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Abstract

Continual Backpropagation (CBP) has recently been
proposed as an effective method for mitigating loss of
plasticity in neural networks trained in continual learn-
ing (CL) settings. While extensive experiments have
been conducted to demonstrate the algorithm’s ability
to mitigate loss of plasticity, its susceptibility to catas-
trophic forgetting remains unexamined. This work ad-
dresses this gap by systematically evaluating the mag-
nitude of catastrophic forgetting in models trained with
CBP and comparing it to four baseline algorithms. We
demonstrate that CBP suffers from significantly higher
forgetting compared to all tested baselines, particularly
in long-term and periodically revisited task scenarios.
Moreover, we find that specific hyperparameters of the
algorithm have significant influence on the stability-
plasticity trade-off. We further analyze the internal dy-
namics of CBP, identifying strong correlations between
forgetting and metrics such as activation drift. Finally,
we evaluate three modifications to CBP: noise injection,
layer-specific replacement, and partial neuron replace-
ment, and show that the modifications reduce forgetting
while maintaining high plasticity.

1 Introduction

Continual learning (CL) is a field of machine learning in which a
model learns sequentially from a stream of data, instead of being
trained once on a fixed dataset. Although significant progress has
been made in this relatively new field, CL still faces two core chal-
lenges: loss of plasticity [1] and catastrophic forgetting [2, 3].

Catastrophic forgetting is a phenomenon where a neural net-
work (NN) rapidly loses previously acquired knowledge when
learning new information sequentially. This occurs due to the na-
ture of standard training methods, such as stochastic gradient de-
scent, which update model parameters to minimize the loss on the
current objective without explicitly preserving knowledge from
earlier stages [3]. As a result, information relevant to prior learn-
ing is gradually overwritten, sometimes almost entirely, as param-
eters critical to earlier solutions are modified.

The second problem, loss of plasticity, is a phenomenon in
which a NN eventually becomes less capable of learning new
trends when it is continuously trained on different data. This phe-
nomenon occurs when certain neurons of the model eventually be-
come specialized or settled”, as they begin to show very limited
variability in their activation values when trained on any new data
[1, 4]. Therefore, the model becomes less adaptable, as fewer pa-
rameters remain responsive to updates when exposed to new tasks.

Many algorithms have been shown to effectively mitigate either
catastrophic forgetting or loss of plasticity separately [1, 5—12].
However, solving both catastrophic forgetting and loss of plastic-
ity simultaneously remains the most fundamental problem in con-
tinual learning. The difficulty rises from the intrinsic trade-off,
called stability-plasticity dilemma [13]. The stability-plasticity
dilemma states that the more adaptable a model is, the faster it
tends to forget prior knowledge. Alternatively, a highly stable
model is naturally expected to be less plastic. Thus, any new on-
line learning algorithm should ideally be assessed not only for its
ability to prevent forgetting or maintain plasticity alone, but also
for its effectiveness at balancing these two objectives.

As an attempt to solve the loss of plasticity problem, Dohare
et al. [1] proposed an efficient approach, called Continual Back-
propagation (CBP). The algorithm was shown to significantly de-
crease loss of plasticity for different NN architectures, across var-
ious experimental settings. The CBP algorithm works by reinitial-
izing the incoming and outgoing weights of the neurons that have
low utility scores, i. e. the neurons that presumably very mini-
mally contribute to the final output. This reinitialization of neu-

rons’ weights has an effect of reactivating the mentioned “settled”
neurons, in this way preserving model’s adaptability. At the same
time, performance is maintained, as the procedure aims to remove
only parameters that contribute minimally to the network’s output.

However, Dohare et al. [1] focused primarily on the plasticity
of CBP, without assessing its susceptibility to catastrophic forget-
ting. While Silvestrin et al. [14] made a preliminary attempt to
evaluate CBP’s stability, their analysis was limited to a very sim-
ple experiment, which may not generalize to more complex CL
settings. However, evaluation the forgetting of CBP might be cru-
cial if it were further exploited in different settings, especially in
applications where retaining prior knowledge is essential; for in-
stance, in medical diagnosis systems that rely on historical patient
data, or in lifelong language models. To address this gap, our work
presents the first comprehensive evaluation of catastrophic forget-
ting in neural networks trained with CBP, and aims to extend the
work of Dohare et al. [1] by proposing ways to improve stability-
plasticity trade-off.

We systematically investigated CBS’s effect on catastrophic for-
getting. We began by evaluating whether CBP increases suscep-
tibility to forgetting compared to different baselines, in particular,
standard backpropagation, Shrink and Perturb (S&P) [6], L2 regu-
larization, and the Adam optimizer [15]. Beyond standard perfor-
mance metrics for forgetting and plasticity, we analyzed the inter-
nal dynamics of CBP-trained networks (i. e. weight and activation
drift) and compared the found patterns with those observed under
the baseline training algorithms. We next examined how CBP’s
and baseline algorithms’ hyperparameters influence the stability-
plasticity trade-off. Furthermore, in order to understand how well
different algorithms manage to regain memory of lost informa-
tion, we assessed algorithms’ behavior when previously learned
and then forgotten data was periodically reintroduced. Finally, we
evaluated three distinct adjustments to CBP that were expected to
improve the stability-plasticity trade-off.

Our results show that standard CBP suffers from significantly
higher catastrophic forgetting compared to all tested baseline al-
gorithms, both under single-pass and periodically revisited task
setups. Furthermore, we found that specific hyperparameters of
CBP strongly influence the balance between plasticity and stabil-
ity. We also identified strong correlation between forgetting and
model’s activation drift, suggesting its potential as predictive indi-
cator. Finally, we demonstrated that the three evaluated variants of
CBP algorithm improve the stability of CBP, while only minimally
reducing plasticity.

The remainder of this report is structured as follows: Section 2
reviews related work on catastrophic forgetting and loss of plastic-
ity; Section 3 outlines the methodology and algorithms evaluated;
Section 4 presents the experimental setup and results; Section 5
discusses key findings; and Section 6 and 7 conclude with remarks
on responsible research and future directions.

2 Related Work

Continual learning aims to train neural networks on streaming data
such that their performance matches that of models trained in a tra-
ditional offline setting. Two main challenges in this field are catas-
trophic forgetting [2, 3], where past knowledge is overwritten
throughout continuous learning, and loss of plasticity [1], where
the ability to learn new tasks is reduced as the learning proceeds. A
multitude of methods have been proposed to solve each problem
separately, while recent research has shifted towards developing
methods that try to overcome both problems simultaneously.

2.1 Solving Catastrophic Forgetting

The notion of Catastrophic Forgetting was initially described in
1989 by McCloskey and Cohen [2]. Since then, different methods
have been proposed to reduce the effect of the phenomenon.
Replay-based methods. Replay-based or rehearsal methods
aim to mitigate catastrophic forgetting by storing the data of ear-



lier tasks and mixing it together with the new data to form a replay
buffer, from which the model is then re-trained [16—-18]. While
the approach is extremely simple and effective, it is resource-
inefficient, as it requires storing potentially large amounts of past
data. As an alternative, Rebuffi et al. [18] proposed a method
called iCaRL, which, for image classification tasks, continually
computes a mean feature vector of the past images, and uses it to
mitigate forgetting. Additionally, pseudo-rehearsal methods were
introduced, which, instead of storing the past data, generate syn-
thetic samples that resemble the old data [5, 16]. An example
of that is incrementally training an generative encoder [19], that
is later used for older data samples generation, which in various
cases has shown to be beneficial in CL settings [5, 20, 21].

