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ABSTRACT

The development of information technologies and the advent of extensive digital data since the 21 century have
enabled more profound explorations and interpretations of the relationship between humans and the urban
environment. This study systematically reviews the application of emerging data-driven methods in measuring
human-environment interaction in urban spaces. The synthesis of 242 studies reveals a diversified application
landscape of data-driven methods, employing street view imagery data, social media data, positioning data,
physiological data, and video data, each carrying distinct information and addressing various research inquiries.
We also review the new insights generated by their application, which offered evidence for analyzing and
evaluating a wide range of established frameworks and classic theories concerning human perceptual, cognitive,
emotional, and behavioral aspects in urban spaces. Based on these findings, we describe the trends, advance-
ments, and limitations of this rising research field, and make recommendations for future researchers adopting

data-driven methods to understand relationships between humans and environments in urban spaces.

1. Introduction

As global urbanization continues to reshape human living patterns,
understanding the interaction between humans and the urban envi-
ronment offers significant potential for advancing evidence-based
planning and design practices that support more livable future cities
(Karakas & Yildiz, 2020). Urban spaces—including streets, parks, and
squares—function as essential venues for this interaction, enabling
residents’ movements, relaxation, and social participation (Carr et al.,
1992). Creating high-quality urban spaces through such understanding
has become a central agenda for sustainable urban development (UN-
Habitat, 2017).

Since the mid-20th century, growing research has recognized that
urban spatial conditions shape human perception and experience,
thereby influencing emotional states and generating distinct behavioral
patterns. This has led to the development of many ground-breaking
theories that extensively examined and described human-environment
interaction processes. Theoretical contributions from Cullen (1961),

Alexander et al. (1977), and Berlyne (1974) elucidated the connections
between environmental perception and physical urban characteristics.
Lynch (1960) introduced the concept of urban legibility, extending
human understanding of cities to the cognitive dimension. Kaplan and
Kaplan (1989a, 1989b) and Ulrich (1984), employing psychological and
health studies, empirically validated the positive cognitive and well-
being impacts of urban nature. Pioneering observational approaches,
Jacobs (1961), Whyte (1980), and Gehl (1987) identified behavioral
patterns and proposed principles for vibrant spaces. These seminal
theories have had a lasting impact on human-environment interaction
research and inspired strategies for designing urban spaces that posi-
tively impact human experience.

Research in this field has traditionally relied on established methods
such as surveys, observations, interviews, and censuses. The recent rapid
advancements in information technologies and interdisciplinary in-
fluences have provided studies with broader data types and analytical
capabilities, allowing for more multidimensional and fine-grained cap-
ture of human-environment interaction. This represents an emerging

* Corresponding author at: Department of Urbanism, Faculty of Architecture & the Built Environment, Delft University of Technology, Julianalaan 132, 2628BL

Delft, the Netherlands.
E-mail address: Z.W.Wang@tudelft.nl (Z. Wang).

https://doi.org/10.1016/j.cities.2025.106346

Received 25 October 2024; Received in revised form 23 June 2025; Accepted 1 August 2025

Available online 20 August 2025

0264-2751/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:Z.W.Wang@tudelft.nl
www.sciencedirect.com/science/journal/02642751
https://www.elsevier.com/locate/cities
https://doi.org/10.1016/j.cities.2025.106346
https://doi.org/10.1016/j.cities.2025.106346
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cities.2025.106346&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Z. Wang et al.

data-driven research trend that brings new possibilities to the human-
environment interaction field (Batty, 2013a; Miller & Goodchild,
2015). Unlike conventional methods, emerging data-driven approaches
rely on digital systems and advanced sensors to gather and analyze
large-scale, diverse datasets that directly reflect human-environment
interaction processes (Goodchild, 2007; Kitchin, 2014). These datasets
range from what some call “big data”—such as social media and urban
sensor data—to other cutting-edge digital information—such as inter-
disciplinary physiological measurements—offering unprecedented
research perspectives and dimensions (Batty, 2013b). Coupled with
enhanced computational power, software capabilities (e.g., Geographic
Information System), and artificial intelligence methods (e.g., machine
learning), these approaches also often demonstrate enhanced efficiency
and scalability, overcoming cost and extrapolability limitations inherent
in traditional methods (Marshall, 2012; Ohly et al., 2016). This trend has
in recent years stimulated innovative projects including the PEACH
(Lachowycz et al., 2012) in the UK and the Place Pulse (Salesses et al.,
2013) in the U.S. that developed data-driven methods to quantitatively
observe human responses to urban environments, offering new insights
and profound impact.

The growing research interest and surge in publications in this area
underscore the need for a systematic review. Existing reviews have
typically focused on other domains such as urban auditing (Calabrese
et al., 2015), tourism (Li et al., 2018), and management (Wilkins et al.,
2021), and have often covered only specific data types (Biljecki & Ito,
2021; Ghermandi & Sinclair, 2019; Karakas & Yildiz, 2020; Kiefer et al.,
2017). These reviews are not fully grounded in the human-environment
interaction domain that this review focuses on, of which a more
comprehensive picture remains lacking. Furthermore, reviews of how
emerging data-driven approaches contribute to the knowledge base in
this area are also notably absent. The characteristics of emerging data
employed in human-environment interaction research as well as what
and how they can contribute to investigations remain unclear, poten-
tially obscuring broader prospects and hindering further research efforts
in a technically complex and rapidly evolving domain.

This paper addresses the research gap by conducting a systematic
review of the application of emerging data-driven approaches in human-
environment interaction research in urban spaces. Especially, we adopt
a disciplinary perspective and aim to address three questions:

1) What are the key characteristics of these new data-driven studies
compared to traditional research in this field?

2) What types of data are applied, and how are they utilized to support
research on human-environment interaction?

3) What insights are generated from data application, and how have
they advanced foundational theories in the field?

The paper is structured as follows: Section 2 covers the methodology,
Section 3 presents quantitative findings, and Sections 4 and 5 respec-
tively review new data types and evidence. Section 6 discusses emerging
trends, challenges, and future research opportunities. Section 7 con-
cludes the paper.

2. Methods

This review adopts the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) protocol (Page et al., 2021) as the
methodological approach, and is oriented along previous systematic
review exercises in this field (Ghermandi & Sinclair, 2019; Wilkins et al.,
2021).

