
Time-dependent resonant tunneling via two discrete states

T. H. Stoof and Yu. V. Nazarov
Department of Applied Physics and Delft Institute for Microelectronics and Submicrontechnology, Delft University of Technology,

Lorentzweg 1, 2628 CJ Delft, The Netherlands
~Received 7 June 1995; revised manuscript received 28 September 1995!

We theoretically investigate time-dependent resonant tunneling via two discrete states in an experimentally
relevant setup. Our results show that the dc transport through the system can be controlled by applying external
irradiation with a frequency which matches the energy difference between the discrete states. We predict
resonant phenomena which should be easily observable in experiments.

Time-dependent tunneling phenomena have received in-
creasing attention in recent years. In the early eighties, Bu¨tt-
iker and Landauer studied the tunneling time needed for an
electron to traverse a potential barrier.1 More recent theoreti-
cal work focused on the time-dependence of resonant tunnel-
ing using an effective Schro¨dinger equation2 and on a de-
scription of the time-dependent current through mesoscopic
structures in terms of nonequilibrium Green’s functions.3 In
addition, the considerable improvement in nanofabrication
techniques facilitated some interesting experimental studies.
Kouwenhovenet al.measured the photon-assisted tunneling
current through a single quantum dot with an effectively con-
tinuous level spectrum, due to thermal smearing.4 van der
Vaart et al. studied the dc current through a double dot sys-
tem, with well developed 0D states in each dot and clearly
resolved resonances between energy levels in both dots.5 The
sharp resonance features make it very tempting to perform
experiments with time-dependent fields. The dc current
through such a structure in the presence of oscillating fields
may be expected to display interesting phenomena, not ob-
servable in a single dot.

Some time-dependent aspects of resonant tunneling via
two wells in layered semiconductor heterostuctures have
been studied in Refs. 6,7. However, the states in such stuc-
tures are not really discrete and it is plausible to disregard
Coulomb blockade effects. This makes it impossible to apply
the results of these works to realistic ultrasmall quantum
dots.

In this paper, we use the density matrix approach of Ref.
8, in which the resonant states, being true quantum-
mechanical many-body states of the two dots, are described
by a time-dependent tunneling Hamiltonian. Transitions be-
tween nonresonant states of the system are taken into ac-
count through a master equation for the density matrix ele-
ments. We calculate the photoresponse of the system in
several experimentally relevant limits and derive an explicit
expression for the shape of the resonant peaks in the case of
an external perturbation with arbitrary amplitude. Close to
resonance, the dc current is found to be very sensitive to the
oscillating field. The satellite resonances induced by the ex-
ternal oscillating field can be of the same order of magnitude
as the main static resonance with an even smaller width.

The system under consideration~Fig. 1! consists of two
quantum dotsA andB in series. The dots are connected by
tunnel junctions to two large reservoirsL andR, which are

assumed to have continuous energy level spectra and are
filled up to their respective Fermi energies. If we neglect all
tunneling processes, a system of discrete many-body states is
formed in each dot. The best conditions for transport occur
when it costs no energy to transfer an electron between the
dots, i.e., the energy difference between a state with one
extra electron in the left dot and a state with one extra elec-
tron in the right dot is zero. In the experiment in Ref. 5, this
energy difference could be tuned by an external gate voltage.
The current through the system vs gate voltage consists of a
series of peaks corresponding to the resonances between dif-
ferent discrete states. There could be a variety of different
transport processes occuring in a resonance point, as de-
scribed in Ref. 8. We concentrate on the simplest experimen-
tally relevant case, namely, when the resonance occurs be-
tween the ground states of both dots. We assume that the bias
voltage is much larger than the temperature and the energy
difference between the states in resonance. Consequently,
electrons can only enter the two-dot system from the left and
leave it only to the right. Transitions from the left and to the
right lead are possible with ratesGL andGR , respectively.
Here and throughout the paper, units are used such that
\51. Under the conditions mentioned above, the tunnel
rates close to a resonance point will depend weakly on the
bias voltage and we will, therefore, treat them as constants.
We will assume that the voltage applied is smaller than the
Coulomb threshold for adding yet another electron so that it

