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Abstract. Embedded processors must efficiently deliver performance
at low energy consumption. Both configurable and reconfigurable tech-
niques can be used to fulfill such constraints, although applied in different
situations. In this work, we propose DIM-VEX, a configurable processor
coupled with a reconfigurable fabric, which can leverage both design time
configurability and runtime reconfigurability. We show that, on average,
such system can improve performance by up to 1.41X and reduce energy
by up to 60% when compared to a configurable processor at the cost of
additional area.

Keywords: Reconfigurable accelerator - Configurable processor
Binary translation - Binary compatibility

1 Introduction

For the past decades, embedded processors gained a vast market share. These
processors can be found in devices ranging from mobiles to IoT nodes. They
must meet (sometimes conflicting) requirements such as high performance, low
energy consumption, and be small in size. One way of achieving such trade-offs
is through configurable processors. A processor is configurable when it allows the
design of different versions of the same processor, varying a significant number
of features, such as the number of instructions it can issue, the size of its register
file, special or customized instructions, and so on. It is done before deployment
and gives the designer enough flexibility to build the processor according to a
given set of constraints (e.g.: area and power) and the applications it will execute.

An example of a configurable processor is the p-VEX Very Long Instruc-
tion Word (VLIW) [14]. It is based on the VEX Instruction Set Architecture

© Springer International Publishing AG, part of Springer Nature 2018
N. Voros et al. (Eds.): ARC 2018, LNCS 10824, pp. 367-378, 2018.
https://doi.org/10.1007/978-3-319-78890-6_30


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78890-6_30&domain=pdf
http://orcid.org/0000-0003-4242-893X
http://orcid.org/0000-0003-1759-2762
http://orcid.org/0000-0002-7402-4780
http://orcid.org/0000-0002-4492-1747

368 J. D. Souza et al.

(ISA) with extended reconfigurable custom instructions. p-VEX also allows the
parameterization of several hardware modules, such as the issue-width, register
file size, type and amount of functional units (FUs), and memory buses, allowing
a huge design space exploration, not only for performance and energy, but also
for other requirements such as fault tolerance [10].

However, this flexibility may not always be enough to meet system require-
ments. Reconfigurable organizations emerge as an alternative since they can be
coupled to processors to boost performance and save energy [3]. These systems
can adapt themselves to the application at hand, reconfiguring their datapaths
to maximize Instruction-Level Parallelism (ILP) exploitation and improve exe-
cution times [1] over classic processors. A particular advantage of such systems
is: as it is highly regular, it is possible to couple multiple simple ALUs (Arith-
metic and Logic Units) in sequence to execute several dependent operations in
one processor cycle, without reducing the operating frequency [2].

In this work, we propose to leverage the advantages of reconfigurable hard-
ware to expand the ILP exploitation capabilities of configurable processors even
further, using the p-VEX as a case study. To maintain binary compatibility with
the VEX ISA, we also use a binary translation system capable of identifying
hotspots in the application code and dynamically creating configurations to be
executed on the reconfigurable fabric at runtime. Therefore, we created a sys-
tem which can be parameterized (configurable) during design time - not only the
processor features but also the reconfigurable fabric - and reconfigurable during
runtime as well, named as DIM-VEX (Dynamic Instruction Merging for VEX).

We show a diverse analysis of systems composed of differently sized reconfig-
urable fabrics and distinct p-VEX processors. Our results show that, while the
DIM-VEX may require a considerable additional amount of area, it is possible to
increase the performance and reduce the energy consumption of the configurable
processors in many scenarios. On average, it is possible to achieve speedups of
1.41X and reduce energy consumption by up to 60% when using a reconfigurable
fabric.

The remaining of this paper is organized as follows. Section2 discusses
the background of reconfigurable computing and the state-of-the-art. Section 3
describes the proposed DIM-VEX architecture. Section 4 explains the method-
ology used in this work, while Sect.5 presents the results and analysis of the
tested systems. Finally, Sect. 6 draws conclusions and future works.