2.1. Framework for human-environment interaction
Human-environment interaction can be studied from multiple per-

spectives (e.g., Markevych et al., 2017). This study adapted the
comprehensive framework proposed by Nasar (2014) to conceptualize it
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through four core dimensions: (1) Perception refers to direct human
sensory reactions to and preferences for environments, serving as the
starting point of interaction. (2) Cognition involves how people cate-
gorize, remember, and represent urban experiences. (3) Emotion and
well-being are influenced by urban stimuli, eliciting various affective
responses. (4) Behavior is ultimately shaped by the combined influence
of the above processes along with environmental characteristics.

Nasar’s framework was employed because of its wide recognition
and its theoretically grounded yet practical lens for categorizing the
diverse types of human responses, which aligns with our research aim of
examining emerging data-driven approach applications across these
aspects. Admittedly, due to the complexity of the field and potential
controversies arising from different disciplinary perspectives, we
acknowledge that this framework may not encompass all dimensions.
Our findings can provide insights for future scholars applying the
knowledge in broader research contexts.

2.2. Search strategy

This research defines emerging data-driven approaches as those
employing novel data sources that directly capture human-environment
interaction processes. Specifically, they typically exhibit three distinc-
tive characteristics: First, the employed data or digital methods directly
reflect human perceptual, cognitive, emotional, or behavioral responses
to urban spaces. Second, the data types represent recent innovations,
particularly those that, according to scholarly consensus, have been
widely adopted only since the 21% century (Kitchin, 2014). Third, they
involve new data collection, processing, and analytical paradigms that
extend beyond conventional descriptive or analytical methods.

Given that many studies employ multiple data sources, we include
research that combines emerging data with traditional data sources,
while excluding studies that rely exclusively on conventional data
collected through observation, survey, census, or GIS methodologies.

Accordingly, four categories of search terms were defined: data-
driven (e.g., data, dataset, technology), human-environment interac-
tion (e.g., perception, cognition, emotion, behavior), human (e.g., peo-
ple, individual, resident), and urban space (e.g., urban environment,
built environment, urban space). The complete search terms are pro-
vided in Appendix A. Given the multidisciplinary nature of this topic,
broad search terms were used to achieve high sensitivity and collect
more relevant articles. For instance, we used both terms directly tied to
our focus like “data*” and more general terms like “technolog*”,
“sensor*”, and “device*” to account for other expressions of data-driven
research, aiming to ensure a comprehensive search. Following PRISMA
protocol, records were also identified from reference lists.

Scopus was selected as our literature search source due to its
extensive coverage as one of the largest peer-reviewed literature data-
bases. This approach aligns with previous systematic reviews in urban
research (e.g., Biljecki & Ito, 2021).

2.3. Inclusion criteria

Articles in English and published in peer-reviewed journals or con-
ference proceedings with full-text availability were included in the
identification phase. As the preliminary search returned many irrelevant
records, the search was further refined by limiting the subject area (e.g.,
environmental science, social sciences) and keyword (e.g., urban plan-
ning, built environment), and restricting publications to those from
2000 to 2023, considering the nature of emerging data.

Subsequently, all identified records from the initial pool were
screened and selected based on the following criteria:

(1) Only papers focused on human-environment interaction within
our theoretical framework were included, papers centered solely
on urban (e.g., management) or human aspects (e.g., biology)
were excluded.
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(2) Only papers employing emerging data-driven approaches that 2 40
directly capture human-environment interaction processes were g gg
included, papers using only conventional data (e.g., census) or S g
digital tools without directly reflecting human-environment é 20
interaction (e.g., geographic data) were excluded. 2 18 ]
(3) Only papers situated in urban spaces were included, papers of 5
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Fig. 2. Share of papers by publication time.
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Fig. 1. Flow diagram for literature selection.
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combined contributed to over 40 % of the articles, followed by the UK (n
= 20), Hong Kong (n = 15), Japan (n = 13), and the Netherlands (n =
11) (Fig. 3). Most studies are conducted in the Global North, with the
Global South remaining underrepresented.

Nearly half of the articles (n = 112) address human behavior in urban
spaces, followed by emotion and well-being (n = 64), perception (n =
55), and lastly, cognition (n = 11). While behavioral aspects have been
the main focus in the early stages, in recent years there has been a
diversification of research attention (Fig. 4).

Streets are the most predominant urban space investigated, ac-
counting for nearly half of the articles (n = 108), followed by parks (n =
55). Among the other urban space typologies, waterfronts (n = 7) and
squares (n = 7) are relatively sparsely researched (Fig. 5).

VOSviewer (van Eck & Waltman, 2010) was employed to conduct co-
occurrence analysis of the keywords of the literature for analyzing
research themes, and identified four main clusters (Fig. 6). By examining
each cluster and its associated articles, we found that these clusters
largely align with different data-driven approaches, and thus catego-
rized the themes of each cluster and their corresponding data type as
follows:

(1) Cluster #1 includes studies applying street view imagery data,
featuring keywords like “google street view”, “walking
behavior”, and “perception”.

(2) Cluster #2 includes studies applying social media data, featuring
keywords like “social media”, “sentiment analysis”, and “park
visitation”.

(3) Cluster #3 includes studies applying positioning data, featuring
keywords like “gps”, “tracking”, and “mental health”.

(4) Cluster #4 includes studies applying physiological data, featuring
keywords like “heart rate”, “mood”, and “stress”.

Beyond these common themes, we also observed the adoption of
other emerging data in the literature. Notably, video data, first utilized
as early as 2005, has emerged as another important data type and is thus
grouped as a major data-driven approach in this review. Other emerging
data types with more limited application include accelerometer data,
wearable camera data, and unmanned aerial vehicle sensing data
(Fig. 7).

The relationship between data types, urban space typologies, and
human-environment interaction processes of the collected articles was
further analyzed (Fig. 8). Street view data-driven studies predominantly
focus on streets, reflecting the unique strengths of this data type, while
their research themes regarding human-environment interaction are
more diverse. Social media data are frequently employed in park studies,
while also showing a wide application across different human-
environment interaction processes. Physiological data are often used
to support street experiments or comparative studies between streets

40
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and greenspaces, and are notably applied to other human-environment
interaction processes except behavior. In contrast, positioning and video
data are almost exclusively utilized in behavioral research, reflecting
their common role as tracking data.

3.2. Analytical framework

We developed a framework with three dimensions to organize the
literature: the employed emerging data type, the researched human-
environment interaction processes, and the relationship between find-
ings and established theories (Fig. 9).

