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ABSTRACT: We present a simulation and modeling study of electro-osmotic
flow of an aqueous cesium chloride solution confined in a charged amorphous
silica slot. Contrasting traditional models of the electric double layer, molecular
dynamics simulations indicate that there is no stagnant layer, no Stern layer
conduction, and no outer Helmholtz layer. The description of the interface
requires two considerations. First, a distinction has to be made between free and
surface-bonded ions. The latter do not form a physical layer but rather a set of
ion−surface contact pairs. Second, the mobility of the free ions is reduced
relative to their bulk value. This hydrodynamic effect needs to be included.
These two concepts, coupled to simple macroscopic equations, are sufficient to
describe surface conductivity and electro-osmotic flow in the frame of classical mean-field treatment. We show that surface
conduction is negative at high concentration, and the Bikerman formula is only valid at low concentration.

1. INTRODUCTION

Charged solid−liquid interfaces are omnipresent, for example,
in minerals, biological molecules, batteries, colloidal systems,
and nanotechnological devices. With the increasing number of
scientific and technological nanofluidic applications it becomes
increasingly more important to gain deep understanding of
interfacial fluid properties, which deviate in countless ways from
classical bulk fluids. The latter applies especially to charged
systems, in which the spatial distribution of ions forms an
electric double layer (EDL) near the solid−fluid interface. The
ways in which the specifics of the solid surface and the fluid
affect the structure and dynamics of the EDL are far from fully
understood. Molecular dynamics (MD) simulation is a
powerful tool complementing experiments in the quest to
investigate EDL properties, since these in silico experiments
give access to a large temporal and spatial resolution and
accurate control of experimental conditions.1−11

Insight obtained from simulation and experiment has
contributed to the development of various mean-field models
to predict electrostatic and electrokinetic properties. The
Gouy−Chapman (GC) model is perhaps the most well-
known model; this is an analytical solution to the Poisson−
Boltzmann equation for a case with equally valent ions. This
mean-field model predicts the electric potential and ion
distribution profiles near a flat homogeneously charged surface
given an implicit solvent (divalent continuum) and infinitesi-
mally small ions. These simplifications render the model
adequate for prediction of the diffuse region of the EDL, but
this model is unable to accurately predict the ion distribution
very close to a realistic surface, where, for example, ion
solvation and surface structure influence the formation of a
“Stern” layer. More sophisticated models have been proposed

to more accurately capture the distribution of ions in the Stern
layer.12−14 However, much less attention has been devoted to
describing fluid transport properties at realistically charged
solid−fluid interfaces.
As mentioned previously, modeling only the diffuse EDL

region is insufficient to capture the rich phenomena near
realistic surfaces. In fact, sophisticated models are based on
elaborate EDL descriptions containing inner and outer
Helmholtz layers (IHL and OHL), which together constitute
the Stern layer. The bounds of these sublayers are defined by
the corresponding inner and outer Helmholtz planes (IHP and
OHP). Ions in the IHL are physisorbed onto the charged
surface, whereas ions in the OHL are fully hydrated, and their
adsorption is nonspecific. Finally, the diffuse layer lies beyond
the OHL. This classical description of charged interfaces is
represented in Figure 8.
The EDL description becomes more complicated when

electrokinetic phenomena are involved. This description
includes a shear plane (or equivalently a slip plane15) separating
the mobile and the stagnant fluid, based on the position where
the solvent velocity profile is zero. The position of this shear
plane is typically very close to the OHL.16 These descriptions
are again based on flat, homogeneously charged walls and can
be inaccurate near nonplanar or rough surfaces. For example,
the roughness of amorphous silica is typically 0.5 nm, which is
similar to classical IHL and OHL thicknesses. Clear limits
between bonded and nonbonded ion regions are also found in a
one-dimensional potential of mean force (PMF) between ions
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and charged surface atoms, which is not limited to idealized
model surfaces.17 The PMF seems thus more appropriate to
make the distinction between the bonded and the nonbonded
ion region in the EDL.4 We examine if this possibility is suitable
to analyze electro-osmosis and surface conductivity.
Experiments have suggested a substantial conductivity in the

Stern layer.18 In fact, the ion mobility in this stagnant layer is
assumed to be “as high as those in bulk”.18 These results are all
the more intriguing since they have been obtained for various
surfaces (i.e., oxides, lattices, vesicles) by different investigators
employing disparate experimental methods.18

The surface conduction is typically linked to two
contributing phenomena: first, the dynamic Stern layer
(DSL) conduction, which is often associated with a high ion
mobility in the Stern layer.19 The DSL conduction was
originally named “anomalous conductivity” but later renamed
because of the universal occurrence of this conductivity
term.18,19 The second term contributing to the surface
conductivity is the diffuse layer (DFL) conduction, which is
analyzed in the frame of the Bikerman formula.
In this study we investigated ion mobility in the vicinity of a

charged oxide surface. Our numerical experiment allows a
stringent test of macroscopic concepts involved in the
description of electrokinetic phenomena. The remainder of
this paper is organized as follows. First, the simulation details
and relevant macroscopic theory are described. Ion profiles
then are analyzed in terms of adsorbed and free ions, extending
the validity of the classical Gouy−Chapman and Poisson−
Boltzmann description. Electro-osmosis and surface conductiv-
ity are analyzed next. Finally, we investigate the local ion
mobility, which seems to be the key concept for understanding
the microscopic description of electrokinetic properties.