Regularization methods. Regularization methods mitigate
catastrophic forgetting by constraining updates to model param-
eters that are estimated to be important for retaining knowledge
of previous tasks. A penalty is usually introduced to the loss
function that discourages the model to move far away from al-
ready learned representation. The most simple example of that
are L1 and L2 regularization methods, which are sometimes used
as soft baselines for evaluating different algorithms [7-9]. Hinton
and Plaut [10] were the first to propose a regularization-based ap-
proach to stabilize learning by introducing the concept of fast and
slow weights, where fast weights adapt quickly to new informa-
tion while slow weights retain long-term knowledge. Furthermore,
Elastic Weight Consolidation (EWC) is a very effective and pop-
ular baseline, inspired by features of human brain [7]. It approxi-
mates sequential Bayesian learning using Fisher Information Ma-
trix to estimate parameter importance and adds a quadratic penalty
to discourage changes to the most important weights. However,
while simple and effective, regularization methods rely on rough
estimates of parameter importance, which can reduce learning ac-
curacy for particular tasks.

Other methods. French [3] has shown that catastrophic for-
getting generally occurs when the newly created internal features
of the model interfere with the ones that were learned previously.
Therefore, many methods aim to reduce the feature representa-
tional overlap, and that can be done in many ways. For example,
Yoon et al. [8] proposed a method called Learning Without Forget-
ting (LWF), which, once a model is trained on a new task, adds a
fully-connected hidden layer within the model. While this method
achieves great performance, if a model is faced with a high num-
ber of new tasks, it would lead to an increased memory consump-
tion, and computational overhead. Another approach, called Hard
Attention to the Task [22], proposes to learn, for each task, its
specific attention mask, i. e. the exact neurons within each layer
that should majorly contribute to the output. Then the parame-
ter updates are restricted mainly to the chosen neurons, and in the
future tasks, algorithm prevents modifying parameters identified
by earlier masks, which preserves previously learned knowledge.
Lastly, Farajtabar et al. [23] proposed to project the gradient of a
new task in the orthogonal direction of the previous tasks gradient,
which was shown to reduce representational interference.

2.2 Solving Loss of Plasticity

Significantly less research is conducted in search of methods that
would mitigate loss of plasticity. Dohare et al. [1] proposed Con-
tinual Backpropagation, a method we examine in this work, which
works by periodically reinitializing weights that correspond to the
least useful neurons. Continual Backpropagation was shown to
significantly decrease loss of plasticity under various experimen-
tal settings. In the same study, it is also shown that Shrink and
Perturb [6], a method that continuously shrinks and adds noise to
the weights of the network, is an effective method for increasing
the plasticity of a model. Abbas et al. [4], similarly as Dohare et al.
[1], identified that the neurons become inactive throughout learn-
ing, and as a solution proposed replacing standard ReLLU activa-
tions with their introduced Concatenated ReLU (CReLU) activa-

tions. It resulted in preserved gradient flow and thus ensured that
the neurons remain active throughout learning. A similar method
to the one proposed by Yoon et al. [8] was introduced to mitigate
plasticity instead of reducing forgetting: Lyle et al. [11] showed
that dynamically increasing network capacity, allows the model
to maintain adaptability over time. However, this approach is not
efficient memory-wise. Lastly, a sophisticated regenerative regu-
larization loss, as proposed by Kumar et al. [12], can be combined
with the arbitrary loss in order to encourage models to preserve
their ability to reconstruct past task inputs from compressed latent
representations.

2.3 Stability-Plasticity Dilemma

The Stability-Plasticity Dilemma, first introduced by Carpenter
and Grossberg in 1987 [13], describes a fundamental trade-off in
learning systems: the better a model is at retaining past knowl-
edge (stability), the less flexible it becomes in adapting to new
information (plasticity), and vice versa. For many years, the two
issues were addressed separately, with more focus placed on re-
ducing forgetting than on improving adaptability. However, re-
cently more effort has been directed towards developing methods
that aim to balance both sides of the trade-off [24, 25]. In particu-
lar, Kim et al. [25] proposed a SOTA approach to train an indepen-
dent network for a new task, and then integrate its outputs into a
second network that preserves information of previous tasks. Ad-
ditionally, Elsayed and Mahmood [24] proposed to use an efficient
utility function for estimating the most important weights for past
information retention: these weights are then modified less, in this
way retaining stability, while less important weights are updated,
consequently maintaining plasticity.

The stability of Continual Backpropagation (CBP) was not eval-
uated in the original paper. A partial analysis was later conducted
by Silvestrin et al. [14], however, it was limited to a simple Bit-
Flipping task and used a simple neural network with a single hid-
den layer of five neurons. While the study demostrated low stabil-
ity of CBP, due to the small scale and simplicity of the setup, the
findings may not generalize to more complex models or diverse
experimental conditions.

3 Methodology

In this section we describe the CBP algorithm in detail, introduce
the baseline methods used for comparison, and present and mo-
tivate the proposed modifications to CBP aimed at improving its
stability-plasticity trade-off.

3.1 Continual Backpropagation

Continual Backpropagation is a modified version of the standard
backpropagation (BP) algorithm specifically designed to address
the loss of plasticity that occurs in neural networks during contin-
ual learning. Introduced by Dohare et al. [1], the algorithm was
demonstrated to effectively preserve the learning capacity of the
models in various CL settings.

The algorithm works by periodically resetting incoming and
outgoing weights of neurons that are estimated to very minimally
contribute to the output. This resetting of neurons allows the
model to explore new representations, while only minimally re-
ducing its performance, as only the presumably least-important
parameters are discarded. The neurons that are replaced are se-
lected based on the utility function:
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where 7) is the decay rate parameter, w;[¢] is the utility value
of i" neuron in layer [, while h; ; + and wy ; . + are corresponding
activation and weight parameter values.

Continual Backpropagation depends on several key hyperpa-
rameters: the learning rate (), the replacement rate (p), the decay



rate (1), and the maturity threshold (m). Learning rate controls the
magnitude at which the weights are updated during each training
step, replacement rate controls the proportion of neurons that are
replaced at each training step, decay rate establishes how much
influence the previous utility of a neuron has in proportion to the
newly computed value, and maturity threshold controls how long
the reset neurons should not be reset again.

We expect learning rate to be the most influential parameter for
managing the stability-plasticity trade-off, as it directly controls
how adaptive the model is: increasing learning rate values should
result in increased plasticity and faster forgetting. Among the
algorithm-specific parameters, we theorize that the replacement
rate should be critical for managing the stability-plasticity trade-
off, as it influences how much previously acquired information is
lost versus how much new variance is introduced into the network.
We hypothesize that lower replacement rate values should notably
reduce forgetting, as less information is lost due to neuron reset-
ting.

3.2 Baselines

Four baseline algorithms were used to compare their effect on
catastrophic forgetting with that of Continual Backpropagation.