First, drawing from the clustered research themes and existing
classifications (Huang, Yao, et al., 2021; Li et al., 2018; van der Spek,
2008), studies were categorized into six categories based on the data
employed (Section 4): street view imagery data, social media data,
positioning data, physiological data, video data, and other data, with the
first five types being the focus and further subdivided based on their
characteristics (Fig. 10).

Second, studies were grouped based on human-environment inter-
action processes—perception, cognition, emotion and well-being, and
behavior—and their findings were classified depending on their com-
parison to established theories into four types (Section 5): (1) “sup-
portive”, when confirming established theories (though studies may not
address all aspects of the original theories); (2) “mixed”, when showing
both supportive and contradictory or not statistically significant evi-
dence; (3) “contrary”, when not generating any supportive evidence or
providing clear evidence against established theories; and (4) “non-
responsive”, when studies neither cited established theories nor pro-
vided clear responses (Fig. 11).

4. Data in reviewed studies
4.1. Street view imagery data

Street view imagery data allow for directly reflecting perceived
urban landscape through eye-level panoramic street photos. Articles
applying this data emerged around 2013 and account for around one-
third of the literature (n = 74).

4.1.1. Technical characteristics

Street view imagery is usually obtained from online map providers,
especially Google Street View (Dubey et al., 2016; Lu, 2019; Salesses
et al., 2013), Baidu (Chen, Lu, et al., 2022), and Tencent (Helbich et al.,
2019), with some studies also obtaining them from databases (e.g.,
OpenStreetMap, Mapillary), dashcams, or custom-collection (Biljecki &
Ito, 2021). Images from map providers are typically collected by vehicle-
mounted cameras and subsequently standardized into 360° views (Lu
et al., 2018).
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4.1.2. Analytic technique

Images from map providers are commonly acquired through web
interfaces or application programming interfaces (APIs).

Street view images can either be applied to directly reflect or
approximate public’s perceived urban conditions (Lu et al., 2018; Wang,
Lu, et al., 2019), or employed as stimuli for participants to remotely
experience and navigate realistic streetscapes in experiments (Dubey
etal., 2016; Naik et al., 2014; Quercia et al., 2014; Salesses et al., 2013).
Both approaches increasingly involve further processing of images to
extract eye-level spatial-visual information, typically through low-level
feature (e.g., color and texture) calculation (Yang, Ao, et al., 2021) or
deep-learning based high-level information (e.g., semantic information)
extraction (Ki & Lee, 2021; Yin & Wang, 2016; Zhang et al., 2018)
(Fig. 12).

4.1.3. Research focus

Research employing street view data can be categorized into two
main groups. Early works often adopt the second approach, employing
street images as readily available material for perception experiments (n
= 22). Typical processes involve bulk downloading street images and
asking participants to rate each image’s perceptual attributes, such as
beauty (Quercia et al., 2014), safety (Salesses et al., 2013), and
uniqueness (Dubey et al., 2016). For instance, the Place Pulse project
developed a web interface for pairwise comparisons of street images
regarding six urban spatial qualities, gathering evaluations from over
80,000 participants on 110,000 images worldwide (Dubey et al., 2016).

Other studies, typically combining street view imagery with other
approaches like census and questionnaire, utilize these images to
approximate and audit perceived urban qualities, often assessing their
association with residents’ behavior (n = 33) and health outcomes (n =
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16). A recurring focus is on exploring the relationship between urban
greenness levels calculated from street images and residents’ well-being
and health-promoting behavior, such as positive mood (Chen, Li, et al.,
2022), depression (Helbich et al., 2019), health (Wang, Liu, et al., 2019),
and physical activity (Lu et al., 2018; Yang et al., 2022; Yang, Ao, et al.,
2021). Other urban space qualities calculated include walkability
(Wang, Lu, et al., 2019), street design features (Koo et al., 2021), sky
exposure (Nagata et al., 2020), and vehicular traffic (Villeneuve et al.,

2018).

4.2. Social media data

Social media services have led to rich user-generated content pub-
lished online (Goodchild, 2007), which is utilized in this group of arti-
cles (n = 50) to gain first-person insights into users’ experience and
interaction in urban spaces.
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4.2.1. Technical characteristics

Three major types of social media data have been identified. Text-
based data (n = 21), typically retrieved from X (formerly Twitter),
Facebook, and Tripadvisor, encompass information on user impressions
(Song et al., 2021), feelings (Plunz et al., 2019; Roberts et al., 2019),
viewpoints (Wan et al., 2021), and evaluations (Liu & Xiao, 2021) of
urban environment. Image-based data (n = 13), typically retrieved from
Instagram and Flickr, may contain visual information reflecting users’
states (Zhu et al., 2021) and interest (Heikinheimo et al., 2020; Kothencz
et al.,, 2017; Richards & Friess, 2015). Metadata (n = 14) refer to
geographical and temporal information from online platforms, such as
social media posts’ timestamps and geolocations, online check-in data,
and location-based services, and can reflect user behavioral traces and
crowd dynamics (Hamstead et al., 2018; Hu et al., 2015; Volenec et al.,
2021).

4.2.2. Analytic technique

Most articles in this category collect data through social media APIs
(Huang, Obracht-Prondzynska, et al., 2021; Roberts et al., 2019), a
convenient service but may face limitations related to cost and access
limits (Ghermandi & Sinclair, 2019). Other channels include data bro-
kers (Chen et al., 2018; Li, Li, et al., 2023), manual searches (Sim et al.,

2020), and scraping (Zhu et al., 2021). Pre-processing is often needed for
raw data, such as removing noise (Tan & Guan, 2021), retaining perti-
nent information (Kovacs-Gyori et al.,, 2018), and resolving over-
representation issues (Huang, Obracht-Prondzynska, et al., 2021).

Several analytical techniques for social media data have been iden-
tified. Descriptive insights are extracted using manual coding
(Heikinheimo et al., 2020) and content analysis (Wan et al., 2021). More
advanced techniques for text include topic modeling for identifying
latent themes (Song et al., 2021) and sentiment analysis for quantifying
emotions (Plunz et al., 2019). Computer vision-based object and se-
mantic analyses for images are also applied (Song et al., 2020). Lastly,
geographic metadata usually require spatial analysis, such as DBSCAN
(Hu et al., 2015) and kernel density estimation (Huang, Obracht-
Prondzynska, et al., 2021) (Fig. 13).