2. METHODS

2.1. Molecular Dynamics.Molecular dynamics simulations
were performed for an aqueous cesium chloride (CsCl)
solution confined between two charged amorphous silica
walls (Figure 1). A charged silica surface was created following
the approach detailed in a previous publication.17 The surface
contains 24 charge sites and 96 silanol groups, with charge sites
resulting from deprotonation of a silanol group. Considering
the frontal surface area of 5.7042 nm2, the charge and surface

group density are 0.74 charges and 2.95 silanol groups per nm2,
respectively, which is representative of amorphous silica.20 A
slot was created by mirroring and rotating the surface by 90°
around the axis normal to the surface. The surfaces were
separated by approximately 4.7 nm, which is sufficient to avoid
EDL overlap in the center of the slot for the ion concentration
(C0 = 0.46 mol·L−1) considered here.
The partial charges on the surface atoms were distributed

such that a deprotonated silanol group has a net charge of −1.0
e, where e is the elementary charge. The charge distribution on
the silanol groups (see Table 1 and Figure 2) is a simplified

version of published values.4 The hydrogen atoms in this force
field bear an effective charge 0.5 e, meaning that an additional
0.5 e needs to be accounted for when a silanol group is
deprotonated in order for the deprotonated silanol group to
have a net charge of −1.0 e. The force field therefore
distinguishes between the charge on a silicon atom correspond-
ing to a protonated (Si) and a charged (Sic) group. No
distinction is made here between geminal, vicinal, and isolated
atoms, since differences between these types of groups are
small4 and not directly relevant for this methodological study.
Each charge site was compensated by a monovalent excess

counterion to produce an overall charge-neutral simulation
system, containing a total of 108 counterions (Cs+) and 60 co-
ions (Cl−). Anomalies of divergent electrostatic energy caused
by a non-neutral simulation system can, in theory, be corrected
for in the case of homogeneous systems by imposing a
neutralizing background plasma,21 but spurious effects arise
when this method is applied to inhomogeneous systems.22

Apart from spurious effects, a charge-neutral simulation system
is needed to ensure that cation and anion charge densities are
equal in the center of the slot.

Figure 1. Electro-osmosis of a CsCl solution in a planar silica
nanochannel.

Table 1. Charges for Surface Atoms Used in the Present
Worka

atom Hs Os Si Oc Sic

charge 0.5 −1.0 2.0 −1.0 1.5
aValues are in units of elementary charge e. Hs silanol hydrogen, Os
bulk oxygen, Si bulk silicon, Oc dangling oxygen, and Sic silicon linked
to a silanol. See Figure 2.

Figure 2. Surface atom types. See Table 1.
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The silica was kept frozen in the course of the simulations.
Water molecules were modeled via the rigid three-point SPC/E
model.23 The number of water molecules in the system was
chosen such that the water density in the center of the box was
very close to the bulk density of SPC/E water. Electro-osmotic
flow is generated by applying an electric field of E = 25 × 106 V
m−1, parallel to the wall. Such a large electric field is needed
since the small length and time scales accessible in simulation
are insufficient to average out the thermal motion at smaller
signal-to-noise ratios.5,24 The electric field was varied to ensure
a linear fluid response in terms of the electric field. The
simulation was performed with DL_POLY25 using Verlet’s
algorithm with a simulation time step of 1 fs. The PN-TrAZ
potential26 for water--surface interaction was fitted against an
“nm” potential.27 All other interaction potentials are Lennard−
Jones potentials with the cross terms obtained using the
Lorentz−Berthelot mixing rules. The parameters are listed in
ref 17. Interactions are truncated at 1.4 nm. Long-range
electrostatics are treated with the Ewald method. The
temperature of the fluid is controlled using a Berendsen
thermostat28 with a target temperature of 300 K and a coupling
time of 0.5 ps. The simulation was equilibrated for 1 ns,
followed by a 10 ns production run. The interaction potentials
between atoms, except for those including Cl−, have been used
in a previous publication17 and are summarized in Table 2.

2.2. Definitions and Standard Formula. Various classical
models can be used to model electrokinetic properties of dilute
electrolyte solutions with reasonable accuracy.16 For example,
the Grahame equation links charge density σ(z) to the Gouy−
Chapman electric potential as a function of position ψGC(z)

32

σ
ν ψ

= ϵ ϵ
⎛
⎝⎜

⎞
⎠⎟z C k T

e z

k T
( ) 8 sinh

( )

20 0 r B
GC

B (1)

where C0 is the bulk ion concentration, ϵ0 and ϵr are the
vacuum dielectric permittivity and relative permittivity,
respectively, kB is the Boltzmann constant, T the temperature,
and ν is the ion valency. The SPC/E dielectric permittivity 72.4
is used in this study.33 This equation is typically applied to
calculate the electrodynamic surface charge at the ζ-potential
position by considering that the Poisson−Boltzmann equation
is valid beyond the shear plane.
The electro-osmotic velocity veo is the electro-osmotic

streaming velocity beyond the EDL. This quantity, which can
be experimentally measured, depends entirely on the EDL
properties. Smoluchowski’s equation relates the electro-osmotic
velocity (i.e., the hydrodynamic velocity of the fluid far away
from the interface) to the ζ-potential, which is the electric
potential at the shear plane16

ζ
η

= −
ϵ ϵ

v Er
eo

0

(2)

where η is the fluid shear viscosity, which is 0.729 mP for SPC/
E water.34 This equation is a direct consequence of the
hydrodynamical Navier−Stokes equation together with stick
boundary conditions at the shear plane and with the Poisson
equation. The local hydrodynamical velocity profile is related to
the local potential

η
ζ ψ= −

ϵ ϵ
−v z z E( ) ( ( ))r

fluid
0

(3)

where ψ is the electric potential, which can be calculated from
the Poisson equation.
These very general equations that define ζ-potential are

solved by considering the Gouy−Chapman potential profile,
with z = 0 defined as the location of the shear plane16

ψ
ν

ν ζ κ= −−
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟z

k T
e

e
k T

z( )
4

tanh tanh
4

exp( )GC
B 1

B (4)

where κ = 1/λD is the inverse Debye length. The Debye length
λD is the typical screening length of charges16

λ =
ϵ ϵ k T

C e2
r

D
0 B

0
2

(5)

Equation 4 corresponds to the solution of the Poisson−
Boltzmann equation for a planar charged interface. Within that
framework the cation (or anion) concentration is related
through a Boltzmann equation to the electric potential

νψ
= −+

⎛
⎝⎜

⎞
⎠⎟C z C

z

k T
( ) exp

( )
GC 0

GC

B (6)

This equation is rigorously valid only if the ion concentrations
are low (in order to neglect activity coefficients). It also
supposes that the concentration variations are smooth (in order
to neglect ionic correlations). Moreover, the ion/surface
interaction is to be only from electrostatic origin. Then we
can define a Gouy−Chapman velocity profile, where the
electric potential follows eq 424

η
ζ ψ= −

ϵ ϵ
−−v z z E( ) ( ( ))r

GCGC fluid
0

(7)

Table 2. Short-Range Pair Interaction Potentials Used in the
Molecular Dynamics Simulationsa

