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The statistical treatment of random weakly nonlinear interactions between waves, called
wave turbulence (WT), is fundamental to understanding the development of the ocean
surface. For gravity waves, wave turbulence predicts a dual (direct and inverse) cascade of
energy and wave action, which yield power-law solutions for the energy spectrum. While
energy cascades were predicted more than 50 years ago, observing them in the laboratory
with mechanical forcing remains a challenge. Here, we present experiments in which we
attempted to reproduce both direct and inverse cascades in a large circular wave tank. The
geometry of the wave tank allows for the creation of isotropically spread surface waves,
which is an assumption that underlies WT theory. Although we did see evidence of a direct
cascade of energy, we did not observe an inverse cascade of wave action. We discuss the
competing effects of dissipation and intermittency, which may dominate or obscure the
weakly nonlinear dynamics.

DOI: 10.1103/PhysRevFluids.9.094803

I. INTRODUCTION

The ocean surface involves wave dynamics covering a vast range of spatial and temporal scales.
Wind flow over the surface produces waves within a certain scale range (wavelengths on the order
of centimeters to hundreds of meters [1,2]). New waves within this scale range, as well as waves
outside of it, are produced through nonlinear interactions [1,3]. This process is described by wave
turbulence (WT), which is a weakly nonlinear theory involving resonances between linear waves
over timescales longer than the wave periods [4]. WT shares several similarities with traditional
turbulence, namely, a nonlinear mechanism of cascading conserved quantities across scales, and
associated spectral power laws [5].

The cascade is produced through wave-wave interactions. These are processes that transfer
energy from existing to new waves [6], provided they satisfy the resonance condition. For surface
gravity waves, the resonant manifold compatible with the dispersion relation of deep-water waves
comprises wave quartets whose wavenumbers and frequency satisfy

ki+ky=ks+ky, o+ w=w3+ ws. (D
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The theory of WT is developed under the assumptions of weak nonlinearity, a large domain (so
that wavenumbers can be thought as continuously distributed), and isotropy [1]. Provided those
conditions are met, four-wave interactions evolve the wave action spectrum in accordance with an
integrodifferential equation known as the wave kinetic equation (WKE) [7]. For surface gravity
waves, there are two power-law energy spectra giving rise to stationary solutions to the WKE: the
Zakharov-Filonenko (ZF) spectrum E; ~ f~* and the Zakharov-Zaslavskii spectrum E; ~ f~'1/3
[1], where f is the frequency. The former power law corresponds to a forward cascade of energy
and the latter corresponds to an inverse cascade of wave action.

Validating the predictions of WT theory has proven challenging in laboratory experiments and
numerical simulations. In a finite-size wave tank, geometric modes form based on the tank shape,
and the resulting energy transfer may be suppressed. These finite-size effects tend to produce power
laws that are steeper than the WT predictions [8]. There is currently no general theory for discrete
WT [1,9], but the physical remedy lies in increasing the nonlinearity of the system; nonlinearity
broadens the resonance condition to allow quasiresonant interactions [10], which increases the
number of quartets of waves. In fact, previous experimental work has shown that the observed
spectra tend towards £~ as the wave steepness increases [4,11-15].

However, increasing the nonlinearity to generate resonances contradicts the theory of WT:
the theoretical power laws are independent of the forcing [16], and furthermore one expects to
recover the WKE under vanishing nonlinearity [17]. Beyond this discrepancy, the need for nonlinear
forcings can lead to misleading results: a wave field of stronger nonlinearities is expected to have a
spectral power law f~* known as the Kuznetsov spectrum [18], which is identical to the ZF spectrum
(in frequency but not in wavenumber), even though the spectra arise from disparate dynamics
[1]. Thus, a tendency toward f~* under stronger nonlinearities may not be due to increasing the
availability of four-wave interactions.

The aforementioned issues typically affect the direct cascade, but the inverse cascade suffers
from additional obstacles. Such a cascade requires high-frequency forcing and a large domain to
accommodate the longer waves produced. Numerical simulations have recently become sufficiently
resolved to observe the inverse cascade [19-21], but laboratory evidence remains scarce, with
the most successful results found in Falcon et al. [22]. The aforementioned work observed the
inverse cascade, but questions remain regarding dissipative mechanisms at large scales, and the
simultaneous existence of both cascades.

Given the disagreement between experimental work and theory, we set out to determine whether
the discrepancies arise because of an inadequate environment for WT to occur. In previous experi-
ments, it was assumed that isotropy arises through wave reflections, since the forcing mechanisms
were generally not fully isotropic [4]. In contrast, here we present results from an experimental setup
that rigorously enforces the assumptions of WT. This is achieved working in a round tank where
the wavemakers are distributed along its perimeter to generate a truly isotropic forcing. We further
impose the requirements on nonlinearity and random phases in our input signal. Our setup considers
two regimes: a low-frequency forcing meant to observe the direct cascade inertial range and a
high-frequency forcing meant to observe the inverse cascade inertial range. We perform a parameter
sweep over the remaining forcing parameters, steepness, and spectral bandwidth, to identify the
spectral dependence on the wave generation. The experimental setup is presented in Sec. II. We
discuss results in Fourier space in Sec. IIl A. We then turn our attention towards real-world effects
that arise in a physical laboratory: we discuss dissipation in Sec. III B and intermittency in Sec. III C.
Finally, we draw conclusions in Sec. IV.