1. Backpropagation (standard SGD)

Backpropagation with stochastic gradient descent updates
model parameters by computing the gradient of the loss func-
tion and applying it to the weights. It is the most standard
offline NN training algorithm, and it does not include any
mechanisms to retain previous knowledge, making it prone to
forgetting. Additionally, Dohare et al. [1] showed that back-
propagation displays high loss of plasticity.

2. L2 regularization

L2 regularization is an extension of standard SGD, however it
penalizes large weight magnitudes by adding the squared L2
norm of the weight vector to the loss function. This encour-
ages the network to maintain smaller weight values which, in
offline learning setting, usually prevents overfitting and im-
proves generalization. In continual learning settings, L2 reg-
ularization can slightly mitigate forgetting by discouraging
drastic changes to the learned parameters, though it does not
explicitly preserve past knowledge. In Dohare et al. [1] work,
L2 Regularization was shown to perform significantly better
than regular backpropagation in terms of model’s plasticity.
With L2 Regularization, the total loss becomes:

Elotal = ['lask + /\HeHgv

where 6 is the weight vector, and A controls the regularization
strength.

3. Adam optimizer [15]

Adam is an adaptive gradient-based optimizer that adjusts
learning rates of BP, based on the first and second moments
of past gradients. In the offline learning settings, it is an ex-
tremely popular method, which often results in faster conver-
gence and improved performance. However, Adam does not
inherently include any mechanisms to prevent catastrophic
forgetting, as it optimizes purely for immediate task perfor-
mance. While Dohare et al. [1] demonstrated that Adam in-
troduces significant loss of plasticity, we theorize that the
plasticity results could have been unrepresentative, as the
used learning rate was very high for the simulated setting.

4. Shrink and Perturb [6]
Shrink and Perturb is a continual learning technique, con-
ceptually similar to L2 Regularization. After training on
a single batch of data, the model’s weights are marginally
scaled down, and then small random noise is added. This
process helps to maintain network plasticity by preventing
the weights from becoming too rigid, thus mitigating loss of
plasticity. Shrink and Perturb was shown to reduce loss of

plasticity very close to the level of CBP by Dohare et al. [1].
Formally, the weight update after task completion is:

O+ (1—=XN)-0+¢, €~N(0,0%),

where A is the shrink factor controlling the amount of weight
scaling, and € is Gaussian noise with variance o2 added to
encourage parameter diversity. We expected this method to
successfully balance stability and plasticity, as the informa-
tion contained in weights throughout learning is never com-
pletely discarded.

3.3 Variants of Continual Backpropagation

In this section, we present three modifications to the original Con-

tinual Backpropagation algorithm. We hypothesize that all three

variants of CBP can effectively mitigate forgetting while preserv-
ing the model’s plasticity.
1. Noise injection [26].

In the standard version of CBP, when a low-utility neuron is

reinitialized, its incoming weights are reset to random val-

ues drawn from a predefined distribution, while its outgoing

weights are set to zero. This procedure results in the complete

loss of any information previously encoded in the neuron’s

weights, which may still be relevant to past or even current
tasks.

v

resetting process, which uses noise injection combined with
weight rescaling instead of full reinitialization. They demon-
strate that noise injection variant of CBP maintains a level of
plasticity comparable to standard reinitialization. However,
for the proposed algorithm, the weights of a reset neuron are
not completely discarded, therefore, a proportion of the its
prior information is retained. Based on this, we hypothesize
that noise injection can serve as an effective mechanism for
reactivating low-utility neurons without entirely discarding
potentially useful representations from earlier tasks.

In this variant of CBP, both the incoming and outgoing
weights () of the selected neurons are updated according to
the following rule:

O+ (1—-XN-0+¢ e~N(0,0%),

where )\ is the shrink factor and o2 is the variance of the
injected Gaussian noise.

2. Layer-specific replacement [27].

Jucas et al. [27] has shown that reinitializing the neurons ex-
clusively in the first hidden layer for CBP algorithm results
in close to equivalent performance compared to reinitializing
across all layers. However, in the proposed version of CBP,
significantly less information is lost, as weights in deeper
layers are completely preserved. This suggests that limiting
reinitialization only to the first hidden layer may help retain
information about previous tasks, and thus reduce forgetting.

3. Partial neuron replacement.

We hypothesize that reinitializing all incoming and outgo-
ing weights of a neuron may not be necessary to restore its
plasticity. Instead, it may be sufficient to reinitialize only a
fraction of the incoming and outgoing weights of the neu-
rons that are chosen to be reset by CBP. To achieve this, we
introduce a ratio r € [0;1], which defines the probability
that each individual incoming or outgoing weight of a neu-
ron, selected for reinitialization, is reset. In particular, with
probability 7, a given weight is either reinitialized using a
random value drawn from the standard initialization distri-
bution, or it remains unchanged. We expect this approach
to introduce enough randomness to preserve model’s plastic-
ity, while maintaining more information from previous tasks,
compared to full reinitialization of a neuron.



4 Experimental Setup and Results

In this section, we introduce the experimental setup used to evalu-
ate CBP and the baseline algorithms, define the metrics that quan-
tify stability and plasticity, and present the results.

4.1 Experimental Setup: Online Permuted MNIST
Benchmark

MNIST [28] is a widely used, publicly available dataset consist-
ing of handwritten digit images (0-9). We use this dataset to
simulate a continual learning setting, in which the model is se-
quentially exposed to a series of tasks. In each task, the model
is trained on the full MNIST dataset (10,000 grayscale images of
size 28x28), where the pixels of all images for that task are per-
muted using a fixed random permutation (an example is shown in
Figure 1). Once the model is trained on the entire dataset for a
given task, a new random pixel permutation is applied to all the
images, and the model continues training on the newly permuted
dataset, representing the next task. Furthermore, the batch size
for all of the experiments is set to 1, which means that the model
trains on each image one by one. We call this benchmark Online
Permuted MNIST (OPMNIST).

Figure 1: An illustration of the pixel permutation process used in the
OPMNIST benchmark. The left image shows an original MNIST digit.
The right image shows the same digit after a fixed reordering (permuta-
tion) has been applied to its pixels. In OPMNIST, all images within the
same task share the same pixel permutation, which is randomly gener-
ated for each task.

A simple MLP architecture was chosen as a classifier, with three
fully-connected hidden layers, each containing 400 neurons, and
ReLu activation function. Note that all tasks within the OPM-
NIST are considered to be of the same level of difficulty, since the
classification model that we use only comprises of simple fully
connected layers, thus no spacial representations of the pixels are
taken into account.

Furthermore, for each experiment, we evaluated the algorithms
on two different forgetting scenarios.

1. Initial exposure recall phase. The model is initially trained
sequentially on 100 distinct tasks, all of which it encoun-
ters for the very first time. This phase is meant to evalu-
ate model’s internal dynamics and remembering capabilities
once it faces completely new data, while the effects of plas-
ticity loss have not yet manifested.

2. Recurrent task recall phase. The model is then trained on
an additional 2400 tasks. Every 100" task in this phase is
a repetition of the very first task from the initial phase. In
this way, the experiment is split to 25 periods . This phase is
meant to evaluate how well different algorithms can recover
and maintain knowledge about previously learned and then
reintroduced information.