E0 n m r0 refs

Ow Si 0.07290 15.49670 6.58589 4.33870 27
Ow Os 0.65819 11.61320 7.28875 3.70378 27
Ow Hs 0.39202 7.85993 7.85989 2.92660 27
Hw Si 0.03507 13.27250 6.71192 3.81270 27
Hw Os 0.47530 8.25792 8.25791 3.02920 27
Hw Hs 0.48864 6.32666 6.32705 2.09800 27

ϵjk σjk refs

Ow Oc 0.65000 3.1660 23
Ow Ow 0.65000 3.1660 23
Ow Cs 0.52160 3.5265 29
Cs+ Cs+ 0.41800 3.8840 23,29
Cs+ Oc 0.52050 3.5190 29,30
Cs+ Os 0.52050 3.5190 29,30
Cs+ Si 0.47230 3.8395 29,30
Ow Cl− 0.52160 3.7850 23,31
Cs+ Cl− 0.41800 4.1340 29,31
Cl− Cl− 0.41790 4.4000 31
Cl− Os 0.52160 3.7850 23,31
Cl− Oc 0.52160 3.7850 23,31
Cl− Si 0.47222 4.0980 30,31

aThe PN-TrAZ potential26 for water−surface interaction was fitted
against an “nm” potential.27 All other interaction potentials are
Lennard−Jones potentials with the cross terms obtained using the
Lorentz−Berthelot mixing rules. Energies are in kJ mol−1 and distances
are in Angstroms.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.7b00309
J. Phys. Chem. C 2017, 121, 6756−6769

6758

http://dx.doi.org/10.1021/acs.jpcc.7b00309


The charge flux can be calculated analytically from the electro-
osmotic velocity (eq 2), the Gouy−Chapman ion densities, and
the ion mobilities. The conductivity of the Gouy−Chapman
interface can be determined from the velocity profile (eq 7),
combined with the ion concentration profiles (eq 6) and the
ion mobilities. Bikerman obtained the following analytical
expression for the excess conductivity35

κ
ν ζ

ν ζ
η

ν ζ ν ζ

= − −

+ − +
ϵϵ

− − + −

σ +

−

⎛
⎝
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2
1
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1
2

exp
2

1 exp
2

1

0

B

B

0
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where D+ and D− are the cation and anion diffusion coefficients,
respectively. The Bikerman formula includes 4 terms: for
anions and cations and for conduction and convection.
The above expressions not only can be used to relate

quantities calculated with the Gouy−Chapman model but can
similarly be applied to analyze the EDL properties from
simulations. For example, the Poisson equation can be used to
calculate the potential profile ψMD(z) from the simulated charge
density profile. This potential can in turn be related to the ion
concentration and fluid velocity profiles. Equations 6 and 7 thus
have a direct counterpart from simulation

νψ
= −+

⎛
⎝⎜

⎞
⎠⎟C z C

z

k T
( ) exp

( )
MD 0

MD

B (9)

η
ζ ψ= −

ϵ ϵ
−−v z z E( ) ( ( ))r

MD fluid
0

MD (10)

Since the potential profile can be calculated from the charge
density with eq 9, eq 10 can be used to determine the ζ-
position, which is discussed in section 3.3.

3. RESULTS
3.1. Overview of Results. Table 3 gives an overview of

calculated and measured properties. The slot width is defined
here as the distance between the average position of
deprotonated silanol groups on either surface. The required
number of water molecules NW in the simulation is estimated
based on the density in the center of the slot. The simulation
contained 108 counterions (Cs+) and 60 co-ions (Cl−). The ion
concentration C0 is determined in the middle of the slot (see
Figure 6). This concentration is used to calculate the Debye
length λD via eq 5; the Debye length is small compared to the
slot width. The electro-osmotic velocity veo is used to calculate
the zeta potential ζ via the Smoluchowski equation (eq 2). The
surface charge density σ at the shear plane is calculated through
the Grahame formula (eq 1). The distance between the middle
of the slot and the shear plane is zζ. The last column of Table 3,
2Kσ, is the surface conductivity calculated from simulation, as
detailed later.

3.2. Identifying the Layers. The McMillan−Mayer PMF
(i.e., the free energy averaged over the configurations of water
molecules) between ions and surface atoms is calculated to
distinguish between adsorbed and unadsorbed ions, based on
the different minima in the resulting Gibbs free energy profile.
separation distances near the first energy minimum correspond
to surface-bonded ions (SBI); these ions form contact ion pairs
(CIP) with the surface atoms. The concept of CIP is widely
used in the analysis of solvated ions36 and has its counterpart in
ion−surface interaction.17 CIP represents Bjerrum pairs of ions
that are in direct contact, as opposed to solvent-separated ion
pairs (SSIP), which are ion pairs separated by solvent; these
pairs correspond to further minima in the PMFs. While SSIPs
are typically much weaker than CIPs, they are both considered
“pairs” given their nonzero free energy.
Since cesium atoms bind predominantly to the charged

surface oxygen atoms, the PMF between cesium and surface
oxygen is calculated following the umbrella sampling approach
detailed in previous work.17 The PMF in Figure 3 indicates that

cesium atoms are adsorbed if they are within 0.45 nm from a
surface oxygen atom, based on the location of the local
maximum between the first and the second minimum. For
chloride ions the preferred binding with surface hydrogen
atoms is analyzed. The PMF shows that the energy barrier
between a bound and an unbound ion−hydrogen pair is located
at 0.37 nm. This distance is smaller than for a cesium−oxygen
pair, mostly because of the difference between the size of
oxygen and the size of hydrogen atoms. The small separation of
a chloride−hydrogen CIP leads to a much larger Coulombic
attraction than for a cesium−oxygen pair and thus results in a
stronger binding energy (i.e., a deeper well in the PMF). The
free energy of a SSIP is comparable to the thermal energy,
which means that ions interact only weakly with surface atoms
at this distance and the explicit description of the SSIP can be
omitted for the analysis of electro-osmosis or conduction. Thus,
we distinguish between two kinds of ions: the one involved in
CIP, named surface-bonded ions (SBI), and the free ions (FI),
which are not in contact with surface atoms. The distinction

Table 3. Overview of the Electrostatic and Electrokinetic Properties of the System Considered

slot width (nm) NW C0 (mol L
−1) λD (nm) veo (m s−1) ζ (mV) σ (C m−2) zζ (nm) 2Kσ (nS)