2 Background and Related Work

Reconfigurable systems can adapt themselves to provide acceleration for specific
applications. This is achieved through an additional circuit that offers recon-
figurability, like a Field-Programmable Gate Array (FPGA) or a reconfigurable
array of functional units. These organizations provide performance gains and
energy savings over General Purpose Processors (GPP), at the cost of extra
area. The reconfigurable logic can be classified by how it is connected to the
main processor as follows [3]:
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— loosely connected to the processor as an I/O peripheral (communication done
through the main memory);

— attached as a coprocessor (using specific protocols for communication);

— tightly coupled as a functional unit (reconfigurable logic is inside the processor
and share its resources, like its register file).

Furthermore, the granularity of the reconfigurable logic determines its level
of data manipulation. A fine-grained logic is implemented at bit level (like Look-
Up Tables in FPGASs) while a coarse-grained logic implements word level circuits
(like ALUs and multipliers) [1]. Current implementations of reconfigurable sys-
tems usually favor coarse-grain reconfigurable arrays (CGRAs), as they present
the following advantages:

— they can be tightly coupled to the main processor, avoiding significant penal-
ties in communication;

— as configuration is applied at word level, the size of the contexts holding
configuration bits is much smaller than those from fine-grained architectures;

— they have smaller reconfiguration latencies than fine-grained (e.g., FPGASs)
fabrics, even when one considers only partial reconfiguration in the latter [1].

It is possible to use CGRAs as a generic accelerator by providing tools to
dynamically analyze and translate regions of code for execution on the array. To
achieve this, it is common to combine reconfigurable architectures with dynamic
Binary Translation (BT) [6] techniques - in which the system is responsible for
monitoring and transforming parts of the binary code, at runtime, in order to
accelerate it; and Trace Reuse [4], which relies on the idea that a sequence of
instructions will execute repeatedly using the same operands during the appli-
cation execution. By associating these strategies, one can maintain the binary
compatibility between the main processor and the reconfigurable fabric, while
avoiding re-translating repetitive instruction block. An extensive characteriza-
tion and classification study on reconfigurable architectures is presented in [1, 3],
and we discuss next a variety of works using reconfigurable architectures with
dynamic binary translation.

Early studies on dynamically reconfigurable processors include the Warp Pro-
cessor [9]. This system is based on a complex System-on-a-Chip (SoC), composed
of a microprocessor that executes the regular application, a second microprocessor
responsible for running simplified CAD algorithms, local memory, and an FPGA
fabric. A profiler monitors the execution of the application to detect hotspots. Sub-
sequently, the CAD software decompiles the application code into a control flow
graph and synthesizes a circuit to execute the hotspot flow into the FPGA. Finally,
the original binary code is modified to use the synthesized circuit. KAHRISMA
[8] is an example of a completely heterogeneous architecture. It supports mul-
tiple instruction sets (RISC, 2- 4- and 6-issue VLIW, and EPIC) and fine and
coarse-grained reconfigurable arrays. Software compilation, ISA partitioning, cus-
tom instructions selection, and thread scheduling are made by a design-time tool
that decides, for each part of the application code, which assembly code will be
generated, considering its dominant type of parallelism and resources availabil-
ity. A run-time system is responsible for code binding and for avoiding execution
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collisions in the available resources. Although both systems are dynamic and soft-
ware compatible, they are heavily dependent on compilers and CAD tools, which
increase software deployment time and the execution overhead.