II. EXPERIMENTAL SETUP

We performed experiments at the FloWave Ocean Energy Research Facility at the University of
Edinburgh (see Fig. 1). The facility features a 25-m-diameter circular wave with a depth of 2 m. 168
independent wavemakers, each capable of forcing waves with frequencies between 0.2 and 2 Hz,
are located along the tank perimeter. In normal operation, the wavemakers use a force-feedback

094803-2



LABORATORY STUDY OF WAVE TURBULENCE UNDER ...

FIG. 1. The FloWave Ocean Energy Research Facility (photograph © David Morris).

control strategy to absorb incident waves; this is used to avoid the buildup of reflected waves in the
circular tank. In our experiments, this feature is turned off to prevent external dissipation, and the
wavemakers are operated using a position control strategy. The facility has been previously used for
studies on highly spread and crossing sea conditions [23,24]; in our case, we employ a forcing from
all directions to create an isotropic sea.

The desired wave field is defined as a linear summation of discrete plane-wave components or
fronts,

N
n(x, 1) =y a,cos(k, - X — wut — &), ©)

n=1

where a,,, k,, w,, and ¢, are the discrete amplitude, wavevector, frequency, and phase of each front,
respectively. The angular frequency o, is related to the magnitude of the wavenumber &, = |k,| by
the linear dispersion relation w,, = +/gk, tanh(k,h). WT theory is derived on the assumption that the
wave spectrum is isotropic and that the wave field is homogeneous. To create these conditions, we
randomly sample directions 6, = arg(k,) and phases ¢, from a uniform distribution for each wave
front. We use a Gaussian distribution to define the amplitudes of the waves to produce a forcing that

is localized in frequency space,
1 L(fp—f )2)
ay = ———exp| —=———— |8f, 3)

where we use the parameters f,, and Af to set the peak frequency and bandwidth of our forcing.
The frequency resolution § f = 1/T is determined by the duration of the experiments (7" = 30 min).

We recorded the surface elevation using eight resistive wave gauges mounted on a gantry over
the center of the tank. The gauge positions were chosen pseudorandomly, in that the actual positions
were chosen randomly, but subject to the requirement that the distances between the gauges covered
the relevant length scales (4 cm to 2 m) of the resulting wave field [25]. We used the gauge positions
for directional analysis to verify that our forcing was isotropic, which is not presented here. The
gauges sampled at a rate of 128 Hz.

To assess the impact of the forcing parameters on the turbulent cascade, we varied the peak forc-
ing frequency, the forcing bandwidth, and the steepness (see Table I). We performed experiments
with two peak frequencies, f, = 0.9 Hz and f, = 1.6 Hz. The experiments with lower-frequency
forcing are referred to as direct cascade (DC) experiments, and those with a higher frequency forcing
are referred to as inverse cascade (IC) experiments, as the two forcing frequencies will favor the
observation of either cascade. The wave steepness ¢ is defined as ¢ = k,Hs/2, where k,, is the peak
wavenumber of the forcing and Hg is the significant wave height.
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TABLE 1. Parameters for each experiment, where f, is the peak frequency of the Gaussian amplitude
spectrum, Af is the standard deviation of the Gaussian amplitude spectrum in frequency, and f is the
normalized bandwidth A f/ f,, and defines the narrow (N), medium (M), and broad (B) forcing conditions. Hs
is the significant wave height for the input wave field and ¢ is the input wave steepness defined as ¢ = k,Hg /2.

Name fr(Hz) A f(Hz) f Hg(m) e

N-DC1 0.90 0.02 0.022 0.02 0.03
N-DC2 0.90 0.02 0.022 0.04 0.06
N-DC3 0.90 0.02 0.022 0.05 0.08
N-DC4 0.90 0.02 0.022 0.06 0.10
N-DC5 0.90 0.02 0.022 0.09 0.14
M-DC1 0.90 0.09 0.100 0.02 0.03
M-DC2 0.90 0.09 0.100 0.04 0.06
M-DC3 0.90 0.09 0.100 0.05 0.08
M-DC4 0.90 0.09 0.100 0.06 0.10
M-DC5 0.90 0.09 0.100 0.09 0.14
B-DC1 0.90 0.18 0.201 0.02 0.03
B-DC2 0.90 0.18 0.201 0.04 0.06
B-DC3 0.90 0.18 0.201 0.05 0.08
B-DC4 0.90 0.18 0.201 0.06 0.10
B-DC5 0.90 0.18 0.201 0.09 0.14
B-DC6 0.90 0.18 0.201 0.11 0.18
M-IC1 1.60 0.16 0.100 0.04 0.06
M-IC2 1.60 0.16 0.100 0.06 0.10
M-IC3 1.60 0.16 0.100 0.09 0.14
M-IC4 1.60 0.16 0.100 0.11 0.18
M-IC5 1.60 0.16 0.100 0.13 0.22
M-IC6 1.60 0.16 0.100 0.16 0.26

To ensure consistency between the DC and IC experiments, we defined a normalized forcing
frequency bandwidth f = Af/ fp. For the DC experiments, we considered three values of 7
0.022, 0.100, and 0.201. These defined a narrow, medium, and broad forcing, respectively. The
corresponding values of A f are similar to those of [26], but adapted for f rather than k. For each
bandwidth f, we performed experiments with five steepness values ¢ ranging from 0.03 to 0.14, with
an additional experiment with ¢ = 0.18 done for the broad DC experiment. For the IC experiments,
we only considered the medium forcing bandwidth f = 0.100. However, we performed experiments
with six values of & that ranged from 0.06 to 0.26. Individual forcing parameters are shown in
Table I.