4.2.3. Research focus

A key theme of articles in this category is perception (n = 19),
grounded in the assumption that user-generated content reflects peo-
ple’s interests and preferences. For example, users’ motivation to share
photos is linked to enjoyment of environments (Richards & Friess, 2015;
Wilkins et al., 2022), and studies have used geo-tagged image density to
determine users’ greenspace preference (Tieskens et al., 2018). Image
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Fig. 13. Technical characteristics of social media data.

content is considered to reflect attention and interest (Liu & Xiao, 2021),
and thus analyzed to infer public’s aesthetic values (Kothencz et al.,
2017) and sense of place (Wan et al., 2021).

Several other themes are also notable. Fifteen articles focus on
behavior analysis, typically employing post quantities and distributions
as indicators for urban space visitation (Donahue et al., 2018; Hamstead
et al., 2018) and usage intensity (Grzyb & Kulczyk, 2023). Identification
of specific behavior patterns is also possible (Roberts, 2017; Song et al.,
2022). Another 11 articles, using sentiment lexicons (Plunz et al., 2019;
Roberts et al., 2019) and, less commonly, facial recognition (Zhu et al.,
2021), analyze emotions. Finally, 6 publications examine the presence
of various orientation elements in online posts to study spatial cognition
(Dunkel, 2015; Huang, Obracht-Prondzynska, et al., 2021).

4.3. Positioning data

Positioning data (n = 47), the earliest applied emerging data type
identified in the literature, are employed to track human movements
across extensive spatial and temporal scales (Nijhuis, 2008).

4.3.1. Technical characteristics

Three types of positioning data have been identified. Global Posi-
tioning System (GPS), the most widely used technology in the articles (n
= 35), provides location data through satellite signals typically using
portable devices and smartphones (van der Spek, 2008). It generally
offers sufficient precision (7 to 13 m) and sampling rates (1 to 10 Hz)
suitable for tracking pedestrian-level activities (Shoval & Isaacson,
2007).

Mobile phone network data (n = 6) are collected through radio
waves from telecommunication base stations by operators (Girardin
et al., 2008). Typically coming in the form of datasets, they have larger
spatiotemporal coverage but lower accuracy (100 to 500 m) and sam-
pling frequency (De Nadai et al., 2016; Yue et al., 2017).

Beacon log data (n = 5) are collected through Wi-Fi and Bluetooth,
available on most smartphones, by fixed access points (Bonne et al.,
2013; Versichele et al., 2012). These technologies theoretically offer
detailed location data within small ranges, but positioning and tracking
remain challenging due to operational constraints (Hou et al., 2023).

4.3.2. Analytic technique

Two positioning data collection methods have been identified. Early
studies typically rely on GPS trackers (van der Spek et al., 2009) to
monitor individuals’ locations, which requires participant cooperation
but can offer detailed location information and integrate other in-
struments (e.g., accelerometers) (Marquet et al., 2022; Rundle et al.,
2016). Recently, available positioning datasets from third-party apps (e.
g., fitness apps) (Salazar Miranda et al., 2021; Sevtsuk et al., 2021) or
telecommunication operators (Liu et al., 2023; Yue et al., 2017) are
increasingly utilized, which offer larger samples but have limited pre-
cision due to privacy problems (Horanont et al., 2013).

Raw positioning data could feature noise, outliers, and signal losses
(Shoval & Isaacson, 2007), requiring pre-processing techniques like map
matching to correct errors and offsets (Korpilo et al., 2017; Sevtsuk
et al., 2021) or filtering to clean irreparable errors (Meijles et al., 2014).
Processed data allow analysis of user counts (Liu et al., 2023) and lo-
cations (Almanza et al., 2012; Rout & Galpern, 2022), and support
calculations like route choice (Sarjala, 2019) and activity patterns
(Santos et al., 2016) (Fig. 14).

4.3.3. Research focus

Most literature in this group (n = 40) address human behaviors.
Studies have applied mobile phone network data to investigate popu-
lation distribution (Girardin et al., 2008), handed out GPS trackers to
monitor tourists’ movement (Shoval, 2008; van der Spek et al., 2009),
and set up Bluetooth devices to count pedestrian flow (Versichele et al.,
2012). Scholars also applied positioning data in walking (Salazar
Miranda et al., 2021; Vich et al., 2019) and physical activity (Andersen
et al., 2015; Rundle et al., 2016) research.

Seven articles also explored emotional aspects by integrating expe-
rience sampling method (ESM) into special GPS tracking apps, which
allow participants to report moods in different urban environments in
real-time (Doherty et al., 2014; Glasgow et al., 2019; Shoval et al.,
2018).

4.4. Physiological data

This group of articles (n = 44) employs biometric equipment,
enabled by advancements in neuroscience and bioinformatics, to collect
physiological data reflecting human responses to urban spaces.

4.4.1. Technical characteristics

Three categories of human physiological data have been utilized in
the articles. Autonomic nervous system measurement is the predomi-
nant approach (n = 19), which monitors unconscious bodily functions
including cardiac activity, electrodermal activity (EDA), and muscular
reactions triggered by environmental exposure (Stigsdotter et al., 2017).
For example, stress events may affect heart rate and skin conductance,
and can be measured with electrocardiography and EDA sensors
(Chrisinger & King, 2018; Stigsdotter et al., 2017; Xiang et al., 2021).

Another 8 studies measure central nervous system, specifically the
brain. The activation of brain neurons causes local electrical currents
and different extracellular potentials in cortex regions (Karandinou &
Turner, 2017), which can be measured with Electroencephalogram
(EEG) devices and offer insights into brain activities (Olszewska-Guizzo
et al., 2020).

Lastly, 11 studies apply eye-tracking to measure human gaze be-
haviors and visual patterns, which, given human spatial information is
mainly acquired visually (Kiefer et al., 2017), are considered to reflect
individuals’ perception and cognition of their surrounding environment
(Simpson et al., 2019; Zhou et al., 2023).
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4.4.2. Analytic technique

All articles in this category involve laboratory or field experiments in
which participants are exposed to environmental stimuli while sensors
collect physiological data.

Raw data on central and autonomic nervous systems are typically
recorded as electrical signals, and, susceptible to noise, often require
pre-processing to remove contamination (Mavros et al., 2022). Complex
signals from EEG are commonly further transformed, such as through
Fourier transform, for direct analysis (Olszewska-Guizzo et al., 2020).