More recent works have been proposed such as the DIM [2], HARTMP [12]
and DORA [13]. DIM is a coarse-grained reconfigurable array (CGRA) tightly
coupled to a RISC processor and a dynamic BT system. The BT executes par-
allel to the RISC pipeline, monitoring hotspots and its data dependencies, and
allocating instructions to run in parallel inside the array. When the hotspot
is re-executed, the RISC pipeline is stalled and execution is transferred to the
reconfigurable fabric. DIM supports speculation and the execution of multiple
ALU operations in the same cycle, which significantly increases the IPC of the
processor. HARTMP is based on a similar strategy as DIM. However, it uses
multicore systems with individual arrays for each core. The arrays are dimen-
sioned distinctly to create heterogeneous environments, in which applications
can schedule less demanding workloads on energy efficient arrays. DORA is a
BT system coupled with a GPP and a CGRA (based on the DySER [5] system).
The BT is realized through a microprocessor, which is responsible not only to
transform hotspots for the reconfigurable fabric but also to use dynamic opti-
mizations on the parts of application code that run on the GPP. Both the code
transformation and optimization are saved for reuse.

Differently from previous works, which use reconfigurable systems to accel-
erate either RISC or superscalar processors, our work proposes to accelerate
configurable VLIW processors and exploit the available design space offered by
this configurability. For that, we have adapted the DIM CGRA to work together
with the p-VEX, creating the DIM-VEX. As already mentioned, the advantage
of using p-VEX for this work is its ability to parameterize its FUs, issue-width,
memory and register file. We use the parameterizable issue-width to create mul-
tiple configurations for design space exploration. As for the DIM, its ability to
execute various dependent ALU operations in the same cycle perfectly exploits
the low frequencies of VLIW processors, as more of these FUs can be nested
in sequence. In this work, we create a variety of systems composed of different
p-VEX configurations and different DIM-VEX versions. We show how a dynamic
CGRA can further expand the ILP exploitation of VLIW processors and analyze
the impact on performance, energy, and area of such systems.

3 The Proposed Architecture

A general overview of the proposed architecture is given in the Fig. 1, which is an
adaptation of the original DIM system proposed in [2]. Initial data flow is exactly
the same as the original p-VEX: instructions are fetched, decoded and executed
in the pipelanes of the processor. However, in the DIM-VEX system, instructions
are also translated and saved for future execution on the CGRA. Block 1 in Fig. 1
shows the structure of the reconfigurable datapath. It is composed of registers
for input and output context and a matrix of functional units. The matrix is
a combinational block with ALUs (Arithmetic and Logic Units), Multipliers,
Memory access ports and multiplexers. The matrix is composed of levels that
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Fig. 1. DIM-VEX: a VLIW processor tightly coupled to a reconfigurable logic and a
binary translator.

run in parallel with the VLIW pipeline (block 2). Each level has columns and
rows. The columns have units that can run in parallel, executing instructions that
do not have data dependency. As the multiplier and load operations stand as the
critical path of the level, it is possible to align multiple ALUs in each row and
keep the base frequency of the processor unchanged. In the given example, each
ALU row has five columns and can execute five data dependent ALU instructions
in the same level. During the reconfiguration process, a basic block is mapped
to the matrix, to execute the whole block in a combinational fashion.

Block 2 shows the configurable processor coupled with the matrix. In this
work, we use different p-VEX configurations all running at 200 MHz. This pro-
cessor has a five-stage pipeline, in which the execution stage needs two cycles
for the multiplication and load operations. We have also considered this same
latency for multiplications and loads inside the CGRA. In block 3, the necessary
storage components are illustrated. Apart from the usual L1 caches, two other
memories are used. The address cache holds the address for each basic block
decoded by the dynamic detection hardware (block 4) and is used as an index
(and to check existence) for the datapath configurations. The reconfiguration
memory holds the bits necessary to reconfigure the datapath into a basic block
indexed by the address cache.

The Dynamic Detection Hardware (DDH), represented in block 4, does the
binary translation and data dependency check of the instructions in a basic block.
DDH is a four-stage pipelined circuit that runs in parallel to p-VEX, and thus
being out of the critical path of the system. The Instruction Decode (ID) stage
is responsible for decoding the operands in the base processor instruction to
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datapath code, while the Dependence Verification (DV) checks if these operands
have any dependency with the instructions already stored in the configuration
being built. The Resource Allocation (RA) stage uses the DV analysis to deter-
mine the optimal functional unit for the given operation inside the array. Finally,
the Update Tables (UT) phase saves the new allocation in the reconfiguration
memory for future use. Every time a branch or an incompatible instruction is
detected, a new configuration is started by the DDH, and a new entry is created
in the address cache. Moreover, the DDH can also manage speculation for branch
instructions to increase the matrix usage. Further details of the DDH and how
it interacts with the reconfigurable array can be found in [2].