Each individual experiment lasted 30 min, which we believe is a sufficient time to observe a
turbulent cascade, based on preliminary experiments. The gauges recorded continuously during this
interval and continued sampling for an additional 30 min after the forcing stopped. This spin-down
time allowed the tank to revert back to a quiescent state before the start of the next experiment.
‘We mention that the energy accumulation in the DC wave field produced values of Hg considerably
larger than the values we expected based on the forcing intensity. The wave heights grew until they
finally reached a nearly statistical stationary state toward the end of the experiment, as shown for
all three DC forcing bandwidths in Fig. 2. In contrast, during the IC experiments, the recorded
significant wave heights were the same as that expected from the forcing intensity. We are not
certain of the mechanism that leads to a greater accumulation of energy in the DC experiments.
We hypothesize this could be due to either the greater difference between input frequency and
the high-frequency part of the spectrum where dissipation (hypothetically) takes place for the DC
experiments or the higher energy flux into the tank (for the same amplitude forcing) for the DC
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FIG. 2. Significant wave height Hg for (a) N-DC (narrow-bandwidth forcing), (b) M-DC (medium-
bandwidth forcing), (c) B-DC (broad-bandwidth forcing), and (d) M-IC (medium-bandwidth forcing) for each
value of e. The significant wave height Hy is calculated as 40, for all gauges over 3-min windows with 50%
overlap. The dashed lines correspond to input values of Hg listed in Table I. Time is normalized by the peak
frequency of each forcing f,,.

experiments, which are associated with a larger group velocity (energy flux is proportional to group
velocity or a combination of the two effects.

An example surface elevation time series is shown in Fig. 3(a), taken from M-DC4 over the
final 5 min of wavemakers activity. We see evidence of nonlinearity in the wave field through the
distribution of normalized surface elevation n/o,, where o, is the standard deviation of surface
elevation. The distribution of 1 from Fig. 3(a) is shown in Fig. 3(b), which we compare to a Gaussian
distribution and a Tayfun distribution. The latter is defined in asymptotic form by Socquet-Juglard
etal. [27] as

1 — 5l

To2k?
—G?
P(n) = : )exp<20_2kz), G=./1+42k,0pn—1, “4)
n%p

V21 (14 3G + 2G?

where k,, is the spectral peak wavenumber. Our experiments deviate from the Gaussian distribution
for surface elevation and agree well with the Tayfun distribution, which indicates that second-order
effects are finite in our wave field.

@) . . | (b)
0.15 ¢+ 101 L
0.1}
/g 0.05 + 100 L
& 0
-0.05 B o Observed
107! Gaussian
01l Tayfun
25 26 27 28 29 30 -4 -2 0 2 4
t (min) no,

FIG. 3. (a) Surface elevation 7 taken from M-DC4 from a single gauge over the final 5 min during
wavemaker forcing. (b) Normalized histogram of surface elevation 5 for the period shown in (a) compared
to a Gaussian distribution, and Tayfun distribution calculated with Eq. (4) using measured values of o, and k,,.
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FIG. 4. Surface elevation energy spectra calculated over 2-min windows for N-DC (narrow-bandwidth
forcing) with (a) ¢ = 0.03, (b) ¢ =0.06, (c) ¢ =0.08, (d) ¢ =0.10, and (e) ¢ = 0.14 during wavemaker
forcing. Spectra are averaged over all wave gauges and smoothed using a moving mean of length 0.1 Hz.
The black central dashed line is f,; the left and right vertical dashed lines are f, &= A f. The solid black line
corresponds to the Zakharov-Filonenko prediction f~*.

III. RESULTS

A. Spectral analysis

We start by presenting the spectral results for the suite of experiments conducted, focusing first on
the DC experiments during the duration of the forcing. To illustrate how spectral evolution changes
with forcing intensity and bandwidth, we present spectra taken over 2-min windows during the
30 min of forcing for each of the experiments. Based on the results we present, we define the
inertial range of the DC experiments to be between 3 and 8 Hz, while for the IC experiments we
define it as between 4 and 8 Hz. All spectra are smoothed with a moving mean of length equal to
2% of the length of the corresponding inertial range.

Starting with the N-DC experiments, shown in Fig. 4, we can see a clear dependence of the
spectra on the nonlinearity of the forcing. For the lowest steepness forcing, the initial harmonic
structure of the spectrum does not change with time, power-law tails do not form, and there is very
little energy at high frequencies. As the forcing steepness increases, the harmonic peaks gradually
broaden leading to a more continuous spectrum, with the highest intensity experiments forming a
smooth power-law tail by the end of the 30 min. The resulting power-law slopes are steeper than
the predicted —4 value, and begin well beyond the forcing frequency (X3 f,,). Figure 5 shows the
spectral evolution for the M-DC experiments. Similarly to the N-DC wave field, the lower steepness
forcing spectra have a harmonic structure, albeit less pronounced than those for the N-DC. While the
lowest intensity N-DC spectrum featured harmonics over nearly a decade in frequency, the energy
contained in the harmonics decreases more quickly for the M-DC spectrum. Additionally, a smooth
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FIG. 5. Surface elevation energy spectra calculated over 2-min windows for M-DC (medium-bandwidth
forcing) with (a) ¢ = 0.03, (b) ¢ =0.06, (c) ¢ =0.08, (d) ¢ =0.10, and (e) ¢ = 0.14 during wavemaker
forcing. Spectra are averaged over all wave gauges and smoothed using a moving mean of length 0.1 Hz.
The black central dashed line is f,; the left and right vertical dashed lines are f, &= A f. The solid black line
corresponds to the Zakharov-Filonenko prediction f~*.

