. Therefore, as long as the
out-of-plane magnetization of the free layer remains small, the free layer magnetiza-
tion will always stay almost perpendicular to the source and drain magnetizations.
In the present article we analyze in depth the coupled charge-spin-magnetization
dynamics in such current-biased thin-film “magnetic fans” and point out the differ-
ences and advantages compared to the perpendicular pillar structures. A convenient
and accurate tool to compute the dynamic properties of our device is the magneto-
electronic circuit theory for charge and spin transport [15] coupled to the Landau-
Lifshitz-Gilbert equation in the macrospin model. We include spin flip scattering in
normal and ferromagnetic metals and the spin-pumping effect [17, 18].

The article is organized as follows: In Section 2.2, we briefly review the Landau-
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Lifshitz-Gilbert equation including the current driven and spin-pumping torques
that can be derived by circuit theory. In Section 2.3, the specific results for our “mag-
netic fan” are presented. The potential applications will be discussed in Section 2.4.
Section 2.5 is devoted to the conclusion.

Current Source

F1 F2

Soft Ferromagnet (F3)

y
z

x

N

Figure 2.1: The model system consists of hard-magnetic source and drain contacts (F1 and

F2) with antiparallel magnetizations perpendicular to the plane. On the top of the normal

metal N, a soft ferromagnetic film (F3) is deposited with a slightly elliptical shape. The quan-

tization direction, i.e., z-axis, is chosen parallel to the magnetization of the source and the

drain.

2.2 Formalism

We are interested in the magnetization dynamics of the soft ferromagnetic island
(i.e., composed of permalloy) on top of the normal film as sketched in the Fig. 2.1.
The Landau-Lifshitz-Gilbert (LLG) equation in the macro-spin model, in which the
ferromagnetic order parameter is described by a single vector M with constant mod-
ulus Ms, appears to describe experiments of current-driven magnetization dynam-
ics well [24], although some open questions remain [25]. Micromagnetic calcula-
tions of the perpendicular magnetization configuration in the pillar structure sug-
gest a steady precession of the magnetization [8]. The LLG equation for isolated
ferromagnets has to be augmented by the magnetization torque L that is induced



28 2. Magnetization Dynamics Induced by a Pure Spin Current

by the spin accumulation in proximity of the interface as well as the spin pumping:

1
γ

dm
dt

= −m×Heff +
α0

γ
m× dm

dt
+

1
V Ms

L (2.1)

where γ is the gyromagnetic constant, m = M/Ms and Heff is the magnetic field in-
cluding demagnetizing, anisotropy or other external fields. α0 is the Gilbert damping
constant and V is the volume of the isolated bulk magnet.

L = −m×
(
I(p)
s + I(b)

s

)
×m,

where I(p)
s and I(b)

s denote the pumped [17] and bias-driven [1, 2] spin currents leav-
ing the ferromagnet, respectively, and the vector products project out the compo-
nents of the spin current normal to the magnetization direction.

In magnetoelectronic circuit theory a given device or circuit is split into nodes
and resistors. In each node a charge potential and spin accumulation is excited by a
voltage or current bias over the entire device that is connected to reservoirs at ther-
mal equilibrium or by spin pumping. The currents are proportional to the chemical
potential and spin accumulation differences over the resistors that connect the is-
land to the nodes. The Kirchhoff rules representing spin and charge conservation
close the system of equations that govern the transport. In the following we assume
that the ferromagnetic layer thickness is larger than the magnetic coherence length

λc = π/
∣∣∣k↑F − k↓F

∣∣∣ in terms of the majority and minority Fermi wave numbers that in

transition metal ferromagnets is of the order of Ångströms.
Let us consider a ferromagnet-normal metal (F |N ) interface in which the ferro-

magnet is at a chemical potential µF
0 and spin accumulation µF

s m (with magnetiza-
tion direction m), whereas the normal metal is at µN

0 and spin accumulation s. The
charge current (in units of Ampere) and spin currents (in units of Joule), into the
normal metal are [26]

Ic =
e

2h
[2g(µF

0 − µN
0 ) + pgµF

s − pgm · s] (2.2)

I(b)
s =

g

8π
[2p(µF

0 − µN
0 ) + µF

s − (1− ηr)m · s]m

− g

8π
ηrs− g

8π
ηi(s×m) (2.3)

where µF
0 and µN

0 are the chemical potentials in the ferromagnets and normal metal,
respectively. g↑, g↓ are the dimensionless spin dependent conductances with polar-
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ization p = (g↑ − g↓)/(g↑ + g↓) and total contact conductance g = g↑ + g↓. In the
Landauer-Büttiker formalism

g↑(↓) = M −
∑
nm

|rnm
↑(↓)|2 (2.4)

where M is the total number of channels and rnm
↑(↓) is the reflection coefficient from

mode m to mode n for spin up(down) electrons. The spin transfer torque is governed
by the complex spin-mixing conductance g↑↓, given by [26]

g↑↓ = M −
∑
nm

rnm
↑ (rnm

↓ )∗ , (2.5)

introduced in Eq. (3.1) in terms of its real and imaginary part as ηr = 2Reg↑↓/g and
ηi = 2Img↑↓/g. All conductance parameters can be computed from first principles
as well as fitted to experiments.

Slonczewski’s spin transfer torque can then be written as

−m× I(b)
s ×m =

g

8π
ηr[s− (s ·m)m] +

g

8π
ηi(s×m). (2.6)

The spin-pumping current is given by [17]

I(p)
s =

~
8π

g

(
ηrm× dm

dt
+ ηi

dm
dt

)
. (2.7)

We consider for simplicity the regime in which the spin-flip diffusion length lNsf in
the normal metal node is larger than the size of the normal metal region [12]. Charge
and spin currents into the normal metal node are then conserved such that [15]

∑

i

Ic,i = 0 (2.8)

∑

i

(
I(p)
s,i + I(b)

s,i

)
= Isf

s . (2.9)

where we introduce a leakage current due to the spin-flip scattering Isf
s = gsfs/4π

and gsf = hνDOSVN/τN
sf is the conductance due to spin flip scattering, where νDOS

is the (on-spin)density of state of the electrons in the normal metal, τN
sf is the spin

flip relaxation time and VN the volume of the normal metal node.
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The polarization of the source-drain contacts is supposed to be an effective one
including the magnetically active region of the bulk ferromagnet with thickness gov-
erned by the spin-flip diffusion length in the ferromagnet. For the free magnetic
layer F3, the perpendicular component of the spin current is absorbed to generate
the spin transfer torque. The collinear current has to fulfill the boundary conditions
in terms of the chemical potential µF

s = µ↑ − µ↓ governed by the diffusion equation

∂2µF
s (z)

∂z2
=

µF
s (z)(
lFsd

)2 . (2.10)

where lFsd is the spin flip diffusion length in the ferromagnet.

2.3 Spin transfer torque and steady precession of mag-
netization

In this Section, we solve the Landau-Lifshitz-Gilbert equation including expressions
for the spin-transfer torque on the free layer according to the circuit theory sketched
above.

2.3.1 Currents and spin torque

In metallic structures the imaginary part of the mixing conductance is usually very
small and may be disregarded, i.e., ηi ' 0. The source and drain contacts F1|N and
F2|N are taken to be identical: g1 = g2 = g, p1 = p2 = p and ηr1 = ηr2 ≡ ηr. For
F3|N we take ηr3 ≡ η3. In our device, the directions of the magnetization of the
fixed magnetic leads are m1 = (0, 0, 1) and m2 = (0, 0,−1). For the free layer we
allow the magnetization m3 = (mx,my,mz) to be arbitrary. We assume that F3 is a
floating contact in which the the chemical potential µF3

0 adjusts itself such that the
net charge current through the interface F3|N vanishes:

I(3)
c =

eg3

2h
[2(µF3

0 − µN
0 ) + p3µ

F3
s − p3s ·m3] = 0. (2.11)

Applying a bias current I0 on the two ferromagnetic leads, F1 and F2, the conserva-
tion of charge current in the normal metal then gives I

(1)
c = −I

(2)
c = I0. At the F3|N
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interface, the continuity of the longitudinal spin current dictates

σ↑

(
∂µ↑
∂z

)

z=0

− σ↓

(
∂µ↓
∂z

)

z=0

=
2e2

~A
Is,3 ·m3 (2.12)

where σ↑(σ↓) is the bulk conductivities of spin up (down) electrons in the ferromag-
net and A the area of the interface. Choosing the origin of the z axis is at the F3|N
interface and assuming F3 to be of thickness d,

σ↑

(
∂µ↑
∂z

)

z=d

− σ↓

(
∂µ↓
∂z

)

z=d

= 0 . (2.13)

With both boundary conditions, the diffusion equation can be solved for the spin
accumulation in F3

µF
s (z) =

ζ3 cosh( z−d
lFsd

)s ·m3[
ζ3 + σ̃ tanh( d

lFsd

)
]
cosh( d

lFsd

)
(2.14)

where ζ3 = g3(1− p2
3)/4 characterizes the contact F3|N and

σ̃ = hAσ↑σ↓/(e2lFsd(σ↑ + σ↓))

describes the bulk conduction properties of the free layer with arbitrary m3. The
limit d ¿ lFsd corresponds to negligibly small spin-flip, which implies tanh (d/lFsd) '
0. Near the interface, the spin accumulation in F3 then reduces to

µF3
s = s ·m3 . (2.15)

In this limit, I(3)
s ·m3 = 0 the collinear component of the spin current vanishes. By

solving the linear equations generated by Eqs. (2.8,2.9), we obtain the spin accumu-
lation s in the normal metal node,

s = Ĉ · [8πI(p)
s + Wb] (2.16)

where the elements of the symmetric matrix Ĉ are given in Appendix 2.6 and Wb =
(0, 0, 2phI0/e) is a bias-vector. Eq. (2.16) contains contribution due to bias cur-
rent and spin pumping effect. The spin accumulation in the ferromagnet Eq. (2.14)
should be substituted in Eq. (2.16) to give the spin accumulation in the normal metal,
from which the spin transfer torque can be determined according to Eq. (2.6). For
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an ultrathin film, the spin transfer torque, including pumping effect and spin accu-
mulation in the ferromagnet, reads,

L =
η3g3

8π
Π̂ · [8πI(p)

s + Wb] , (2.17)

with the elements of Π listed in Appendix.

2.3.2 Dynamics of the free layer

After the bias current is switched on, a spin accumulation builds up in the normal
metal. At the beginning, the spin-transfer torque exerted on the magnetization of
the free layer (F3) causes a precession out of the plane, hence generating a demag-
netizing field HA that is oriented perpendicular to the film plane. Subsequently the
magnetization precesses around HA and as long as the current I0 continues, the
rotation persists. In order to determine the dynamics of the magnetization, we ap-
ply the spin torque term L [Eq. (2.17)] to the Landau-Lifshitz-Gilbert (LLG) equation
(2.1). Crystalline anisotropies in F3 may be disregarded for soft ferromagnets such
as permalloy. The effective field in the LLG equation then reduces to

HA = −µ0Ms(Nxmx, Nymy, Nzmz) , (2.18)

where Nx, Ny and Nz are the demagnetizing factors determined by the shape of the
film [19]. The anisotropy field keeps the magnetization in the plane when the torque
is zero. The spin torque generated by the current bias forces the magnetization out
of plane, hence triggering the nearly in-plane rotation of the magnetization. Substi-
tuting the spin-torque term Eq. (2.17) into Eq. (2.1), we obtain for the following LLG
equation,

1
γ

dm
dt

= −m×HA +
1
γ

(α0 +←→α ′)m× dm
dt

+ Hst(I0) (2.19)

Here the last vector

Hst(I0) =
~
2e

Λst
I0

MsV
(−mxmz,−mymz, 1−m2

z) . (2.20)

is the effective field induced by the spin-transfer torque that depends on the position
of the magnetization and the device parameter

Λst =
pη3g3G1

GtG3 + 2(p2 − 1 + η)gG4(1−m2
z)

, (2.21)
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where Gi’s are introduced in Appendix A. According to Eq. (2.21), we can accurately
engineer the device performance by tuning the conductances and polarizations.
Compared with the original LLG equation, a new dimensionless parameter enter-
ing the calculation

←→α ′ =
γ~(Reg↑↓)2

2πV Ms
Π̂ (2.22)

reflects the tensor character of the pumping-induced additional Gilbert damping
[28]. Choosing contact F3|N to be metallic and the others to be tunneling barriers,
the condition g3 À g, gsf can be realized. In that limit←→α ′ reduces to

α′ =
γ~

4πV Ms
Re g↑↓3 , (2.23)

which agrees with the enhanced Gilbert damping derived in Ref. [17]. In the follow-
ing, we take α = α0 + α′ to be the enhanced Gilbert damping constant.

2.3.3 Vanishing in-plane anisotropy

Here we rewrite the free layer magnetization in two polar angles φ (in-plane) and θ

(out-of plane) such that m = (cos θ cosφ, cos θ sin φ, sin θ) and assuming a small z-
component, i.e., mz = sin θ ≈ θ and cos θ ≈ 1. When the free layer is a round flat disk
with demagnetizing factors Nx = Ny ≈ 0 and Nz ≈ 1, the Eqs. (2.19) reduce to:

dφ

dt
= −α

dθ

dt
− γµ0MsNzθ

dθ

dt
= α

dφ

dt
+ γF(I0) , (2.24)

introducing F(I0) = ~ΛstI0/(2eMsV ). Eq. (2.24) separates the motion for the in and
out-of-plane angles. We consider the dynamics of a current that is abruptly switched
on to a constant value I0 at t = 0, assuming that θ(t = 0) = 0, i.e., a magnetization
that initially lies in the plane. The motion of θ for t > 0 is then given by

θ(t) =
ωφ

γµ0MsNz

(
1− e−t/τ

)

dθ

dt
=

α

1 + α2
ωφe−t/τ . (2.25)
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where we introduced the response time

τ =
(1 + α2)

αµ0γMsNz
(2.26)

and the saturation in-plane rotation frequency

ωφ =
γF(I0)

α
=
~
2e

Λst
γI0

αMsV
. (2.27)

Similarly, the in-plane rotation is governed by

φ(t) = −ωφt +
ωφ

γαµ0MsNz

(
1− e−t/τ

)

dφ

dt
= −ωφ +

ωφ

1 + α2
e−t/τ . (2.28)

Taking the parameters from Ref. [12], viz. a volume of normal metal Vn = 4002 ×
30 nm3, spin flip time in the normal metal of τsf = 62 ps, density of states νDOS =
2.4× 1028 eV−1m−3, we find e2gsf/h = 0.3 Ω−1.