FIG. 1. Schematic picture of the system. Two quantum dotsA andB are
coupled to leadsL andR via tunnel junctions. Transitions are possible with
ratesGL andGR . The tunneling rate between the dots isT and the energy
difference between the levels is denoted bye(t).
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is impossible, due to the Coulomb blockade, for an electron
to tunnel into the system, while another electron is still
present in either one of the dots. We concentrate on two
states only and disregard other states, which is allowed in the
neighborhood of the resonance. The system can also be in a
third stateu0&,9 when there is no extra electron in either one
of the dots. The energies of the resonant states, which both
lie well between the electrochemical potentials in the left and
right lead, initially differ by an amounte0 . Under these con-
ditions the transport through the system depends only very
weakly on the bias voltage, but does depend strongly on the
gate electrode via the energy differencee0 . We assume that
a time-dependent oscillating signal is applied to the gate
electrode, so that the time-dependent energy difference be-
comese(t)5e01 ẽcosvt, whereẽ is the amplitude andv the
frequency of the externally applied signal.

The dynamics of the resonant states,ua& and ub&, is gov-
erned by the time-dependent tunneling Hamiltonian
H(t)5H0(t)1HT , whereH0 is given by

H0~ t !5 1
2 e~ t !~ ua&^au2ub&^bu! ~1!

andHT describes the coupling between the dots that intro-
duces mixing between the eigenstatesua& and ub& of the
system:

HT5T~ ua&^bu1ub&^au!. ~2!

The average current through the system is given by

^I &/e5Tr~rI !, ~3!

whereI is the current operator:

I5 iT~ ua&^bu2ub&^au!, ~4!

and r is the density matrix for the two-level system. We
describe transitions between different states in the density
matrix approach.8 The equations for the density matrix ele-
ments read

]ra/]t51GLr01 iT~rba2rab!, ~5a!

]rb/]t52GRrb2 iT~rba2rab!, ~5b!

]rab/]t52 1
2GRrab1 i e~ t !rab1 iT~rb2ra!, ~5c!

]rba/]t52 1
2GRrba2 i e~ t !rba2 iT~rb2ra!, ~5d!

where ra , rb and r0512ra2rb denote the probabilities
for an electron to be in the left dot, the right dot, or in neither
dot, respectively, andrab5rba* are the nondiagonal density
matrix elements. In these equations, the terms proportional to
GL andGR describe the transitions to and from the reservoirs
between the statesu0& and ua& and the statesub& and u0&,
respectively. All other terms follow from the Liouville equa-
tion: idr/dt5@H,r#. Note that the ratesGL andGR do not
enter the equations in a symmetric way.GR describes the
decay of the resonant states, whereasGL describes the
buildup of these resonant states.

The relevant energy scales of the system are the transition
ratesGL and GR , the tunneling amplitudeT, and the fre-
quencyv and amplitudeẽ of the applied perturbation. There
are three limiting cases for which we can develop an analyti-
cal approach to the problem. They are complementary and
essentially cover all the interesting physics.

We will first consider the limiting case of a small pertur-
bation amplitude; ẽ!v,T,GL,R . Using the fact that
r0512ra2rb , we rewrite Eq.~5! in matrix notation:

]rW /]t5~ Ĝ1T̂1 ê01 ê cosvt !rW 1cW , ~6!

whererW 5(ra ,rb ,rab ,rba)
T, cW5(GL,0,0,0)

T, and the matri-
ces Ĝ, T̂, ê0 , and ê correspond to Eq.~5!. The stationary
solution of these equations without irradiation is

rW 052~ Ĝ1T̂1 ê0!
21cW . ~7!

This determines the shape of the stationary resonant peaks
observed by van der Vaartet al.:5

I stat5T2GR/@T
2~21GR /GL!1GR

2/41e0
2#. ~8!