If not stated otherwise, for all of the tested algorithms we used
a learning rate of @ = 0.003, while the default values of CBP
hyperparameters were p = 107°, 1 = 0.99,m = 100. The ex-
act hyperparameter values used for all the baseline algorithms are
detailed in Appendix B.1.

Lastly, for each experiment, seven runs were performed and the
average performance and standard error were reported in the plots.
All of the experiments were run on Delft Al Cluster [29].

4.2 Evaluation Metrics

In this section, we describe a set of metrics for evaluating plas-
ticity, forgetting, stability-plasticity trade-off and the internal dy-
namics of the models.

Metrics for Evaluating Plasticity

The most commonly used metric for evaluating plasticity is the
evolution of model’s performance, typically measured through ac-
curacy. Elsayed and Mahmood [24] demonstrated that long-term
accuracy is highly correlated with model’s actual adaptability;
moreover, accuracy directly reflects the algorithm’s effectiveness
at solving the target task. Therefore, we evaluated the plasticity of
a model the following way: after each task, the resulting model is
again evaluated on the data of that task, and the accuracy is com-
puted. A decline in this accuracy over the course of learning new
tasks of the same difficulty indicates loss of plasticity. Therefore,
to summarize the model’s ability to maintain adaptability through-
out training, we define the plasticity as the average accuracy over
the final 50 tasks of the experiment. Specifically, since all exper-
iments run for 2500 tasks, plasticity is computed as the average
accuracy across tasks 2451 to 2500.

Metrics for Evaluating Forgetting

To evaluate catastrophic forgetting, we use different metrics for
the two training phases, that are introduced in Section 4.1.

1. Evaluating initial exposure recall phase. After training on
the initial 40 tasks, the model’s accuracy is evaluated on the
full combined data of these tasks. This measures how well
the model retains information from tasks it has only seen
once. Higher accuracy indicates better retention. We call
this metric initial recall accuracy.

2. Evaluating recurrent task recall phase. To evaluate forget-
ting for this phase, we use two complementary metrics.

(a) Recurrent accuracy curve. After each task, accuracy
on the very first task’s (task 1) data is measured. In this
way, we can track how well the model remembers a par-
ticular data distribution throughout training. Due to the
nature of the recurrent task recall phase, accuracy on
the initial task is expected to increase significantly ev-
ery 100 tasks (a total of 25 times), as the initial data is
reintroduced at this interval. The purpose of this metric
is to track model’s memory retention evolution as it is
periodically re-exposed to previously seen data.

(b) Memory retention duration. Given a recurrent accu-
racy curve, the number of consecutive new tasks that are
processed before accuracy on the initial task’s data falls
below 30% is computed. This is measured starting from
the most recent reintroduction of the initial task, during
the final period of the experiment (i. e. tasks 2401-
2500). Higher values of this metric indicate slower for-
getting. The purpose of this metric is to quantify how
effectively the model consolidates periodically reintro-
duced information.

Metrics for Evaluating Models’ Internal Dynamics

Furthermore, in order to gain intuition why certain algorithms re-
sult in increased forgetting, we introduced a set of metrics to ana-
lyze the internal dynamics of CBP and the baseline algorithms.

1. Weight Drift. For each hidden layer, normalized L2 distance
between the model’s current weight vector (Weyrren), and the
weight vector obtained after being most recently trained on
the initial task (Wipita1), is computed:

||Winilia1 - Wcurrent||2
Aw = ,
VN
where NV is the number of neurons within the layer. The
total weight drift is defined as the average weight drift




across all hidden layers. A high weight drift may indicate
that the model’s parameters have deviated significantly from
their original configuration, which can be associated with in-
creased forgetting of earlier tasks [7].

2. Activation Drift. Increased forgetting in CL is linked to
changes in model’s internal representations [3]. As the model
learns new tasks, the activations in hidden layers shift away
from those formed during earlier tasks, which can poten-
tially discard previously acquired knowledge: higher activa-
tion drift may imply increased forgetting. To quantify this
representational drift, we compare hidden layer activations,
obtained after training on the very first task of the experi-
ment, to those observed during later tasks, using two different
metrics:

i. Centered Kernel Alignment (CKA) [30]. It is a simi-
larity metric used to compare activation representations
between neural networks or between different stages of
training within the same network. In this research, CKA
is used to quantify how much the internal representa-
tions of a neural network change over time.

Y TX|%
CKA(X,Y) = ,
) = XX Y
where X and Y are the activation matrices of the same
hidden layer, extracted at different points of the training.
We define final CKA value as an average CKA over all
hidden layers of the network.

ii. Procrustes distance. It quantifies the geometric similar-
ity between activation patterns by aligning two matrices
through an optimal rotation and scaling. It is a reliable
and widely used baseline for measuring activation drift

[31].
tr(zx’y)
IXMF- Y F’

where X and Y are the activation matrices of the same
hidden layer, extracted at different points of the train-
ing, and X is their covariance matrix. We define final
Procrustes distance value as an average Procrustes dis-
tance over all hidden layers of the network.

PrSim(X,Y) =

While CKA has been demonstrated to provide unreliable re-
sults [31], in all of the experiments we found the two metrics
to follow almost identical trends in terms of activation drift
(see Appendix B.5).

4.3 Results

In this section, we present results on the OPMNIST benchmark
across different experiment groups. Specifically, we assess forget-
ting in CBP and baseline algorithms, analyze CBP’s performance
under various hyperparameter settings, examine the effectiveness
of proposed CBP variants, and study the internal dynamics of the
models.

The main findings are summarized in Figure 2a for the initial
exposure recall phase and in Figure 2b for the recurrent task recall
phase. In particular, both figures visualize the stability-plasticity
trade-off for different groups of experiments that are presented in
this section. In both visualizations, the horizontal axis corresponds
to the plasticity metric, defined in Section 4.2—higher values of
this metric indicate increased adaptability. The vertical axis corre-
sponds to the initial recall accuracy metric for Figure 2a, and the
memory retention duration metric for Figure 2b. Higher values of
both metrics indicate increased memory retention.

Evaluating Forgetting on Plasticity-Optimized
Algorithm Versions

Initially, we evaluated the forgetting on CBP and the baseline
algorithms: regular backpropagation, L2 regularization, Shrink

and Perturb and Adam. For all algorithms, excluding Adam, we
used the hyperparameters optimized for plasticity for OPMNIST
benchmark, as reported by Dohare et al. [1]. The exact parame-
ter configurations for all algorithms and extended remarks can be
found in Appendix B.1. For the Adam baseline, we report results
using a more appropriate learning rate of o = 0.001, as the default
value of a = 0.003 lead to consistently degraded and unrepresen-
tative performance.

As shown in Figure 2a and Figure 2b, standard CBP exhibited
the highest degree of forgetting among all evaluated baselines,
both during the initial exposure recall and the recurrent task re-
call phases respectively. Furthermore, CBP failed to retain infor-
mation of the first permutation, even after 25 reintroductions - no
improvement in incorporating periodically reintroduced informa-
tion was observed (see Figure 3). In contrast, Adam and stan-
dard backpropagation exhibited lower forgetting than CBP in both
experimental settings, although they were significantly less plas-
tic. Shrink and Perturb, as well as L2 regularization, performed
comparably to each other, achieving a favorable balance between
plasticity and forgetting for the initial exposure recall experiment.
However, they were less effective than Adam and regular back-
propagation at incorporating periodically reintroduced informa-
tion over time (see Figure 3).