Eye-tracking data’s processing and analysis focus on three attributes
(Kiefer et al., 2017). Fixation, calculated through fixation counts (Emo,
2014) and duration (Liu et al., 2021), is associated with attention
engagement. Eye movement, calculated through saccade and scanpath
(Ma et al., 2023), reflects attention directions and the amount of pro-
cessed information. Finally, other measures such as pupil diameter and
blink frequency (Zhou et al., 2023) can reflect individuals’ cognitive
load and stress responses (Fig. 15).

4.4.3. Research focus

This group of papers reveals three main themes. Most studies (n =
28) apply physiological measures, considered a more objective option to
conventional self-reports, to explore human emotion aspects
(Olszewska-Guizzo et al., 2020). Key emotions and mental states
measured include stress (Resch et al., 2020), arousal (Xiang et al., 2021),
restoration (Song et al., 2013; Song et al., 2015), and excitement (Neale
et al., 2017), with particular attention on natural elements’ effects
(Aspinall et al., 2015; Tilley et al., 2017).

Twelve studies also employed certain physiological data to infer
people’s perceptions and preferences. For instance, Hollander and Foster
(2016) utilized participants’ brain meditation and attention states to
reflect street design qualities. Several studies also applied eye-tracking
data to understand users’ attention (Liu et al., 2021; Zhang, 2023).

We also identified 3 studies addressing cognition and 1 addressing
behavior, where physiological data are applied to offer insights into the

neural and mental basis of human-environment interaction processes
like wayfinding (Karandinou & Turner, 2017).

4.5. Video data

Lastly, we noted 16 articles that leverage video data, often incor-
porating computer vision processing techniques, to observe human be-
haviors in urban spaces.

4.5.1. Technical characteristics

Video data analytics is viewed as the digital transformation of
traditional time-lapse behavior research (Schlickman, 2020). Most
identified studies employ cameras (Li et al., 2022) or thermal sensors
(Nielsen et al., 2014) to continuously monitor an urban space, with
video durations ranging from minutes (Niu et al., 2022), hours
(Schlickman, 2020), to several weeks (Liang et al., 2020). Recently,
online webcam footage has also been explored as an available video data
source (de Montigny et al., 2012).

4.5.2. Analytic technique

Automated and quantitative analysis of video data through computer
vision methods is a notable recent advancement in this group (Yan &
Forsyth, 2005). Key steps involve detecting and tracking human figures
from video frames via object detection algorithms (Li, Yabuki, &
Fukuda, 2023), georeferencing positions to geographic coordinates and
correcting perspective distortion (Liang et al., 2020), and codifying data
into spatial grids for analysis (Ceccarelli et al., 2023) (Fig. 16).

4.5.3. Research focus

All identified literature in this category employs videos to analyze
behavior. Studies calculated user counts (de Montigny et al., 2012),
positions (Massaro et al., 2021), trajectories (Nielsen et al., 2014),
moving speeds (Liang et al., 2020), and behavioral types (Li et al., 2022)
through video data and explored their association with spatial
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configuration (Ceccarelli et al., 2023), landscape design (Schlickman,
2020), and street furniture (Sanchez-Vaquerizo & Llach, 2019). Recent
research has extended to the identification of social interaction (Loo &
Fan, 2023), providing indications for design qualities (Niu et al., 2022).

5. New evidence of reviewed studies

Section 5 reviews the insights derived from emerging data-driven
approaches and their contributions to existing theories on human-
environment interaction in urban spaces, structured by the human-
environment interaction processes covered and the responses to exist-
ing theories. Our findings indicate that 58 % of the studies (n = 139)
drew on existing frameworks, with 42 % of the studies (n = 102)
generating supportive evidence, 13 % showing mixed results (n = 32),
and 2 % presenting contradictory findings (n = 5).

5.1. Perception

Human perceptions have been addressed in 55 studies. Twenty-eight
studies mainly focused on general urban spaces, with 16 citing estab-
lished theories, and 13 yielding supporting evidence. Notable advances
include the use of precise biometric measures to validate classic pref-
erence patterns, such as eye-tracking experiments linking active street
edges with people’s increased visual attention (Simpson et al., 2019)
and EEG evidence linking pedestrian-oriented designs with increased
measured interest (Hollander & Foster, 2016). Previously-unavailable
large datasets also enabled validations of known preference patterns
(e.g., for visual enclosure) in broader contexts (Harvey et al., 2015;
Kruse et al., 2021; Quercia et al., 2014). Wilson and Kelling’s (1982)
Broken Window Theory and Jacobs’ (1961) “eyes on the street” were
also corroborated by street view-based safety perception research (Kang
etal., 2023; Li et al., 2015; Xu et al., 2023; Zhang et al., 2021). However,
3 studies delivered mixed results partially challenging established
preference patterns for certain urban spatial elements (Rossetti et al.,
2019; Verma et al., 2020; Zhang et al., 2018). It is important to note that
differing definitions and calculations may contribute to variations in
findings (Zhang et al., 2018).

Another 27 studies mainly covered greenspaces (parks, green spaces,
etc.), with 12 addressing established theories and 10 yielding supportive
evidence. Social media analysis validated vegetation (Liu & Xiao, 2021)
rather than artificial elements (Kothencz et al., 2017) as a key predictor
of satisfaction, with preferences potentially differing among visitor
groups (Huai et al., 2022; Song et al., 2020). Visual complexity (Kaplan
& Kaplan, 1989b) was also proved preferable (Liu et al., 2021). Jacobs’
(1961) theory on safety perception was endorsed as well (Zhou et al.,
2022), as eye-tracking evidence linked visual obstruction in parks with
negative aesthetic evaluations (Ma et al., 2023). However, Wan et al.’s
(2021) study in Hong Kong parks partially challenged Herzog’s (1985)
theory, failing to establish any correlation between water features and
preferences as extracted from Instagram posts. Tieskens et al.’s (2018)
research on social media photos in Dutch greenspaces expanded previ-
ous understandings, identifying preferences for monumental buildings.

5.2. Cognition

Spatial cognition has been addressed in 11 studies. We identified 7
studies on urban imageability, with 5 citing Lynch’s (1960) theory and 2
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supporting. These supportive studies innovatively employed social
media (Liu et al., 2016) and street view images (Quercia et al., 2013) to
substantiate Lynch’s arguments. However, by classifying urban orien-
tation elements from extensive social media posts, Huang, Obracht-
Prondzynska, et al. (2021) partially questioned Lynch’s five elements,
with “edge” and “node” lacking empirical evidence. Yoshimura et al.’s
(2020) research, employing street image-based memory tests, also
contradicted Lynch’s legibility theory and raised doubt on mental image
formation.

