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ABSTRACT

This paper aims to contribute to research on bio-

logically inspired micro air vehicles in two ways:

(i) it explores a novel repertoire of behavioral

modules which can be controlled through finite

state machines (FSM) and (ii) elementary move-

ment detectors (EMD) are combined with a cen-

ter/surround edge detection algorithm to yield

improved edge information used for object de-

tection. Both methods will be assessed in the

context of the IMAV 2011 pylon challenge.

1 INTRODUCTION

Autonomous flight of ever smaller Micro Air Vehicles

(MAVs) poses a major challenge to the field of artificial in-

telligence. Recent successes in autonomous flight of MAVs

have been obtained on quad rotor platforms, able to carry and

power miniaturized laser scanners [1, 2]. The laser scanner

allows the use of well-established simultaneous localization

and mapping (SLAM) algorithms for navigation.

For reasons of energy efficiency and a greater potential

for miniaturization, there is an increasing body of research on

autonomous flight of MAVs using small camera equipment.

Currently, there are two main approaches to this challenge.

The first approach aims to apply visual SLAM to the MAV’s

environment, tackling both navigation and obstacle avoidance

at the same time [3, 4, 5]. A disadvantage of this technique

is the computational complexity of the algorithms involved,

leading to a requirement of processing power unlikely to be

available on light-weight MAVs in the order of a few grams.

In addition, there are still problems concerning drift [5].

The second approach is more biologically inspired. Typi-

cally, camera images are used to calculate the optic flow field

[6, 7, 8, 9, 10]. This field is then mapped to actions that allow

the MAV to avoid obstacles or navigate corridors. The bio-

logical approach is computationally more efficient. However,

(artificial) optic flow requires the presence of strong texture

in the environment. In addition, the biological approach typ-

ically only provides solutions for obstacle avoidance, not for

more difficult behavioral tasks such as navigation.

In this article, we present a novel biologically inspired ap-

proach to the autonomous flight of MAVs. It extends existing

biologically inspired methods in two ways.

∗contacting author: l.vuurpijl@ai.ru.nl

The first extension concerns the behavioral capability

of biologically inspired MAVs. Most work on biologically

inspired autonomous flight assumes the MAV to be flying

straight forward, while being corrected by the optic flow in

order to avoid obstacles or navigate corridors. We aim to de-

velop a more elaborate behavioral repertoire inspired by the

interaction between modules in flying insects [11, 12, 13, 14].

These modules, understood as relatively fixed, simple func-

tional behaviors (reflexes) based on underlying dedicated

neural structures and pathways, can, through their interaction,

produce quite complex adaptive behavior. Different mod-

ules may work in parallel or in sequence, under the influence

of regulatory sensory inputs. We were particularly inspired

by the interaction between two modules, leading to the vi-

sual reflexes [15] of object fixation and expansion avoidance,

together producing a relatively straight trajectory towards a

salient object without hitting it. The interaction between the

modules will be set by tuning the parameters governing their

interaction through artificial evolution (see, e.g. [16]). The

result of our research is a control structure that will represent

a small step beyond reactive control structures, in virtue of its

biological grounding.

The second extension involves vision, and in particular,

going beyond the sole use of optic flow. Recent studies on

the visual behavior and cognition of fruit flies [17] suggest

that flies actively navigate in their environment on the basis of

visual appearance cues as well: they prefer to move towards

long vertical structures and avoid small (predator-like) struc-

tures. In [18], a visual appearance cue was used successfully

to complement optic flow, allowing the flapping wing MAV

DelFly II to avoid obstacles in a wider array of environments.

While tests on real flies are typically done in visually simpli-

fied environments (led arrays / black-and-white flight arenas),

normally flies and real MAVs have to fly in the visually com-

plex real world. Recognizing a long vertical structure in real-

world camera images is a challenging problem. Yet, evidence

suggests that flying insects like honeybees use edge detection

to guide their landing behavior [19] as well as for the recog-

nition of shapes [20]. In this paper, we will introduce a com-

putationally efficient edge detection algorithm that combines

detected edges with motion information provided by elemen-

tary movement detectors (EMDs) [21], in order to identify

and track behaviorally relevant objects over time.