tail forms earlier than for the narrow forcing, as seen in the higher steepness experiments, where the
harmonics are no longer visible by the 5-min mark for the highest-intensity forcing. The spectral
shape evolves into a power law earlier, but again the observed slopes are steeper than —4.

Shifting to the B-DC experiments, the reduction in harmonic structure from narrow to medium
forcing continues here, as even at the lowest-intensity forcing the harmonic peaks are broader.
As forcing intensity increases, the harmonic peaks smooth out more quickly than previously, and
a power law begins to form for the more nonlinear experiments. Again, the slopes are steeper
than expected. We also note that the B-DC experiments showed a slight downshifting of the peak
frequency. As seen in Fig. 6, the spectral peak shifts to lie near the lower bound of the forcing range,
unlike in the narrower-bandwidth experiments discussed above.

These results show that a broader forcing tends to yield a smoother spectrum at higher frequen-
cies. As in prior work, we also observe that stronger forcing intensities yield more well-developed
power laws. To investigate the relation between the forcing intensity and the resultant power law,
in Fig. 7 we plot the slope of the high-frequency spectral tails; we measure v as a function of &,
measured over the final 5 min of the experiment, when the wave field has reached a steady state.
Since not all experiments developed a coherent power law, we only consider the slopes for the higher
steepness experiments. As seen in Fig. 7, the high-frequency spectral tails generally become steeper
as ¢ increases. This result agrees with previous experimental work [11]. However, in our case, v is
minimized at a value of —6. This is steeper than f~* (v = —4), but agrees better with mesoscopic
turbulence theory [1], which is expected for a wave system when finite-size effects are significant.
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FIG. 6. Surface elevation energy spectra calculated over 2-min windows for B-DC (broad-bandwidth
forcing) with (a) ¢ = 0.03, (b) ¢ = 0.06, (c) ¢ =0.08, (d) ¢ =0.10, (e) ¢ = 0.14, and (f) ¢ = 0.18 during
wavemaker forcing. Spectra are averaged over all wave gauges and smoothed using a moving mean of length
0.1 Hz. The central black dashed line is f,; the left and right vertical dashed lines are f,, == A f. The solid black
line corresponds to the Zakharov-Filonenko prediction f~*.

This is reflected in the accumulation of energy near the forcing frequency, and the lack of energy
towards higher frequencies.

Although the spectral slopes we observe are steeper than —4 and are potentially affected by
finite-size effects, the formation of a power-law tail at frequencies above forcing is still indicative
of nonlinear energy transfer. We can compare this energy transfer with that predicted by WT using
the wave energy flux P for our system. WT predicts P ~ % provided P is smaller than a cutoff
P. = (g/w,)* at which point WT no longer applies [4,28].

We can determine P following the methods of [22]. Once the wavemakers are shut off, the wave
field enters a freely decaying regime. The temporal derivative of the mean gravity wave energy,
E@)= gonz(t), is related to P via P = —dE /dt evaluated att = t, where t; is the shutoff time. We
estimate this via the slope of E(¢) from our experimental results.

Recalling the character of Fig. 2, the significant wave height is nonconstant and grows over
roughly the first 25 min of forcing and exceeds the prescribed value of Hs. Thus, the input value of
¢ is not representative of our system at the end of the forcing. Since Hs is most stationary during the
last 5 min of forcing, we introduce an effective steepness as &, = w?>Hs/(2g). Here w, is the peak
frequency over the last 5 min, calculated following [29] as

mg
wp = ; (&)
mim_,

where m,, is the nth spectral moment. All three DC wave fields have fluxes P that increase roughly
linearly with sf_, as shown in Fig. 8. We then validate that our values of P satisfy P < P., and
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FIG. 7. Exponent of the spectral tail f* vs input steepness ¢ for all DC experiments over the final 5 min of
wavemaker forcing. Before fitting the exponent, the spectra are averaged over all wave gauges and smoothed
with a moving mean of width 0.06 Hz. Error bars are 95% confidence intervals of the power-law fit.

calculate P. for the DC experiments. We calculate P. = 5.2 m* s so there is roughly five orders of
magnitude between our fluxes and the breaking point of WT. This suggests that there is an energy
cascade driven by wave-wave interactions. We note, however, that while our relationship between
P and ¢ agrees with WT theory, our relationship between E; and P does not. The full ZF solution
Ef ~ P'3gf=*[4] shows E o~ P'/3, which we do not observe in our experiments. Rather we find
E; grows with P faster than P'/3. This disagreement is reflected in the difference between our power
laws and the theoretical f~*.