Let us take the thickness of the free layer d = 5 nm. The saturation magnetization
of permalloy is Ms = 8× 105 A m−1. The relative mixing conductance is chosen η3 '
ηr ' 1 and the bulk value of the Gilbert damping constant for Py is typically α0 =
0.006 [17]. A metallic interface conductance (for F3|N ) is typically 1.3fΩ m2 [29],
whereas the source/drain contacts are tunneling barriers with resistance h/

(
e2g

)
=

20 kΩ [12]. The calculated enhancement of the Gilbert damping constant is then
α′ = 0.004 and the response time τ = 0.52 ns. The motion of the magnetization of
the free layer is depicted by Fig. 2.2 for a bias current density of J = 107 A cm−2 with
the cross section at the electronic transport direction 400× 30 nm2 [12].

The spin pumping effect through the enhanced Gilbert damping constant re-
duces the saturation frequency from 2.0 to 1.2 GHz , but also the response time to
reach the saturation value from 0.87 to 0.52 ns. Notice that the frequency is directly
proportional to I0 and thus in the absence of any in-plane anisotropy the frequency
can be tuned continuously to zero by decreasing the bias current. The out-of-plane
motion is very slow compared to the in-plane one: it decreases from 12 MHz to
around 0 when the in-plane rotation approaches the saturation frequency. As shown
in Fig. 2.3, within a long period the small angle approximation still holds. A larger
ratio of g3/g also gives higher frequencies. Decreasing the diameter, and thus also
the volume, of the free layer gives a smaller demagnetizing factor Nz, which causes
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larger a response time τ according to Eq. (2.26) and increases the saturation value of
the in-plane rotation frequency ωφ.
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Figure 2.2: Panel (a): The in-plane rotation (in the unit of giga hertz) versus time (in nano

seconds). The solid line: including spin pumping effect. The dash line: without spin pumping

effect. Panel (b): The out-of-plane motion(in the unit of mega hertz) versus time (in nano
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Figure 2.3: The out-plane angle θ (in degree) versus time (in nano seconds). The solid line:

including spin pumping effect. The dash line: without spin pumping effect.
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In-plane anisotropy

In reality, there are always residual anisotropies or pinning centers. Shape anisotropies
can be introduced intentionally by fabrication of elliptic F3 discs. We consider the
situation in which the free layer is slightly pinned in the plane by an anisotropy field
that corresponds to an elliptic (pancake) shape of the ferromagnet. At equilibrium,
the F3 magnetization is then aligned along the easy, let us say, x−axis. The in-plane
rotation can be sustained only when the spin transfer torque overcomes the effec-
tive field generated by the shape anisotropy, hence a critical current Ic for the steady
precession is expected. For an ellipse with long axis of 200 nm, thickness 5 nm and
aspect ratio 0.9, the two demagnetizing factors are calculated to be Ny = 0.0224 and
Nx = 0.0191. With a Gilbert damping constant α = 0.01, the numerical simulation
gives Ic = 4.585 mA corresponding to a current density Jc = 3.8 × 107 A cm−2 (the
cross section is 400× 30 nm2) [12].

These critical current densities are of the same order of magnitude as those used
to excite the magnetization in spin-valve pillars. So even a relatively small anisotropy
can cause a significant critical current. In order to operate the magnetic fan at small
current densities, the magnetic island should be fabricated as round as possible.
The magnetization responds to a current step function below the critical value by
damped in-plane and out-of-plane oscillations and comes to rest at a new in-plane
equilibrium angle φe with zero out-plane component (cf. Figs. 2.4).

At the steady state, the spin-transfer torque is balanced by the torque generated
by the in-plane anisotropy, i.e. the angle φe is determined by

sin(2φe) = 2F(I0)/(µ0Ms(Ny −Nx)). (2.29)

With given bias current, smaller |Ny −Nx| correspond to larger in-plane angles |φe|.
According to the theory of differential equations [22], the frequency for the damped
magnetization oscillation can be found by diagonalizing the LLG equation at the
“equilibrium point” given by φe, this leads to

ω<
φ =

γµ0Ms√
2

√
(2Nz −Nx −Ny)

√
D(I0) +D(I0) , (2.30)

where

D(I0) = (Ny −Nx)2 − 4F(I0)2

µ2
0M

2
s

. (2.31)
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Figure 2.4: Magnetization components versus time. Panel (a): Below critical current, the x-

component of magnetization versus time (in nano seconds). Panel (b): Below critical current,

the z-component of magnetization versus time (in nano seconds). The bias current is 4.5 mA.

Equation (2.30) teaches us that below the critical current, decreasing the current in-
creases the rotation frequency. Changing the damping constant does not change ω<

φ

for a given current but only changes the response time to reach the new equilibrium.
As shown by panel (a) to (c) in Fig. 2.5 the magnetization above the critical cur-

rent saturates into a steady precessional state accompanied by an oscillation of the
z-component (nutation). In this situation, φe is no longer a constant of motion. In-
stead the new steady state is given by mx = my = 0 and m̄z = F(I0)/(αµ0MsNz).
Diagonalizing the LLG around this point we derive the in-plane rotation frequency

ω>
φ =

γF(I0)
α

√
(Nz −Nx)(Nz −Ny)

Nz
. (2.32)

In the limit of vanishing in-plane anisotropy, i.e., Nx = 0 and Ny = 0, we recover the
previous result.

As shown by panel (d) in Fig. 2.5, the dependence of the critical current on the
damping constant is different from the simple proportionality predicted for pillar
structures [8]. Specifically we observe saturation of the critical current above a criti-
cal damping.

In the anisotropic case the extra power necessary for maintaining the motion
generates microwaves [5, 6], which may be attractive for some applications.
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Figure 2.5: Magnetization dynamics above the critical current. (a) The x-component of mag-
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4.6 mA. This picture clearly shows the steady precession of the magnetization. (d) The critical

current Ic versus damping constant α. This figure shows saturation of Ic above a critical α.

2.4 Applications

Our “magnetic fan” has the advantage that the magnetization dynamics is not hid-
den within the structure as in the pillars, but is open to either studies of the dynam-
ics by fast microscopy, or to the utilization of the dipolar field from the soft magnetic
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island. We envisage applications as magnetic actuators for nanomechanical can-
tilevers and nanoscale motors, as nanoscale mixers of biological or biomedical sus-
pensions containing magnetic nanoparticles, or as magnetic resonance detectors,
again possibly useful for biomedical applications.

2.4.1 Actuators

The rotating magnetization of the “magnetic fan” generates a periodic dipolar field
which can be applied to actuate a nanomechanical cantilever with a (hard) ferro-
magnetic tip. Assuming for simplicity that the magnet F3 and the cantilever are at a
sufficiently large distance the force on the cantilever magnet is given by

F = Vc∇(Mc ·Hd) , (2.33)

where Mc is the saturation magnetization and Vc is the volume of the cantilever
magnet and the field Hd generated by a magnetic dipolar at the position r can be
written as

Hd = µ0
3(M · r)r−Mr2

r5
. (2.34)

Assume a cantilever on top of the magnetic fan at a distance of 125 nm (along z-
direction) [31], with beam plane parallel to the plane of the Py film F3 and magne-
tization along the x-axis. The saturation value of cantilever magnetization is taken
as 1.27 × 106 A m−1. Assuming a lateral size of the cantilever magnet [31] of 150 ×
150 nm2 with thickness 50 nm, the force is estimated to be

F = 1.1× 10−8 cos(ωφt) N (2.35)

where ωφ is the rotation frequency of the “magnetic fan”. To efficiently generate the
mechanical modes of the cantilever, the cantilever magnet should be hard enough.

Fixing other parameters, the force scales like 1/r4 with respect to distance r.
When the two ferromagnets are closer to each other the distribution of the magneti-
zations increases the force over the value estimated above. We see that in the dipole-
approximation, the force is already quite significant and it will be significantly larger
when the the full magnetostatic energy is computed.

Generally, the torque on the cantilever may generate both flexural and torsional
motion on the cantilever. The torsional motion coupled to the magnetization dy-
namics has been investigated for such a system [32] and the nanomechanical mag-
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netization reversal based on the torsional modes has been proposed [33]. The cou-
pling of a cantilever to the oscillating dipolar field will be discussed elsewhere.

2.4.2 Mixers

The dipolar field produced by our device can also be used to function as mechanical
mixer for suspensions of magnetic particles. To this end we should scale down the
frequency of the rotating magnetization either by decreasing the bias current or re-
engineering the parameters of the device, e.g., increasing the thickness of the Py
film. Low saturation magnetization is detrimental in this case, since that would also
reduce the usable stray fields. By these ways, one hopefully can access the kilo hertz
frequency region, which is important for the hydrodynamic motion in ferrofluids
[34].

2.4.3 Detectors

An external field influences the frequency of the rotation of the magnetization. Re-
sponse to the change of the frequencies is the rebuilding of the spin accumulation
in the normal metal hence altering the source-drain resistance RSD. Due to the re-
lation

µF1
0 − µF2

0 = RSDI0 , (2.36)

this deviation is reflected on the source-drain voltage-current curve. This feature
can be implemented as a sensor for biomedical applications in order to detect the
presence of magnetic beads, which are used as labels in biosensors [35]. Further-
more, the ability to change the frequency of the “magnetic fan” should allow to mea-
sure locally the frequency dependence of the magnetic susceptibility, which offers
an alternative pathway to using magnetic nanoparticles for biosensing applications
[36, 37].

2.5 Conclusion

We studied the magnetization dynamics of a magnetic transistor, i.e., a lateral spin
valve structure with perpendicular-to-plane magnetizations and an in-plane free
layer attached to the normal metal that is excited by an external current bias. By
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circuit theory and the Landau-Lifshitz-Gilbert equation, analytic results were ob-
tained for the spin-transfer torque and the dynamics of the magnetization in the
limit of small out-of-plane angle θ. Spin flip and spin-pumping effects were also
investigated analytically and an anisotropic enhanced damping parameter in the
Gilbert form was derived for the free layer magnetization. Without an externally ap-
plied magnetic field, a continuous rotation of the magnetization of the free layer
at GHz frequencies can be achieved. In the lateral geometry, the free layer is no
longer buried or penetrated by a dissipating charge current, thus becomes acces-
sible for more applications. Our methods handle the microscopic details on cru-
cial issues like spin-torque transfer efficiency, spin-flip scattering and the response
time, hence offering accurate design and control. The rotation can be observed, e.g.,
by magneto-optic methods. This new device has potential applications as high fre-
quency generator, actuator of nanomechanical systems, biosensors, and other high-
speed magnetoelectronic devices.
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2.6 Appendix: Spin accumulation in a normal metal node

Here we summarize a number of complex angle dependent coefficients. The ele-
ments of the symmetric matrix Ĉ in Eq.(2.16) read

C11 =
Gt(G1 − G4m

2
x)− 2g(p2 − 1 + η)(Gt − G4m

2
y)

Q (2.37)

C12 =C21 =
G2G4mxmy

Q , and C13 = C31 =
GtG4mxmz

Q (2.38)

C22 =
G2(Gt − G4m

2
x)− GtG4m

2
z

Q (2.39)

C23 =C32 =
GtG4mymz

Q , and C33 =
Gt(G1 + G4m

2
z)

Q . (2.40)

We introduce:

G1 = (1− p2
3)(1−∆3)g3 + 2ηg + 2gsf (2.41)

G2 = η3g3 + 2(1− p2)g + 2gsf (2.42)

G3 = (1− p2
3)(1−∆3)g3 + 2(1− p2)g + 2gsf (2.43)

G4 = η3g3 − (1− p2
3)(1−∆3)g3 (2.44)

Gt = η3g3 + 2ηg + 2gsf (2.45)

Q = Gt[GtG3 + 2(p2 − 1 + η)gG4(1−m2
z)] (2.46)

∆3 =
ζ3

ζ3 + σ̃ tanh(d/lFsd)
, (2.47)
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in the limit of negligible spin flip in F, i.e., d ¿ lFsd, then ∆3 ≈ 1. The elements of the
matrix in Eq.(2.17) are given by

Π11 =
GtG3(1−m2

x) + 2G4(p2 − 1 + η)gm2
y

Q (2.48)

Π12 =Π21 =
−G1G2mxmy

Q , and Π13 =
−GtG1mxmz

Q (2.49)

Π22 =
GtG3(1−m2

y) + 2G4(p2 − 1 + η)gm2
x

Q (2.50)

Π23 =
−GtG1mymz

Q , and Π31 =
−GtG3mxmz

Q (2.51)

Π32 =
−GtG3mymz

Q , and Π33 =
GtG1(1−m2

z)
Q (2.52)
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Chapter 3

Controlled Magnetization Dynamics and
Thermal Stability

Abstract

The current-driven magnetization dynamics of a thin-film, three-magnetic-terminal
device (spin-flip transistor) is investigated theoretically. We consider a magneti-
zation configuration in which all magnetizations are in the device plane, with
source-drain magnetizations chosen fixed and antiparallel, whereas the third con-
tact magnetization is allowed to move in a weak anisotropy field that guarantees
thermal stability of the equilibrium structure at room temperature. We analyze
the magnetization dynamics of the free layer under a dc source-drain bias current
within the macrospin model and magneto-electronic circuit theory. A new tun-
able two-state behavior of the magnetization is found and the advantages of this
phenomenon and potential applications are discussed. 1

3.1 Introduction

The current induced magnetization excitation predicted by Slonczewski and Berger
[1, 2] has attracted considerable attention and the prediction of current-induced

magnetization reversal has been confirmed by many experiments in nano-pillar struc-
ture consisting of two ferromagnetic layers with a high (“fixed”) and a low (“free”)
coercivity, separated by a normal metal spacer [3, 4, 5, 6]. Meanwhile, the investi-
gations of charge and spin transport in thin-film metallic conductors structured on
a planar substrate have also been carried out [7, 8, 12, 9, 10, 11]. The advantages of
the planar structures are the flexible design and the relative ease to fabricate multi-
terminal structures [13]. Recently, non-local magnetization switching in a lateral

1This chapter has been published as: Xuhui Wang, et al., Current-Controlled Magnetization Dynamics
in the Spin-Flip Transistors, Jpn. J. Appl. Phys. 45, 3863 (2006).
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spin valve structure has been demonstrated [14]. In the present chapter we present a
theoretical study of the dynamics of a lateral spin-valve consisting of a normal-metal
film that is contacted by two magnetically hard ferromagnets. As sketched in Fig. 2.1,
a slightly elliptic and magnetically soft ferromagnetic film is assumed deposited on
top of the normal metal to form a spin-flip transistor [15]. The magnetization direc-
tion of the source-drain contacts lies antiparallel to each other in the plane of the
magnetization of the third (free) layer. The configuration in which the source-drain
contact magnetizations are oriented perpendicular to the plane is considered else-
where [16]. A convenient and accurate tool to study the dynamic properties of our
device is the magnetoelectronic circuit theory (MECT) for charge and spin transport
[15] combined with the Landau-Lifshitz-Gilbert equation in the macrospin model.
The spin flip scattering in normal and ferromagnetic metals and the spin-pumping
effect are also taken into account [17, 18].