4.7 5008 0.46 0.42 0.66 −30 −0.046 1.95 −3.0

Figure 3. McMillan−Mayer PMF for Cs+ and Cl−. Abscissa is the
distance with respect to the oxygen O− of the surface for the cations
and the distance with respect to the hydrogen H of silanol group.
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between SBI (the first minimum of the PMF) and FI is key to
understanding electrokinetic phenomena because the linear
momentum from the electric field on FI is completely
transmitted onto the surrounding fluid, whereas the electric
force on SBI is transmitted onto the solid surface.
3.3. ζ-Potential, Ion, and Water Densities. In this

section we link the ζ-potential to charge distributions and
velocity profiles. The classical models for this purpose rest on
the description of a semi-infinite geometry. We can use them
for our slot, which is not semi-infinite, because it is wide
enough to decouple the slot interfaces. This results from the
small Debye length, which prevents overlapping of the electric
diffuse layers.
The location of the shear plane is determined from the

hydrodynamic velocity profiles, as shown in Figure 4. Good

agreement is found between the simulated electrokinetic
velocity profile and model predictions combining the

Smoluchowski equation (eq 2) and eq 10, where the electric
potential profile is based on the distribution (eq 9) of all ions or
of the free ions. The velocity profile predicted using the FI from
MD simulation is in close agreement with the model prediction
calculated from the charge distribution predicted by the Gouy−
Chapman equation, as shown in Figure 5. The agreement
between the velocity profile calculated from the FI ion
distribution and from the Gouy−Chapman approach suggests
that the former can be an alternative suitable way to investigate
electro-osmosis in simulation or experiment, without explicitly
accounting for anomalous Stern-layer properties, such as
viscosity enhancement or a reduced local dielectric permittivity.
In contrast, including SBI in the Navier−Stokes analysis
induces high apparent viscosities close to surfaces.1,8

Construction of the velocity profiles includes two implicit
constraints: velocities are nil at the shear plane, and the velocity
is constant far from the shear plane, since the charge-neutral
fluid beyond the EDL does not contribute to electro-osmotic
flow. At the same time, bonded ions also cannot contribute to
the electro-osmotic flow, because these immobile ions cannot
receive or transmit energy from the applied electric field to the
surrounding fluid, as will be discussed in more detail below.
The position of the ζ-potential is traditionally referred to as

the shear plane, at which flow stagnation is expected. However,
Figure 4 illustrated the difference between the hydrodynamic
velocity profile and the actual velocity profile. The hydro-
dynamic velocity profile based on the free ions is used to
determine the ζ-potential, which proves to result in an accurate
prediction of the electro-osmotic velocity. However, the
position of the ζ-potential does not correspond to the shear
plane, at which the actual streaming flow is supposed to
stagnate. Henceforth, we thus distinguish between the shear
plane, which we do not observe in our simulation, at which the
streaming velocity should be zero, and the ζ-position, which
indicates the calculated position zζ corresponding to the ζ-
potential.
The ion distributions are shown in Figure 6. Free ion

densities exclude ions which are too close to a potential binding
side on the surface (i.e., charged oxygen atoms for cesium ions
and protons for chloride ions). Figure 6 shows that cation and
anion densities are equal in the middle of the slot (between

Figure 4. Fluid velocity profiles obtained from MD or using the
Navier−Stokes equation along with the MD potential from ion
distributions of all ions and of FI only. Relative water density is shown
below for comparison.

Figure 5. Predicted velocity profiles from the Navier−Stokes equation using the GC and the MD free ion distribution.
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−0.4 and 0.4 nm), indicating a bulk region at which the fluid is
not influenced by the surfaces. The presence of a bulk region is
important for the applicability of models such as eq 6, in which
C0 is the bulk electrolyte concentration. Figure 6 also shows
two Gouy−Chapman densities resulting from eq 6, which in
turn results from eq 4, namely, the Gouy−Chapman potential.
These densities form the diffuse layer in the frame of the
Gouy−Chapman model (and consequently the Poisson−
Boltzmann equation). FI, rather than forming a layer, can be
seen as collections of ions that are not involved in ion−surface
contact pairs. Once the Bjerrum CIP are treated separately, e.g.,
thanks to a mass action law equation that can be obtained from
MD,17 the other FI can be modeled by continuum theories.
Next, the Grahame surface charge is compared to the

corresponding value calculated from the MD simulation.
Integrating the total FI charge from the middle of the slot to
the ζ-position gives −0.013 C m−2, which deviates strongly
from the −0.0463 C m−2 (Table 3) calculated from the
Grahame equation (eq 1). The Grahame value is recovered by
increasing the integration limit by 0.25 nm, indicating that the
effective charge of the surface is too sensitive to the position to
make accurate calculations and comparisons.
To conclude this analysis, our results agree with the following

statements37 by Lyklema: “Experience has shown that the
electrokinetically active part satisfactorily coincides with the
diffuse part of the double layer”37 and “The electrokinetically
active part of the double layer is the diffuse part”.37 Indeed, we
observed that exclusion of bonded ions results in some sort of
diffuse layer (DFL), namely, the FI, which is the source of the
electro-osmotic phenomena. The reason that bonded ions do
not contribute to electro-osmotic flow is purely mechanistic:
from the conservation of linear momentum, immobile ions
cannot drive fluid flow. Nevertheless, it should be noted that
the nondiffuse part, generally named the Stern layer, is not a
layer but rather a set of Bjerrum CIP.
The validity of the three fundamental equations (Poisson,

Navier−Stokes, and Boltzmann’s) can be understood thanks to
Figure 7. In the upper part the free ion profiles have been
plotted. We added (black lines) the value obtained from
Boltzmann’s law (eq 9) when the electric potential ψMD(z) is

calculated by the Poisson equation on FI only. The agreement
is globally excellent between the three approaches. GC
approximation and Boltzmann’s law are very similar, within
the zζ limits. When compared with the FI profile obtained by
molecular dynamics, for cations, the peak is smeared out. This
effect is a direct consequence of the surface roughness
estimated to be close to 0.6 nm. Indeed, the convolution
product of the GC profile with a 0.6 nm wide window at the
surface recovers exactly the MD result (not shown). For anions,
a small peak appears in MD result. It comes from CIP not

Figure 6. Cs+ and Cl− concentration profiles (symmetrized). MD profiles are shown for all ions and for FI. Prediction from the GC model is shown
beyond the Stern region.