We now turn our attention to the spectra from the IC experiments. Compared to the DC spectra,
the IC spectra were considerably further removed from WT theory. As before, we first present the
temporal evolution of the spectrum over 2-min blocks, shown in Fig. 9. Similar to the DC spectra,
the development of a smoother tail at high frequencies accompanies a growth in the steepness of
the forcing. At lowest steepness, we again observe a harmonic structure. We briefly pause here
to mention that for a WT system with narrow forcing, the resulting comblike spectral peaks are
expected to obey power laws in amplitude and width (see Fig 3.14 in Chap. 3 of [30]). Across all

(a)
L x107° (b) (c)
//'
7 //0
7 7
=° P 7 -
| // // //
= 9 P o 7
E [ s
~— s Ve //
A, ® o -
1 e ) // e
Pl e s
g
0@ L 5 o
0 2 4 6 0 2 4 6 0 2 4 6
e’ x107° €8 x107° €8 x107°

FIG. 8. Energy flux P vs sixth power of calculated wave steepness £° for (a) N-DC, (b) M-DC, and
(c) B-DC. P is estimated via the decay of gravity wave energy after forcing is stopped and averaged over
the gauges. &, is calculated over the final 5 min of wavemaker forcing as . = k.Hs, /2, where Hs, is the
calculated significant wave height and k. is the calculated peak wavenumber corresponding to the calculated
peak frequency w, from Eq. (5).
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FIG. 9. Surface elevation energy spectra calculated over 2-min windows for M-IC with (a) ¢ = 0.06, (b)
& =0.10, (c) ¢ =0.14, (d) ¢ = 0.18, (e) ¢ = 0.22, and (f) ¢ = 0.26 during wavemaker forcing. Spectra are
averaged over all wave gauges and smoothed using a moving mean of length 0.075 Hz. The central black
dashed line is f,; the left and right vertical dashed lines are f,, £ A f. The solid black line corresponds to the
Zakharov-Filonenko prediction f=4.

of our experiments, DC and IC, the harmonic peaks decay in amplitude faster than a power law,
while their widths are highly sensitive to the choice of windowing and averaging, and do not follow
a consistent scaling. Returning to the M-IC experiments, the low steepness harmonics disappear
as the forcing becomes stronger. However, contrary to the DC experiments, the resulting spectral
slopes have greater fluctuation across the frequencies of interest and do not present obvious evidence
of a power law.

As the intention of the IC experiments was to maximize an inertial range of subharmonics, we
turn our attention to the spectral behavior at lower frequencies. We did not observe a clear growth
or downshifting of the peak frequency. However, a smooth spectral feature emerged for steeper
forcings. In particular, the least steep forcing shows an isolated hump to the left of the forcing range,
which is not present in any of the other experiments. Steeper forcings engender a greater drop in
spectral energy to the left of the forcing peak, which then becomes a nearly flat spectrum. This
suggests that there is an evolution of subharmonics, but not one which exhibits the expected —11/3
power law of WT. We note that the spectral slopes observed for low frequencies may be in part due
to subharmonic bound waves at second order in steepness, but could also be a manifestation of the
inverse cascade in shallow water, which predicts E; ~ f —1[31], as some of the lower frequencies
of the spectrum correspond to shallow-water waves.

B. Spectral decay

After the forcing is stopped, the wave field enters a freely decaying regime, which we record for
30 min before the start of the next experiment. Based on numerical [26,32] and experimental [4,33]
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FIG. 10. Surface elevation energy spectra calculated over 2-min windows for M-DC (medium-bandwidth
forcing) with (a) ¢ = 0.03, (b) ¢ = 0.06, (c) ¢ = 0.08, (d) ¢ = 0.10, and (e) ¢ = 0.14 after wavemaker forcing
was stopped. Spectra are averaged over all wave gauges and smoothed using a moving mean of length 0.1 Hz.
The central black dashed line is f,; the left and right vertical dashed lines are f, &= A f. The solid black line
corresponds to the Zakharov-Filonenko prediction f~*.

studies on freely decaying wave turbulence, one would expect a self-similar decay of a power-law
spectrum. To illustrate the spectral decay behavior, we show spectra calculated over 2-min windows
after the wavemakers were turned off for the M-DC in Fig. 10.The decay of the spectrum clearly is
not self-similar, as the spectral slopes steepen dramatically within the inertial range, while the high-
frequency tails of the spectra flatten. Of particular note is the reemergence of the initial harmonic
structure we saw shortly after the wavemakers were turned on. Compared to Fig. 5 at early ¢, we
see peaks similar to those of Fig. 10 at later 7. In the case of the weaker forcings, this is to be
expected, given that the harmonic structure never truly bled out. In all cases, the second harmonic
becomes more pronounced, driven by a dramatic reduction in energy at frequencies between f),
and 2f,. This phenomenon is also clearly observed in the IC spectral decay (Fig. 11). To further
analyze the decay, we look at the temporal evolution of individual Fourier amplitudes. We do this
via a spectrogram with 8-s windows and 50% overlap. The spectrogram is averaged over the eight
gauges for each experiment. A characteristic plot showing the evolution, taken from the M-DC with
& = 0.1, is shown in Fig. 12 for six frequencies. The lowest frequency 0.9 Hz corresponds to the
peak of the forcing and then its second harmonic at 1.8 Hz. The frequencies 3, 5, and 8 Hz represent
the inertial range. The decay rate generally increases as the frequency is increased from 0.9 to 3 Hz,
but then decreases for the higher frequencies within the inertial range. Notable is the decay of the
mode at 1.3 Hz, which decays faster than all but the mode at 3 Hz. This frequency corresponds to
the behavior between f, and 2f,, which leadsto a reemergence of the second harmonic in Fig. 10.
We can quantify the decay rates by fitting a function for E;(¢). Based on WT theory, for small ¢ the
loss of energy at a given frequency should be primarily due to four-wave interactions, which gives a
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FIG. 11. Surface elevation energy spectra calculated over 2-min windows for M-IC with (a) ¢ = 0.06, (b)
e =0.10, (c) € =0.14, (d) ¢ =0.18, (e) ¢ = 0.22, and (f) ¢ = 0.26 after wavemaker forcing was stopped.
Spectra are averaged over all wave gauges and smoothed using a moving mean of length 0.075 Hz. The black
central dashed line is f),; the left and right vertical dashed lines are f, &= A f. The solid black line corresponds
to the Zakharov-Filonenko prediction f~*.