Current Source

F1 F2

Permalloy

y
z

x

N

Figure 3.1: The model system contains a normal metal sandwiched by two ferromagnetic

leads and a circular soft ferromagnet film (e.g., permalloy) on top of the normal metal. The

magnetization unit vectors m1, m2, and m3 are initially aligned in the same, i.e., x− y plane.

The article is organized as the follows: In Sec. 3.2, we briefly review the MECT and
Landau-Lifshitz-Gilbert equation for the macrospin model. In Sec. 3.3, calculations
of the spin transfer torque for our device are presented. Section 3.4 is devoted to
the discussion of thermal (in)stability and in Sec. 3.5 the magnetization dynamics is
treated. The conclusions are summarized in Sec. 3.6.
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3.2 Magneto-electronic circuit theory

We first consider a ferromagnet-normal metal (F|N) interface at quasi-equilibrium.
The ferromagnet at a chemical potential µF

0 and spin accumulation µF
s m aligned

along the magnetization direction. The chemical potential and spin accumulation
in the normal metal are denoted by µN

0 and vector S. The charge current Ic (in the
unit of Ampere) and the spin current Is (in the unit of Joule) entering the normal
metal node are given by [15],

Ic =
e

2h

[
2g(µF

0 − µN
0 ) + pgµF

s − pg (S ·m)
]

Is =
g

8π
[2p(µF

0 − µN
0 ) + µF

s − (1− ηr)(S ·m)]m

− ηrg

8π
S− ηig

8π
(S×m) . (3.1)

From eq. (3.1) we may project out the component of Is that is perpendicular to the
magnetization direction and governs the spin transfer torque [1, 15]

−m× Is ×m =
ηrg

8π
[S− (S ·m)m] +

ηig

8π
(S×m) . (3.2)

In the above notations, the dimensionless total conductance g = g↑ + g↓ and the
mixing conductance are given by Landauer-Büttiker formulae, i.e.,

g↑(↓) = M −
∑
nm

|rnm
↑(↓)|2 ,

g↑↓ = M −
∑
nm

rnm
↑ (rnm

↓ )∗ . (3.3)

where rnm
↑(↓) is the probability of a spin up(down) electron in mode m reflected into

mode n in the normal metal and M is the total number of channels. The contact
polarization is defined by p = (g↑ − g↓)/(g↑ + g↓). The pumping current generated
by the motion of the magnetization is [17]

I(p)
s =

~g
8π

(
ηrm× dm

dt
+ ηi

dm
dt

)
. (3.4)

We consider the situation in which the dimension of the normal metal is smaller
than the spin-flip length, so that the spin accumulation does not vary spatially in
the node.

I(f)
s =

gf

4π
S (3.5)
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where gf = hνDOSVN/τN
f , νDOS and VN are the density of states of the electrons

and the volume of the normal metal, τN
f is the spin-flip relaxation time in the nor-

mal metal node. The charge and spin currents entering the normal metal obey the
conservation laws

∑

i

Ic,i = 0,
∑

i

(
Is,i + I(p)

s,i

)
= I(f)

s . (3.6)

3.3 Spin-transfer torque

In the structure depicted in Fig. 3.1, the source-drain magnetizations are aligned
anti-parallel along the y-axis in order to inject a large spin accumulation into N,
i.e., m1 = (0, +1, 0) and m2 = (0,−1, 0). Connecting the ferromagnets to reservoirs
and applying a bias current I0 via the two ferromagnetic leads, the conservation of
charge current dictates that Ic,1 = I0 and Ic,2 = −I0 at the F1|N and F2|N interfaces,
which gives

µF1
0 − µN

0 = −(µF2
0 − µN

0 ) =
I0h

ge
+

1
2
pSy . (3.7)

The free layer is electrically floating, hence there is no net charge current flowing
through F3|N interface, Ic,3 = 0. The spin accumulation in the free layer µF

s = µ↑ −
µ↓, directed along magnetization m3, is governed by the spin diffusion equation [11],

∂2µF
s (z)

∂z2
=

µF
s (z)
l2sd

(3.8)

which satisfies the following boundary conditions. At the interface the continuity of
longitudinal spin current dictates

σ↑

(
∂µ↑
∂z

)

z=0

− σ↓

(
∂µ↓
∂z

)

z=0

=
2e2

~A
Is,3 ·m3 (3.9)

and the vanishing spin current at the end of the ferromagnet implies

σ↑

(
∂µ↑
∂z

)

z=d

− σ↓

(
∂µ↓
∂z

)

z=d

= 0 . (3.10)
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The solution of eq. (3.8) reads

µF
s (z) =

ζ3 cosh( z−d
lsd

)m3 · S[
ζ3 + σ̃ tanh( d

lsd
)
]
cosh( d

lsd
)

(3.11)

where ζ3 = g3(1−p2
3)/8π characterizes the contact F3|N and σ̃ = ~Aσ↑σ↓/(e2lsd(σ↑+

σ↓)) describes the bulk properties of the free layer with arbitrary m3. The conserva-
tion of spin currents in eq. (3.6) generates three linear equations that determine the
spin accumulation S in the normal metal as

S = Π̂(g, g3)
(
8πI(p)

s + Wb

)
(3.12)

where the vector Wb = (0, 2hpI0/e, 0) is the contribution from the bias current and
the elements of the symmetric matrix Π̂(g, g3) is listed in the Appendix. Equation
(3.2) determines the spin transfer torque acting on the free layer magnetization,
which can be arranged as

L =
η3g3

8π
Γ̂(g, g3)

(
8πI(p)

s + Wb

)
(3.13)

and the components of the matrix Γ̂(g, g3) are listed in the Appendix.

3.4 Thermal stability

The spin transfer torque rotates the magnetization out of the equilibrium hence in-
creasing the magneto-static energy EMS. The initial magnetization is stable against
thermal fluctuations when

∆EMS > kBT, (3.14)

where kB is the Boltzmann constant and T the temperature. For an elliptic permal-
loy film, disregarding any residual crystalline anisotropy, the effective field due to
the shape anisotropy can be written as

He = −µ0Ms(Nxmx, Nymy, Nzmz) , (3.15)

introducing the saturation magnetization Ms and demagnetizing factors Nx, Ny and
Nz [19]. When the magnetization is slightly out of plane, the difference between the
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magneto-static energy for magnetizations along the hard-axis and easy-axis reads
∆EMS = µ0V M2

s (Ny −Nx)/2. For a very flat ellipsoid (the thickness is much smaller
than the lateral dimensions) and slight ellipticity (large aspect ratio ξ ≈ 1), we can
expand the demagnetizing factors at ξ = 1 such that

Ny −Nx =
πd

4a

(ξ2 + 4ξ + 1)(1− ξ)
ξ(ξ + 1)2

, (3.16)

where a, b and d are the lengths of easy-axis, hard axis and the thickness of the
permalloy film. The aspect ratio is defined as ξ = b/a. The requirement ∆EMS > kBT

gives
(ξ2 + 4ξ + 1)(1− ξ)

(ξ + 1)2
>

8kBT

µ0M2
s π2ad2

. (3.17)

The saturation magnetization of permalloy is Ms = 8 × 105 A m−1. For thickness
d = 5 nm and easy axis a = 200 nm [12], the right hand side of eq. (3.17) is at room
temperature approximately ε = 8.36× 10−3 and therefore stability requires that

ξ ≤ 1− 2
3
ε , (3.18)

which suggests that even for almost circular permalloy discs, e.g., ξ = 0.9, thermal
fluctuations around the equilibrium configuration are small.

3.5 Controlled magnetization dynamics

Here we focus on the free layer magnetization dynamics in the macrospin model.
The Landau-Lifshitz-Gilbert (LLG) equation modified by the spin transfer torque
[eq. (3.13)] reads

1
γ

dm
dt

= −m×He +
α0

γ
m× dm

dt
+

1
V Ms

L . (3.19)

Included in the torque term, i.e., Eq. (3.13), an expression

←→α ′ ≡ γ~η2
3g2

3

8πV Ms
Γ̂(g, g3) (3.20)

appears as an enhancement of the Gilbert damping [17], which depends on the di-
rection of the magnetization and shows tensor property of the pumping induced
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damping enhancement [21]. When the conductance at the F3|N contact is much
larger than the source-drain contacts and the spin flip in the normal metal is negli-
gible, i.e., g3 À g and g3 À gsf , the tensor←→α ′ converges to [21]

γ~Reg↑↓3
4πV Ms




1−m2
x −mxmy −mxmz

−mxmy 1−m2
y −mymz

−mxmz −mymz 1−m2
z


 , (3.21)

which in the LLG equation reduces to a diagonal matrix

←→α ′ =
γ~Reg↑↓3
4πV Ms

1̂ (3.22)

and the coefficient in front of the matrix is exactly the value derived for the single
F|N junction [17]. In the same limit, the bias-driven term of the torque reads,

1
V Ms

Lb =
~pI0

2V Ms|e|



−mxmy

1−m2
y

−mymz


 . (3.23)

In the following discussions, we denote the enhanced Gilbert damping parameter as
α = α0 +α′, where α′ is the diagonal entry in Eq.(3.22). The LLG equation then reads

1
γ

dm
dt

= −m×He +
α

γ
m× dm

dt
+

1
V Ms

Lb . (3.24)

For ultrathin permalloy films, without external field and crystalline anisotropy, the
magnetization is confined in the plane by the shape anisotropy field given by Eq. (3.15).
Equation (3.24) is a nonlinear differential equation that can be reformulated as

dm
dt

= f(m, I0) (3.25)

where f(m, I0) is a vector function of magnetization m and bias current I0. Accord-
ing to the theory of differential equations [22], we find two “equilibrium points” at
which dm/dt vanishes

m̃1 = (1, 0, ~pI0/[2eµ0V M2
s (Nz −Nx)])

and m̃2 = (0, 1, 0). Expanding Eq. (3.24) at point m̃2 and keeping only the first-oder
derivatives with respect to the magnetization, i.e.,

dm
dt

≈
(

∂f
∂m

)

m̃2

, (3.26)
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where ∂f/∂m is a matrix with elements given by ∂fi/∂mj . Equation (3.26) has non-
zero solution when

det

[(
∂f
∂m

)

m̃2

]
= 0 . (3.27)

This determines the critical current that is necessary to obtain the maximum in-
plane rotation, i.e., π/2:

Ic =
2eµ0V M2

s

√
(Nz −Ny)(Ny −Nx)
~p

(3.28)

The LLG equation augmented by the spin transfer torque for the present configura-
tion suggests a two-state behavior of the magnetization: Below the critical current
Ic, the magnetization is pushed out of the initial position (easy axis), then under-
going damped precessions and finally stops along the easy axis but with a small z-
component, i.e., the equilibrium given by m̃1. At that position, the demagnetizing
field is balanced by the spin torque. Above the critical current, the magnetization
precesses out of the easy axis and rotates to the hard axis without any precession.

We simulate the magnetization dynamics for a polarization p = 0.4 of the F3|N
and a real part of the mixing conductance Reg↑↓3 A−1 = 4.1× 1015 cm2 [10]. The long
semi-axis, short semi-axis and the thickness of the permalloy island are a = 200 nm,
b = 190 nm, and d = 5 nm, respectively. The calculated demagnetizing factors are
Ny = 0.0224 and Nx = 0.0191 [19]. The single-spin density of states in the nor-
mal metal is νDOS = 2.4 × 1028 eV−1m−3 [12]. The bulk value of the Gilbert damp-
ing parameter is α0 = 0.006 and the calculated enhancement of Gilbert damping
is α′ = 0.015 [17]. According to Eq. (3.28), for the above dimensions, the critical
current to achieve φ = π/2 is Ic = 139 mA, which agrees well with the numerical
results. Below the critical current, e.g., I0 = 30 mA, the equilibrium z-component
determined by the expression of m̃1is 0.0087, which also agrees with the numeri-
cal results shown in panel (b) of Fig. 3.2. The trajectory of the magnetization when
suddenly switching on the bias current I0 = 30 mA is depicted in panel (c) of Fig.
3.2. The magnetization starts from the easy axis (point I in the figure), undergoes a
damped oscillation and finally stops at point F, where the spin transfer torque in-
duced by the spin accumulation in the normal metal is balanced by the torque gen-
erated by the anisotropy field. The panel (f) of Fig. 3.2 shows the trajectory of the
magnetization under switching on a the bias current I0 = 160 mA, which is above
the critical current. Panels (d) and (e) of Figures 3.2 are the time dependence of the
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y and z-components of the free layer magnetization. These figures indicate that the
magnetization response to a large current is close to a step function. A smaller size
of the permalloy film requires a smaller critical current, as indicated by Eq. (3.28). In
the above simulation, we did not take into account the effect of a finite RC time for
switching on the bias current. A longer rising time of the bias current implies that
it takes longer before the magnetization reaches the steady state position. But the
magnitude of the critical current does not depend on how the bias current transient.

We finally note that with the dimensions chosen here, the bias currents generate
a significant in-plane Ørsted field that may interfere with the spin-torque effect. It
can be avoided, e.g., by spatially separating the free layer from the current path (but
within the spin-flip diffusion) [14] or by generating a neutralizing Ørsted field by a
neighboring circuit (suggested by Siegmann).

The advantage of the proposed device mainly comes from the two-state behav-
ior separated by the critical current, which can be utilized as the 0 and 1 states in
current controlled memory elements. We notice that after the magnetization be-
ing switched to the hard axis, only small current is needed to maintain the position
stable against thermal fluctuations. Another possible application could be the im-
plementation of such device into spin-torque transistors [13] to achieve the gain of
current since the angle of the magnetization in the above device is tunable by the
bias. The magnetization can be also used as a spin battery that is “charged” in the
high energy state (hard axis) and relaxes a spin current into the normal metal when
relaxing to the ground state (easy axis). The induced spin accumulation then creates
voltage difference over the source and drain contacts.