Figure 7. Cs+ and Cl− concentration profiles, PB concentration
product, and electric potential calculated by different routes as a
function of the position.
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directly taken into account by the distance criterion. If
Boltzmann’s law (eq 9) is valid for the FI distributions of the
cation and the anion, the concentration product CCs

+CCl
−/C0

2 is
equal to 1. This is globally true for FI, even if there are
statistical fluctuations in the middle. Besides, close to the
interface, the value is slightly above 1 because of the surface
roughness, as already mentioned. The electric potential
calculated from MD via the Poisson−Boltzmann equation can
also be compared to the one obtained from Boltzmann’s law
(eq 9) for cations and anions. The agreement is globally very
good. For the cations, close to the interface, the difference
comes from the surface rugosity, as already pointed out,
whereas for the anion the difference is due to an excess number
of CIP. To conclude, the Poisson−Boltzmann formalism
appears to be valid for the free ions. The relatively weak
differences come from CIP that have not been taken into
account and from the roughness of the interface.

To conclude that part, ion distribution and solvent transport
can be successfully described by classical models by excluding
the bonded ions from the theoretical treatment. The Stern layer
appears to be a collection of CIP. Beyond this layer, general
equations (Navier−Stokes with stick boundary conditions,
Poisson equation, Boltzmann’s law for the ions) appear to be
valid within a very good approximation, the main differences
coming from the surface roughness. However, modeling of ion
transport proves more challenging; this issue is addressed in the
next section.

3.4. Classical Description versus Energetic Descrip-
tion of the Double Layer. In classical electrodynamics, the
Stern Layer is described in terms of the IHL and the OHL.15

The IHL includes partially dehydrated ions in direct contact
with the surface, while the OHL consists of hydrated ions near
the surface. The OHL is limited by the OHP which is the sharp
boundary between the diffuse layer (DFL), also called the

Figure 8. Interface model of Stern−Gouy−Chapman. ψ0 and σ0 are the potential and charge at the surface, ψi and σi at the onset of the IHP, ψd is the
potential at the onset of the OHP, ζ and σek are the potential at the shear plane and the active electrokinetic charge, after Lyklema.18

Figure 9. Interface model from MD analysis. SBI region is in various ways comparable to the IHP, but it is defined by CIP. FI is comparable to the
classical DFL and the OHP. In fact, transition from SBI to FI is smooth (see Figure 6), because it is not based on the distance to an average surface
but on the distance to surface atoms considered separately. Inside the progressive transition from SBI to FI, a ζ-potential can be defined for the
description of electro-osmosis.
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Gouy−Chapman layer (Figure 8),15 and by the nondiffuse part
of the double layer.16 In addition to these static layer
definitions, which exist in the absence of any external
perturbation, classical definitions exist also to describe the
nonequilibrium quantities related to the EDL. For example, the
shear plane, which is a planar boundary below which solvent is
immobile in the case of electro-osmosis. While solvent
molecules are considered to be immobile below the shear
plane, ions can have a mobility comparable to in bulk fluid.15 A
shear plane also appears under an external mechanical stress,
such as gravity or pressure. The shear plane tends to be very
close to the OHP. Each of these layers in the classical definition
are limited by planes, and regions are not considered to overlap.
We propose here to use different definitions to describe the
EDL near a charged interface: the SBI and FI, which describe
collections of ions selected based on their distance from surface
atoms. The criteria of distance result from an energetic analysis,
namely, the potential of mean force. While the definition based
on the distance from surface atoms would be identical to the
traditional definition based on planes in the case of a perfectly
flat surface, the definition proposed here extends also to
nonideal surfaces, which can have a roughness larger than the
thickness of some of the traditional layers. Furthermore,
overlap of the SBI and FI regions is permitted and more
realistic (Figure 9), since the mobility of ions does not only
depend on their z position but rather on their local
environment (see Figure 6). We define a ζ-position, also
named zζ, which is the place where a nil velocity appears if we
fit the MD electro-osmotic velocity profile with the Navier−
Stokes and the Maxwell−Gauss equation. This is the equivalent
of the ζ-potential, which describes the electric potential at the
shear plane in classical electrokinetic theory.
Now we compare classical definitions with our definitions,

starting with the shear plane. Figure 6 shows that the ζ-position
(zζ) is an approximate position to distinguish mobile solvent
from nearly immobile solvent. The MD velocity is not strictly
nil at this position, but it is not possible from the simulation to
locate a position with nil velocity with a nonvanishing solvent
concentration. Consequently, the shear plane of the classical
definition can only be an approximate concept in this case.
Figure 10 shows a large amount of water below zζ, resulting

in a 0.3 nm wide layer. This is similar to the thickness of a
single water layer. From the classical definition, this layer
corresponds to the Stern layer and should include the IHL and
OHL. The width of the layer below the shear plane based on
the data in Figure 10 is sufficient to contain an IHL but not to
also contain the OHL, since overlap of these layers is not
permitted in the classical definition. The OHL thus does not
appear in our simulation. The collection of FI, which consists of
the ions that are not in contact with the surface, naturally
includes the DFL as well as fully hydrated ions very close to the
surface. These latter category of ions would fall into the OHL
(thus the Stern layer) in the classical criteria based on distance.
We now consider the concept of a stagnant layer. In the

classical definitions, the stagnant layer near a charged surface
consists of solvent molecules that stay immobile in electro-
kinetic processes. The onset of this stagnant layer is defined to
coincide with zζ, which is very close to the onset of the OHL.15