power-law scaling E(t) ~ t~1/2_ For large ¢, dissipation out-competes wave-wave interactions, and
the decay should be exponential as E(¢) ~ e'/™) where tp(f) is the dissipative timescale for
a wave at frequency f [12]. We expect to see a change from the power law to exponential scaling
at a crossover time, but in our case, we find that an exponential profile fits well across all ¢. This
contradicts the assumed timescale argument of WT, and suggests that dissipation is more significant
than nonlinear interactions in removing energy from the waves.

We calculated 7 (f) for all frequencies in each experiment and consistently found the minimum
to be near the start of the inertial range, with another local minimum near 1.3 Hz. To illustrate this,
we show the calculated values of 7 taken from the same experiment (M-DC4) as in Fig. 12. This
was done with 20-s blocks to improve the frequency resolution of the spectra. To ensure that our
calculated values of tp are not significantly biased by the initial spectral amplitudes, the spectrogram
is normalized by the spectral values for each frequency at ¢t = fy, when the wavemakers are turned
off. The results are shown in Fig. 13.

Having dissipation occurring most quickly for waves at low frequencies is surprising, but also
concerning. WT assumes that the timescale of nonlinear interactions is much longer than the linear
wave periods, but much shorter than the dissipative timescales. We compare the two timescales
using the nonlinear timescale for gravity waves
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FIG. 12. Temporal decay of five Fourier modes from M-DC4 after wavemaker forcing was stopped. Fourier
amplitudes are determined via a spectrogram with 8-s windows and 50% overlap. Black curves correspond to
power-law fits for exponential decay e~'/*,

where P is the energy flux [11]. The coefficient C is the Kolmogorov-Zakharov constant [4], which
has been estimated to fall between 0.5 [7] and 2.75 [34]. Here, we consider both values as limiting
cases and calculate Ty for frequencies within the inertial range. We compare our values of 1p
with those estimated from 7y, in Fig. 13. We briefly mention that for either C, Ty is roughly two
orders of magnitude larger than the linear wave periods for the range of frequencies considered. The
dissipative timescale we calculate is less than the nonlinear timescale for frequencies up to roughly
34.5 Hz, depending on C. This region corresponds to the start of the inertial range and the first stage
of the energy cascade. Energy lost to dissipation before it can be transferred to waves with shorter
wavelengths may explain why our spectral slopes are steeper than WT theory at high frequencies.

It is also worth noting that, based on Fig. 13, tp does not decrease monotonically in f. The
quickest decay occurs for frequencies near the beginning of the inertial range, but the decay is
nearly as fast at 1.3 Hz. Based on the typical decay rates for a fluid surface, one would expect tp
to decrease with f, rather than having a minimum at low frequencies [33]. This suggests that our
dissipation may not be a simple linear viscous dissipation but may be an artifact of the tank itself.
A wave of frequency 1.3 Hz has a wavelength of roughly 1 m, which is similar to the width of two
wavemaker paddles. The paddles may function as a resonant damping for waves at this frequency.
In all experiments, even those where the forcing frequency was greater than 1.3 Hz (Fig. 11), we
found that energy was preferentially dissipated at this frequency.

C. Intermittency

The energy fluxes for our wave field (Fig. 8) suggest that there may be an energy exchange
between the waves in accordance with WT theory, but the decay of spectral amplitudes indi-
cates other dynamics at play. These dynamics may be related to finite-size effects, dissipation,
or stronger nonlinear behavior. A proper diagnosis would require full spatiotemporal data, but
by using higher-order statistics we can investigate the occurrence of stronger nonlinear behavior
through intermittency in our wave field. Intermittency is well known in hydrodynamic turbulence
as ephemeral bursts of intense motion, which produce significant non-Gaussian statistics [17].
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FIG. 13. Dissipative timescale 7, of Fourier modes from M-DC4 compared to theoretical nonlinear in-
teraction time Ty vs f. Fourier amplitudes are determined via a spectrogram with 20-s windows and 50%
overlap. tp is determined from an exponential fit ¢~/ The black curves correspond to power-law fits for
exponential decay e /™. Ty is estimated from 6 using P from Fig. 8(b). The purple dashed curve is Ty with
C = 0.5; the orange curve is with C = 2.75.

Intermittency has also been observed in WT systems [12,13,35-37] as large fluctuations in the
wave field.