Both extensions to existing biologically inspired methods

will be tested in context of the indoor pylon challenge, one
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of the indoor competitions at the International Micro Air Ve-

hicle conference and competitions 2011 (IMAV 2011). Our

flight platform is the Parrot AR.Drone quadricopter [22], to

which, because of our biological perspective, we will refer to

as BioMAV. The pylon challenge requires the MAV to fly as

many 8-shapes as possible around two poles in the environ-

ment. Although not in itself a challenge faced by biological

systems, it is suitable to investigate the two extensions. The

behavioral complexity of flying 8-shapes is higher than that

of following a corridor or avoiding obstacles, making it suit-

able for the first extension. Moreover, vertical structures are

important affordances to flying animals, making the detection

of large poles suitable for investigating the second extension.

Since our hardware is fixed, we have to adapt and fine-

tune our biologically inspired algorithms for a robust au-

tonomous flight of our Drone. To avoid too many crashes

and to be able to use evolutionary algorithms we have built

a simulator for the Drone. An iterative strategy of testing in

simulation and on the real platform will be used to obtain the

best result in the real world.

The remainder of the article is organized as follows. The

simulation platform is described in Section 2. In Section 3,

promising results of our first explorations of simulated be-

haviour of our BioMAV in the pylon challenge are presented.

In Section 4, we will present our new vision module, which

combines the results of center/surround edge detection with

dynamic information provided by elementary motion detec-

tors. As discussed in Section 4, our first results with this

combined approach are very promising. Finally, in Section 5

we conclude and outline our next research steps.

2 PLATFORM AND SIMULATOR

In this section we will first present our physical and sim-

ulated environments.

2.1 Tests on a real platform

The Parrot AR.Drone, a model-sized helicopter with four

rotors [22], utilizes an embedded linux-based operating sys-

tem to automatically stabilize itself when flying. The operat-

ing system allows to control the flight of the drone using ab-

stract control commands, like “takeoff”, set the drone-pitch

to let it accelerate in a certain direction, or “hover” which lets

the drone automatically cancel its movement with respect to

the ground. Table 1 shows a complete overview of the avail-

able commands. These commands provide an abstraction

layer from physical aspects and implementation details which

are required for maintaining a stable drone flight. These com-

mands allow us to focus on the development of biologically

inspired vision processing modules and high-level behavioral

control layers.

2.2 Simulation and ground control

The final program that enables the drone to fly 8-shaped

figures around two poles will consist of three modules (see

Figure 1 for the architecture): The ground control software is

Figure 1: Architecture of our BioMAV platform

written in C++ and it directly communicates with the drone. It

communicates sensory data and control commands to a Java

environment. The vision module is a Java program which

uses a biologically inspired algorithm to detect poles in front

camera images. The positions of the detected poles are trans-

lated into relative heading and an approximated distance (see

Section 4). These data are given to the third module which

manages the behavior of the drone. The biologically inspired

behavior module uses sensory data and the extracted data

about visible poles to navigate the drone in 8-shaped figures

around the visible poles (see Section 3).

The ground control software is an application program-

ming interface that allows to send commands to the drone us-

ing Java code. Since we will not need fine-grained height con-

trol, the ground station allows to set the drone height rather

than the height-speed. The other commands available for con-

trolling the drone are modeled after the original control com-

mands mentioned in Table 1.

We are developing the simulator in such a way that the

behavior and vision modules can be developed and tested in-

dependently. In the final implementation, the vision module

will provide information about poles that are visible to the

drone. In the controlled world of the simulator we can calcu-

late this information without using the vision module, thereby

allowing us to test the behavior module on its own. Likewise,

image data can be generated using the simulator to test the

vision module. The simulator allows us to test algorithms for

the drone without using the actual drone itself. The advan-

tages of using a simulator are that the test cycles are faster

and the tests inside the simulator do not endanger the avail-

able hardware. These advantages allow us, in a later step, to

use the simulator as part of a program which iteratively tunes

parameters of the behavior module to optimize the drone’s

flight behavior. The disadvantage of using a simulator is the
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Command Effect

Hover Lets the helicopter hover over a certain point at a constant height. For this the helicopter makes use

of the bottom camera to calculate the optic flow and nullify its ground speed. Furthermore, it uses

its height sensor (ultrasound sonar) to maintain a stable height above the ground.

Pitch Makes the helicopter pitch until it reaches a given angle to control forward or backward movement.

The helicopter thereby maintains a stable height. If desired this command can be combined with the

yaw, roll, or lift commands.

Yaw Makes the helicopter yaw around its vertical axis at a given speed. The helicopter thereby maintains

a stable height. If desired this command can be combined with the pitch, roll, or lift commands.