3.6 Conclusions

In this article, the magnetization dynamics of a spin-flip transistor has been studies
in the macrospin Landau-Lifshitz-Gilbert equation combined with magneto-electronic
circuit theory. We found a two-state behavior of the free layer magnetization con-
trolled by the current induced spin transfer torque and spin pumping. The two
regimes are separated by a critical current, below which the magnetization under-
goes a damped oscillation and stops along the easy axis with small z-component.
Above the critical current, the magnetization rotates to the hard (y-) axis without
precession. The critical current is found to depend on the size of the free layer, the
aspect ratio of the ellipsoid, and the source-drain contact polarizations. The ther-
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mal instability analysis indicates that at room temperature the predicted effects are
visible even for very large aspect ratios.
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Figure 3.2: The magnetization dynamics under different bias current. Left panels (a to c):

The bias current is below the critical value, i.e. I0 = 30 mA. (a) The x-component of the

magnetization vs time (in ns). (b) The z-component of the magnetization vs time (in ns). (c)

The trajectory of the magnetization with the bias current I0 = 30 mA that is below the critical

current. The magnetization initially aligned along easy axis (x-axis) and after the damped

oscillation it stops along the easy axis with small out-of-plane component. Right panels (d

to f ): The bias current is above the critical value, i.e. I0 = 160 mA. (d) The y-component

of the magnetization vs time. (e) The z-component of the magnetization vs time. (f ) The

trajectory of the magnetization under the bias above the critical current, I0 = 160 mA. The

magnetization initially aligned along easy axis (point I).
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3.7 Appendix: Spin accumulation and spin transfer torque

The elements of the symmetric matrix Π̂(g, g3) in eq. (3.12) are listed in the following

Π11 =[η3g3 + 2gsf + 2(1− p2)g]

× [2ηg + η3g3 + 2gsf − g3(η3 − (1− p2
3)(1−∆3))m2

z]/G
− (2ηg + η3g3 + 2gsf)g3[η3 − (1− p2

3)(1−∆3)]m2
y/G (3.29)

Π12 =Π21 = (2ηg + η3g3 + 2gsf)g3

× [η3 − (1− p2
3)(1−∆3)]mxmy/G (3.30)

Π13 =Π31 = [η3g3 + 2gsf + 2(1− p2)g]g3

× [η3 − (1− p2
3)(1−∆3)]mxmz/G (3.31)

Π22 =(2ηg + η3g3 + 2gsf) [2ηg + η3g3 + 2gsf

−g3(η3 − (1− p2
3)(1−∆3))(m2

x + m2
z)

]
/G (3.32)

Π23 =Π32 = (2ηg + η3g3 + 2gsf)g3

× [η3 − (1− p2
3)(1−∆3)]mymz/G (3.33)

Π33 =[η3g3 + 2gsf + 2(1− p2)g]

× [2ηg + η3g3 + 2gsf − g3(η3 − (1− p2
3)(1−∆3))m2

x]/G
− (2ηg + η3g3 + 2gsf)g3[η3 − (1− p2

3)(1−∆3)]m2
y/G (3.34)

where we have introduced the following notation for the common denominator

G =(2ηg + η3g3 + 2gsf)

× [(η3g3 + 2g − 2p2g + 2gsf)(2ηg + 2gsf + (1− p2
3)(1−∆3)g3)

+ 2(p2 − 1 + η)g(η3 − (1− p2
3)(1−∆3))g3m

2
y] , (3.35)
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and ∆3 = ζ3
ζ3+σ̃ tanh(d/lsd)

. The matrix contained in the expression of spin transfer
torque eq. (3.13) has the following components

Γ11 = [η3g3 + 2gsf + 2(1− p2)g]

× [2ηg + η3g3 + 2gsf − g3(η3 − (1− p2
3)(1−∆3))m2

z]/G
− (2ηg + η3g3 + 2gsf)

[
(η3 − (1− p2

3)(1−∆3))g3m
2
y

+(η3g3 + 2gsf + 2(1− p2)g)m2
x

]
/G (3.36)

Γ12 = −(2ηg + η3g3 + 2gsf)

× [2ηg + 2gsf + (1− p2
3)(1−∆3)g3]mxmy/G (3.37)

Γ13 = −[η3g3 + 2gsf + 2(1− p2)g]

× [2ηg + 2gsf + (1− p2
3)(1−∆3)g3]mxmz/G (3.38)

Γ21 = −(2ηg + η3g3 + 2gsf)

× [2gsf + 2(1− p2)g + (1− p2
3)(1−∆3)g3]mxmy/G (3.39)

Γ22 = (2ηg + η3g3 + 2gsf)

× [2ηg + 2gsf + (1− p2
3)(1−∆3)g3](1−m2

y)/G (3.40)

Γ23 = −(2ηg + η3g3 + 2gsf)

× [2gsf + 2(1− p2)g + (1− p2
3)(1−∆3)g3]mymz/G (3.41)

Γ31 = −[η3g3 + 2gsf + 2(1− p2)g]

× [2ηg + 2gsf + (1− p2
3)(1−∆3)g3]mxmz/G (3.42)

Γ32 = −(2ηg + η3g3 + 2gsf)

× [2ηg + 2gsf + (1− p2
3)(1−∆3)g3]mymz/G (3.43)

Γ33 = [η3g3 + 2gsf + 2(1− p2)g]

× [2ηg + η3g3 + 2gsf − g3(η3 − (1− p2
3)(1−∆3))m2

x]/G (3.44)

− (2ηg + η3g3 + 2gsf)
[
(η3 − (1− p2

3)(1−∆3))g3m
2
y

+(η3g3 + 2gsf + 2(1− p2)g)m2
z

]
/G . (3.45)
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Chapter 4

Voltage Generation by Ferromagnetic
Resonance

Abstract

A ferromagnet can resonantly absorbs rf radiation to sustain a steady precession
of the magnetization around an internal or applied magnetic field. We show that
under these ferromagnetic resonance (FMR) conditions, a dc voltage is generated
at a normal-metal electric contact to a ferromagnet with spin-flip scattering. This
mechanism allows an easy electric detection of magnetization dynamics. 1

4.1 Introduction

The field of magnetoelectronics utilizes the electronic spin degrees of freedom
to achieve new functionalities in circuits and devices made from ferromagnetic

and normal conductors. The modulation of the DC electrical resistance by means of
the relative orientation of the magnetizations of individual ferromagnetic elements
(“giant magnetoresistance”) is by now well-established. Dynamic effects, such as the
current-induced magnetization reversal, are still subject of cutting edge research ac-
tivities. Here we concentrate on an application of the concept of spin-pumping, i.e.
the emission of a spin current from a moving magnetization of a ferromagnet (F)
in electrical contact with a normal conductor (N) [1, 2], viz. the “spin battery”[3].
In this device a ferromagnet that precesses under ferromagnetic resonance (FMR)
conditions pumps a spin current into an attached normal metal that may serve as a
source of a constant spin accumulation (see also Ref. [4]). In this chapter we report
that spin-flip scattering in the ferromagnet translates the pumped spin accumula-
tion into a charge voltage over an F|N junction. Due to the spin-flip scattering in F,

1This chapter has been published as: Xuhui Wang, et al, Voltage Generation by Ferromagnetic Reso-
nance at a Nonmagnet to Ferromagnet Contact, Phys. Rev. Lett. 97, 216602 (2006).
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a back-flow spin current collinear to the magnetization is partially absorbed in the
ferromagnet. Since the interface and bulk conductances are spin-dependent, this
leads to a net charging of the ferromagnet, which thus serves as a source as well as
electric analyzer of the spin pumping current. We note the analogy to the voltage in
excited F|N|F spin valves predicted by Berger [5] and recently analyzed by Kupfer-
schmidt et al. [6]. Since the spin-flip scattering in conventional magnets such as
permalloy is very strong, this effect provides a handle to experimentally identify the
FMR induced spin accumulation in the simplest setup [7]. A detailed experimental
test of our predictions is in progress [8].

Is

( )p

Is

( )b

m

X

y
Z

F N

q

Hex
Idc

Figure 4.1: Schematic view of spin battery operated by ferromagnetic resonance. The dotted

line Idc represents the dc component of pumping current.

4.2 Spin and charge currents

The “spin battery” operated by ferromagnetic resonance has been proposed by Brataas
et al. [3] in the limit of weak spin flip scattering in the ferromagnet. It is based on the
spin current pumped into a normal metal by a moving magnetization (F|N) [1]

I(p)
s =

~
4π

(
Re g↑↓m× dm

dt
+ Im g↑↓

dm
dt

)
, (4.1)

where m is the unit vector of magnetization. Re g↑↓ and Im g↑↓ are the real and imag-
inary parts of the (dimensionless) spin-mixing conductance g↑↓ [9]. This spin cur-
rent creates a spin accumulation s in the normal metal, which induces a back flow of



4.2. Spin and charge currents 67

spins, and, as we will see, charges the ferromagnet. According to magnetoelectronic
circuit theory [9] the charge and spin currents flowing through the F|N interface (into
N) in the presence of non-equilibrium charge and spin accumulations µN

0 , s in N and
µF

0 , µF
s m in F, read [9]

Ic =
eg

2h

[
2(µF

0 − µN
0 ) + pµF

s − p(m · s)]

I(b)
s =

g

8π

[
2p(µF

0 − µN
0 ) + µF

s − (1− 2Re g↑↓/g)m · s]m

− Reg↑↓

4π
s− Img↑↓

4π
(s×m) , (4.2)

where g = g↑ + g↓ is the total interface conductance of spin-up and spin-down elec-
trons, p is the contact polarization given by p = (g↑−g↓)/(g↑+g↓). For typical metallic
interfaces, the imaginary part of the mixing conductance is quite small [10], hence
discarded in the following discussion . We choose the transport direction along the
x-axis that is perpendicular to the interface at the origin. Hex, the sum of DC exter-
nal and uniaxial anisotropy magnetic fields, points in the z-direction, which is also
the chosen spin quantization axis in the normal metal. At the ferromagnetic reso-
nance, the magnetization precesses steadily around the z-axis with azimuthal angle
θ (see Fig. 4.1) that is tunable by the intensity of an AC magnetic field. The thickness
of the normal and ferromagnetic metal films are dN and dF , respectively. s (x, t) is
determined by the spin-diffusion equation [11]

∂s
∂t

= DN
∂2s
∂x2

− s
τN
sf

, (4.3)

where τN
sf is the spin-flip relaxation time and DN the diffusion constant in the nor-

mal metal. Assuming that the magnetization precesses around the z-axis with an-
gular velocity ω, we consider the limit where the spin-diffusion length in the normal
metal is much larger than the transverse spin-averaging length lω ≡

√
DN/ω, i.e.,

λN
sd À lω, or equivalently ωτN

sf À 1. We can then distinguish two regimes. When the
thickness of the normal metal dN À lω, which is equivalent to the Thouless energy
~DN/d2

N ¿ ~ω, the oscillating transverse component of the induced spin accumu-
lation vanishes inside the normal metal, and one is left with a time-dependent spin
accumulation along z-axis decaying away from the interface on the scale λN

sd. The
back flow due to the steady state spin accumulation aligned along the z-axis cancels
the same component of the pumping current. The former acquires the universal
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value ~ω when the spin-flip scattering is sufficiently weak [3]. The opposite regime
of ultrathin or ultra clean normal metal films in which ~DN/d2

N À ~ω the spin accu-
mulation s is governed by a Bloch equation and will be discussed elsewhere [12].

4.3 Spin diffusion and the dc voltage

Continuity of the total spin current into the normal metal at the interface

Is = I(p)
s + I(b)

s (4.4)

is the first boundary condition for the diffusion equation,

∂s/∂x|x=0 = −2Is/(~νdosADN ), (4.5)

where νdos is the one-spin density of states and A the area of the interface, and the
second is its vanishing at the sample edge ∂s/∂x|x=dN = 0. The time-averaged solu-
tion of Eq. (4.3) reads 〈s〉t = sz ẑ with

sz =
cosh (x− dN ) /λN

sd

sinh dN/λN
sd

2λN
sd

~νdosADN
Is,z . (4.6)

The component of the spin accumulation parallel to the magnetization is a con-
stant for the precessional motion considered here. It can penetrate the ferromagnet,
hence building up a spin accumulation µF

s = µF
↑ − µF

↓ in F, which obeys the spin
diffusion equation [11]

∂2µF
s (x)

∂x2
=

µF
s (x)(
λF

sd

)2 , (4.7)

where λF
sd is the spin-flip diffusion length in the ferromagnet. The boundary condi-

tions are given by the continuity of the longitudinal spin current at the interface

σ↑

(
∂µF

↑
∂x

)

x=0

− σ↓

(
∂µF

↓
∂x

)

x=0

= −2e2

~A
Is,z cos θ (4.8)

and a vanishing spin current at the outer boundary

σ↑

(
∂µF

↑
∂x

)

x=−dF

− σ↓

(
∂µF

↓
∂x

)

x=−dF

= 0 , (4.9)
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where σ↑(↓) is the conductivity of spin up (down) electrons in the ferromagnet [13].
In the steady state there can be no net charge flow. From Ic = 0 follows that a charge
chemical potential difference µF

0 − µN
0 = p[sz cos θ − µF

s ]x=0/2 builds up across the
contact. At the interface on the F side, the longitudinal component of the total spin
current leaving the ferromagnet then reads

Is,z cos θ =
(1− p2)g

8π
[µF

s − sz cos θ]x=0 . (4.10)

The interface resistance is in series with a resistance ρω = lω/(hνdosADN ) of the bulk
normal metal of thickness lω that accounts for the averaging of the transverse spin
current components. This reduces the interface conductances for spin-up (down)
electrons to g

↑(↓)
ω = g↑(↓)/(1 + ρωg↑(↓)) and the spin-mixing conductance g↑↓ω =

Re g↑↓/(1 + ρω Re g↑↓). We also introduce

gω = g↑ω + g↓ω, pω =
g↑ω − g↓ω
g↑ω + g↓ω

. (4.11)