To test for intermittency, we examine the increments of the surface elevation n(z). We denote
an increment of order j as 8 (t), where T represents a temporal offset. The first-order increments
are defined as 8,1](1') = n(t + t) — n(t), which are commonly used in hydrodynamic turbulence. In
WT, however, the steeper power laws require using higher-order increments. For a system with
random phases and an energy spectrum that follows a power law of the form E; ~ f”, the order of
increments must be chosen such that [v| > 2j — 1 in order to address the low-frequency divergence
of the spectrum. For surface gravity waves described by the ZF spectrum E; ~ f —4, this means one
must use at least second-order increments 8,2](t) =nit+7t)—2n)+nt—1)[l]

Our spectra have steeper high-frequency tails than the ZF solution, and thus we choose to work
with fourth-order increments, which appeases all of our experiments with an admissible power law.
It should be noted that several experiments could have been studied with third-order increments;
however, for those experiments we expect the statistics of 52(1) ~ 83(1) [36] and we desire an
algorithm that can be applied to all experiments alike. The fourth-order increment is defined as
83(r) =nt+2t)—4nit + 1)+ 6n(r)—4nit — )+ n — 27).

The first way to check for intermittency is to check the probability density functions (PDFs) of
the increments normalized by standard deviation. The expectation is that intermittent signals will
deviate strongly from a Gaussian profile at small timescales [38]. For the DC experiments we define
the inertial range to be from 3 to 8 Hz, and so the range of T we consider for 83(r) is defined as
3 Hz < 1/(27) < 8 Hz; for the IC experiments the reduced inertial range sets 3 Hz < 1/(27) <
8 Hz [12]. A characteristic PDF for the DC experiments is shown in Fig. 14(a), taken from M-DC4.
The largest deviation of the tails from a Gaussian occurs at small 7, which is characteristic of
intermittency [17]. This means that our surface elevations undergo dramatic fluctuations within
short timescales. Furthermore, the non-Gaussian profile across all t indicates that this intermittency
is meaningful across the relevant temporal scales corresponding to our inertial range. We mention
that these results are consistent with those from N-DC, B-DC, and M-IC experiments.
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FIG. 14. (a) Normalized histogram of fourth-order increments ég(r) from M-DC4 over the final 5 min of
wavemaker forcing. t ranges from 0.06 s (dark purple) to 0.11 s (light orange) in 0.01-s steps. Increments
are individually evaluated for each gauge. (b) Structure functions S,(t) for p = 0 (yellow) through 8 (dark
blue) vs time lag 7. The values of S,(7) are averaged across all wave gauges. The black dashed lines represent
power-law fits S,(t) ~ t¢%?). Values of 7 for both figures are set by the frequencies of the corresponding
spectral inertial range.

Beyond just PDFs we can discern the character of intermittency from the moments of the
increments, referred to as structure functions. For a given set of surface elevation increments, the
structure function of order p is defined as S,(t) = (187()I?), where (-) denotes an average over 1.
For a stationary random process, a system with a power-law spectrum will in turn have structure
functions that follow a power-law scaling in 7 as S,(t) ~ ¢ () The behavior of ¢ (p) quantifies the
intermittent nature of our signal. If we have strictly linear waves with random phases, then from the
spectral power law E¢ ~ f of our system we find ¢ (p) = p(Jv| — 1)/2, provided j is large enough
for [v| > 2j — 1. Deviations from this relationship between §,(7) and 7, particularly at high values
of p, are evidence of intermittency.

For p from 0 to 8, we calculate S,(7) for each experiment over the final 5 min of active forcing
and average the result over all the wave gauges. The relationship between S,(7) and 7 is shown
for M-DC4 in Fig. 14(b). Within the range of t associated with the spectral power-law range, we
see that §,(7) follows a power-law scaling in T with a fixed exponent for all p. We fit a power law
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FIG. 15. Structure function power-law exponents ¢ (p) vs p for M-DC with (a) ¢ = 0.03, (b) ¢ = 0.06,
(c) e =0.08, (d) ¢ =0.10, and (e) ¢ = 0.14. Structure functions are calculated over the final 5 min with the
forcing on and averaged over all wave gauges. p ranges from 0 to 8. The black dashed line represents theoretical
linear scaling ¢ (p) = p(|v| — 1)/2, with v taken from Fig. 7. The green dashed curve represents a quadratic fit

¢(p)=cip—c2/2p%
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FIG. 16. Values of (a) ¢; and (b) ¢, from quadratic structure function scaling ¢ (p) = ¢, p — (c2/2)p* vs &
for all experiments. Structure functions are calculated over the final 5 min of wavemaker forcing and averaged
over all wave gauges. Error bars represent 95% confidence intervals on the quadratic fit.

within this range to determine the relationship between ¢ (p) and p. To illustrate how ¢ (p) changes
with forcing intensity, we plot ¢ (p) vs p for all M-DC experiments.

For small p (Fig. 15), we see ¢ (p) similar to the simple scaling ¢ (p) = p(Jv| — 1)/2. For higher
values of p the behavior changes, strongly indicative of intermittency in the signal [39]. In particular,
we observe that ¢ (p) becomes more nonlinear as ¢ increases. Previous work has attempted to relate
the asymptotic behavior of ¢(p) at large p to the underlying nonlinear structures. The classical
model, used in [37], applies a linear fit £ (p) = 2 — D + ap, where a expresses the shape of singular
crests and D gives their fractal dimension. This approach is not admissible to our results, which
would return negative values of D. This issue may arise because of our choice of fourth-order
increments [1].