Roll Makes the helicopter roll until it reaches a given angle to control sideward movement. The helicopter

thereby maintains a stable height. If desired this command can be combined with the pitch, yaw, or

lift commands.

Lift Makes the helicopter ascent upwards or descent downwards at a given speed. If desired this com-

mand can be combined with the pitch, yaw, or roll commands to let the helicopter change its height

during these commands.

Takeoff Lets the helicopter start and ascent to a standard height (about 1 meter).

Land Lets the helicopter land on the ground.

Emergency mode Cuts the power to all helicopter motors. Only used for safety purposes.

Table 1: Available commands for controlling the Parrot AR.Drone [22]

reality gap. We will revisit this problem in Section 3.

The simulator generates visual input corresponding to the

images that the camera of the drone would generate. The

simulator can provide in addition all other information the

drone itself would produce. The drone’s control commands

are modeled after the commands that the ground station pro-

vides. We use OpenGL1 to render the three-dimensional en-

vironment for the drone. An integrated rigid body simulation

based on the OpenDynamicsEngine library2 provides us with

collision detection algorithms and Newtonian mechanics for

simulated bodies. The reactions of the drone to the given set

of control commands are specified using a script written in the

scripting language Lua3. The simulated reactions are a sim-

plification of the real behavior. The drone-behavior Lua script

allows for easy adaption of the drone’s behavior to make the

drone react more realistically in future simulations. One of

the avenues we are exploring is to train the parameters of a

neural network or a Kalman filter to map the current state and

commands to the resulting behavior of the drone. The reasons

for this approach are that (a) the system identification of the

individual components of the Parrot platform is difficult with

the standard firmware, and that (b) some physical parameters

may be hard to identify in the first place (like the effects of

the bending of the rotor blades during flight maneuvres).

Using a second simulator Lua script, the simulated world

can be modified. In this script, the layout of the simulated

world can be determined by creating walls, placing poles, or

setting the initial position of the drone. The future goal is to

expose a Lua interface to Java so that arbitrary Lua scripts can

1http://www.opengl.org
2http://www.ode.org/
3http://www.lua.org

be executed from Java. Thereby the Lua scripts can control

the simulated world or the drone inside it. We plan to release

the simulator as an Open Source project after the competi-

tion.

3 BEHAVIOR

Many behaviors can be accomplished by means of feed-

forward, reactive controllers [23, 24]. Indeed, in the field

of evolutionary robotics, most studies focus on the evolu-

tion of feedforward neural networks for successful control

of the robot [25, 26]. When moving towards more com-

plex behaviors, recurrent neural networks of various kinds

are used [24, 27, 28, 29, 30, 31]. These systems are hard

to analyze and to correct in cases where the displayed be-

havior differs from the behavior in simulations or when the

performance in operational settings decreases compared to

the training conditions. Our ongoing research explores Finite

State Machines (FSM) [32] as an alternative framework for

the design of complex behaviors. FSM are mathematically

well-understood and have the additional advantage that they

are easier to understand by a human designer. FSMs can com-

bine different behavioral modules to achieve the required be-

havior. In the current article, the IMAV2011 pylon challenge

is used as a vehicle to introduce our approach of exploring

different simulated behaviors implemented through FSMs.

An abstract FSM schema as used in the BioMAV drone,

containing states and transitions, is depicted in Figure 2.

Rounded boxes represent states and arrows represent state

transitions. A state describes, at a general level, the type

of behavior displayed by the drone. Transitions describe the

conditions that need to be met in order to move from one state

to another. Only one state can be active at a time.
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Find Pole Right Pass
Left Pass

Left Turn

Out of Sight
/TakeOff

Turn Complete

Right TurnTurn Complete Out of Sight

Figure 2: FSM schema for 8-shaped flight.

After take off, the drone enters the ‘Find Pole’ state. Upon

finding a pole, the transition to the ‘Right Pass’ state is made.

In this state the drone flies towards the right of a pole. When

the pole is out of sight, the ‘Left Turn’ state will become ac-

tive. Here the drone will make a left turn around the pole,

completing the first half of the 8-shaped figure. There is no

final state; the drone will continue to fly 8-shaped figures.