During the Instruction Fetch (IF) stage of the base processor, the Program
Counter (PC) is compared to the values in the address cache. A hit in this cache
means that the following sequence of instructions was already translated to a
configuration. In this case, the processors pipeline is stalled, and the configura-
tion is executed in the reconfigurable datapath, greatly exploiting the ILP of the
application.

4 Methodology

We have designed three different configurations of the p-VEX processor, each
using a specific issue-width (2, 4 and 8). Subsequently, we use these same p-VEX
configurations to attach DIM components and create DIM-VEX platforms. We
also vary the sizes of the CGRA to explore a wider design space. In our early
experiments, we tested the p-VEX with different FUs as well; however, results
showed negligible variation in cycle count. Details on the tested configurations,
DIM-VEX and p-VEX standalone, are shown in Tables 1 and 2, respectively.

Table 1. Configurations for DIM-VEX. Columns include p-VEX issue width, levels in
the CGRA, number of parallel ALUs in each level, number of sequential ALU in each
row level and number of multipliers and memory access in each level

Config VLIW issues | Levels | ALUs | Seq ALUs | MULs | MEMs
DIM-VEX1 | 2 3 4 5 1 2
DIM-VEX2 |4 3 4 5 1 2
DIM-VEX3 | 8 3 4 5 1 2
DIM-VEX4 | 2 6 4 5 1 2
DIM-VEXS5 | 2 9 2 5 1 2

To extract power dissipation and area occupation of DIM-VEX, we have
implemented the circuits of p-VEX and the FUs of the CGRA in VHDL and
synthesized to CMOS 65 nm cells using a library from STMicroelectronics on the
Cadence Encounter RTL compiler. The operation frequency of the p-VEX was
set for 200 MHz. We were able to synthesize ALUs that run at 1/5 of the p-VEX
cycle time; thus five of these units are nested in sequence to run in one clock
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Table 2. Configurations for the p-VEX standalone. Columns include the issue width,
number of pipelanes that contain an ALU, a multiplier and a memory port and number
of registers in the RF.

Config | VLIW issues | ALUs | MULs | MEMs | RF
p-VEX1 |2 2 2 1 64
p-VEX2 | 4 4 4 1 64
p-VEX3 |8 8 4 1 64

cycle inside the reconfigurable fabric of DIM-VEX| as shown in the column Seq
ALUs in Table1.

This work uses instruction traces generated directly from the VHDL simula-
tion to feed an in-house cycle accurate simulator for the proposed architecture.
We use this tool to reduce the simulation time of the applications and give us
flexibility to analyze and parameterize the CGRA. The simulator emulates the
behavior of the DIM algorithm, allocating instructions to be accelerated into
configurations of the CGRA. With the configurations built, the simulator esti-
mates power and performance of the application, while considering a realistic
overhead for the CGRA reconfiguration time. We consider that the CGRA can
perform power-gating of its functional units (a state of near 0 energy consump-
tion) when they are not in use. We also consider both static power - the power
dissipated by the circuit when it is on but not in use - and dynamic power -
the power dissipated when the circuit is active - for energy consumption. When
the CGRA is not in use, the system power is equal to the total power (static +
dynamic power) of the p-VEX processor. While the CGRA is active, the energy
of all its functional units in use is accounted for along with the static energy of
the p-VEX processor (which is stalled). The energy consumption and area are
evaluated for the whole DIM-VEX which is composed of the p-VEX, DDH, and
CGRA, without the caches and main memory. Even though this methodology
simplifies the analysis, it may bias results in energy in favor of the p-VEX pro-
cessor without the CGRA, since it hides an important source of energy savings
in the DIM-VEX system: when the CGRA is active in, all instruction fetches
are stalled. Therefore, the DIM-VEX reduces the pressure on the instruction
memory (cache), while keeping the same access rate to the data memories.