The first order correction to the stationary solution is

rW 15rW 1
1 exp~ ivt !1rW 1

2 exp~2 ivt !, ~9!

with rW 1
6 the positive and negative frequency part, respec-

tively:

rW 1
652~ Ĝ1T̂1 ê07 iv Î !21~ ê/2!rW 0 , ~10!

Î being the unit matrix. This contribution contains only os-
cillatory terms, which average out when calculating the dc
current. We, therefore, also determine the second order cor-
rection terms~proportional toẽ2) and obtain

rW 252~ Ĝ1T̂1 ê0!
21~ ê/2!~rW 1

11rW 1
2!. ~11!

Using the density matrix elementsrW 2 we may calculate the
photoresponse of the system. This quantity can be easily
measured experimentally by slowly modulating the irradia-
tion amplitude.4 In Fig. 2, a plot is given of the photore-
sponse as a function ofe0 andv for GL5GR50.2T. The
figure clearly shows resonant satellite peaks forv and e0
satisfyingv25e0

214T2, i.e., resonant modes occur when the
frequency of the applied perturbation matches the renormal-
ized energy differenceAe0

214T2 of the two levels. For fre-
quencies below 2T, there are no satellite peaks, because the
energy\v of the photon is smaller than the energy level
spacing. The evolution of a resonant satellite peak is shown
in Fig. 3, where a current peak forv53T has been plotted
vs e0 for different values ofGR /T5GL /T. We see that the
peak can be seen even at moderately large values ofGR /T,
but the best resonance conditions occur when
GR!max(T,e0) andv5Ae0

214T2.
We have developed a second approach, which allows us

to explore the satellite peak at arbitrary values of irradiation
amplitudeẽ under the conditions mentioned above. Substi-
tuting rW 5rW 01rW 1(t)exp(ivt)1rW2(t)exp(2ivt) in Eq. ~6! and
neglecting terms proportional to exp(62ivt), we obtain

]rW 0/]t5ĜrW 01~ ê01T̂!rW 01~ ê/2!~rW 11rW 2!1cW , ~12a!

]rW 1/]t5ĜrW 01~ ê01T̂2 iv Î !rW 11~ ê/2!rW 0 , ~12b!

]rW 2/]t5ĜrW 21~ ê01T̂1 iv Î !rW 21~ ê/2!rW 0 . ~12c!

Near the resonance point, we can approximate the solution
rW by an expansion in terms of the eigenvectors of the matrix
ê01T̂: rW 05a1vW 11a2vW 2 , rW 15a1vW 1 , and rW 25a2vW 2 ,
wherevW 1 andvW 2 are the eigenvectors with eigenvalue 0 and
vW 6 those with eigenvalues6 iAe0

214T2. We obtain a set of
four closed equations for the coefficientsa1,2,1,2 by taking
the inner product of Eq.~12a! with vW 1 andvW 2 , of Eq. ~12b!
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with vW 1 , and of Eq.~12c! with vW 2 . Solving for the station-
ary solution and calculating the current profile near the reso-
nance pointe r5Av224T2 results in a Lorentzian line
shape:

I /e5Imaxw
2/@w21~e02e r !

2#, ~13!

with height

Imax5 ẽ2GR~a224!/g~gGR
21bẽ2!, ~14!

and half width at half maximum

w5~a/2Aa224!AGR
21b/gẽ2, ~15!

wherea5v/T, b5GR /GL12, andg5a21b24.
In the limit of small amplitude, the height of the current

peak scales with the square ofẽ, Imax5ẽ2(a224)/g2GR ,
whereas the width remains constant:w5 1

2aGR /Aa224
;GR , consistent with the results presented in Fig. 3. At
a52 ~corresponding toe050) the peak vanishes, as seen in
Fig. 2. With further increase ofẽ the current saturates at a
value of I sat5GR(a

224)/bg, which is of the order of the

height of the stationary peak. This saturation occurs at rela-
tively small ẽ;GR . The width of the peak increases with
growing ẽ. At ẽ@GR , it is proportional toẽ.

Therefore we have shown that, under good resonance
conditions, the current is very sensitive to the external irra-
diation. A relatively weak irradiation induces a big satellite
peak that has a much smaller width than the stationary one.