Each state of the FSM executes three ‘sub-behaviors’: en-

try behavior, state behavior, and exit behavior. Entering and

exiting a state results in executing, respectively, the corre-

sponding entry or exit behaviors. In the current implementa-

tion no entry behaviors are specified. All states have an exit

behavior that makes the drone hover at its current location as

to stabilize the vision input. The state behavior makes the

drone execute a specific sequence of commands, e.g. pro-

cessing of sensory data. A state can have multiple transitions

associated with it, each described by its own set of criteria

(triggers, guards) that need to be met for the transition to be-

come active. Each transition can also be equipped with a be-

havior that will be executed when the transition is active. In

the case of the ‘Out of sight’ transition, for example, the tran-

sition behavior is that the drone will fly a bit further forward

in order to make a safe turn.

3.1 First FSM flight simulations: timers and gyroscope

The behaviors of the first version of the FSM were based

on timers. Timing parameters determined the amount of turn

time to fly around a pole and the time to fly in a straight line.

Our simulation results without noise factors such as drift and

vision failures showed the feasibility of our approach. To test

the performance of the drone in a more realistic setting, Gaus-

sian noise was added to the horizontal and vertical speeds

(N (0, 0.10) in m/s) and to the initial position (N (0, 0.7)) of

the drone.

Figure 3 shows a simulation where the drone flies in an

unstable, jagged trajectory. The first part of the 8-shaped fig-

ure is completed without problems. On the second turn, how-

ever, the drone loses its path and misses the next pole.

To explore our approach in more realistic noisy condi-

tions, the use of simulated gyroscope readings was evaluated

as an alternative method. These readings provide feedback on

the turning angle when performing a “Left Turn” or “Right

Figure 3: Simulated trajectory of the drone, using additive Gaus-

sian noise on the horizontal/vertical speeds and the starting position

of the drone. Behavioral modules are based on timers. The drone

starts at position (0,0) and the poles are located at (-5,0) and (5,0).

Turn”. The results as displayed in Figure 4 show that using

gyroscopes is a more robust method than using timers.

Figure 4: Simulated trajectory of the drone, using additive Gaus-

sian noise on the horizontal/vertical speeds and the starting position

of the drone. Control of behavior is based on gyroscope readings.

3.2 FSM flight: closed-loop control with simulated vision

A second, more complex, FSM was used to incorporate

simulated vision (see Figure 5).

Fly to Pole 
Left

Fly to Pole 
Right

Search 
Pole Right

Search 
Pole Left

Pass LeftTurn Right

Pass Right Turn Left

Pole Lost

Pole Lost

Pole Found

Close to Pole

Close to Pole
Pole
Lost

Pole
Found

Pole
Lost

Pole
Found

Pole Found

/TakeOff

Figure 5: The structure of the improved FSM.

The simulator acts as a stand-in vision module, by pro-

viding (i) the location of and (ii) the distance to the pole

with random noise and frame-loss. The position of the py-

lon was used to determine the angle of approach relative to

the drone. Based on this information, the new FSM con-

trols three transitions, which each use a different threshold
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to determine whether one of these conditions hold: “Pole

Found”, “Close To Pole” and “Pole Lost”. Each setting of

these three thresholds results in a certain flight behavior (tra-

jectory) which can be assessed quantitatively by comparing

the generated trajectory to the pre-determined 8-shaped fig-

ures. The required thresholds are set through an evolutionary

algorithm (EA) which uses these quantitative measures as fit-

ness value. Again, several noise factors are added to explore

the robustness of the FSM when transferred to the real world.

In Figure 6 the new flight paths of the drone are depicted.

Because the behavior is now more sensor driven, the drone

is able to correct its path and repeatedly fly in an 8-figure

around the poles. Even when the drone lost the pole, it is able

to correct its path by including an extra loop in its flight.

Figure 6: Simulated trajectory of the drone, using the sensory

driven FSM. The trajectories are from two separate simulations: one

(black, dashed) in which everything went smoothly and one (red) in

which the drone corrected its path by flying an extra loop.

It can be concluded that using FSMs for controlling the

drone’s behavior provides us more insights in which parame-

ters are important for executing a certain behavior. Moreover,

the use of a genetic algorithm for searching for suitable pa-

rameter settings shows promising results.

3.3 From simulated experiments to real flight

The fitness function used for the EA mentioned above

employs a quantitative measure which is based on the differ-

ence between the required trajectory and observed simulated

behavior. Many algorithms for trajectory matching can be

employed for this purpose, e.g., borrowed from the field of

gesture recognition [33]. Using the high-resolution tracking

equipment from our virtual reality lab 4, the real flight be-

haviors of our BioMav can be recorded. We have created a

setup that allows for an evaluation whether behaviors of the

drone in simulations can be compared to trajectories recorded

during real flight. Please consider Figure 7 for an example.