Evaluating Hyperparameter Influence on Forgetting

Furthermore, we evaluated how different hyperparameters influ-
ence forgetting for CBP algorithm. In particular, we tested CBP
with different values of the replacement rate (p), decay rate (1),
maturity threshold (m), and learning rate (a) parameters. In
each experiment, only one hyperparameter was varied, while the
others were held constant at their default values. Figure 2 sum-
marizes replacement rate and decay rate parameters’ influence on
both stability and plasticity, while the extended results and analy-
sis for the rest of the hyperparameters can be found in Appendix
B.2.

First, it is evident that decreasing replacement rate values mit-
igate forgetting for both initial exposure recall and recurrent task
recall settings (see Figure 2). This supports our hypothesis that
the less frequently neurons are replaced, the less information re-
garding past tasks is lost. However, results obtained from periodic
recall experiment indicate that even with low replacement rate val-
ues, the model is not able to efficiently improve upon the periodi-
cally reintroduced information (see Figure 4).

Interestingly, our experiments showed that lower decay rate val-
ues significantly reduced forgetting in the recurrent task recall set-
ting, which enabled the model to effectively consolidate informa-
tion from periodically reintroduced tasks (see Figure 4). Since the
decay rate affects only the selection of neurons for reinitialization,
these results imply that forgetting in CBP may not rise solely from
the act of reinitializing neurons, but rather from reinitializing neu-
rons that still encode useful information. This suggests potential
for improving the utility estimation function to more effectively
preserve past task-relevant representations.

Lastly, as shown in Appendix B.2, even with efficient values of
the replacement rate parameter, the maturity threshold had negli-
gible effect on both plasticity and forgetting. The learning rate,
on the other hand, had significant impact on the stability-plasticity
trade-off: low values of learning rate drastically increased the sta-
bility, however introduced loss of plasticity.

Evaluating Variants of Continual Backpropagation

We evaluated three variations of CBP, expected to better exploit
the stability-plasticity tradeoff: noise injection, layer-specific re-
placement and partial neuron replacement. In this section, we
show that all three variations of the algorithm reduce forgetting
while only minimally losing plasticity.

Noise injection We evaluated the noise injection variant of CBP
using different values for the shrink rate A\ and the standard devi-
ation o2 of the noise component, across various replacement rate
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Original Algorithm Versions
Standard Continual Backpropagation
Shrink and Peturb

L2

Regular Backpropagation

- Adam. a = 0.0001

®

<l
oHmeooe

Variant of CBP: Noise Injection

CBP + Noise injection. A = 0.99, o = 0.001
CBP + Noise injection. A = 0.6, 0 = 0.01
CBP + Noise injection. A = 0.99, o = 0.005

Variant of CBP: Layer-Specific Replacement
@ Regular CBP. p = 0.000001
I CBP + Replace Only First Layer. p = 0.000001

Hyperparameter Influence on Forgetting: p
Regular CBP. p = 0.0001

Regular CBP. p = 0.00001

Regular CBP. p = 0.000005

Regular CBP. p = 0.000001

Stability-Plasticity Tradeoff Comparison for OPMNIST for Recurrent Task Recall

N w » o @
S S S S 3
[

Memory Retention Duration

"
S

86 88 89 92 9%
Plasticity Metric (%)

(b) Recurrent task recall experiment trade-off comparison
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Figure 2: Stability-plasticity trade-off comparison for different versions of algorithms, for two forgetting scenarios: initial exposure recall (a) and
recurrent task recall (b). The markers indicate the average value of the metric, and the shaded area corresponds to the standard error. As described
in Section 4.2, the plasticity metric for both plots is the average accuracy of the final 50 tasks of the whole experiment. The forgetting metric for a
corresponds to initial recall accuracy, while forgetting metric for 2b corresponds to memory retention duration. In both figures, higher values of the
forgetting metric indicate increased retention, and higher values of the plasticity metric indicate increased plasticity.
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Figure 3: Comparison of recurrent accuracy curves of five algorithms
(Continual Backpropagation (CBP), regular backpropagation (BP), L2
Regularization (L2), Adam and Shrink and Perturb (S&P)), for the re-
current task recall phase. The initial task is reintroduced every 100 tasks
for 25 times. For simplicity, only the initial two and the final two periods
are shown. Results are averaged over seven independent runs; solid lines
represent the mean accuracy, and shaded areas denote the standard error.

settings. Our results indicate that low noise magnitude combined
with relatively high shrink rates allows models to retain memory
substantially better than regular CBP for both forgetting evalua-
tion scenarios (see Figures 2 and 5). In particular, Figure 2 shows
that the noise injection variant was one of the few methods that
achieved high memory retention in both the initial exposure re-
call and recurrent task recall settings, relative to other algorithms.
However, we also found that this comes at the cost of a noticeable
loss in plasticity. Finally, as shown in Figure 2b, noise injection
with A = 0.99 and 02 = 0.001 was extremely effective in im-
proving retention for periodically reintroduced information.

A more detailed analysis of how different parameters of noise
injection variant affect stability-plasticity trade-off is presented in
Appendix B.3.

Layer-specific replacement We evaluated the stability and plas-
ticity across varying replacement rate values for the proposed
strategy, in comparison to original CBP algorithm. However, we
found that differences in forgetting only become apparent at low
replacement rate values. Specifically, as illustrated in Figure 6,

CBP accuracy on the first permutation data for OPMNIST with
different hyperparameter values (recurrent task recall)
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Figure 4: Comparison of recurrent accuracy curves of CBP with differ-
ent values of the replacement rate and decay rate parameters, for the re-
current task recall phase. The initial task is reintroduced every 100 tasks
for 25 times. For simplicity, only the initial two and the final two periods
are shown. Results are averaged over seven independent runs; solid lines
represent the mean accuracy, and shaded areas denote the standard error.

for a replacement rate of p = 1075, the proposed strategy demon-
strated improved retention of periodically reintroduced informa-
tion, whereas the standard CBP approach remained unaffected.
However, the improved memory retention for the recurrent task
recall phase came at the cost of a slight reduction in plasticity (see
Figure 2b). Moreover, the difference in forgetting for the initial
exposure scenario was negligible (see Figure 2a).