The benchmark set is composed of a subset of 15 applications from the
WCET [7] and Powerstone [11] benchmark suites: ADPCM, CJPEG, CRC,
DFT, Engine, Expint, FIR, JPEG, LUDCMP, Matrix Multiplication, NDES,
POCSAG, QURT, Sums (recursively executes multiple additions on an array),
and x264. All benchmarks are compiled using the HP VEX compiler.

5 Results and Analysis

We present the results for performance, energy and Energy-Delay Product (EDP)
of all benchmarks in our proposed system and the standalone p-VEX. All the
data presented in the charts are normalized by the p-VEX3 configuration, which
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is the 8-issue p-VEX processor. We chose this configuration as the baseline
because it has the best performance among the standalone p-VEX systems. We
also present the area overhead of each of the analyzed systems.

5.1 Performance

Figure 2 shows the normalized speedup for the tested benchmarks. Bars with val-
ues above 1 mean that the configuration improved performance; while for those
under 1, performance slowed down. As expected, the p-VEX1 and p-VEX2 con-
figurations have worse performance than the baseline (p-VEX3), as they work
with smaller issue-widths. However, when we include DIM, most of the bench-
marks show speedups, even when the p-VEX processor to which it is coupled to
has fewer pipelanes. For instance, for the benchmarks DFT, Engine, Expint and
x264, the best configuration for performance is the DIM-VEXS5, which consists
of a 2-issue processor coupled with a 9-levels array. For the benchmarks ADPCM,
CRC, matrix multiplication, NDES, POCSAG and QURT, the best configuration
is DIM-VEX2, a 4-issue processor. On the other hand, coupling the array with an
8-issue processor (DIM-VEX3) can still increase its capabilities for exploiting ILP.
On average, configuration DIM-VEX3 has an speedup of 1.38X.

Table 3 shows the cycles and resource utilization for the benchmarks. Due
to space constraints, we show these data only for configurations DIM-VEX1
and DIM-VEXS5, which represent the most contrasting CGRA configurations
(with the least and the most levels). We restrain into showing just ALU usage,
as this is what impacts acceleration the most in the CGRA. We also position
the benchmarks DFT, Expint, CJPEG, and x264 on top of the table for easy
visualization, as we use them as examples for explanation.

In Fig.2, DFT shows a reduction in cycle counts over the baseline for
both configurations DIM-VEX1 and DIM-VEXS5. In fact, the benchmarks show
speedups of 1.21X and 1.78X, respectively. As presented in Table3, most of
the instructions executed by DFT are performed inside the CGRA (80.88% and
83.49%), spread along 12 basic blocks in DIM-VEX1 and 7 in DIM-VEX5, which
explains such speedups. A similar behavior is observed in Expint, which exe-
cutes 92.14% of its instructions on the CGRA in DIM-VEXI1, and 87.75% in
DIM-VEXS5. However, the cycle reduction in Expint is much higher, achieving
speedups of near to 2.5x in DIM-VEX1 and 3.5x in DIM-VEXS5 with respect to

»
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Fig. 2. Execution cycles for each benchmark normalized by the baseline (p-VEX3).
Bars under 1 represent faster executions than baseline, while bars above 1 represent
slower execution.
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Table 3. Cycles and resource usage for the CGRA on all benchmarks. Cycles in CGRA
is the total number of cycles executed inside the reconfigurable fabric (along with
the ratio over the entire system). Significant BB shows the number of basic blocks
which execute a meaningful part of the application and the average ALU usage on the
reconfigurable fabric for these basic blocks.