Yet, no stagnant layer is observed in Figure 4. This finding is in
agreement with the result of Zhang et al., who did not observe a
stagnant layer in their simulations of water-silica charged
interfaces.5 On the other hand, Yoshida et al. observed a
stagnant layer at a surface charge of 0.514 C m−2 for a rigid

lattice wall.38 This value is an order of magnitude larger than
the surface charge density we model. At such a large charge
concentration, the solvent molecules close to the surface all
belong to an ion hydration sphere. In other words, what could
appear as a stagnant layer, specific to surfaces, can be described
as the juxtaposition of hydration spheres, a standard
phenomenon for solvated ions. Indeed, no stagnant layer was
found by these authors at a surface charge density equal to or
lower than 0.128 C m−2. Lyklema et al. used Lennard−Jones
interactions for surface and solvent.39 No evidence of a stagnant
layer appeared from their data. Freund did not observe a
stagnant layer for Cl− in a model channel.1 Lorenz et al. and
Hartkamp et al. observed no stagnant layer on charged silica
surfaces.4,6 Qiao et al. also found no stagnant layer for NaCl in
a model channel. In contrast, Joly et al. found a stagnant layer
of a single-molecular diameter thickness using an idealized
model system.2 It is possible to see, on the graphic of Predota
et al., a 0.3 nm wide layer of stagnant water for NaCl and SrCl2
for surface charges of −0.1 and −0.2 C·m−2. In summary, MD
simulation studies do not observe a stagnant layer near a
realistic surface, in line with our result, but some studies found
a stagnant layer near a model surface.

3.5. Conductivity below the ζ-Position. In the following
the MD conductivity is analyzed, taking advantage of the fact
that exact knowledge of the system is available in MD
simulations. With this analysis, the presence of a dynamic
Stern layer is tested. This model proposes that ions in a
stagnant solvent layer contribute to the surface conductivity,
having ion mobilities similar to bulk values.15,39 Figure 10
shows an overview of the charge flux profiles. Integrating these
profiles along the position produces the conductivity of either
ion species (i.e., cesium and chloride). The integrated charge
fluxes are normalized for sake of simplicity, with the integrated
cesium flux being the normalization value. The integrated ion
fluxes in Figure 10 include both the free and the surface-bonded
ions. Yet, the integral over the ion flux only shows a nonzero
contribution beyond the ζ-position. This implies that the Stern
layer in the system considered here does not contribute to the

Figure 10. Synthetic view of data relevant to conductivity. Integrated
fluxes include bonded ions (see Figures 6 and 11): it appears that their
contribution to the flux is nil. Ion densities are rescaled for sake of
readability. See Figure 6 for proper units.
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conductivity. In fact, even the free ions in the vicinity of the ζ-
position have little contribution to conductivity, despite their
abundance and the fact that they are not bonded to the wall.
Looking at the cations and anions separately, the cations

show a larger charge flux, and thus conduction, than the anions.
The conduction from the free cations is increased by the
electro-osmotic streaming flow and the electric field, while the
osmotic streaming flow and the electric field have competing
contributions to the flux of anions, since the electric field drives
them in the opposite direction as the cations, and the net
solvent flow. The anion conductivity is thus expected to be
smaller than that of the cation, and the sign of the resulting
anion conductivity depends on the balance between the
competing contributions. For the system considered here, the
effect of the electric field dominates the electro-osmotic
contribution to the anion conductivity due to the high anionic
mobility. However, in the limit of small mobility, anions could
be driven “backwards” by the streaming flow.
The different contributions to conductivity are further

investigated in Figure 11 by comparing integrated ionic fluxes.
Each integrated flux is proportional to its contribution to
conductivity, and the total conductivity is proportional to the
sum of the Cs+ and Cl− fluxes. We consider 3 cases: (i) all ions
are included, (ii) SBI are excluded, and (iii) SBI and all ions
within the second PMF minimum are excluded (see Figure 3).
Case i is shown in Figure 10. No difference is found when SBI
are excluded from the integral, meaning that ions located in the
first minima of PMF profiles of Figure 3 do not contribute to
conductivity. Excluding also the ions within the second minima
(i.e., SSIP) shows a different flux integral in the case of Cs+,
indicating that these excluded cations do contribute to the
conductivity. On the other hand, excluding both the SBI and
the SSIP has no influence on the flux integral for Cl−. This
difference between cations and anions results from ion
concentrations close to the surface, with more cations than
anions close to the surface (see Figure 6).
Considering the Cs+ integrated flux in Figure 10b and Cs+

density in Figure 10c, we see that the flux is not proportional to
the integral over the density. This is a consequence of mobility
reduction close to the surface. This is in contrast with the
description of the dynamic Stern layer, in which ions would

have a bulk-like mobility, suggesting that flux profiles would be
proportional to density profiles.37 An analysis of ion mobility
versus position is given in section 3.6.
The total conductivity is the sum of the cation and anion

contributions, as explained above. The surface conductivity is
an excess term: it is the difference between the observed
conductivity in the slot and the conductivity of a bulk sample of
the same width, where the slot width is taken to be the distance
between ζ-positions. The anions have a negative contribution
to the surface conductivity, because the contribution of anions
in the slot is necessarily smaller than the corresponding bulk
conductivity. This is caused by the fact that the free anion
concentration in the slot is smaller than or equal to the bulk
concentration and because electro-osmotic flow can only
reduce anion conduction. Either of these two effects is
sufficient to account for the anion negative contribution to
conduction. On the other hand, in our model, cations have a
positive contribution to the surface conductivity. This
contribution could have been negative if the cation mobility
in the vicinity of the surface had been strongly reduced. The
impact of mobility on conduction is detailed in section 3.6. The
anion and cation contributions to the surface conductivities are
−7.4 and 4.4 nS, respectively, so that the total surface
conductivity is −3.0 nS. This negative value is despite the
fact that the fluid contains more cations than anions to
compensate for the negative surface charge density. The
negative surface conductivity is quite surprising, since the well-
known Bikerman formula predicts a positive surface con-
duction,35 to which some authors add an extra surface
conduction in the Stern layer.15

The absence of conduction in the Stern layer is stated by
various authors. Zhang et al.5 found no conductivity in the
Stern layer. Lorenz et al. found a residual contribution to the
conductivity in the IHL (see Table 6 for Na+ in ref 24), which
does not account for claimed experimental values of
mobilities.37,40 Lorenz et al. found a substantial conductivity
in the OHL for Na+.24 Indeed, we observed that it was not
relevant to distinguish ions in the OHL from free ions in the
DFL, neither in the analysis of electro-osmosis nor with surface
conduction. Netz found that a large fraction of ions in the Stern
layer is immobilized.41 In fact, most realistic MD simulations

Figure 11. Integrated charge fluxes for a variety of selected ions: all ions, excluding bonded ions, in contact with surface, and excluding bonded and
solvent separated ions. Integrated fluxes are all divided by the value that normalizes the integrated Cs+ charge flux.
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have not observed conduction in the Stern layer, in contrast to
some studies of model systems.
3.6. Mobility of Ions: From Bulk to Stern Layer.