Four studies explored wayfinding in urban spaces, with 2 citing and
confirming existing theories. Emo (2014) used eye-tracking to show that
individuals preferred routes with stronger connectivity, emphasizing the
importance of spatial structures for navigation. Another study using EEG
found increased Beta activity during decision-making, offering neural
insights into spatial cognition processes (Karandinou & Turner, 2017).

5.3. Emotion and well-being

We identified 64 articles addressing emotion and well-being aspects.
Fifteen studies covered well-being and health outcomes, with 13 citing
established theories and 11 yielding supportive evidence. Studies typi-
cally employed street view data to quantify perceived environmental
qualities like greenness (Jimenez et al., 2022; Yang et al., 2023), water
(Helbich et al., 2019), walkability (Kim et al., 2023), and aesthetics
(Hart et al., 2018), and have identified positive associations between
these qualities and physical and mental well-being. However, contra-
dicting other research findings (e.g., Molina-Garcia et al., 2021; Wang,
Yuan, et al., 2019), 2 studies reported mixed results on infrastructure’s
(Nguyen et al., 2019) and perceived safety’s (Pearson et al., 2021) ef-
fects on well-being.

A critical pathway of urban spaces’ well-being impact is through
affective responses (Markevych et al., 2017). Among 19 articles in this
group, 7 referenced existing theories, with 5 generating supportive ev-
idence. Employing physiological data as objective markers, field studies
confirmed the effects of compactness and enclosure on stress responses
(Li et al., 2016). For example, on-site EDA experiments linked crowding
to aversive emotional responses (Engelniederhammer et al., 2019),
providing physiological evidence for Hall’s (1966) Proxemic Theory.
Virtual validation via social media and street images further confirmed
these findings (Chen, Li, et al., 2022; Luo & Jiang, 2022). Nonetheless,
we identified 2 experiments producing mixed results regarding affective
responses to visual complexity (Xiang et al., 2021) and walkability
(Glasgow et al., 2019), though both acknowledged indicator selection as
a potential factor.

We identified 30 studies focusing on restorative effects of natural
elements in urban spaces, with 28 citing Kaplan and Kaplan (1989a,
1989b) and Ulrich (1984), and 23 supporting their theories. Physio-
logical and GPS data have facilitated quantitative observations of
restorative effects, marked by improved attention levels and lowered
blood pressure and heart rate (Aspinall et al., 2015; Neale et al., 2017;
Song et al., 2013, 2014, 2015). Innovative attempts also linked greenery
to positive pedestrian facial expressions (Wei et al., 2021) and favorable
emotions online (Zhu et al., 2021). Studies further explored potential
influences of temporal (Roberts et al., 2019), spatial (Wang et al., 2016),
landscape (Olszewska-Guizzo et al., 2020; Wei et al., 2022), soundscape
(Jeon et al., 2023), demographic (Kondo et al., 2020), and behavioral
variables (Lin et al., 2020; Mavros et al., 2022). However, Plunz et al.’s
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(2019) examination of New York Twitter posts yielded inconsistent re-
sults concerning parks and positive sentiments. Lin et al. (2019) found
other factors like environmental spaciousness can influence greenery’s
restorative potentials. Roe et al.’s (2019) and Yu et al.’s (2018) studies
with physiological measurements also both contested greenery’s
consistent restorative effect, while Birenboim et al. (2019) hinted at the
need for cognitive overload as a prerequisite.

5.4. Behavior

We identified 112 studies focusing on behavior. Fifty-five studies
addressed general environmental behavior aspects, with 26 citing
existing theories and 21 yielding supportive evidence. Location and
video tracking have provided high-granular data verifying classic design
principles (Chen et al., 2018; Donahue et al., 2018; Korpilo et al., 2018;
Rout & Galpern, 2022) and corroborated Whyte’s (1980) and Gehl’s
(1987) theory on domino effect (Yan & Forsyth, 2005), street furniture
(Sanchez-Vaquerizo & Llach, 2019), triangulation (Loo & Fan, 2023),
and edge effect (Schlickman, 2020). Jacobs’ (1961) urban vitality the-
ory was also supported by emerging data on crowd flow, corroborating
positive effects of mixed-use (Yue et al., 2017), density (Delclos-Alio
et al., 2019), and smaller blocks (Garrido-Valenzuela et al., 2023). We
also noted 5 studies yielding mixed results. De Nadai et al. (2016) and Li
etal. (2022) did not fully confirm the spatial design-urban vitality link in
research of broader cultural contexts employing big data. Large-scale
location datasets also partially contradicted known effects of green-
space design on behavior (Hamstead et al., 2018; Liu et al., 202.3; Meijles
et al., 2014).

Another 57 studies focused on physical activity and walking, with 31
addressing classic theories and 16 generating supportive evidence. Re-
searchers confirmed urban spatial attributes’ impact on walking using
diverse data sources—commuting trajectories (Salazar Miranda et al.,
2021), accelerometers (Almanza et al., 2012), street view-based surveys
(Villeneuve et al., 2018), and social media posts (Roberts et al., 2017).
Urban greenery was a major focus, with evidence linking it to increased
walking propensity (Lu et al., 2018; Yang et al., 2020), time (Yang, Liu,
et al., 2021), steps (Marquet et al., 2022), and physical activity (Lu,
2019; Villeneuve et al., 2018; Zhang et al., 2023). We also identified 15
studies with mixed results. Four studies employing street view data
showed inconsistent effects of street features including greenery (Wang,
Liu, et al., 2022) and sidewalks (Doiron et al., 2022) on walking, and 4
large-scale investigations also did not empirically confirm the impact of
configuration and function factors as theorized by Cervero and Kockel-
man’s (1997) 3D framework (Lu, 2018; Sarjala, 2019; Yang, Liu, et al.,
2021; Yang et al., 2019). Data-driven approaches have enabled explo-
ration of the potential roles of purpose and need of behavior (Koo et al.,
2023; Steinmetz-Wood et al., 2020) as well as cultural and climatic in-
fluences (Chen, Lu, et al., 2022; Ki et al., 2023) in explaining mixed
findings.

6. Discussion

This section discusses the characteristics, trends, and potential lim-
itations of emerging data-driven approaches in human-environment
interaction research, outlining future research possibilities.