DIM-VEX1 DIM-VEX5
Cycles |Cycles in CGRA|Significant BB Cycles |Cycles in CGRA|Significant BB
DFT 26841 21708 (80.88%) Number/Avg ALU |18238 15226 (83.49%) |Number|Avg ALU
usage usage
12 12.36% 7 17.08%
Expint 3677 3388 (92.14%)| 6 44.72% 2620 2299 (87.75%)| 2 92.78%
CJPEG 773 228 (29.5%) | 6 12.21% 764 349 (45.68%)| 6 8.89%
x264 9362 8135 (86.89%)| 3 17.22% 8029 7827 (97.48%)| 3 15.55%
ADPCM 659 254 (38.54%)| 5 21.50% 604 179 (29.64%)| 3 27.86%
CRC 9866 6003 (60.85%)| 4 25.42% 8591 4722 (54.96%)| 2 35.56%
Engine 505871 244005 (48.23%) (17 32.26% 455695 |206498 (45.31%)| 9 44.45%
FIR 139520 | 44745 (32.07%)| 6 33.20% 135464 | 40479 (29.88%)| 4 32.47%
JPEG 1800718 |525662 (29.19%)|16 7.81% 1794808 566096 (31.54%)|14 6.52%
LUDCMP| 34281 | 20091 (58.61%) 20 17.51% 33925 | 20891 (61.58%) |20 9.99%
MM 90848 | 62241 (68.51%)| 9 18.29% 87275 | 63046 (72.24%)| 8 14.98%
NDES 31301 | 16069 (51.34%)| 6 12.48% 30789 | 17803 (57.82%)| 7 8.96%
POCSAG 22890 | 15616 (68.22%)| 4 25.42% 20788 | 13330 (64.12%)| 3 43.71%
QURT 13426 7607 (56.66%) (14 19.93% 13356 7546 (56.50%) |17 28.08%
Sums 328 40 (12.20%)| 2 0.80% 325 101 (31.08%)| 2 6.11%

the baseline. These speedups are due to the high usage of the CGRA functional
units, mostly caused by the large number of ALU operations in the basic blocks.
DIM-VEXS5 is able to best use the ALU resources (92.78% against 44.72% in
DIM-VEX1) because it has only two rows of ALUs executing in parallel, which
is a perfect match for this application. In DIM-VEX1, there are four rows, but
two of them are mostly not used during the application execution. Neverthe-
less, executing most of the code on the CGRA does not necessarily translates
into high speedups. In the x264 application, almost the whole application is
executed in the CGRA, but speedup is of only 1.61X in DIM-VEX1 and 1.88X
in DIM-VEX5 when compared to the baseline. The x264 is composed of few
(3) and small significant BBs with low ALU usage, which translates into lower
speedups. The CJPEG is an example of an application in which the CGRA can-
not provide better execution time than the 8-issue p-VEX. That is, the CGRA
configurations are small and do not support speculation - they are constantly
broken by unsupported instructions instead of branch operations -, which limits
the acceleration of such application.

5.2 Energy

Figure 3 shows the normalized energy consumption for the tested systems in all
benchmarks. In this chart, bars above 1 represent higher energy consumption and
bars under 1 lower energy consumption than the baseline. The 8-issue p-VEX (p-
VEX3) processor operates at a higher power usage than its 2- and 4-issue counter-
parts. This reflects into the results, with p-VEX2 reducing energy by half (49.4%)
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and p-VEXI reducing energy by 70.4% when compared to the baseline. When
the CGRA is added, many new components are integrated to the system, highly
increasing its power consumption. However, the CGRA also provides speedups,
reducing the time needed to execute the application. As the energy depends on
the execution time as well as power, most of the CGRA configurations can pro-
vide lower energy consumption than the 8-issue processor alone. The only excep-
tion is the DIM-VEXS5 configuration running the POCSAG application. Under
this scenario, a 2-issue processor is coupled with a big CGRA, but no speedups
are obtained. As can be seen in Table 3, POCSAG activates the array in 64.12%
of its instructions with a usage of 43.71% of the CGRA ALUs. This results in a
power hungry system that cannot provide any speedups, increasing the energy
consumption without giving any improvements. On average, the best energy con-
figuration is the p-VEX1 (70.4% energy reduction), as it is an extremely low power
processor. Among the DIM-VEX systems, DIM-VEX1 presents the best energy
consumption, reducing it by 60% with respect to the baseline.
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Fig. 3. Energy consumption for each benchmark normalized by the baseline (p-VEX3).
Bars under 1 represent lower energy consumption than baseline, while bars above 1
represent higher consumption.