Solving Eq. (4.7) under the above boundary conditions gives

µF
s (x) =

g̃ cosh
[
(x + dF ) /λF

sd

]
cos θ

[g̃ + gF tanh
(
dF /λF

sd

)
] cosh

(
dF /λF

sd

)sz|x=0 (4.12)

where g̃ = (1−p2
ω)gω and gF = 4hAσ↑σ↓/[e2λF

sd(σ↑+σ↓)] is a parametrizes the proper-
ties of the bulk ferromagnet [13]. When the spin-flip in F is negligible, i.e., dF ¿ λF

sd,
then µF

s |x=0 = sz|x=0 cos θ and consequently the longitudinal spin current vanishes.
In the present limit, ωτN

sf À 1, the time-averaged pumping current Eq. (4.4) reads

I
(p)
s,z = ~ωReg↑↓ sin2 θ/4π and the spin accumulation in N at distance lω near the in-

terface becomes

sz =
~ω sin2 θ

ηN (ω) + sin2 θ + (1−p2
ω)η↑↓F

1−p2
ω+ηF

cos2 θ
(4.13)

where we have introduced the reduction factors for N and F:

ηN (ω) =
gN

g↑↓ω

tanh
dN

λN
sd

, η↑↓F =
gF

g↑↓ω

tanh
dF

λF
sd

, (4.14)

where gN = hνdosADN/λN
sd and ηF = g↑↓ω η↑↓F /gω. With weak spin-flip in F, i.e.,

dF ¿ λF
sd, η↑↓F ≈ 0 and Eq. (4.13) reduces to sz = ~ω sin2 θ/(ηN (ω) + sin2 θ) [3].
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Increasing the spin flip in F or the ratio dF /λF
sd, the factor η↑↓F gets larger and the

spin accumulation signal decreases accordingly. More interesting is the chemical
potential bias ∆µ0 = µF

0 − µN
0 that builds up across the interface, for which we find

∆µ0 =
~ωpω (ηF /2) sin2 θ cos θ

αF

(
ηN (ω) + sin2 θ

)
+ (1− p2

ω)η↑↓F cos2 θ
. (4.15)

where αF = 1 − p2
ω + ηF . We now estimate the magnitude of sz and ∆µ0 for the

typical systems Py|Al [14]. In Al the spin diffusion length is λN
sd = 500 nm, the

spin-flip time τN
sf = 100 ps (at low temperature) and the density of states of Al is

νdos = 1.5 × 1047 J−1 m−3. The mixing conductance of the Py|Al interface in a dif-
fuse environment can be estimated as twice the Sharvin conductance of Al [16] to
be Reg↑↓/A ≈ 20× 1019 m−2. The bare contact polarization is taken as p = 0.4 . The
spin-flip length in Py is very short, around λF

sf = 5 nm [15] and (σ↑ + σ↓)/σ↑σ↓ is
about 6.36 × 10−7 Ωm [17]. Assuming a magnetization precession cone of θ = 5◦,
the voltage ∆µ0/e of Py|Al interface as a function of the FMR frequency is plotted in
Fig. 4.2. The induced spin accumulation in the normal metal and the voltages across
the interface as a function of dF are plotted in Fig. 4.3. The voltage bias across the
interface, for given bulk properties of the normal metal, is seen to saturate at large
spin-flip scatterings on the F side dF À λF

sd. Spin-flip in the normal metal is detri-
mental to both spin accumulation and voltage generation. On the other hand, a
transparency of the contact reduced from the Sharvin value increases the polariza-
tion pω up to its bare interface value and with it the voltage signal (up to a maximum
value governed by the reduction factor ηN that wins in the limit of very low trans-
parency).

The angle dependence of the voltage across the interface is plotted in the inset
of Fig. 4.2 in the limit of large spin flip in F dF À λF

sd. When dN ¿ λN
sd (but still

dN À lω) we obtain the maximum value:

∆µ0 =
~ωpω (gF /2gω) sin2 θ cos θ

αF sin2 θ + (1− p2
ω)gF cos2 θ/g↑↓ω

(4.16)

given αF → 1− p2
ω + gF /gω. At small angle of the magnetization precession θ

∆µ0
θ→0=

pωg↑↓ω θ2

2(1− p2
ω)gω

~ω . (4.17)
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In the opposite limit, dN À λN
sd (but λN

sd À lω) the voltage drop becomes

∆µ0 =
~ωpω (gF /2gω) sin2 θ cos θ

αF

(
gN/g↑↓ω + sin2 θ

)
+ (1− p2

ω)gF cos2 θ/g↑↓ω

, (4.18)

which in the limit of small angle reduces to

∆µ0 → pωg↑↓ω θ2~ω/[2(1 + gN/gF )(1− p2
ω)gω + 2gN ]. (4.19)

In both limits at small precession angles, the voltages are proportional to θ2, i.e., in-
creases linearly with power intensity of the AC field. Eqs. (4.16) and (4.18) as function
of FMR frequency are depicted in Fig. 4.2 as solid and dashed lines.

In contrast to Berger [5], who predicted voltage generation in spin valves, viz.
that dynamics of one ferromagnet causes a voltage when analyzed by a second fer-
romagnet through a normal metal spacer, we consider here a simple bilayer. The
single ferromagnetic layer here serves simultaneously as a source and detector of
the spin accumulation in the normal metal layer. The presence of spin-flip scatter-
ing that allows the back-flow of a parallel spin current is essential, and permalloy
is ideal for this purpose. The voltage bias under FMR conditions can be measured
simply by separate electrical contacts to the F and N layers. It can be detected even
on a single ferromagnetic film with normal metal contacts [7], provided that the two
contacts are not equivalent.

We can also study the FMR generated bias in a controlled way in the N1|F |N2

trilayers in which the F layer is sandwiched by two normal metal layers. The mag-
netization of the ferromagnet again precesses around the z-axis. The thicknesses of
N1, F and N2 in the transport direction are dN1, dF and dN2, respectively. The spin
diffusion length in normal metal node i is λi. With weak spin flip in the sandwiched
ferromagnetic layer, dF ¿ λF

sd, the spin accumulation of F at both interfaces are the
same. We find that the values of µF

s near the interfaces are mixtures of the interface
values of the spin accumulations in the normal metals. In other words, the two nor-
mal metals talk to each other through F by the back-flow and the generated voltages
across the interfaces are different given different contacts. In the opposite limit with
massive spin flip in F, dF À λF

sd, the strong spin flip scattering eventually separates
the spin accumulation in the two normal metal nodes such that the “exchange” be-
tween the two normal metals is suppressed. We then recover Eq. (4.12).

According to Eq. (4.15) the voltage drops across the interfaces, ∆µ
(1)
0 ≡ µF

0 −µN1
0

and ∆µ
(2)
0 ≡ µF

0 −µN2
0 are different for different spin-diffusion lengths in the normal
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Figure 4.2: The voltage drop ∆µ0/e (in the unit nV) as function of FMR frequency (in GHz)

for Py|Al interface. The line with circles denotes the situations when dN = 300 nm (empty

symbols) and dN = 800 nm (filled symbols) when the thickness of ferromagnet is taken as

dF = 14 nm. The solid and dashed lines refer to the limits as indicated by Eq. (4.16) and

Eq. (4.18). These curves indicate that due to averaging of the transverse spin components

inside the normal metal, the voltage is not linear with FMR frequency. The precession angle

of magnetization is taken as θ = 5◦. The inset shows the angle dependence of the voltage at

fixed frequency 15.5GHz. At small angle, the voltage drop is proportional to θ2.

metals (λi) or different conductances (Re g↑↓). For example, taking identical normal
metals but different contacts, e.g., a clean and a dirty one, ∆µ

(1)
0 and ∆µ

(2)
0 will be

different due to different spin-mixing conductances.
In conclusion, we report a unified description for spin pumping in F|N structure

and analyze the spin accumulation in the normal metal induced by a spin-pumping
current. We predict generation of a DC voltage over a single F|N junction. The Py|Al
system should be an ideal candidate to electrically detect magnetization dynamics
in this way.
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Chapter 5

Effective Action Approach to the Damping of
Magnetization Dynamics

Abstract

We investigate the damping of magnetization dynamics in a magnetic film that is
sandwiched by conducting material (host material), in the absence of bias. The
magnetization is coupled to the spins of conducting electrons by s−d exchange in-
teraction. The damping is obtained by deriving the equation of motion of the mag-
netiztion from an effective action. In the case of aa normal-metal host, we obtain a
Landau-Lifshitz-Gilbert equation with damping described by a single parameter,
which compares favorablly to earlier results by others. When the host is magnetic,
the damping takes a tensor form, and we also discuss the half-metallic limit.

5.1 Introduction

The damping of magnetization dynamics is a subtle and important issue attract-
ing much attention from both theoretical and experimental perspectives. For

an isolated ferromagnetic particle, the Landau-Lifshitz-Gilbert equation qualitatively
and quantitatively describes both the non-dissipative and dissipative (damping) dy-
namics of the magnetization [1, 2]. When in contact with paramagnetic metals, the
interactions between the magnetization and the conduction-electron spins give rise
to enhancement of the damping parameter, as measured in FMR experiments on
ferromagnet -normal metal (F—N) heterostructures [3]. The enhancement of damp-
ing can be interpreted via a mechanism called spin pumping, where by interacting
with the conducting electrons, the precessing magnetization losses angular momen-
tum to the adjacent normal metal [4, 5]. The scattering approach describes this phe-
nomenon well in terms of a mixing conductance, invented as a key ingredient in
the magnetoelectronic theory [6], in the framework of Landauer-Büttiker formalism
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[7] and parametric pumping [5, 8]. The damping of magnetization dynamics in the
presence of conduction electrons can be understood in different languages, such as
its relation to the susceptibilities of the conduction electrons [9], or to the time lag in
the RKKY oscillations [10]. Meanwhile, some heavy machinery such as the Keldysh
formalism has been employed to investigate the magnetization dynamics in both
equilibrium and current-driven cases [11]. In this chapter, we present an investi-
gation into the damping of the magnetization dynamics in the bath of conduction
electrons, using the effective action approach [12] and Caldeira-Leggett formalism
[13] to study the dissipation. The latter handles the dissipation of a system in con-
tact with environment as the non-local-in-time contribution to the effective action
of the system, when the influence of the environment is properly accounted for.

This chapter is arranged as follows: In the imaginary-time path-integral formu-
lation, Sec. 5.2 develops the total action of a magnetization film sandwiched by nor-
mal metals, which with the spins of the conduction electrons through an s-d ex-
change interaction. In Sec. 5.3 the effective action of magnetization is obtained by
removing the electronic degrees of freedom, and considering only the elastic scat-
tering of the electrons by the spins in the ferromagnetic film. The action that is non-
local in time is derived by perturbation theory. Section 5.4 outlines the derivation of
equation of motion, using the principle of least action, yielding a Landau-Lifshitz-
Gilbert form, from which we identify the damping parameter. The damping parame-
ter obtained from this straightforward approach agrees favorably with earlier results.

5.2 The action of coupled systems

The system under investigation consists of a thin magnetic film sandwiched by nor-
mal metal hosts. The interaction between the magnetization and the spins of the
conduction electrons can be well described by an s-d exchange model [9, 10]. In
the absence of a bias over the system, the damping of the magnetization can be ex-
pressed in terms of the imaginary part of the dynamic spin- susceptibility function
of the conduction electrons [9]. This section demonstrates the connection between
the effective-action approach and the direct calculation of the dynamical spin sus-
ceptibility of the conduction electrons in the normal metal host.

The conduction electrons in the host metal are coupled to the sandwiched mag-
netic layer by the exchange interaction. In this case the dynamics of the magneti-
zation excites electron-hole pairs of the conduction electron Fermi sea. Energy and
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momentum are carried away by these excitations, which leads to a damping of the
magnetization motion, which is associated with the imaginary part of the dynamical
spin susceptibilities. The setup is depicted in Fig. 5.1. We assume that the system is

2D magnetic film

Normal metal Normal metal

Conducting electron

Figure 5.1: A two-dimensional magnetic film is embedded in the normal metal host.

not biased. In terms of the s-d exchange model between localized spins (Si on site-i)
in the film and the conduction electrons (φσ(r)), the Hamiltonian of the conduction
electrons and its coupling to magnetization is given by

H = H0 − J~
V

∑

i

∑

σ,σ′

∫
d3r φ†σ(r) (σ · S(ri, t))σσ′ φσ′(r)δ(r− ri) . (5.1)

where the spins are related to the magnetization M(ri, t) by S(ri, t) = (V/γ)M(ri, t),
with V the volume of the unit cell, and γ = −gµB/~ the gyromagnetic ratio. Pauli
matrix σ describes the spins of conduction electrons. The dimensionless field oper-
ators can be Fourier expanded as φσ(r) =

∑
k φk,σeik·r, such that the total Hamilto-

nian reads

H =
∑

k,σ

ξk,σφ†k,σφk,σ − NsJ~
V

∑

k,k′

∑

σ,σ′
φ†k,σSkk′(t) · σσσ′φk′,σ′ . (5.2)

Here V is the total volume of the normal metal host, and Ns the total number of
spins of the magnetic film. We have used the definition ξk,↑(↓) = εk−µ− (+)∆ given
single particle energy εk = ~2k2/2m and ∆ coming from magnetic field or exchange
splitting (such as the one to be discussed in the magnetic host situation).
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In the imaginary time formalism, the total action is given by

S = SWZNW + Scon +
∫ ~β

0

dτ
∑

k,σ

φ†k,σ(τ)~
∂

∂τ
φk,σ(τ) +

∫ ~β

0

dτH(τ), (5.3)

where the geometric Wess-Zumino-Novikov-Witten (or Berry phase) term has been
introduced as [14, 15]:

SWZNW = −iNsS

∫ ~β

0

dτ A(n) · ṅ, (5.4)

where S = Sn and the vector potential A(n) satisfies Stokes theorem, i.e.