4See htp://www.rivierlab.nl
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Figure 7: Picture of the drone with rigid body attached (top pic-

ture). The bottom picture shows the 3-dimensional flight patterns of

two short tries in which the drone attempted to fly in circles.

To record the three-dimensional orientation and position

of our BioMAV, a light-weight rigid body is attached on top

of the drone. This has no significant impact on the drone’s

flying behavior and can be tracked by the tracking equipment

of the VR lab. The bottom picture from Figure 7 shows the

recorded flight trajectories of the drone while trying to com-

plete circles. The drone is controlled via the ground station

software which was described in Section 2.2. We are cur-

rently using this set up to improve our FSM models for the

IMAV2011 pylon challenge.

4 VISION

It is well known that natural vision systems fuse differ-

ent information sources to obtain more robust and accurate

estimates concerning objects in the environment. In our on-

going research, appearance and motion cues are explored for

extracting information about the color, location, movement

and shape of objects in the environment [34, 35, 36]. In the

IMAV2011 pylon challenge, the main task for vision is to

detect poles and return the distance and angle between py-

lon and drone. Traditionally, in computer vision, this task

is achieved by image segmentation, which transforms a raw

image representation in sets of detected objects. Many ap-

proaches for image segmentation have been proposed, which

all use representations of texture, color, and shape to some ex-

tent. Since the quality of the contours of detected objects re-

lies heavily on the detection of relevant boundaries, or edges,

in the image, edge detection is a prominent step in image

segmentation. We propose to combine edge detection with
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motion information provided by elementary movement de-

tectors (EMDs) [21]. EMDs use spatially separated inputs

with a certain delay in time to produce a measure for the mo-

tion in a specific direction. The use of EMDs is especially

useful in UAVs, since the flying task induces temporal and

motion effects (which are known to cause the detection of

spurious edges), ensuring that there is always activation from

the EMDs. During the competition, we will apply an object

recognition method on the resulting edge images to detect the

size and location of the pole in each image. We will consider

available techniques such as the generalized Hough transform

for this purpose. The resulting information will subsequently

be used by the FSM described in Section 3 to generate appro-

priate control commands based on the angle and distance to

detected poles.

4.1 EMD-based filtering of spurious edges

To generate motion information, we have used the EMD

implementation of Zhang et al. [37]. This implementation is

less dependent on differences in contrast and color. The idea

behind the use of EMDs to improve the image segmentation,

is that borders of relevant objects will produce higher EMD

responses. Rotational movements of the drone will lead to

edge enhancements by the EMDs. Translational movements

of the drone will lead to larger apparent motion of the ob-

jects closer to the drone, which are typically more relevant.

This holds in particular for a flying platform that is constantly

moving. The constant self motion will provide a steady and

reliable source of information about the objects in the scene.

Although very useful, the EMDs rarely give a complete

picture, because they rely on differences in contrast to ac-

tivate. Therefore the EMDs alone are not enough to suc-

cessfully segment the image and to provide the drone with

sufficient information about the world. However, EMDs do

provide an abundance of additional information to the more

traditional approach.

Next to the resulting EMD information sketched above,

our algorithm uses the edges (as provided by a simple cen-

ter/surround edge detection algorithm) as a basis on which to

work. Edge detection assumes a difference in contrast and

color, where the boundaries of objects can in general be dis-

tinguished from the background. However, edges may also

be detected in image samples containing rough textures or ar-

eas with uneven terrain. These edges are known as spurious

edges. The EMDs are less dependent on contrast differences

for their activity and depend more on movement. As can be

observed in the bottom-left picture from Figure 8, this pro-

duces clean edges of objects in the direction of the movement.

By combining the edge and EMD information, noise can be

removed from the edge information, producing a clean image

of the relevant edges.

4.2 Results of combined edge detection

Figure 8 shows a natural scene (data recorded in the vir-

tual reality lab), the EMD information of this scene and both

the edge information and the combined EMD and edge infor-

mation. As can be observed, the use of EMD information can

be used to filter out much of the noisy edges. Large planes

such as floors, walls and ceilings are prone to produce noisy

data. Yet if they are far away, they have very little observed

movement, which allows us to confidently remove many su-

perfluous edges. If they are close by, such as the floor can be,

fine texture is typically smoothed out by motion blur, again

leading to low EMD activity.