Table 3 can also be used to explain the energy results. For example in the
Expint benchmark, the speedups for the application are huge in DIM-VEX5
(almost 3.5x); nonetheless, the energy reductions are much more restrained: only
25%. This small reduction is also explained by the usage of the CGRA resources.
DIM-VEXS5 executes 87.75% of its instructions in the CGRA using an average of
92.78% of its ALUs. This represents an average usage of 83 ALUs (see Table 1 for
ALUs per configuration) during 87.75% of the execution time, which results in a
considerable power consumption for the system. Resource usage also explains the
reason DIM-VEX configurations can still provide energy gains for the CJPEG
application, even when such systems provide slowdowns for the applications
(DIM-VEX1, DIM-VEX2, DIM-VEX4 and DIM-VEX4 cases). Apart from these
configurations using processors that are less power hungry than the baseline (2-
and 4-issue p-VEX), when the CGRA is active in the CJPEG application, only
a few resources are used. The combination of these two conditions results in a
much low power environment than the p-VEX3 processor.

5.3 Energy and Performance Trade-Off

Figure 4 shows the normalized Energy-Delay Product (EDP) for the benchmarks
in all the tested systems. As in the energy chart, bars above 1 represent higher
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Fig. 4. EDP for each benchmark normalized by the baseline (p-VEX3). Bars under 1
represent worst EDP than baseline, while bars above 1 represent better EDP.

EDP and bars under 1 lower EDP than the baseline. The EDP is the product
of the energy spent by the system and the execution time of an application. It
is used to measure the trade-off between energy and performance (if a system
fails to deliver performance, it can still show good results in energy). As can
be seen in the Fig.4, almost all of the benchmarks show better EDP than the
baseline. The cases that the baseline is better are when the performance is too
highly affected (CJPEG in DIM-VEX1, DIM-VEX4 and DIM-VEXS5), or when
both performance and energy cannot reach acceptable levels (POCSAG in DIM-
VEX4 and DIM-VEXS5). On average, the best trade-off between systems comes
with DIM-VEX2, reducing EDP by 62.6%, closely followed by p-VEX1 (60.8%)
and DIM-VEX1 (58.6%).

5.4 Area Analysis

Finally, we analyze the impact in area that is added by the CGRA on our sys-
tems. In the Fig. 5, the total area of each of the evaluated systems is presented.
In the DIM-VEX conﬁguratlons, the area is divided between the p-VEX proces-
sor area and the CGRA. It is clear that all the extra resources in the CGRA can
occupy a high amount of space that may be prohibitive in some environments.
However, if one considers the configuration DIM-VEX2, it is possible to reach
better energy consumption and better performance in all, but one (Sums), of
the benchmarks, at the price of an extra 84% in area.

Ep-Vex DCGRA

=80
£
E60
< 40
220

0.0

D\M VEX1 mm VEX2  DIM-VEX3  DIM-VEX4 D\M VEXs  p-VEXL p-VEX pVEX3

Fig. 5. Total area occupied by the evaluated systems. Bars in DIM-VEX configurations
are split in the area occupied by the p-VEX processor and the CGRA.

6 Conclusions and Future Work

In this work we have proposed a design time configurable system that is also
reconfigurable at runtime (DIM-VEX). By designing a set of configurable pro-
cessors coupled with reconfigurable logic, we have shown that it is possible to
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further expand the ILP capabilities of multiple issue processors. Our system is
also able to save energy in many scenarios, while keeping the superior perfor-
mance. All these advantages come at the price of extra area.
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