∇×A · n = εijk ∂Aj

∂ni
nk = 1, and i, j, k = {x, y, z}. (5.5)

Tensor εijk is fully antisymmetric. The action SWZNW is required to recover the clas-
sical equation of motion from the principle of least action. In Eq. (5.4), S is the mag-
nitude of each spin on the lattice of the ferromagnet film. An applied external field
(Hex) enters the action through Scon, where the subscript denotes the conservative
part of the action:

Scon = γNs

∫ ~β

0

dτS(τ) ·Hex. (5.6)

In the following we show that applying the Euler-Lagrange principle on the spin ac-
tion Sspin ≡ SWZNW + Scon yield the correct classical equation of motion for the
spins. The variation of the WZNW action is given by

δSWZNW = −iNsS

∫ ~β

0

dτ

[
∂Ai

∂nj

(
δnjṅi − ṅjδni

)
+ Ai d

dτ
δni +

∂Ai

∂nj
ṅjδni

]

= −iNsS

∫ ~β

0

dτ
∂Ai

∂nj
εijk (ṅ× δn)k

= −iNsS

∫ ~β

0

dτn · (ṅ× δn) . (5.7)

The variation of the magnetic field related action is relatively simple, it reads

δScon = γNsS

∫ ~β

0

dτδn ·Hex (5.8)
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and with δSspin = 0 we immediately have the following equation of motion (a Wick
rotation has been performed to real time i.e. τ → it)

dS
dt

= −γS×Hes, (5.9)

which is the classical equation of motion of a spin or magnetization in the presence
of a magnetic field, as derived in Chapter 1.

The Fourier series in the imaginary-time domain of the fermionic field operators
are given by:

φk,σ(τ) =
1√
~β

∑
n

φk,σ,ne−iωnτ , φk,σ,n =
1√
~β

∫ ~β

0

dτφkσ(τ)eiωnτ , (5.10)

where the Matsubara frequencies are ωn = (2n + 1)π/~β and β = 1/kBT , with kB

the Boltzmann constant and T the absolute temperature. The Matsubara-frequency
expansion for the spin variable is bosonic, i.e. ωn = 2nπ/~β, since spin operators are
bilinear in terms of fermionic operator [14]. Hence

Skk′(τ) =
1√
~β

∑
n

Skk′,ne−iωnτ , Skk′,n =
1√
~β

∫ ~β

0

dτSkk′(τ)eiωnτ . (5.11)

The total action in the explicit form in spin space can be written as

S =SWZNW

+
∑

n,n′

∑

k,k′

(
φ†kn↑, φ

†
kn↓

) [( −i~ωn + ξk↑ 0
0 −i~ωn + ξk↓

)
δkk′δnn′

− NsJ~
V
√
~β

(
Sz S−
S+ −Sz

)

k,k′;n,n′

] (
φk′n′↑
φk′n′↓

)
, (5.12)

where the definitions S± = Sx ± iSy have been introduced linking two of the three
components of S = (Sx, Sy, Sz).

5.3 Effective action of magnetization

We now wish to integrate out the conduction electrons, thus removing the fastest de-
grees of freedom in the system. This procedure leads to an effective action for spins
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(magnetization) that we are looking for, including the information about the damp-
ing, Seff = SWZNW −~Trln

[
G−1

]
, whereG is the total propagator of the conduction

electrons. The Wess-Zumino-Novikov-Witten term remains untouched whereas the
last term should represent the contribution to the spin dynamics due to interactions
with the conduction electrons. When the s-d exchange is weak compared to the
Fermi energy, we may introduce the perturbation expansion

Trln
[
G−1

] ≈ Tr ln[G−1] + Tr[GT]− 1
2

Tr[GTGT], (5.13)

where the propagator of the free electrons and the bare interaction matrix T are de-
fined as

G(k, n) =
(

G↑ 0
0 G↓

)
=

(
1

−i~ωn+ξk↑
0

0 1
−i~ωn+ξk↓

)
,

T(k,k′; n, n′) = − NsJ~
V
√
~β

(
Sz S−
S+ −Sz

)

k,k′;n,n′
. (5.14)

The trace in Eq.(5.13) is taken in momentum space and the Matsubara frequencies
have to be summed over. The first term on the right-hand side of Eq. (5.13) gives
rise to a constant that is irrelevant in the action. The first order term in T vanishes
in the normal host, but gives rise to an RKKY exchange field when the host material
is magnetic, as will be shown in the following sections.

Most of our attention is centered on the second order term in the perturbation
expansion, i.e. 1

2Tr ln[GTGT], which describes the correlation of spins at different
instants, and which eventually still be shown to represent the damping of the mag-
netization dynamics. In condensed notation, with the indices of momentum and
the Matsubara frequencies suppressed, the second order term consists of the corre-
lation functions of the spins in the ferromagnet:

1
2

Tr[GTGT] =
N2

s J2~
2βV 2

∑

kk′

∑

nn′
(G↑SzG↑Sz + G↑S−G↓S+

+G↓S+G↑S− + G↓SzG↓Sz) . (5.15)

The first and the last terms that are related to the longitudinal susceptibility, and
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with sub-indices indicated explicitly, are given by:
∑

kk′

∑

nn′
Gσ(k, n)Sz(k− k′; n− n′)Gσ(k′, n′)Sz(k′ − k; n′ − n)

=
1
~

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∑

kq,m

(fk+q,σ − fkσ)eiωm(τ−τ ′)

i~ωm + ξk+q,σ − ξkσ
Sz(−q; τ)Sz(q; τ ′), (5.16)

where we have introduced bosonic frequencies ωm = ωn − ωn′ and an exchanged
momentum q = k′ − k. The summation over fermionic Matsubara frequencies ωn

has been carried out, leading to Fermi-Dirac distribution functions fk,σ. For spins
confined to the two dimensional film and localized on the lattice sites, it is justified
to assume weak momentum dependence, i.e. the assumption of elastic scattering
of the electrons leads to S(±q, τ) ≈ S(τ). Such an approximation implies neglect-
ing the dispersion of the spin-wave excitations in the sandwiched film, which is also
known as the macro-spin approximation. Assuming small momentum exchange or
a small |q| compared to the Fermi vector kF , the distribution function and the ener-
gies can be expanded as,

∑

k

fk+q,σ − fkσ

i~ωm + ξk+q,σ − ξkσ
≈

∑

k

∂f
∂εk

~2k·q
m

i~ωm + ~2k·q
m

. (5.17)

Therefore the expression associated with the correlation function reduces to
∑

kk′

∑

nn′
G↑(k, n)Sz(k− k′; n− n′)G↑(k′, n′)Sz(k′ − k;n′ − n)

=
1
~

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∑

kq

(
∂f

∂εk

~2k · q
m

) ∑
m

eiωm(τ−τ ′)

i~ωm + ~2k·q
m

Sz(τ)Sz(τ ′). (5.18)

The subtleties in the summation of the Matsubara frequencies ωm are treated in de-
tail in Appendix 5.8 and we quote only the final results: with a contour integral over
variable Ω on the complex frequency plane, which can be reduced to an integration
along the real axis, i.e. via analytic continuation,

∑
m

eiωm(τ−τ ′)

i~ωm + ~2k·q
m

= β

∫ +∞

0

dω

[
δ

(
ω − ~k · q

m

)
− δ

(
ω +

~k · q
m

)]

× cosh(~βω/2− ω|τ − τ ′|)
sinh(~βω/2)

. (5.19)
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Inserted into the expression of the spin-spin correlation function this yields
∑

kk′

∑

nn′
G↑(k, n)Sz(k− k′; n− n′)G↑(k′, n′)Sz(k′ − k; n′ − n)

=
β

~

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∫ +∞

0

dω
∑

kq

(
∂f

∂εk

~2k · q
m

)
Sz(τ)Sz(τ ′)

×
[
δ

(
ω − ~k · q

m

)
− δ

(
ω +

~k · q
m

)]
cosh(~βΩ/2− Ω|τ − τ ′|)

sinh(~βΩ/2)
. (5.20)

The summation of momentum k together with the Dirac δ-functions is carried out
by taking

∑
k = V

∫
d3k/(2π)3 and working in spherical coordinates, where θ is the

angle between k and q

∑

k

(
∂f

∂εk

~2k · q
m

)[
δ

(
ω − ~k · q

m

)
− δ

(
ω +

~k · q
m

)]

= − ωm2V

2qπ2~2
Θ

(
kF − ωm

~q

)
(5.21)

In the last step, a Heaviside step function has been introduced. Physically, this
step function defines the lower limit for the momentum q, which reads q > q1 =
ωm/(~kF ). Hence

∑

kk′

∑

nn′
G↑(k, n)Sz(k− k′;n− n′)G↑(k′, n′)Sz(k′ − k; n′ − n)

= − βV 2m2

4Aπ3~3

∫ ~β

0

dτ

∫ ~β

0

dτ ′

×
∫ +∞

0

dω ω ln
(

4εF

~ω

)
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)
Sz(τ)Sz(τ ′), (5.22)

where the summation over momentum q has been converted to a one-dimensional
integration, since the momentum parallel to the magnetic film is always conserved
and q is the momentum perpendicular, i.e.

∑
q

1
q
Θ

(
kF − ωm

~q

)
=

V

A
∫ q2

q1

dq

2π

1
q

=
V

2πA ln
(

q2

q1

)
=

V

2πA ln
(

4εF

~ω

)
. (5.23)

The upper limit of the above integration is taken as q2 = 2kF [9] and A is the area of
the magnetic film. After insertion of Eq. (5.23) into Eq. (5.22), the energy integral is
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seen to suffer from an infrared divergence. As noted by Ref.[[9]], we must introduce
a low energy cut-off that can be associated with the lower bound for q. To this end
the s-d exchange interaction has to be compared to the splitting induced by the non-
local exchange field. In the scattering region, the splitting of the electronic energy
caused by the s− d exchange (∆sd) can be estimated as

∆sd ≈ 2J~~
V ≈ 4Jsd, (5.24)

where the relation of J (in the action) with the atomic exchange integral Jsd has
been assumed to be J ≈ 2JsdV/~2 [9]. This consideration eventually leads to the low
momentum cut-off

q1 = m∆sd/~2kF . (5.25)

The atomic exchange integral is typically Jsd ≈ 0.1 eV in magnitude [9].
Based on the above discussion, the correlation functions are found to be

∑

kk′

∑

nn′
G↑(k, n)Sz(k− k′; n− n′)G↑(k′, n′)Sz(k′ − k;n′ − n)

= − βV 2m2

4Aπ3~3
ln

(
εF

Jsd

) ∫ ~β

0

dτ

∫ ~β

0

dτ ′

×
∫ +∞

0

dωω
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)
Sz(τ)Sz(τ ′). (5.26)

As far as the normal host is concerned, there is no spin splitting for conduction elec-
trons in the bulk, and therefore no difference between G↑ and G↓. This leads to the
final expression for the second order perturbation:

1
2

Tr[GTGT] = −N2
s J2m2

4A~2π3
ln

(
εF

Jsd

) ∫ ~β

0

dτ

∫ ~β

0

dτ ′

×
∫ +∞

0

dω ω
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)
S(τ) · S(τ ′). (5.27)

After the above derivations, a total effective action for the magnetization emerges as

Seff = SWZNW + Scon − N2
s J2m2

4A~π3
ln

(
εF

Jsd

) ∫ ~β

0

dτ

∫ ~β

0

dτ ′

×
∫ +∞

0

dω ω
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)
S(τ) · S(τ ′), (5.28)
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where Scon induces the magnetization dynamics. The last term (Sdis) containing
spins at different times that essentially causes the damping, according to the Caldeira-
Leggett formalism [13], which can be obtained by evaluating the equation of motion
for the spin system. Employing periodic boundary condition S(τ + ~β) = S(τ), one
integrand over imaginary times can be extended from [0, ~β] to [−∞, +∞], and the
dissipative action can be divided into contributions that are local and non-local in
time, i.e. Sdis = Sl + Snl. As detailed in the appendix, only the non-local action con-
tributes to the equation of motion. After integrating over frequency ω, the non-local
part reads

Snl =
N2

s J2m2

8A~π3
ln

(
εF

Jsd

) ∫ ~β

0

dτ

∫ +∞

−∞
dτ ′

[S(τ)− S(τ ′)]2

(τ − τ ′)2
. (5.29)

The desired effective action of the magnetization therefore reads

Seff =SWZNW + Scon

+
N2

s J2m2

8A~π3
ln

(
εF

Jsd

) ∫ ~β

0

dτ

∫ +∞

−∞
dτ ′

[S(τ)− S(τ ′)]2

(τ − τ ′)2
. (5.30)

In the last term, the relevant time scale of the present system is governed by external
magnetic or anisotropy fields, which also determines the cut-off for the time inte-
gral.

5.4 Equation of motion and damping parameter

The Euler-Lagrange principle is now applied to the spin variables with the associated
effective Lagrangian Leff defined by Seff =

∫ ~β
0

dτ Leff . Focusing on the non-local
term, this approach leads to:

∂

∂S(τ)

∫ +∞

−∞
dτ ′

[S(τ)− S(τ ′)]2

(τ − τ ′)2
= 2

∫ +∞

−∞
dτ ′

S(τ)− S(τ ′)
(τ − τ ′)

1
(τ − τ ′)

= 2
∫ +∞

−∞
dτ ′

dS(τ ′)
dτ ′

[
P 1

(τ − τ ′)
− iπδ(τ − τ ′)

]

= −2iπ
dS(τ)

dτ
. (5.31)
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In the last step the integral over the Cauchy principle value vanishes because the
integrations over τ ′ from both sides cancel when approaching τ . This last step is
valid as long as the time scale we are interested is the characteristic time scale of the
magnetization response [13]. Performing a Wick rotation to real time t, i.e. τ → it,
the equation of motion is obtained by setting ∂S/∂S = 0, as

−Ns

S2
S× dS(t)

dt
+ γNsHex − N2

s J2m2

4A~π2
ln

(
εF

Jsd

)
dS(t)

dt
= 0. (5.32)

By taking the cross product of both sides with S×, the above equation can be recast
as:

dS(t)
dt

= −γS×Hex +
N2

s J2m2

4ANs~π2
ln

(
εF

Jsd

)
S× dS(t)

dt
= 0. (5.33)

Converting the spins into a magnetization vector using the relation S = VM/γ, a
Landau-Lifshitz-Gilbert like equation is recovered:

1
γ

dM
dt

= −M×Hex +
N2

s J2m2M2
sV

4ANs~π2
ln

(
εF

Jsd

)

︸ ︷︷ ︸
G

1
γ2M2

s

M× dM
dt

. (5.34)

Taking a simple cubic structure with lattice constant a for the magnetic film, and a
thickness d for the film, the total number of spins is Ns = Ad/a3. Inserting these
relations into the expression for the damping parameter G, we obtain

G =
(JMsam)2

4~π2d
ln

(
εF

Jsd

)
. (5.35)

The damping parameter derived as in Eq. (5.35) can be directly compared with the
results of Eq. (30) in Ref. [9].