For small tunneling amplitudesT, providede0@GR , the
height scales withT2: Imax5T2ẽ2/GRv2, and the half width
reduces tow5 1

2GR . These results agree with the expression
for the photon-assisted tunneling current derived below,
where we consider our third approach, in which the tunnel-
ing amplitude is small compared to all other energy scales in
the system;T! ẽ,v,GL,R .

First, we perform a transformation on the density matrix
that leaves the diagonal elements invariant and which
changes the nondiagonal elements as follows:

r̄ab5rab expS 2 i E
2`

t

dte~t! D , ~16!

This transformation eliminates the explicit time dependence
in Eqs. ~5c! and ~5d! and introduces it in the transformed
tunneling amplitude. The equations for the nondiagonal den-
sity matrix elements now assume the form

]r̄ab/]t5~ i e02
1
2GR!r̄ab1 i T̄~ t !~ r̄b2 r̄a!, ~17!

with the time-dependent tunneling amplitude,

T̄~ t !5T expS i E
2`

t

dte~t! D . ~18!

The equations forr̄ba are simply the complex conjugate of
Eqs.~16!, ~17!, and~18!. For r̄ab,v in the lowest nonvanish-
ing order inT, we obtain

r̄ab,v5 i T̄v/@
1
2GR1 i ~v2e0#. ~19!

ExpandingT̄(t) in a Fourier series;

T̄~ t !5T (
n52`

`

Jn~ ẽ/v!exp~2 invt !, ~20!

FIG. 2. Scaled photoresponse of
the system, as a function of the energy
difference e0 /T between the levels
and the frequencyv/T of the applied
signal. The plot was made with
GL5GR50.2T.

FIG. 3. Evolution of a satellite peak for ratiosGL /T5 GR /T5 0.2, 0.5,
1.0, and 3.0, respectively. The plots were made for a frequency ofv53T.
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and calculating the dc current, Eq.~3!, results in

^I &/e5T2GR (
n52`

`

Jn
2~ ẽ/v!/@ 1

4GR
21~nv2e0!

2#, ~21!

whereJn is anth order Bessel function of the first kind. This
equation for the current is similar to the expression found by
Tien and Gordon10 for the photon assisted tunneling current
through a superconducting tunnel junction. Note, however,
that in the Tien-Gordon case the current has been considered
as a function of bias voltage, whereas in our case, it is a
function ofe0 , the energy shift of the discrete levels. Analo-
gously, the alternating field is not applied in the bias direc-
tion, but rather to the gate electrodes.

In Fig. 4, the current has been plotted as a function of
e0 and ẽ. The figure clearly shows that the current is com-
posed of a number of satellite peaks each separated by the
photon energy\v. With increasing amplitudeẽ, the number
of visible current peaks increases. The peaks all have the
same width GR and have heights given by
4T2Jn

2( ẽ/v)/GR . In the limit of small amplitude, the height
of then51 satellite peak reduces toImax5T2ẽ2/GRv2, iden-
tical to our earlier result. Note that Eq.~21! for the current no

longer containsGL . Because the tunnel rate from lead to dot
is much larger than the tunnel rate between the dots, the
width of the level is, in this case, determined byGR andT
only.

In conclusion, we have presented a complete theoretical
picture of the dc transport through a double quantum dot in
the presence of external harmonic irradiation. The photore-
sponse of the system exhibits extra resonant peaks when the
frequency of the external irradiation matches the energy dif-
ference between the discrete states. At a further increase of
the irradiation intensity, this satellite peak becomes of the
same order of magnitude as the main peak, but preserves the
much smaller width. At small tunneling amplitudes and large
irradiation amplitude extra satellite peaks appear in a pattern
similar to that obtained for a Josephson junction by Tien and
Gordon.10
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FIG. 4. Scaled current through the
dots, as a function of the energy differ-
encee0 /T between the levels and the
amplitude ẽ/T of the applied signal.
The plot was made withGR5T and
v510T.
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