Partial neuron replacement Lastly, we hypothesized that it
may not be necessary to reinitialize all of a neuron’s incoming
and outgoing weights to restore its plasticity. Our findings support
this hypothesis: we showed that reinitializing up to 7 = 0.5 of a
neuron’s weights fully preserves model’s plasticity while slightly
reducing forgetting in the initial exposure recall setting (see Figure
2a). However, this reduction in memory loss was only observed
in the initial exposure recall setting, since for » > 0.5, no clear
improvement in memory retention was seen, when information is
periodically reintroduced (see Figure 2b). Nevertheless, reinitial-
izing as little as 1% of the weights noticeably reduced forgetting in
the recurrent task recall experiment (see Figure 0), though it came
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Figure 5: Comparison of recurrent accuracy curves of variant of CBP
with noise injection, with different values of the shrink rate and noise
magnitude parameters, for the recurrent task recall phase. The initial
task is reintroduced every 100 tasks for 25 times. For simplicity, only
the initial two and the final two periods are shown. Results are averaged
over seven independent runs; solid lines represent the mean accuracy,
and shaded areas denote the standard error.
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Figure 6: Comparison of recurrent accuracy curves of variant of CBP
with layer-specifc replacement, with p = 107, for the recurrent task
recall phase. The initial task is reintroduced every 100 tasks for 25 times.
For simplicity, only the initial two and the final two periods are shown.
Results are averaged over seven independent runs; solid lines represent
the mean accuracy, and shaded areas denote the standard error.

at the cost of reduced plasticity. Appendix B.4 includes an ex-
tended analysis of this variant, covering results for a wider range
of r values.

Evaluating Models’ Internal Dynamics

We evaluated the internal behavior of the networks throughout the
forgetting process. In particular, we observed that activation drift,
measured both using Procrustes distance and CKA, strongly cor-
relates with forgetting: higher drift values reliably indicated in-
creased forgetting. Figure 8 shows how activation drift, measured
via the Procrustes distance (see Section 4.2), evolved during the
recurrent task recall experiment across different algorithms. The
forgetting of the same experiment for corresponding algorithms
is evaluated in Figure 3. A very strong alignment between these
metrics is visible-algorithms that resulted in increased activation
drift also displayed low memory retention. However, we did not
observe consistent correlation between forgetting and weight drift
of a model: detailed results of weight drift and further evaluation
of activation drift metrics can be found in Appendix B.5. Nev-
ertheless, the strong alignment between activation drift metrics
highlights the potential of particular drift-based metrics as reliable
indicators of forgetting.

5 Discussion

Our main observation is that CBP consistently performed poorly
in terms of stability compared to all four baselines. This finding
was consistent across both the initial exposure recall and the re-
current task recall experiment types. Despite its strong plasticity,
CBP failed to retain task-relevant knowledge over time, and even
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Figure 7: Comparison of recurrent accuracy curves of variant of CBP
with partial neuron replacement, with different values of weights re-
placement ratio () parameter, for the recurrent task recall phase. The
initial task is reintroduced every 100 tasks for 25 times. For simplic-
ity, only the initial two and the final two periods are shown. Results are
averaged over seven independent runs; solid lines represent the mean ac-
curacy, and shaded areas denote the standard error.
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Figure 8: Evolution of activation drift, measured using Procrustes dis-
tance. The activation drift is computed relative to the features obtained
after the most recent occurrence of the very first task, for five algorithms
(Conitinual Backpropagation (CBP), regular backpropagation (BP), L2
Regularization (L2), Adam and Shrink and Perturb (S&P)), for the re-
current task recall phase. Lower values of the metric imply smaller acti-
vation drift. The initial task is reintroduced every 100 tasks for 25 times.
For simplicity, only the initial two and the final two periods are shown.
Results are averaged over seven independent runs; solid lines represent
the mean accuracy, and shaded areas denote the standard error.

repeated exposure to previously learned tasks did not effectively
restore the forgotten information. In fact, even algorithms such as
standard SGD and Adam (both known to suffer from limited sta-
bility) showed better memory retention for OPMNIST experiment.
This highlights that while CBP effectively addresses one side of
the stability—plasticity dilemma (plasticity), it severely compro-
mises the other (stability), making it unsuitable for tasks where
long-term memory is important.

We believe that the reason for the poor stability observed in
CBP lies within the core of the algorithm: its neuron resetting
mechanism. Our results suggest that the utility-based neuron reini-
tialization process may be flawed in two fundamental ways. First,
it may be too aggressive—discarding neurons that, while esti-
mated to have low utility for current task, still encode represen-
tations that are useful for retaining past knowledge. As a result,
previous task-relevant features may be lost, which degrades per-
formance on past data. Second, the mechanism may be too impre-
cise in identifying truly necessary neurons. The utility function
may not capture all aspects of a neuron’s contribution, leading to
preservation of the unimportant neurons, while reinitializing ones
that are relevant for retaining past information. Together, these
limitations can explain CBP’s inability to retain long-term knowl-
edge, despite its effectiveness at maintaining plasticity.

Our results obtained from experiments with the decay rate pa-
rameter of the utility function provide strong support for the sec-



ond hypothesis: CBP’s forgetting partially results from poor se-
lection of neurons for reinitialization. Specifically, we found that
lowering the decay rate, which increases the influence of past util-
ity scores in the current utility calculation, lead to a substantial re-
duction in forgetting during the recurrent task recall phase. Since
the decay rate only affects the selection of neurons, and not the
reinitialization process itself, this suggests that forgetting in CBP
may rise from misidentifying which neurons are actually impor-
tant to preserve. More precisely, neurons that are still useful for
retaining earlier knowledge may be marked as low-utility. This
suggest that there exists room for developing more effective util-
ity functions that capture past task relevance. For example, incor-
porating historical gradient or drift-based information could im-
prove neuron selection and thus reduce forgetting without mitigat-
ing plasticity.

Furthermore, our analysis of CBP variants offers promising
room for mitigating forgetting while retaining plasticity. We ex-
amined three modifications to CBP, all of which were effective in
reducing forgetting in specific settings, with minimal or no loss
of plasticity. All three evaluated approaches work by lowering
the amount of randomness introduced to the model, and we find
that these less destructive methods still allow the model to remain
adaptable. This indicates that CBP algorithm could potentially be
even further improved by searching for ways to less destructively
reset low utility neurons; that could be done by either combining
our proposed strategies or by exploring new methods.

We additionally found a strong correlation between forgetting
and certain internal model dynamics. In particular, activation drift
closely followed the forgetting trends, especially in the recurrent
task recall scenario. This supports a well established idea that
the representational changes over time are the underlying reason
of forgetting. Our results also indicate that feature drift metrics
may be useful in practice for monitoring and predicting when a
model is likely to forget earlier tasks, and, as stated before, could
potentially be utilized to improve the utility estimation. Finally,
we found that weight drift, computed using L2 distance, is not a
reliable indicator of forgetting.

Lastly, while our findings provide valuable insight into the be-
havior of CBP and its variants, our conclusions are drawn from ex-
periments conducted exclusively on the Online Permuted MNIST
benchmark using a simple multi-layer perceptron architecture for
our models. This setting, although well-controlled and widely
used in continual learning research, may not capture the full com-
plexity of real world tasks. In particular, the effect of CBP on
forgetting on high dimensional input data, such as high resolution
images or natural language, remains unexplored. Moreover, our
evaluation focuses primarily on classification tasks; the effects of
CBP on other learning types, such as reinforcement learning, are
not determined. Therefore, we advise to responsibly interpret and
use our results in more complex continual learning scenarios.

6 Conclusions and Future Work

The goal of this research was to evaluate catastrophic forgetting in
models trained using the Continual Backpropagation algorithm.
To achieve this, we established a continual learning setting using
MNIST dataset. We defined and evaluated forgetting under two
distinct scenarios: (1) initial exposure recall, where forgetting is
assessed on data encountered only once and for the first time, and
(2) recurrent task recall, where certain data is reintroduced multi-
ple times. Different metrics were used for these two scenarios to
best capture their dynamics.