6.1. Advances and challenges in emerging data-driven research

6.1.1. New capabilities amid quality limitations

Our systematic review demonstrates that multiple data-driven ap-
proaches have been applied in human-environment interaction
research. This aligns with previous review findings (Li et al., 2018) and
indicates that considerable development has been achieved in the field,
with the scope of applications expected to continue expanding (Biljecki
& Ito, 2021). Within our literature, five key data types emerge, with
their research trends and technical characteristics summarized in
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Table 1

Strengths and weaknesses of new data.
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Research Focus

Strength

Challenge

Street view e Behavior e Large sample size e Varying data
imagery data e Perception e Easy data quality
collection e Varying data
availability
Social media e Perception e Easy data e Low data quality
data e Behavior collection e Varying data
e Emotion and o Non-intrusive availability
well-being o Sampling bias
e Privacy issue
Positioning e Behavior e Large sample size e Varying data
data e High quality
spatiotemporal e Sampling bias
granularity o Contain limited
e Non-intrusive information
e Privacy issue
Physiological e Emotion and e Objectivity e High research
data well-being e High temporal cost
e Perception granularity e Varying data
e Real-time data quality
collection e Require expertise
in collection &
analysis
Video data e Behavior e High e Varying data
spatiotemporal quality
granularity e Require expertise
o Non-intrusive in analysis
e Unbiased sampling e Privacy issue
e Real-time data
collection
Table 1.

A significant advantage of emerging data is their ability to offer more
direct observations of human-environment interaction. They provide
opportunities for more precise descriptions and real-time modeling of
processes that were previously difficult to capture (e.g., psychological
responses) or could only be obtained through post-hoc surveys or self-
reporting (e.g., spatial behaviors) (Olszewska-Guizzo et al., 2020; van
der Spek et al., 2009). This enhanced granularity and accuracy show
promising potential in extending existing knowledge and revealing more
nuanced human-environment interaction mechanisms (Olszewska-
Guizzo et al., 2020; Schlickman, 2020).

Another commonly cited strength is large data volume, characterized
by broader coverage areas (Dubey et al., 2016), longer observation pe-
riods (de Montigny et al., 2012), and more continuous sampling fre-
quencies (Aspinall et al., 2015), which is often associated with improved
data availability and easier collection processes. Unlike descriptive and
small-scale observational studies, data-driven approaches could allow
for capturing larger samples and support statistical analysis that
potentially yield more complete information about human responses
(Hamstead et al., 2018; Heikinheimo et al., 2020). The automatic gen-
eration and collection of data from sources like social media and video
further enable long-term tracking of public opinions and behavioral
patterns that would be difficult with traditional methods (Loo & Fan,
2023).

A co-benefit of larger data volume is the applicability of these ap-
proaches and their relative ease of large-scale implementation. Our re-
view identified a limited but growing number of studies that directly
compare and validate human-environment interaction across different
cities and contexts (Rossetti et al., 2019; Zhang et al., 2018), thereby
identifying potential variations (Salesses et al., 2013). This could
contribute to the broader generalizability of findings.

However, the strengths of emerging data could come at the expense
of limitations in datasets. A widely reported issue is inferior data quality,
observed across nearly all data types. Due to the often absence of quality
control mechanisms, emerging data are typically characterized by noise
and heterogeneity, including artifacts in physiological data (Neale et al.,
2017), noise in social media data (Dunkel, 2015), and outliers in
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positioning data (Meijles et al., 2014). Data bias is another challenge, as
data often come from unknown gathering processes and are not
randomly sampled, potentially containing biases related to gender, age,
socioeconomic status, and user motivation (Calabrese et al., 2015).
Previous studies show that social media features younger and more
educated user groups (Ghermandi & Sinclair, 2019), yet such biases are
difficult to quantify and correct without referencing ground truth data
(Heikinheimo et al., 2020). These limitations have raised doubts about
usability and reliability among some scholars (Huang, Yao, et al., 2021).
Nevertheless, we observed that many studies have not explicitly
acknowledged or addressed data quality concerns, potentially compro-
mising research validity and thus warranting attention in future
research.

6.1.2. Analytic innovations and limited protocols

Many advances in data-driven research can be attributed to de-
velopments in processing and analytical techniques, particularly given
that emerging data were often not originally collected for human-
environment interaction research purposes. We especially identified
interdisciplinary contributions from data science and computer science
fields. Machine learning methods, including computer vision and natu-
ral language processing, are increasingly applied to data types such as
street view imagery and social media, demonstrating impressive capa-
bilities and efficiency in processing and analyzing visual and textual
material (Song et al., 2021; Zhang et al., 2018).

The challenge of interdisciplinary approaches lies in the requisite
specialized expertise. Collected articles highlighted difficulties in sensor
setup (Aspinall et al., 2015), data processing (Versichele et al., 2012),
and result interpretation (Birenboim et al., 2019). Emerging data types
often lack established processing and analytical protocols, which re-
quires researchers to develop their own approaches (Wilkins et al.,
2022). These may present barriers to broader adoption of data-driven
approaches.

We observed another concern regarding the lack of validation. Many
analytical methods are inherently experimental in nature, and reliable
evidence concerning their validity remains insufficient. For example,
using social media data to infer landscape preferences may lack theo-
retical grounding and could contradict established findings (Wilkins
et al., 2022). Questions about the effectiveness and interpretability of
machine learning methods also remain (Spencer et al., 2019). Apart
from a few exceptions like Heikinheimo et al.’s (2020) research, very
few studies have investigated how different data sources and analysis
methods perform or compared them against traditional approaches,
which is a clear gap demanding further research effort.

6.1.3. New perspectives, but not always new insight

A slight majority of the collected articles addressed established
theories in human-environment interaction research. We observed in
some cases that emerging data provide innovative perspectives and in-
sights, expanding the scope and knowledge in existing discourse. For
instance, creative use of mobile phone network data for measuring
neighborhood vitality provides quantitative spatial and statistical evi-
dence for Jacobs’ and Gehl’s theories (Yue et al., 2017). Also, use of
biometrics linked restorative effect with physiological changes and
brain activities, offering information on underlying mechanisms and
influencing factors (Olszewska-Guizzo et al., 2020). However, we also
noticed that some studies appear to primarily replicate known findings
using new methods, offering limited significant contributions. This
echoes observations by Biljecki and Ito (2021), who pointed out that
some papers are “largely replications or offer minor incremental im-
provements”. A potential reason is technological barriers, which may
result in homogenization in research.