Conductivity theories, including Bikerman’s formula, are based
on two contributions to the ion surface conductivity: the
electro-osmotic convection and a migration terms. Since it was
already confirmed that electro-osmosis was correctly described
by the macroscopic model, the discrepancy in the conductivity
prediction should come from the migration term. The free ion
distribution seems to be fairly well represented by the Gouy−
Chapman formula used in Bikerman’s analysis (see Figure 6),
suggesting that the theoretical treatment of ion mobility might
be inaccurate. In Bikerman’s formula, the cation and anion
mobility is assumed to be homogeneous and equal to bulk
mobility, while simulations show that the interface decreases
the mobility of the ions relative to their bulk value. This
decrease in mobility leads to a negative surface conductivity, as
we now describe in full detail.

The mechanism can be understood from the simulated ion
mobility profile, shown in Figure 12 for cesium and in Figure
13 for chloride. The mobility of each ion is calculated as

μ =
− −z

v z v z
eE

( )
( ) ( )ion el osm

(11)

where vion is the ion average velocity, vel−osm(z) the electro-
osmotic velocity (vel−osm(z) tends to veo at long distance), e the
elementary charge, and E the electric field parallel to the
surface.
Figure 12 shows the relative mobility, defined as the local

mobility normalized by its bulk value. A dashed horizontal line
at unity is shown as a guide to the eye. The bulk mobilities
result from the diffusion coefficients throught the Stokes−
Einstein formula, D = μkBT, diffusion coefficients correspond-
ing to infinite dilution. These diffusion coefficients are DCs =

1.77 × 10−9 and DCl = 1.60 × 10−9. These are not the
experimental mobilities but model mobilities, obtained in SPC/
E water.42 The cation concentration is also shown in Figure 12,
because mobility reduction strongly impacts conductivity when
associated with a high concentration.
Mobility in the Stern layer is sometimes claimed to be as high

as in the bulk, at least for colloidal systems.37 A high mobility in
the stagnant layer is generally interpreted as “short-circuiting of
tangential motion”.37 In other words, bonded ions in the
stagnant layer come out to the DFL where they can experience
high mobility. Following this interpretation, this would result in
a stagnant layer conductivity. The suggested interfacial mobility
and corresponding conductivity is in contrast with our
simulation, which shows a nil mobility for surface-bonded
ions and a vanishing mobility for free ions close to the surface.
In addition, it is arguable whether conduction taking place in
the diffuse layer should be attributed to the Stern layer.
A hydrodynamic model (HM) was used to investigate the

origin of the low FI mobility near the interface.43 Saugey et al.
suggested an equation that accounts for the distance to the
surface, the slot width, and the atomic radius in order to model
this hydrodynamic effect. In the limit of nil slip length, taking z
= 0 at the center of the slot, the ion relative mobility reads (see
eq 24 in ref 43)

μ =
+ −

− −
ζ ζ− + +

z( )
1

1HM 1

1

1

1R
z z

R
z z

h 9
16

h 9
16 (12)

with z being the position in the slot, zζ the position of nil
velocity, and Rh the hydrodynamic radius, deduced from the
Stokes−Einstein law.
The presence of the two walls modifies the hydrodynamic

boundary conditions (compared to bulk solutions). Indeed, in
the proposed model,43 the presence of the two walls implies
that the solvent velocity is zero at the two interfaces (stick
boundary conditions). When an ion in a solvent is subjected to
an external field, its velocity relative to the solvent is limited by
the efficiency of the backflow, in other words the flow of the

Figure 12. Mobility of cesium as a function of position in the slot,
normalized by the mobility of the ions in bulk SPC/E water. MD
profile is compared with a hydrodynamic model (HM) and with the
bulk SPC/E value. Free Cs+ density is relative to the bulk
concentration, 0.46 mol·L−1.

Figure 13. Mobility of chloride as a function of position in the slot,
normalized by the bulk mobility of the ion in bulk SPC/E water. MD
profile is compared with a hydrodynamic model (HM) and with the
bulk SPC/E value. Free Cl− density is relative to the bulk
concentration, 0.46 mol·L−1.
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solvent around the ion. In our case, the two walls diminish the
backflow of the solvent. Mathematically, when an ion is close to
a wall, the effect can be taken into account by considering a
nonconfined solvent and a hydrodynamic image of the solute
mirrored with respect to the wall but with an opposite velocity.
Because of the linearity of the Stokes equation, the resulting
hydrodynamic flow created by the solute and the image follows
the hydrodynamic equation. The boundary condition is correct
because the image neutralizes the solvent velocity created by
the solute at the wall. When there are two parallel walls the
hydrodynamic problem is more complicated because there are
an infinite number of hydrodynamic images, but the final exact
result is well represented by eq 12. When the distance to the
surface is large compared to the hydrodynamic radius, this
effect can be neglected: μHM = 1 and the classical Stokes−
Einstein relation is recovered.
What can be stated from the comparison between HM

Saugey’s formula and MD mobility? MD allows for an estimate

of the mobility over the whole slot, whereas the HM is limited
by the two planes, which is not exact for our silica surface.
Furthermore, the atoms have a finite size in the simulation,
while atom sizes are not accounted for in the HM theory.
Regardless, the theoretically predicted dynamics in the slot
center agrees well with the MD result (although the uncertainty
of the MD values ±15% is quite large). The simulation and HM
theory both show that the mobility in the center of the slot is
lower than the bulk mobility, and both methods also show a
strong decrease in mobility near the interface. The MD
mobilities vanish at zζ, while the HM mobility is not defined at
this position.

3.7. Consequences of Mobility Reduction on Surface
Conduction. Figures 12 and 13 show that ion mobility is
reduced near the silica surface. As shown in section 3.5, this can
lead to a negative surface conduction.
At low concentrations, few ions are impacted by mobility

reduction, so that the assumption of constant mobility is

Figure 14. Anion and cation fluxes calculated with the Navier−Stokes and Gouy−Chapman models. Dashed profiles include the hydrodynamic
mobility reduction by Saugey et al.