5.5 Magnetic film sandwiched by ferromagnetic host

We generalize the previous discussions of a normal metal host to a ferromagnetic
one The s-d exchange is assumed to be the dominate interaction between magneti-
zation of the magnetic film and spins of the conduction electrons. The total Hamil-
tonian is similar to that in the previous section, but with the host metal described
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by a Stoner model. For conduction electrons, the splitting between different spin
bands is denoted by U . The spin quantization direction is chosen as the orientation
of the magnetization of the host metal. Consequently the total Hamiltonian reads

H =
∑

k,σ

ξk,σφ†kσφkσ − NsJ~
V

∑

kk′

∑

σσ′
φ†kσSkk′(t) · σσσ′φk′σ′ , (5.36)

where the energy difference in such a Stoner model is introduced as:

ξk↑ = εk − εF − 1
2
U, ξk↓ = εk − εF +

1
2
U. (5.37)

The spin-up band is chosen as the majority band, and the energy is measured from
the middle of the spin gap. Accordingly, the propagator of the free conduction elec-
trons in spin space reads

G(k, n) =
(

G(k, n, ↑) 0
0 G(k, n, ↓)

)

=

(
1

−i~ωn+εk−εF− 1
2 U

0

0 1
−i~ωn+εk−εF + 1

2 U

)
. (5.38)

As discussed in the case of a normal metal host, (Gaussian)integrating out the
conduction electrons gives rise to the effective action for the magnetization. The
first- and second-order terms in the perturbation expansions in terms of the s-d ex-
change coupling J are:

Tr[GT] = − NsJ~
V
√
~β

∑

kk′
(G↑ −G↓)Sz (5.39)

1
2

Tr[GTGT] =
N2

s J2~
2βV 2

∑

kk′

∑

nn′
(G↑SzG↑Sz + G↑S−G↓S+

+G↓S+G↑S− + G↓SzG↓Sz) . (5.40)

The first-order term is responsible for an exchange field acting on the magnetization
of the film, which alters the precession frequency of the magnetization dynamics.
But the first-order term does not involve any correlation of magnetization at differ-
ent instants, i.e. no contribution to the damping of magnetization dynamics. In the
following we focus on the second-order term that eventually gives rise to damping
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of magnetization induced by the conduction electrons, as discussed in previous sec-
tion. Equation (5.40), containing the spin-density–spin-density response function,
is divided into two parts, i.e. the longitudinal and the transverse parts. The longi-
tudinal part which correlates the z-component of the magnetization (Sz) is given
by:

N2
s J2~

2βV 2

∑

kk′

∑

nn′
(G↑SzG↑Sz + G↓SzG↓Sz)

= −N2
s J2m2

4Aπ3~2

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∫ +∞

0

dωω

×

ln




√
2~2kF kF↑

∆sdm


 + ln




√
2~2kF kF↓

∆sdm


 Θ(εF − U)




× cosh(~βω/2− ω|τ − τ ′|)
sinh(~βω/2)

Sz(τ)Sz(τ ′), (5.41)

where the spin-dependent Fermi vectors are defined as kF↑(↓) =
√

2m (εF + (−)U/2)/~.
The step function Θ(εF − U) in Eq.(5.41) reminds us that in the case of a very strong
ferromagnet (such as half-metals), modelled by an exchange energy larger than Fermi
energy, the minority band can be completely depleted. For the minority band the
density of states at the Fermi energy then vanishes, as depicted in panel (c) of Fig.
5.3. In such a situation,

∑
G↓G↓ = 0.

The evaluation of the transverse part requires careful manipulation. After sum-
ming over the fermionic Matsubara frequencies and with a Fourier transformation
back to integrals with respect to imaginary time, we have

∑

kk′

∑

nn′
G↑S−G↓S+

=
1
~

∑
q

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∑

k

(fk+q↓ − fk↑)
∑
m

eiωm(τ−τ ′)

i~ωm + εk+q − εk + U
S−(τ)S+(τ ′),

(5.42)

where it is assumed that the d-electrons are localized and thus have negligible mo-
mentum dependence. It is instructive to consider the distribution functions in the
expansion in more detail. The momentum q is assumed to be small compared to
the Fermi momentum; therefore keeping only the linear term in q is justified, which
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kF

kF

qmin

qmax

q

Figure 5.2: Schematic show of the momentum exchange between spin-up and spin-down

electrons.

leads to εk+q − εk ≈ ~2k · q/m < U < εF . The last inequality is certainly not meant
to apply to half-metals where the spin gap is seen to be larger than the Fermi energy,
which depletes the minority spin band. The situation concerning a half-metal will
be discussed later. For the distribution functions the above assumption makes the
following approximation valid:

fk+q↓ − fk↑ ≈ fk↓ − fk↑ +
∂f↓
∂ε

~2k · q
m

≈ ∂f

∂ε
U +

∂f↓
∂ε

~2k · q
m

, (5.43)

where at low temperature, the derivative ∂f/∂ε simply gives a δ-function with minus
sign centered at the Fermi energy εF . More important are the lower and upper limits
of the exchanged momentum q. Since the electrons under consideration are at the
Fermi energy, and due to the splitting of Stoner mode, the Fermi sphere effectively
splits into two (for different spin bands). As sketched in Fig. 5.2, the minimum of
the exchanged momentum is given by qmin = kF↑ − kF↓ and the maximum is given
by qmax = kF↑ + kF↓. As such the summation over q is bounded, and carries the
function

Λq =

{
1, kF↑ − kF↓ < q < kF↑ + kF↓
0, otherwise.

(5.44)
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Having expanded the distribution function and set up the limits for the momentum
integration for the magnetic host, the response function of spin-density reads:

∑

kk′

∑

nn′
G↑S−G↓S+

=
β

~
∑
q

Λq

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∫ +∞

0

dω
∑

k

(
∂f

∂ε
U +

∂f↓
∂ε

~2k · q
m

)

×
[
δ

(
ω − U

~
− ~k · q

m

)
− δ

(
ω +

U

~
+
~k · q

m

)]

× cosh(~βω/2− ω|τ − τ ′|)
sinh(~βω/2)

S−(τ)S+(τ ′). (5.45)

We introduce spherical coordinates to perform the summation over k, such that

∑

k

(
∂f

∂ε
U +

∂f↓
∂ε

~2k · q
m

)[
δ

(
ω − U

~
− ~k · q

m

)
− δ

(
ω +

U

~
+
~k · q

m

)]

= − V ωm2

2qπ2~2
Θ

[
1−

(
ω +

U

~

)
m

~kF↓q

]
. (5.46)

The transverse part of the spin-density–spin-density response function contains the
following expressions:

∑

kk′

∑

nn′
G↑S∓G↓S± =− V 2βm2

4Aπ3~3
ln

(
kF↑ + kF↓
kF↑ − kF↓

) ∫ ~β

0

dτ

∫ ~β

0

dτ ′S∓(τ)S±(τ ′)

×
∫ +∞

0

dωω
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)
. (5.47)

Using the above results, the transverse part of the response function is obtained as

N2
s J2~

2βV 2

∑

kk′

∑

nn′
(G↑S−G↓S+ + G↓S+G↑S−)

= −N2
s J2m2

4Aπ3~2
ln

(
kF↑ + kF↓
kF↑ − kF↓

) ∫ ~β

0

dτ

∫ ~β

0

dτ ′ (Sx(τ)Sx(τ ′) + Sy(τ)Sy(τ ′))

×
∫ +∞

0

dωω
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)
. (5.48)
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The effective action for the magnetization after removing the conduction electrons
reads

Seff =SWZNW + Scon

− N2
s J2m2

4Aπ3~

∫ ~β

0

dτ

∫ ~β

0

dτ ′
∫ +∞

0

dωω
cosh(~βω/2− ω|τ − τ ′|)

sinh(~βω/2)

×

ln

(
kF↑ + kF↓
kF↑ − kF↓

)
(Sx(τ)Sx(τ ′) + Sy(τ)Sy(τ ′)) +


ln




√
2~2kF kF↑

∆sdm




+ ln




√
2~2kF kF↓

∆sdm


Θ(εF − U)


Sz(τ)Sz(τ ′)


 , (5.49)

where the correlation functions of the transverse and longitudinal components of
the magnetization are different as a result of the polarized host material. When the
spin splitting due to Stoner modes vanishes, the above effective action reduces to
the case of a normal metal host. According to the Euler-Lagrange principle, the vari-
ational method can be employed here to derive the equation of motion for the mag-
netization, i.e. with respect to effective action (Eq. (5.49)). We obtain an equation of
motion in the Landau-Lifshitz-Gilbert form, as

1
γ

dM
dt

= −M×Hex +
1

γ2M2
s

M×
[
Ĝ · dM

dt

]
, (5.50)

where the damping can no longer be described by a single parameter, but appears
as a diagonal matrix (denoted by Diag[· · · ]):

Ĝ =
(JMsam)2

4~π2d
Diag

[
ln

(
kF↑ + kF↓
kF↑ − kF↓

)
, ln

(
kF↑ + kF↓
kF↑ − kF↓

)
,

ln




√
2~2kF kF↑

∆sdm


 + ln




√
2~2kF kF↓

∆sdm


 Θ(εF − U)


 . (5.51)

The anisotropic damping Eq.(5.51) recovers the results in the normal metal host
when the spin splitting of conduction electrons is lifted, i.e. taking U = 0 and thus
kF↑ = kF↓. Upon taking such a limit, attention should be paid to the lower cut-off
of the momentum integration over q, which is no longer kF↑−kF↓ but m∆sd/(~2kf ).
Thereby the damping parameter Eq.(5.51) reproduces Eq.(5.35) properly when the
exchange energy U vanishes.
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5.6 Special case: half-metallic host

One of the extreme cases of host material is the half-metallic metal, which in our
description using a Stoner model is modeled with a spin splitting (U ) that is much
larger than the Fermi energy, such that the minority band is depleted. This limit
corresponds to the polarization p, defined using the density of states at the Fermi
energy p = (N↑ + N↓)/(N↑ − N↓), being equal to 1. In the half-metallic case, strong
magnetism gives rise to kF↓ = 0 (for the Fermi vector of the minority band), which
leads to an interesting damping parameter:

Ĝ =
(JMsam)2

4~π2d
Diag


0, 0, ln




√
2~2kF kF↑

∆sdm





 . (5.52)

Here the imaginary part of transverse spin-density response functions vanish, and
what remains is the longitudinal one. Since we ascribe the dissipation of the mag-
netization dynamics to magnetization excitations decaying into particle-hole pairs,
in the half-metallic case the inter-band electron-hole excitation is prohibited due to
significant energy cost, as depicted in Fig. 5.3.

EF

E

DOS

Majority

Minority

EF

E

DOS

Majority

Minority

(a)

(c)

Half-metallic host

EF

E

DOS

Majority

Minority

(b)

Figure 5.3: Electron-hole excitation that governs the Ohmic dissipation. In all figures, the

empty circles are holes and the filled ones electrons. Panel (a), the intra-band electron-hole

excitation. Panel (b), the inter-band excitation in a weak ferromagnet. Panel (c), in the half-

metallic case, the inter-band excitation is suppressed due to the significant energy cost.
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5.7 Conclusion

We have studied the damping of a magnetic film sandwiched by metallic hosts of
normal metal and ferromagnet. The interaction between magnetization and the
conduction electrons opens a channel for dissipation. In the absence of a bias (i.e.
the equilibrium situation) the magnetization excitation decays into electron-hole
pairs, leading to Ohmic dissipation that appears in the equation of motion in the
Landau-Lifshitz-Gilbert form. The damping parameter is directly related to the imag-
inary part of the spin-density–spin-density response function that governs the dissi-
pation. When the host material is magnetic, damping of the magnetization dynam-
ics of the film can no longer be described by a single parameter, but takes a matrix
form (tensor). In the extreme case of a half-metallic host, the inter-band electron-
hole excitation is suppressed, and the imaginary part of the transverse spin-density
response function vanishes.
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5.8 Appendix: Summation of Matsubara frequencies

In this appendix, as a reference, we list several formulae concerning the summation
of Matsubara frequencies. These identities can often be found in the textbooks on
many-body theory, such as the text by Fetter and Walecka [16]. For fermionic Mat-
subara frequencies ωn = (2n + 1)π/~β, and introducing an positive infinitesimal η:

lim
η→0

1
β

∑
n

eiωnη

i~ωn − (ε− µ)
=

1
1 + eβ(ε−µ)

, (5.53)

which is exactly the Fermi-Dirac distribution function. For bosonic frequencies ωn =
2nπ/~β, yielding the similar form

lim
η→0

1
β

∑
n

eiωnη

i~ωn − (ε− µ)
= − 1

eβ(ε−µ) − 1
. (5.54)

A Matsubara summation of the following form with bosonic frequencies ωm =
2mπ/~β is often encountered:

∑
m

e−iωmτ

iωm − x
, (5.55)

which is evaluated differently for τ > 0 and τ < 0.
For negative τ , Matsubara summation yields

∑
m

e−iωm|τ |

iωm − x
, (5.56)

which has poles on the real axis and can be evaluated by the integral [16]:

∑
m

e−iωm|τ |

iωm − x
= ~β

∮

C′
dΩ
2πi

e−Ω|τ |

e~βΩ − 1
1

Ω− x
(5.57)

along contour C as depicted in Fig.5.4. Since the function 1/(e~βΩ − 1) has simple
poles with residues 1/~β at Ω = i2nπ/~β on the imaginary axis, the function in the
above contour integral converges when |Ω| → ∞. On the other hand, when τ > 0, in
order to make the contour integral converge at |Ω| → ∞, the function is selected to
be:

∑
m

e−iωm|τ |

iωm − x
= ~β

∮

C′
dΩ
2πi

e−Ω|τ |

1− e−~βΩ

1
Ω− x

. (5.58)
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C

C

C ’

C ’

Re Z

Im Z

C ’

C ’

Figure 5.4: The integration contour for the Matsubara summation. The contour C enclosing

imaginary axis can be deformed to the contour C′.