Falcon et al. [39] and Deike et al. [12] used fourth-order increments, and instead of using a
linear fit, they fit £ (p) across all p by a quadratic fit ¢ (p) = ¢;p — (c2/2)p?, where c; is a measure
of intermittency [40]. We apply the same approach here and find the quadratic fit to agree well with
our results, shown in Fig. 16. For the weakest forcing from the N-DC and B-DC the lower bound
of T was raised to 0.1 to compensate for noise. To test the impact of intermittency, we calculate ¢
and ¢, for each experiment. Across all experiments, regardless of f, and Af, we observe a more
nonlinear shape of ¢ (p) as ¢ increases. Regarding the specific parameters of the power law, we find
that ¢; generally decreases with increasing forcing, while ¢, increases. Falcon et al. [39] and Deike
et al. [12] observed the same tendency, with values of ¢ and ¢, similar to our observations. As a
nonzero value of ¢; is a sign of intermittency, its growth with ¢ suggests that the growth in forcing
intensity yields a more nonlinear wave field. The role of intermittency in our resulting spectra can
be gleaned from noting that S»(7) gives |v| = 2(c; — ¢) + 1. Therefore, we can deduce that the
reduction in v with increasing forcing is at least partially driven by stronger nonlinearities, since c¢;
increases with ¢.

IV. CONCLUSION

We set out to create an idealized wave environment that met the assumptions of WT theory.
By creating a wave field that is isotropic, weakly nonlinear, and of random phases, we created an
optimal system for the weakly nonlinear energy transfers. However, we found that real-world effects
that arise in a (round) physical laboratory were still significant, and interfered with the desired
physics. We measured considerable dissipation at low frequencies, which provided a sink located
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between the injection frequency and the inertial range. Consequently, energy was lost from these
modes before it could be moved downscale by resonances, which may be why we observed steeper
high-frequency tail than WT theory predicts.

We found that the slopes of the high-frequency tails we measured were strongly related to the
intensity of the forcing, which has been well documented experimentally [4,11-15]. At low forcing
intensity, the comblike spectra reflect a wave field dominated by harmonics. The higher harmonics
peaks then flatten into smoother tails when the forcing steepness is increased. In particular, we
observed a more efficient development of a spectral power law for broader forcing bandwidths and
higher values of ¢. This agrees with the numerical work of Zhang and Pan [26]. In general, our
spectra tended towards f~° for the widest and strongest forcing, which corresponds to mesoscopic
turbulence due to finite-size effects [8].

At frequencies less than our forcing, some of the spectra developed a power law over a
thin frequency range, but at a flatter slope than the theoretical f~!'/3. While prior gravity
wave experiments have observed nonresonant three-wave interactions [14,15,41], recent stud-
ies in circular domains reveal the potential for resonant triads in the presence of rotation [42]
or at specific depths [43], which inhibit the formation of an inverse cascade. We cannot di-
rectly quantify the impact of three-wave interactions in our system, but they may affect both
cascades.

After the wavemakers are turned off, the system enters a freely decaying regime. Our spectra do
not decay self-similarly, but rather undergo exponential decay, consistent with energy loss primarily
due to dissipation. While our results disagree with a power-law decay from WT theory, there are
prior numerical [44] and experimental [45] results of WT in different systems which also decay
exponentially under significant dissipation.

Our dissipation features more aggressive decay at low frequencies, particularly at 1.3 Hz. This
frequency lies between the peak frequency and its second harmonic for the DC experiments. The
quick decay at 1.3 Hz leads to the reappearance of the second harmonic at later times across
all experiments, with higher harmonics reemerging for low ¢. For the IC experiments, 1.3 Hz
lies below the peak frequency, but it still decays more quickly than neighboring frequencies. In
both cases, this represents a removal of energy from the system near the start of the inertial
range: at the low-frequency end of the forward cascade and the high-frequency end of the inverse
cascade. We suspect, but cannot prove, that waves at this frequency are absorbed by the wave-
makers, given that the length scale of these waves is roughly equal to twice the width of a wave
paddle.

We examined increments of our time series and observed that the relation between the spectral
power laws and forcing intensity may be partially due to an increase in intermittent events. The
evolution of our PDFs revealed that our wave field deviates significantly from a random system,
particularly for larger . The behavior of our structure functions was captured well by a quadratic
fit, with an intermittency coefficient ¢, that grew with e. By relating the structure functions to
the spectral power law, we suspect that stronger nonlinearities helped flatten the spectral slopes.
Without spatial data, we cannot identify why we have intermittent events in our signal. The cause
of intermittency in WT is an open question, but there are possible origins related to sharp-crested
waves [37], whitecapping [46], gravity-capillary wave interactions [47], or breaking waves [48].
From our time series across all experiments, our extreme values of 82(1) seem to occur when a
large amplitude wave group passes by a probe, resulting in extreme variations in n over a short
time interval. Our intermittency did not seem to coincide with wave breaking or parasitic capillary
waves, which is consistent with [39]. Nevertheless, our work emphasizes the need to incorporate
intermittency into the WT model.

Finite-size effects, dissipation, and intermittency are each considerable obstacles towards pro-
ducing an idealized wave turbulent system in a laboratory environment. Our findings present
the sensitivity of the system to artificial factors, which must be considered when designing an
experimental system.
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