We also identified a small number of studies that yielded conclusions
not entirely consistent with established theories, yet the underlying
causes of these discrepancies have not been adequately explored.
Whether these differences stem from the limitations of established
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theories, biases inherent in emerging data, or actual shifts in human-
—environment relations over time remains an open and under-
researched question.

Lastly, nearly half of the literature did not reference any existing
frameworks in the field, a trend particularly prevalent outside the
emotion and well-being research that has strong interdisciplinary tra-
ditions. We believe this finding has two sides: it confirms Batty’s (2013a)
concern that the lack of theoretical grounding may limit the value of
data-driven methods in providing meaningful and actionable insights.
Conversely, we anticipate that the complexity and heterogeneity of data-
driven approaches may stimulate new research areas that transcend
traditional theoretical boundaries.

6.1.4. Uneven research attention

Despite surging publications, certain aspects of human-environment
interaction remain understudied. Compared to behavioral aspects,
spatial cognition and perception lack adequate empirical attention.
Many seminal theories—Cullen’s serial vision, Tuan’s sense of place,
Gehl’s social behavior, and Bosselmann’s distance cognition—are also
underrepresented in recent work. Future studies could investigate
broader spectrum of interaction mechanisms that may prove equally
important for urban experiences.

Global South is inadequately researched compared to Global North,
with China being an exception. This could limit the generalizability of
research findings across different contexts. Human-environment inter-
action is potentially influenced by cultural, socioeconomic, environ-
mental, and climatic factors that vary substantially between regions. For
example, green exposure level in Global South cities is only one-third of
that in Global North cities (Chen, Wu, et al., 2022), showing funda-
mental differences requiring attention. The underrepresentation of
Global South, which is facing rapid urbanization and unique environ-
mental challenges, may result in missed local insights, widened knowl-
edge gaps, and false policy recommendations.

We also noted disparities in interest regarding data types and urban
space typologies: video data application remains scarce, and attention to
squares and other urban spaces is limited compared to streets and parks.
This can be explained by data availability and accessibility constraints,
warranting innovative data collection and interpretation approaches.

6.1.5. Other challenges

Most data-driven research faces the ethical challenge of using private
information. Though data are often publicly-available or obtained with
informed consent, these do not necessarily guarantee voluntary use,
especially given how they are scrutinized in research (Rout et al., 2021).
It is also privacy concerns that increasingly complicate tasks or access of
certain data types like mobile phone network data. In short, questions
remain unresolved regarding the legal obtainment and ethical use of
data.

6.2. Future opportunities

Integrated approach: Given data’s inherent quality issues, no dataset
alone is arguably “big” enough to fully capture the complexities of
human-environment interaction (van der Spek et al., 2009). Combining
methods—whether by merging complementing emerging data or inte-
grating conventional qualitative methods—can address sampling biases
and information gaps, potentially offering a broader perspective. How-
ever, determining the right methodology is crucial, as excessive inte-
gration risks complicating data management and interpretation. We also
observe innovative methods maximizing information from smaller
datasets (e.g., Salazar-Miranda et al., 2023), which highlight the value
of balancing data richness with analytical feasibility which prioritizes
coherence over sheer volume or novelty.

Rigorous methodologies: Because of the often absence of standards
for data processing and analysis, it is essential to not only develop
quality control protocols and standardized processing procedures for
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new data types, but also adopt solid theoretical underpinnings and
rigorous methodologies ensuring reliability and credibility. Though
artificial intelligence presents a methodological advancement, consid-
ering many machine learning methods are not designed for urban
analysis and may face challenges like output quality control, it remains
important to exercise caution and uphold sharp awareness and rigorous
approach when researching actual urban issues (Kitchin, 2014).

Broader research attention: We stress that many human-environment
interaction processes still require stronger empirical evidence, and
Global South contexts and other contextual factors demand further
scrutiny. We also anticipate broader exploration in areas with limited
significant output, and call for data to be fully utilized to address not
only past issues but also new frontiers beyond traditional research.

Better privacy protection: Ethical and privacy concerns need
addressing, as the absence of robust protocols may hinder the field’s
long-term development. Admittedly, privacy protection extends beyond
this review and requires both technical solutions and non-technical ef-
forts (legislative, regulatory, and governance).

6.3. Limitations

This review has several limitations. We adopt Nasar’s framework for
human-environment interaction and only include research applying
emerging data-driven approaches directly reflecting human-
environment interaction processes. This delimitation is necessary to
maintain focus but may exclude studies that employ different theoretical
foundations or draw on emerging data beyond the scope of our research.
The interdisciplinary and evolving nature of this field also means that,
despite adopting systematic methods, thorough coverage of research is
challenging, and new approaches and research are constantly emerging.

As previously emphasized, our collected articles show uneven fo-
cuses regarding research areas, methods, and locations, suggesting that
potential biases need to be considered when interpreting our results and
their applicability, particularly to underrepresented contexts and re-
gions. Lastly, the time scope of our search query may have inadvertently
emphasized certain research traditions and contexts, potentially limiting
the diversity of methodological approaches and theoretical perspectives
included in our analysis.

7. Conclusion

Rapid technological progress since the 21% century has enabled the
integration of new data into observing and analyzing human-
environment interaction in urban spaces. This study systematically
reviewed 242 articles employing emerging data-driven approach in
human-environment interaction research. The main contribution of this
research is providing a comprehensive overview of this rapidly evolving
research field, synthesizing insights from diverse research directions
across methodology and knowledge dimensions. The findings can serve
as guidance for researchers, urban designers, and policymakers.

This review identified multiple emerging data types utilized in
human-environment interaction research, with street view imagery,
social media data, positioning data, physiological data, and video data
being the five main categories. These emerging data types each feature
unique characteristics and strengths, require varying processing and
analytic techniques, and have been applied in different research di-
rections. Furthermore, many emerging data-driven studies have con-
nected with established theories in the field, and created new evidence
that enables rigorous examinations of classical urban theories, providing
empirical validation as well as alternative perspectives.

Our review demonstrates that emerging data possess promising po-
tential, especially in both scope and precision. Their application has
stimulated innovative research methodologies and expanded horizons in
human-environment interaction research field. However, data are not
panaceas and still suffer from a range of limitations related to their
inherent problems, methodological issues, uneven application domains,

13

Cities 167 (2025) 106346

and privacy concerns. This review stresses the need for future data-
driven human-environment interaction research to leverage their ad-
vantages responsibly and exercise judiciousness. With great scrutiny,
emerging data can assume an important role in fostering an inclusive,
livable, and sustainable urban future.
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