Combining the above two expressions for τ > 0 and τ < 0, we obtain for the sum-
mation I(τ) the following result:

∑
m

e−iωm|τ |

iωm − x
= ~β

∮

C′
dΩ
2πi

1
Ω− x

cosh(~βΩ/2− Ω|τ |)
sinh(~βΩ/2)

. (5.59)

The integral on the arcs (dotted line) of the contour C′ vanishes when the radius of
the contour approaches infinity, and one left with the integral along the real axis.
This can be decomposed into four parts by introducing a real frequency Ω → ω± iε+

(note that care must be taken with the overall minus sign)

− 1
~β

∑
m

e−iωm|τ |

iωm − x
=

∫ ∞

0

dω

2πi

1
ω − x + iε+

cosh(~βω/2− ω|τ |)
sinh(~βω/2)

+
∫ 0

∞

dω

2πi

1
ω − x− iε+

cosh(~βω/2− ω|τ |)
sinh(~βω/2)

+
∫ 0

−∞

dω

2πi

1
ω − x + iε+

cosh(~βω/2− ω|τ |)
sinh(~βω/2)

+
∫ −∞

0

dω

2πi

1
ω − x− iε+

cosh(~βω/2− ω|τ |)
sinh(~βω/2)

. (5.60)
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The integrals above can all be converted into integrations over ω on the half-line
[0, +∞], which only requires a substitution ω → −ω for the third and fourth integra-
tions, i.e.

∑
m

e−iωm|τ |

iωm − x
=− ~β

∫ ∞

0

dω

2πi

[
1

ω − x + iε+
− 1

ω − x− iε+

+
1

ω + x− iε+
− 1

ω + x + iε+

]
cosh(~βω/2− ω|τ |)

sinh(~βω/2)

=~β
∫ ∞

0

dω[δ(ω − x)− δ(ω + x)]
cosh(~βω/2− ω|τ |)

sinh(~βω/2)
, (5.61)

where the following identity has been used:

1
ω ± iε+

= P 1
ω
∓ iπδ(ω). (5.62)
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Summary

Manipulation of electronic charge in various kinds of micro-structures and minia-
ture devices has been studied thoroughly for a very long time. Besides the

charge degrees of freedom, the spin, as a quantum degree of freedom carried by
an electron, has likewise been a subject of scientific research ever since its discov-
ery nearly one-hundred years ago. As a consequence, the ferromagnet, a material
already using for thousands of years, is now understood in modern physics as a
macroscopic condensate of spins.

Research on transport and potential applications involving spins is a new field
that arose rather recently. The discovery of giant-magneto-resistance (GMR) in normal-
metal-ferromagnet hetero-structures in the 1980’s led to substantial scientific atten-
tion and novel technological applications. An excellent example is the hard-disk
drive, which plays vital roles in data storage and our daily lives. More recently still a
novel field named spintronics has emerged.

In the renowned GMR effect, the electrical resistance crucially depends on the
relative orientations of the magnetization directions of two ferromagnets separated
by a normal metal. The physical mechanism behind this is the electron scattering
at spin-sensitive interfaces, i.e. at an interface between a normal metal and a fer-
romagnet, electrons with different spin orientations are scattered differently. As a
reverse effect, polarized spins carried by conduction electrons interact with a mag-
netization, exerting a torque and causing the transfer of angular-momentum. As
a result of angular- momentum conservation, the transferred angular momentum
can give rise to magnetization dynamics. This leads to the so-called spin transfer
torque predicted by Slonczewski and Berger, which prediction has been followed by
substantial experimental testing and further theoretical investigation.



It is well-known that a magnetic field can induce magnetization dynamics, such
as precession or more complicated trajectories. The spin-transfer torque can act
as an alternative mechanism for switching the magnetization in nano-devices with-
out resorting to heavy magnetic fields. The mechanism itself is of scientific inter-
est as well. Developed based on deep insight into electron scattering, the magneto-
electronic circuit theory treats spin transport and spin-transfer torques in nano-structures
in an elegant and concise way.

This thesis is dedicated to the study of magnetization dynamics driven by elec-
trical and spin currents, or spin-transfer torques and related effects. The magneto-
electronic circuit theory is the major tool employed here. In Chapter 1 of this thesis,
we briefly reviewed the current physical understanding of ferromagnetism and im-
portant issues such as spin injection, spin detection, and spin-transfer torques in
nano-structures. The Landauer-Büttiker formalism for electron transport has been
introduced in order to further appreciate the magneto-electronic circuit theory.

In Chapter 2 and 3, a new lateral device called a spin-flip transistor was intro-
duced. We focused on the dc-current-driven magnetization dynamics with differ-
ent source-drain magnetizations. The studies in these two chapters suggested that
the details of the spin-transfer torque must be analysed according to the specific
configuration of a setup. Spin-flip scattering and spin-pumping effects also played
important roles in determining critical switching current. In Chapter 2 we found a
tunable steady-state precession of the base magnetization. While in Chapter 3, a
tunable two-state behavior of the magnetization was found as a result of a different
configuration of source-drain magnetizations.

Another interesting phenomenon associated with magnetization dynamics is so-
called spin pumping: a precessing magnetization (e.g. under ferromagnetic reso-
nance) pumps spin current into the adjacent normal metal, losing angular momen-
tum and at the same time building up a non-equilibrium spin accumulation. In
Chapter 4, we proposed a mechanism to convert the spin signal due to spin pump-
ing to a voltage across the ferromagnet-normal metal interface. To achieve this, we
noticed that a strong exchange field in the ferromagnet allows only the parallel (to
the magnetization direction) component of the back-flow spin current (generated
by a spin accumulation in the normal metal) to penetrate the ferromagnetic layer.
But this penetration leads to spin accumulation inside the ferromagnet. The spin-
flip scattering and the difference in conductivities between electrons with different
spin then create a potential difference across the interface: a dc voltage. The beauti-



ful experiments done by Prof. van Wees’s group of Groningen University confirmed
these predictions.

The damping parameters of magnetization dynamics are important physical quan-
tities, since they are closely related to dissipation in a magnetic system. One of the
dominant effects caused by spin pumping, as noted above, is the enhancement of
the damping parameter in the Landau-Lifshitz-Gilbert (LLG) equation (the equation
of motion of magnetization dynamics), as a result of losing (dissipating) angular mo-
mentum into the adjacent material.

In Chapter 5, we investigated the damping parameter of a thin magnetic film
embedded in a normal metal (host) from a different perspective. The conduction
electrons form a dissipative environment for the magnetization via the s-d exchange
coupling. According to the celebrated Caldeira-Leggett formalism, the dissipation
that is responsible for the damping of the spin dynamics can be obtained by analysing
the non-local-in-time part of an action for the magnetisation dynamics. To do so,
we set up an imaginary-time path integral for the s-d exchange model. By removing
the conduction electron degrees of freedom, we obtained an effective action for the
magnetization.

The dissipation channel is the decay of the magnetization excitations into electron-
hole pairs, and we derived a LLG-like equation for the dynamics. In the case of a
normal-metal host the damping is captured by a single parameter, but when the
host becomes ferromagnetic, the damping parameters are described by a tensor-like
quantity in the LLG equation. Future studies should address spin-wave excitations
in the ferromagnetic host, since in the spirit of the Caldeira-Leggett formalism, in
such situations magnons behave as an environment that give rise to more interest-
ing magnetization dynamics.





Samenvatting

Manipulatie van elektrische lading in verschillende soorten microstructuren en
geminiaturiseerde apparatuur is al geruime tijd uitgebreid bestudeerd. Naast

de ladingsvrijheidsgraden, is de spin, als kwantumvrijheidsgraad, evenzo het on-
derwerp van wetenschappelijk onderzoek geweest sinds de ontdekking ervan bi-
jna honderd jaar geleden. Als gevolg wordt de ferromagneet, een materiaal wat al
duizenden jaren in gebruik is door de mensheid, in de moderne fysica inmiddels
begrepen als een macroscopisch condensaat van spin.

Onderzoek naar transport en mogelijke toepassingen van spin, integendeel, is
een onderzoeksgebied waar men pas recent aan is begonnen. De ontdekking van
giant-magneto-resistance (GMR) in metaal-ferromagneet heterostructuren in de jaren
’80 leidde tot aanzienlijke wetenschappelijke aandacht en ingenieuze technologis-
che toepassingen. Een uitstekend voorbeeld hiervan is de harde schijf, welke een
vitale rol speelt in zowel de technologie van data-opslag, als in ons dagelijks leven.
Inmiddels is er zelfs een nog nieuwer onderzoeksgebied bijgekomen: de spintronica.

In het befaamde GMR effect hangt de elektrische weerstand cruciaal af van de
relatieve orintaties van de magnetisatie-richtingen van twee ferromagneten die van
elkaar gescheiden zijn door een stuk normaal metaal. Het achterliggend fysisch
mechanisme is de verstrooiing van elektronen aan spingevoelige grensvlakken, d.w.z.
doordat aan een grensvlak tussen een normaal metaal en een ferromagneet elek-
tronen met verschillende spinrichting anders verstrooid worden. Het omgekeerde
effect bestaat ook: gepolariseerde spins van geleidingselektronen staan in wisselw-
erking met de magnetisatie, waardoor ze een moment uitoefenen en zorgen voor
de overdracht van impulsmoment. Als gevolg van het behoud van impulsmoment
kan deze overdracht voor magnetisatie-dynamica zorgen. Dit leidt tot de zogeheten



spin-transfer torque voorspeld door Slonczewski en Berger.

Het is alom bekend dat een magnetisch veld magnetisatie-dynamica kan op-
wekken, zoals precessie of ingewikkeldere trajectorin van de magnetisatie. De spin-
transfer torque kan daardoor gebruikt worden als een alternatief mechanisme voor
het schakelen van de magnetisatie in nanoapparatuur, zonder tussenkomst van sterke
magnetische velden. Het mechanisme zelf is ook wetenschappelijk interessant. On-
twikkeld op basis van diepe inzichten in elektronenverstrooiing, zorgt de magneto-
electronische circuit theorie voor een elegante en beknopte beschrijving van spin-
transport en spin-transfer torques.

Dit proefschrift is gewijd aan het bestuderen van magnetisatie-dynamica opgewekt
door elektrische- en spinstromen, ofwel spin-transfer torques en gerelateerde ver-
schijnselen. De magneto-electronische circuit theorie is het voornaamste theoretis-
che gereedschap wat hierin gebruikt is. In hoofdstuk 1 hebben wij een kort overzicht
gegeven van het gangbare fysische model van ferromagnetisme en belangrijke on-
derwerpen zoals spininjectie, spindetectie en spin-transfer torques in nanostruc-
turen. et Landauer-Bttiker formalisme voor elektronentransport is gentroduceerd
om hiermee de magneto-elektronische circuit theorie op te kunnen bouwen.

In hoofdstuk 2 en 3 is een nieuwe laterale structuur gentroduceerd, een zoge-
heten spin-flip transistor. We hebben gekeken naar magnetisatie-dynamica aange-
dreven door een gelijkstroom, bij verschillende magnetisaties van plus- en minpool.
De beschouwingen van deze twee hoofdstukken suggereerden dat de details van
de spin-transfer torques geanalyseerd moeten worden aan de hand van de speci-
fieke geometrie van een (experimentele) opstelling. Spin-flip verstrooiing en spin-
pump verschijnselen speelden ook een belangrijke rol in het bepalen van de kritis-
che schakelstroom. In hoofdstuk II vonden we een stembare stationaire precessie
van de basis-magnetisatie, terwijl in hoofdstuk III een stembare 2-toestandsgedrag
van de magnetisatie werd gevonden, als gevolg van een andere configuratie van de
magnetisaties van plus- en minpool.

Een ander interessant verschijnsel dat met magnetisatie-dynamica te maken heeft
is het zogeheten ’spin-pumping:’ een tollende magnetisatie (bijvoorbeeld onder fer-
romagnetische resonantie) pompt een spinstroom in het aangrenzende normale
metaal, en verliest zodoende impulsmoment tegelijk het een niet-evenwicht spinac-
cumulatie opbouwt. In hoofdstuk 4 stelden wij een elektrische meting voor om het
spinsignaal ten gevolge van spin-pumping om te zetten in een spanning over het
metaal-ferromagneet grensvlak. Om dit te bereiken, merkten we op dat een sterke



exchange veld in de ferromagneet ervoor zou zorgen dat alleen de component van
de back-flow spinstroom (opgewekt door spinaccumulatie in het normale metaal)
die parallel staat aan de magnetisatierichting de ferromagneet in kan dringen. Dit
binnendringen zorgt op zijn beurt weer voor een spinaccumulatie in de ferromag-
netische laag. De spin-flip verstrooiing en het verschil in conductiviteit tussen elek-
tronen met verschillende spins veroorzaken vervolgens een potentiaalverschil over
het grensvlak: een gelijkspanning. De bijzonder mooie experimenten uitgevoerd in
de groep van professor van Wees aan de Universiteit Groningen bevestigden deze
voorspellingen.

De dempingparameters van de magnetisatie-dynamica zijn belangrijke fysische
grootheden, aangezien zij nauw samenhangen met de dissipatie in een magnetisch
systeem. Een van de dominante effecten van spin-pumping is het vergroten van
de dempingparameter in de Landau-Lifshitz-Gilbert (LLG) vergelijking (de beweg-
ingsvergelijking van de magnetisatie-dynamica), als gevolg van het verlies van im-
pulsmoment aan het aangrenzende materiaal.

In hoofdstuk 5 hebben we vanuit een ander perspectief onderzoek gedaan naar
de dempingparameter van een dunne magnetische film, ingebed in een stuk nor-
maal metaal. De geleidingselektronen vormen een dissipatieve omgeving voor de
magnetisatie middels de s-d exchange koppeling. Volgens het welbekende Caldeira-
Leggett formalisme kan de dissipatie die verantwoordelijk is voor de demping van de
spindynamica verkregen worden uit een analyse van het niet-lokaal-in-tijd zijnde
deel van een action voor de magnetisatie-dynamica. Om dit te doen hebben wij een
padintegraal in imaginaire tijd geconstrueerd voor het s-d exchange model. Door de
vrijheidsgraden van de geleidingselektronen te verwijderen kwamen wij vervolgens
uit op een effectieve action voor de magnetisatie.

Dit dissipatie-kanaal is het verval van magnetisatie-excitaties in electron-gat paren,
en wij hebben een LLG-achtige vergelijking voor de dynamica afgeleid. In het geval
van een normaal metaal wordt de demping gevat in n parameter, maar wanneer
dit vervangen wordt door een ferromagneet, blijken de dempingparameters door
een tensor-achtige grootheid in de LLG vergelijking beschreven te worden. Toekom-
stig onderzoek zou zich kunnen richten op spingolf excitaties in de ferromagneet,
aangezien in de geest van het Caldeira-Leggett formalisme, magnonen in dergelijke
situaties een omgeving vormen die bijzonder interessante magnetisatie-dynamica
kan opleveren.
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