We compared CBP with four baseline algorithms: Shrink and
Perturb, Adam, L2 regularization, and standard backpropagation.
Across both initial exposure recall and recurrent task recall sce-
narios, CBP consistently exhibited significantly higher forgetting
than all the baselines. Notably, CBP failed to benefit from periodic
re-exposure to tasks, in contrast to the baselines, which showed
improved retention over time.

We further investigated how CBP’s performance varies with
changes in its hyperparameters: learning rate, replacement rate,
decay rate and maturity threshold. Our results indicate that the
learning rate, decay rate, and replacement rate significantly influ-
ence the stability-plasticity trade-off, whereas the maturity thresh-
old showed negligible impact. In particular, our analysis of the
decay rate highlights the potential for improving the utility estima-
tion function to better preserve past task-relevant representations.

Three CBP variations were also examined—noise injec-
tion, layer-specific replacement and partial neuron replace-
ment—hypothesizing that they could mitigate forgetting while
maintaining high plasticity. All three methods were effective in re-
ducing forgetting in specific settings. Remarkably, we showed that
replacing up to 50% of a neuron’s incoming and outgoing weights
is sufficient to restore its plasticity without without compromising
performance.

Moreover, we analyzed the internal dynamics of the networks,
focusing on activation and weight drift in hidden layers over the
course of learning. Activation drift proved to be a strong indica-
tor of forgetting: models with higher feature drift exhibited faster
forgetting, suggesting it as a useful indicator for model’s stability.

Finally, we identify several promising directions for future
investigation.  First, our results suggest that the current util-
ity function in CBP may not optimally preserve task-relevant
information. Developing a more effective utility estimation
method—potentially one that incorporates information from gra-
dient history or drift patterns—could help reduce forgetting with-
out significantly compromising plasticity. Furthermore, several
variants of CBP, such as noise injection and partial neuron replace-
ment, performed comparably well to the original version in terms
of plasticity while also reducing forgetting. These findings indi-
cate that there is room for systematic improvement of the CBP
algorithm, either through combining these strategies or by explor-
ing new approaches. Finally, future work could expand the evalua-
tion of catastrophic forgetting to include more complex CL bench-
marks, such as continual reinforcement learning, since our current
conclusions are based solely on a single benchmark.

7 Responsible Research
7.1 Ethics

Our research does not involve human subjects, personal data,
or any sensitive or confidential information. All experiments
were conducted exclusively on publicly available datasets, such
as MNIST, which do not raise direct ethical concerns.

However, CL methods evaluated and proposed in this study can
potentially be applied in high-stake domains, such as medical di-
agnostics or autonomous driving. In these contexts, the reliability
of the algorithms, particularly their ability to retain information
over time, might be of significant importance. It is therefore essen-
tial that any system that uses the results of our research undergoes
thorough testing before deployment.

7.2 Reproducibility and Replication of Results

Ensuring the replication of our findings has been a relevant part of
the process throughout this project. All experiments were imple-
mented using publicly available Python libraries, primarily lever-
aging PyTorch'. The codebase is a modified and extended version
of the original implementation by Dohare et al. [1], structured to
allow users to reproduce and extend experiments with minimal ef-
fort.

To support replication, every experiment can be executed via
straightforward configuration file following a standardized and ex-
tendable format. Instructions on how to prepare and use these
configuration files are included in the repository’s documentation,
which allows users to reproduce exact experimental setups and
also adjust parameters for further exploration.

!pytorch.org


pytorch.org

The entire codebase, which includes implementations of base-
line algorithms, the Continual Backpropagation method, proposed
modifications, and all custom evaluation metrics (such as weight
drift and activation drift), is publicly available on GitHub”. The
repository contains setup instructions, dependency requirements,
and sample configuration files used to run experiments, described
in this work.

Additionally, all hyperparameters used in the experiments,
across both baselines and our proposed CBP variants, are reported
in detail in Section 4.1 and Appendix A, ensuring transparency
and allowing replication of results.

However, it must be mentioned that while we acknowledge the
value of using fixed random seeds for strict reproducibility, we
chose not to enforce them in our experiments. This decision was
based on the observation that our results were highly consistent
across multiple independent runs — each experiment was repeated
seven times, and the variance in outcomes was minimal. This sug-
gests that our findings are robust to initialization and random fac-
tors.

7.3 Usage of Large Language Models

In this research, the use of Large Language models was kept min-
imal. Copilot® was occasionally used for basic code generation,
while Grammarly* and Overleaf® suggestions were used for mi-
nor language corrections.

ChatGPT®, however, was used occasionally for code-related de-
bugging, plot visualization-related questions and technical LaTex
paper writing-related questions. The exact prompts and usage de-
tails are documented in Appendix A.

Zhttps://github.com/jujucas2 1 /research-project-repository
3copilot.microsoft.com

*grammarly.com

Soverleaf.com

Schatgpt.com
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In this section, we provide main prompts that were used for query-
ing LLMs. In particular, we used ChatGPT several times for code
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debugging purposes, LaTex-related quires and for plot visualiza-
tions. In order not to overwhelm the paper with code-related text,
we simplify the prompts by only providing the human-language
part of the queries. We now provide the three groups of queries
that were used for ChatGPT, with examples of the questions that
were asked.

1. Code debugging-related queries.

(a) 71 get this error when fetching data from wandb:”

(b) ”In my history, I have been logging some metrics for
the first 300 steps, and then stopped, while others were
logged for additional 100 steps. Will the data frame con-
tain the cut-out version of the metrics that I logged for
longer? Because I get this error:”

(c) "What does this piece of code do in PyTorch? I get this
error:” (most common query).

2. Graphical visualization-related question.

(a) ”In matplotlib, how to make the legend split into two
rows”

(b) ”How to plot the legend horizontally?”
(c) “How to increase boldness in legend text?”

3. Overleaf and Latex-related questions.

* "How to cite a paper that is not published”

* "What is the difference between @article and @inpro-
ceedings in .bib files latex”

» "Is it possible to set the height of a figure once the width
is already set?”

B Further Analysis of Results

B.1 Remarks on Baseline Algorithms

In Section 4.3, the results are presented for plasticity-optimized
algorithms, based on the parameter settings reported by Dohare
et al. [1]. We reproduced the results of that study under a reduced
experimental setup, using a dataset of 10,000 samples instead of
60,000, and a smaller model architecture. Despite these changes,
we found that the optimal hyperparameters for minimizing plastic-
ity loss remained consistent across algorithms for a learning rate
of o = 0.003.

Specifically, the optimal regularization strength for L2 regu-
larization was A = 0.0001, while the best parameters for the
Shrink and Perturb method were A = 0.0001 and o2 = 0.00001.
Continual Backpropagation achieved the highest plasticity with
m = 100, p = 10>, and n = 0.99. As noted, all algorithms
were trained with a learning rate of o = 0.003.

