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Abstract

Outsourcing data to the cloud can pose serious se-
curity threats due to an attacker observing the data
access patterns, even though data is encrypted. Ide-
ally, confidentiality should not depend on the server
being a trusted party. Oblivious Random Access
Machines are tackling this problem by obfuscating
data access patterns and ensuring obliviousness of
the server towards the data.
Thus, this paper studies the evolution of Oblivi-
ous Random Access Machines and highlights the
steps taken so far to discover a more practical al-
gorithm for hiding data access patterns on an un-
trusted server. In addition, other approaches for
privacy-preserving computation, such as Homo-
morphic Encryption, Structured Encryption, Multi-
Party Computation and Trusted Execution Environ-
ments are discussed and contrasted to ORAM to as-
sess the costs and benefits they come with, but also
the trade-offs in security and usability.

1 Introduction
As the world increasingly depends on data, and outsourcing
storage becomes cheaper, security becomes a greater con-
cern. This happens because the storage server can observe
the interactions that the client has with its encrypted data. Al-
though encryption is normally enough to ensure confidential-
ity of data at rest, when data is accessed multiple times, the
server can infer details like loop structure or branching of the
running program. Islam et al. [33] showed that data access
patterns alone can reveal up to 80% of queries on data. An-
other example, used by Pinkas and Reinman [56] is that a
malicious server can tell which information is more impor-
tant based on the frequency of accesses and then concentrate
its resources towards decrypting only the data that are repeat-
edly accessed. This becomes increasingly problematic when
the underlying data contains sensitive information, such as
private health or financial details. Thus, the need for tech-
niques that allow working with encrypted outsourced data but
also maintain confidentiality arises.
Thus, any client who chooses to store sensitive data in the
cloud needs to be aware of its risks and find a way to hide
the data access patterns for the server. One proposed solution
to this problem of data access patterns leaking information is
Oblivious Random Access Machines. ORAM aims to make
all program data access patterns look the same from the per-
spective of an untrusted server observing the memory loca-
tions that are accessed. This idea was first introduced by Gol-
dreich and Ostrovsky [23], who came up with two solutions
that lay out a foundational concept for future research. Then
multiple constructions improved the initial efficiency with the
aim of making ORAM a practical and usable solution to hide
data access patterns and to ensure zero leakage of informa-
tion.
This paper presents the main contributions of different
ORAM techniques proposed thus far, following the contin-
uous improvements that the field has benefited from to reach

the current state-of-the-art constructions. Then, Path ORAM
[66] will be chosen for a comparison with other Privacy-
Preserving Computation techniques, given it is a general pur-
pose ORAM that has already been adopted by some secure
processors [17, 43, 18], for its low worst-case bandwidth
blowup, but also its simplicity. Then, the survey will discuss
differences in security, usability, efficiency, and functional-
ity, but also way in which they can complement each other.
Thus, in Section 2, the background and methodology used to
carry out the investigation will be discussed. Then, Section 3
will present in detail the innovations and technical aspects
raised in the relevant papers. Then, in Section 4, character-
istics such as functionality, efficiency, security, and usability
will be isolated and highlighted based on the facts presented
in Section 3. After that, Section 5 introduces Homomorphic
Encryption, Structured Encryption, Multi-Party Computation
and Trusted Execution Environments and compares them ac-
cording to the criteria defined in Subsection 5.2. Then, ways
in which they can complement each other or fit specific use
cases are discussed. In the end, ethical considerations and
responsible research aspects are presented, ending with the
conclusion and acknowledgment of the work that remains to
be done in the field.

2 Motivation
As technology advances quickly and becomes more complex,
there is more infrastructure that we need to protect and more
possible ways for attackers to exploit weaknesses in our sys-
tems. That is why security cannot be just an afterthought, but
has to be a priority while designing a system. Oblivious Ran-
dom Access Machines tackle part of this problem by ensuring
zero leakage of data in an outsourced storage setting.
As pointed out in previous research by Chow et al. [11], there
are many potential cloud users that have yet to join the cloud,
but refrain from doing so because of the perceived risks. Ma-
jor corporations are mostly putting only their less sensitive
data in the cloud. Their main concern that is brought up is the
lack of control over their data and this is what prevents cloud
from becoming even more popular. Thus, this paper stud-
ies the evolution of ORAM and highlights the steps taken so
far to discover a more practical algorithm to hide data access
patterns on an untrusted server. In addition, other approaches
for privacy-preserving computation, such as Homomorphic
Encryption, Structured Encryption, Multi-Party Computation
and Trusted Execution Environments are discussed and con-
trasted to ORAM to assess the costs and benefits they come
with, and the trade-offs in terms of security and usability. The
purpose of this is not only to serve as an objective overview of
some Privacy-Preserving Computation Techniques available
so far, but also to act as an inspiration for future research on
ORAM or suitable use-cases for different techniques. Thus,
the research questions are ”how did ORAM evolve to its cur-
rent state and what are the state-of-the-art constructions”, but
also ”how does it compare to FHE, StE, MPC and TEEs in
terms of functionality, efficiency, security and usability”.