Figure 8: Example of using EMD for removing spurious edges.

To quantify the improvement of this combined edge de-

tection method, the difference between edge detection with

and without the use of the EMD information is computed for

each pair of pixels in both edge images. The two methods

are compared to manually segmented images of realistic in-

put captured by the frontal camera of the drone in our VR lab.

Contours in the segmented groundtruth images are manually

produced and subsequently blurred by a small Gaussian filter

to allow for small variations in the location of edges. In this

way 10 images have been processed. Due to the Gaussian

brush width, a relatively large number of pixels was marked

as “edge”: on average 24% of the pixels are labeled as posi-

tive. Table 2 shows the confusion matrices of both algorithms

averaged over the images (expressed in as ratios).

Plain edge detection Combined with EMD

true false true false

positive 0.96 0.86 0.67 0.30

negative 0.14 0.04 0.70 0.33

Table 2: Confusion matrices of plain edge detection and of its com-

bination with EMD.

When considering Table 2, the effect of filtering spurious

edges becomes apparent. The combined technique improves
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both the false positives (where the edge detection erroneously

detects edges) and the true negatives (where the edge detec-

tion correctly detects no edge). However, also the number of

true positive edges decreases because of the filtering. In Fig-

ure 8 this effect is in particular visible at the top of the pole.

While plain edge detection correctly classifies 34% of all pix-

els, the combination with the EMD leads to correct classifi-

cation of 69% of the pixels. Our current efforts are targeted

at the implementation of suitable object detection techniques

which operate on the resulting improved edge images. Within

the context of the pylon challenge, we will further explore the

trade-off between removing spurious edges and losing parts

of the target object.

5 CONCLUSIONS

In this paper, we have introduced our ongoing research

on biologically inspired MAVs (BioMAVs). Two new ap-

proaches have been discussed. For the FSM-based control

of behavioral modules, the feasibility of our approach was

assessed and promising results have been obtained. Further-

more, the novel edge detection algorithm which exploits mo-

tion information provided by EMDs, has shown to yield much

cleaner edge images than when using traditional edge detec-

tion techniques. Our main conclusions and next steps are de-

scribed below.

The FSM controller structure was inspired by the pres-

ence of behavioral modules in natural systems. As outlined in

Section 3, finite state machines offer a suitable framework for

implementing such modules for controlling different behav-

iors. Results from various simulations show that the explored

FSM architectures provide a mechanism for the execution of

the pylon challenge. Furthermore, using this approach, the

designer is able to evaluate different settings and locate and

modify defects. Three experiments were presented in this pa-

per. All experiments were run in the simulation environment

which is presented in Section 2. Timer information was used

as a first naive approach, which mainly assessed the feasi-

bility of our approach. Simulations were run on gyroscope

information in several noise settings, resulting in successful

8-shaped flight patterns. Furthermore, we developed an evo-

lutionary algorithm to optimize the drone control on the basis

of simulated vision. Based on closed-loop control, using the

perceived distance and angle of approach to the drone, the re-

sulting FSM was able to exhibit the required 8-flight behavior.

It was demonstrated that the drone is able to correct its flight

when missing a pole.

For the required object detection and tracking, we are

still in the process of finalizing our vision module. We have

argued that the detection of relevant edges is important in

biologically-inspired vision. The results of the vision module

indicate that edge detection is helped by combining motion

cues with information provided by edge detection. This im-

proved edge detection will most probably lead to fewer spuri-

ous segments in the subsequent image segmentation and ob-

ject detection processing steps.

Within the context of our BioMAV project, we will grad-

ually shift from performing simulations to real flight control.

Through controlled experimental studies in our virtual reality

(VR) lab, the gap between simulation and reality can be ex-

plored. As we have shown in Section 3.3, the VR lab enables

us to employ high-precision tracking equipment to record ac-

tual flying behavior of our BioMAV. The results of these ex-

periments are expected to yield two important contributions

to our work. On the short term, we will be able to systemat-

ically calibrate the drone behavior according to the environ-

mental and task conditions of the IMAV2011 indoor pylon

challenge. On the longer term, we hope to improve our un-

derstanding of issues that cause the reality gap, by establish-

ing a proper calibration between simulation algorithms and

parameters, corresponding simulated behavior, and the real

flight capabilities of our BioMAV. For an ongoing report of

our progress and achievements, the reader is invited to visit

our BioMAV website at http://www.biomav.nl.
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