However, we found that this learning rate was too high for the
Adam optimizer. At o = 0.003, Adam showed to have very min-
imal ability to learn in general. As shown in Figure 9, the models
trained with this learning rate failed to properly learn initial task,
achieving only around 70% accuracy at best. This performance
declined rapidly over subsequent tasks due to reduced plasticity.
However, slightly reducing the learning rate to o = 0.001 resulted
in significantly increased plasticity and forgetting (see Figure 9),
suggesting that previous choice of learning rate was sub-optimal.

B.2 Extended Evaluation of Hyperparameter
Influence for CBP

The standard hyperparameter values used in CBP were o = 0.003,
m = 100, p = 1072 and = 0.99. Figures 11-14 illustrate how
change in different hyperparameter values influence the stability-
plasticity trade-off.

First, we observe that varying the replacement rate values re-
sults in consistent relative performance across both forgetting
phases (see 11). This suggests that the influence of the replace-
ment rate on the stability-plasticity trade-off manifests similarly
across both forgetting scenarios. Furthermore, our results indicate
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Accuracy on the first permutation data for OPMNIST for
Adam with different learning rate values
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Figure 9: Comparison of recurrent accuracy curves of models trained
with Adam with different learning rate values.

that lower values of the replacement rate parameter reduce forget-
ting.

Figure 12 shows that changing the replacement rate leads to
consistent relative performance trends across both forgetting sce-
narios (initial exposure recall and recurrent task recall). This
suggests that the effect of the replacement rate on the stability-
plasticity trade-off is the same both when model is exposed to
data for the first and, and when it is periodically introduced. Fur-
thermore, the results clearly indicate that lower replacement rate
values mitigate forgetting.

As hypothesized, low values of the learning rate parameter im-
prove retention capabilities - this finding was consistent for both
experimental phases (see Figures 10 and 13). However, while
very low values of the learning rate parameter significantly de-
crease plasticity (for instance, « 0.0001), it is visible that
for reasonably high values of the learning rate parameter (in our
case a € [0.01;0.001]), plasticity is maintained up to very simi-
lar level. Lastly, our results indicate that even with low learning
rate values, the model is not able to improve upon periodically
re-introduced information.

Lastly, maturity threshold was shown to have negligible impact
for leveraging the stability-plasticity trade-off (see Figure 14). The
obtained results do not provide distinctive insight between the per-
formance of CBP trained with different values of the maturity
threshold. Since maturity threshold’s effect to CBP depends on
what the replacement rate value is, we tested maturity threshold’s
influence on forgetting across various plasticity-optimal replace-
ment rate values; however, the same conclusion was drawn from
the obtained results.

Accuracy on the first permutation data for OPMNIST for
CBP with different learning rate values

—— CBP. a=0.01
CBP. a=0.003
—— CBP. a=0.001
|

CBP. a=0.0001

100

80

60

40

Accuracy (%)

20

100 150 2300

Task number

2350 2400 2450 2500

Figure 10: Comparison of recurrent accuracy curves of models trained
with CBP with different learning rate values.

B.3 Extended Evaluation of Variant of CBP: Noise
Injection

We evaluated how the forgetting for the recurrent task recall phase
changes with different values of shrink rate (\) and noise variance
(0?) parameters. Results for varying shrink rate parameter with
fixed 2 = 0.001 are provided in Figure 16, while changing noise
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variance influence on forgetting is visualized in Figure 15. It is
evident from the plots that higher values of the shrink rate param-
eter decrease forgetting, while lower amount of noise added to the
model results in less forgetting. These findings were robust across
various values of fixed shrink rate and noise variance parameters.

Furthermore, we evaluated the stability-plasticity trade-off for
both forgetting scenarios. This trade-off is visualized in Figure 17,
and we used the same shrink rate and noise variance parameters as
in the previous figures. It is clear that increasing values of the
noise variance improve plasticity. However, change in shrink rate
value for a fixed 02 = 0.001 does not have significant impact on
plasticity.

B.4 Extended Evaluation of Variant of CBP: Partial
Neuron Replacement

We evaluated the performance of the partial neuron replacement
variant of CBP, using a an increased number of replacement ratio
r values. Results for both the initial exposure recall and the re-
current task recall phases are provided in Figure 18. We find that
the trade-off for different values of r is identical for both forget-
ting scenarios: higher 7 values indicate lower forgetting, but also
reduce plasticity.

B.5 Extended Evaluation of Weight and Activation
Drift

In this section, we present a more elaborate analysis of how acti-
vation and weight drifts affect forgetting. In particular, for several
conducted experiments, we visualize their corresponding activa-
tion and weight drift curves, which provide insight into whether
these metrics correlate. In order to simplify the visualization pro-
cess, we only show the curves of the last period of the experi-
ments (i. e. tasks 2401-2500). In this way, a very clear distinction
between the activation, weight and forgetting curves of different
algorithms is visible.

Figures 19, 20, and 21 clearly demonstrate that activation drift
correlates strongly with forgetting trends. Both the Procrustes dis-
tance and CKA metrics produce consistent results across differ-
ent experiment groups, and effectively capture the relative forget-
ting behavior of the algorithms. In particular, both feature drift
metrics accurately reflect the ordering of algorithms in terms of
how quickly they forget previous tasks. While we show only three
groups of examples where feature drift correlates with forgetting,
we actually observed this behaviour in all tested settings.

Interestingly, weight drift alone, measured using L2 distance,
appears to be a weaker indicator, as it does not consistently align
with the observed forgetting dynamics. For example, in Figure
20, weight drift of L2 and Shrink and Perturb algorithms is the
smallest, however, these algorithms display higher forgetting than,
for instance, BP. That is, however, an expected result, because the
core idea beneath L2 and Shrink and Perturb is to minimize the
magnitude of weights-therefore, the weights change less during
training.
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Figure 11: Stability-plasticity trade-off comparison for different replacement
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Figure 12: Stability-plasticity trade-off comparison for different decay rate hyperparameter values of CBP. Other hyperparameters are set to their

default values.
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Figure 14: Stability-plasticity trade-off comparison for different maturity threshold hyperparameter values of CBP. Other hyperparameters are set to

their default values.
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Accuracy on the first permutation data for noise injection variant
of OPMNIST with 02 =0.001
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Figure 16: Comparison of recurrent accuracy curves of models trained with noise injection variant of CBP, with o> = 0.001 and varying values of
shrink rate (\) parameter.
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Figure 17: Stability-plasticity trade-off comparison for noise injection variant of CBP, with different values of shrink rate and noise variance parameters.
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Figure 18: Stability-plasticity trade-off comparison for partial neuron replacement variant of CBP, with different replacement ratio value.
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Accuracy on the first permutation data for OPMNIST for
different algorithms (recurrent task recall)
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Figure 19: Comparison of forgetting, activation drift (CKA and Procrustes), and weight drift (L2 distance) across different algorithms on OPMNIST.
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Figure 20: Comparison of forgetting, activation drift (CKA and Procrustes), and weight drift (L2 distance) for CBP across different hyperparameter

values.
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Accuracy on the first permutation data for OPMNIST for CBP
with partial neuron replacement (recurrent task recall)
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Figure 21: Comparison of forgetting, activation drift (CKA and Procrustes), and weight drift (L2 distance) for CBP with partial neuron replacement,

across different r values.
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