Figure 15. Surface conductivity models: original Bikerman’s formula versus numerical Bikerman’s formula including mobility reduction on the
migration term as a function of concentration.
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appropriate. However, the Debye length is small at large ion
concentration, thus compressing the DFLs onto the surface and
increasing the consequence of mobility reduction in this region.
In order to estimate the critical concentration it would be
preferable to use MD in the dilute limit. However, it is not
practically feasible to obtain statistically meaningful simulation
data at ion concentrations much below 0.1 mol·L−1. Instead, a
numerical process is used based on the Bikerman analysis. The
Bikerman result for surface conductivity is an analytical solution
of the diffuse contribution of the electro-osmotic surface
conduction. We can reproduce this result numerically step-by-
step. The ion distributions used by Bikerman come from eq 6
and the fluid velocity from eq 7. When we multiply the former
by the latter, we find the electro-osmotic contributions to
conductivity. To this contribution need to be added the
migrations terms, which are the product of concentration and
mobility. The total ion fluxes are shown in Figure 14 as a
function of position. Upon flux integrations along position and
subtraction of the ion bulk conductivities, we find, as expected,
the Bikerman values. (The result is in fact twice the Bikerman
values, because the simulated slot includes 2 surfaces.) Now we
can reproduce this process applying a numerical reduction to
mobilities. With Saugey’s reduction formula, we impact the
migration term but not the electro-osmotic contribution. The
reduced fluxes are shown in Figure 14. Figure 15 shows the
Bikerman and modified surface conduction as a function of
concentration. The integrations should be performed at a slot
width much larger than the Debye length of the fluid. For each
concentration, a width of 20 D lengths was used here.
Increasing this value does not change the surface conductivity.
Figure 15 shows that the Bikerman formula becomes very
inaccurate for concentrations above 10−3 mol L−1. This range of
concentration covers in some cases the whole experimental
range.40

The surface conductivity from MD is included in Figure 15.
This value falls slightly below the HM conductivity. We can
account for this discrepancy in various ways. One way results
from a critical observation of Figure 12. A drastic mobility
reduction occurs precisely where the cation concentration is
high. Any variation on either term, mobility or concentration,
will strongly impact the conductivity value. Another difficulty
originates in the definition of surface conductivity as an excess
term, namely, the difference between the observed conductivity
and the conductivity produced in a slot of the same width. The
MD value is the subtraction of bulk cation and anion
conductivities, which amount to 22.7 nS, from the total MD
conductivity. The MD surface conductivity is on the order of a
few nS. This means that the MD surface conductivity results
from the difference between two terms which mostly
compensate each other. Uncertainty in either of these terms
can affect the calculated excess conductivity. One of these
terms, the equivalent bulk conductivity, is proportional to the
slot width, which cannot be estimated precisely. We use the zζ
position to estimate the slot width. As a conclusion, the
position of the MD surface conductivity point on Figure 15
should be considered as very satisfactory.
3.8. Electro-Osmotic Model Success versus Conduc-

tion Model Failure. The electro-osmotic flow is accurately
modeled by the Stokes equation and the Gouy−Chapman
formalism when CIP are not taken into account (Figure 5). We
mentioned that the electro-osmotic velocity profile is con-
strained by its value at the ζ-position, its value far from the
surface, and by its derivative in the slot center. These

constraints account for the production of a correct velocity
profile. A second reason is that the electro-osmotic phenomena
are independent of ion mobilities. The force exerted on the ions
is the product of the electric field and the charge, and the work
performed by this force is transmitted to the solvent,
independent of the ion mobility, as long as the ion is mobile.
Indeed, mobility does not appear in the Smoluchowski formula
(see eq 2). Due to the reasons given here, modeling an electro-
osmotic profile is not a stringent test for models. In contrast,
the Bikerman analysis fails to model the DFL conduction at
high concentration. This failure results from the impact of ion
mobilities. In contrast to electro-osmotic flow, surface
conductivity depends on ion mobilities, and the hypothesis of
constant mobility cannot be sustained.

4. CONCLUSION

This study has addressed a long-standing question of surface
conductivity near a realistic, charged surface: is there a stagnant
layer and does this layer contribute to the surface conductivity?
This question was addressed via an electro-osmotic MD
simulation of an aqueous CsCl solution confined between
charged, amorphous silica walls. Simulation results were
compared against traditional electrokinetic theory.
Analysis of electro-osmosis and surface conduction through

MD opens the way to a new description of charged solid liquid
interfaces. We defined a surface-bonded ion (SBI) collection as
counterpart to the classical Stern layer. The SBI are defined
based on the potential of mean force between ions and the
surface atoms. This is a more flexible concept than the classical
definition based on planes, which do not account for the shape
or roughness of the surface. The SBI collection largely
corresponds to the IHL of the Stern layer, while no OHL is
found in the simulation. All ions that are not in the SBI are free
ions (FI), which are responsible for electro-osmosis and surface
conductivity. While some theory, such as the dynamic Stern
layer model, predicts conductivity in the Stern layer, no
conductivity appears in the SBI.
By applying the Gouy−Chapman formalism to our electro-

osmosis simulation data we were able to predict the simulated
electro-osmotic flow velocity. It is possible to define a zζ
position, based on the onset of the Gouy−Chapman velocity
profile. However, the actual velocity profile is found to be
nonzero also below zζ, indicating the inaccuracy of this shear
plane position near a realistic, rough surface. This result is fully
consistent with the publication of Zhang et al.5

Classical models also proved to be inaccurate for analysis of
conductivity. The classical Bikerman analysis assumes a
constant mobility, while the real ion mobility is strongly
reduced near the surface, especially at high ion concentration.
Consequently, (i) the Bikerman formula, because of its
hypothesis of constant mobility, is only valid below 10−3 mol
L−1 and (ii) surface conduction is negative at high
concentration. The absence of conductivity among SBI is also
obtained in other MD studies, while experimental studies have
stated that Stern layer ions have a mobility comparable to
solvated bulk ions. These experimental data are all the more
puzzling as, besides the nil mobility in the SBI, we find a
strongly reduced mobility for ions close to the surface: this
inconsistency between experiments, simulation, and model
needs further analysis. One key point in the observed surface
conductivity could lie in the slip at the interface,3,9,44 rather
than in a dynamic Stern Layer.
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