2.1 Background
ORAM was first introduced by Goldreich in 1987 in the pa-
per Towards a Theory of Software Protection and Simulation



by Oblivious RAMs [22] which proposed a theoretically in-
teresting algorithm that makes data access patterns oblivious
to a malicious server. After that, Ostrovsky [52] improved
the theoretical bounds of Goldreich, coming up with a novel
solution that used a hierarchy of hash tables. Initially, the fo-
cus was on minimizing the amortized cost [23, 68, 27, 56, 8]
and ignored the worst-case cost, making them impractical,
but provided an interesting result and yet another stepping
stone in the field. A huge change occurred with the first tech-
niques that achieved sublinear worst-case cost, most notably
Stefanov et al.[65] who proposed a new partitioning scheme,
Goodrich et al. [29] who investigated a way to de-amortize
the initial ORAM constructions [23], but also Kushilevitz et
al. [39] who improved on the Cuckoo Hashing [54] idea intro-
duced by Goodrich and Mitzenmacher [27]. Then, Shi et al.
[61] used a novel binary tree-based technique that was later
used by Stefanov et al. in the famous Path ORAM [66] paper
. Path ORAM will be the main technique used in the compar-
ison with other Privacy-Preserving Computation methods for
its simplicity and ease of understanding, more techniques and
recent work will be analyzed. The main contribution of each
paper will be presented and explained in order to provide a
starting point for someone researching the field, but also give
an overview of the techniques proposed thus far which can be
used as an inspiration for future constructions.

2.2 Methodology
The study was conducted as a literature survey, having Path
ORAM [66] as a reference work for ORAM. Following the
references used in the work by Stefanov et al. [66], the evo-
lution path of ORAM could be traced back and analyzed
in detail. Then, to gauge the more recent direction that re-
search in the field has taken, queries on Scopus were used,
from which a few relevant papers were selected and analyzed.
From this point on, references were again followed back to
fill the gap between the formulation of Path ORAM and the
present work.
For the comparison part, meetings were held in which a per-
son for each of the five techniques studied in this paper was
present, presenting the costs and trade-offs of the technique,
but also sharing papers where different techniques were com-
bined.

3 ORAM Constructions
3.1 Problem Definition
A trusted client with small storage is assumed to execute a
program on an untrusted server as can be seen in Figure 1.
The server stores data in encrypted blocks, and the communi-
cation between the two parties happens in tuples of the form
(operation, block id, data) that are sent over the network.

The security definitions of [65] are adopted. Therefore, no
information should be leaked about which data is being ac-
cessed, when was the last time a block was accessed, whether
the same data are being accessed, whether the access is a
read or write, or if the access pattern is sequential or random.
N will be the number of blocks outsourced to the server and
the blocks will be of size B bytes each. More formally, if

Figure 1: Overview of ORAM System Architecture [65]

the access pattern A(x) is the sequence of accesses to the
remote untrusted server that stores the data blocks, then an
oblivious RAM is considered secure if for any two inputs
x and x’ having the same length, the access patterns A(x)
and A(x′) are computationally indistinguishable for anyone
but the client as mentioned in Definition 1 from Pinkas and
Reinman [56].
Overhead is defined as the number of blocks that must be
accessed on the server for a single read or write to take place.
Usually, overhead is an upper bound function of the number
of blocks outsourced to the server. Overhead may be referred
to as cost, and it is worth noting that it may be analyzed from
two perspectives: the amortized cost and the worst-case cost.
In addition, client storage is considered to take into account
different capabilities of clients and be able to suit different
needs. Server storage is also a metric that is highlighted in
different ORAM constructions, since it may be an important
part to consider when looking at the practical considerations
of a scheme. An overview of some foundational ORAM
schemes that will be discussed in more detail can be observed
in Table 1.

3.2 Square Root Solution
The Square Root Algorithm proposed by Goldreich in 1987
[22] and was the first non-trivial ORAM that managed to
achieve an amortized overhead of O(

√
N log2 N) with a

worst-case cost of O(N log2 N), which is also the worst-
case cost of construction. To make the simulation oblivi-
ous, the author first proposed splitting the server storage into
N + 2

√
N blocks. The first N +

√
N blocks were reserved

for the N outsourced blocks and
√
N dummy blocks. The

remaining
√
N blocks are used as a ”shelter” that will tem-

porarily store the accessed data.
The algorithm is executed in epochs of size

√
N . As a setup

for an epoch, the client needs to shuffle the N +
√
N real

blocks and dummy blocks. To do that, the algorithm uses an
oblivious Sorting Algorithm [5] that incurs a O(Nlog2(N))
overhead. It is worth mentioning that an asymptotic upper
bound of O(Nlog(N)) can be achieved using the AKS Sort-
ing Network [1], but it is less practical due to higher con-
stants.



To access an item during an epoch, the client scans the entire
shelter. In case it is in the shelter, then it looks for the next
dummy item, in order to hide the actual block that was read,
otherwise it accesses the item corresponding to the permuta-
tion that was last used. After the item is read, the CPU writes
to the shelter, which can be real or fake depending on the
previous read. Thus, from the server’s perspective, it looks
like the client scans the whole shelter every time, then does a
random lookup for one of the N +

√
N blocks. To prevent

the server from linking a block that was read with one that
was written at a different location, probabilistic encryption is
used [25]. Also, the client makes sure that it does not access
the same dummy block twice. Thus, the amortized overhead
is O(

√
Nlog2(N)), since the reshuffling happens once every√

N steps.
To reduce overhead, the client can store the stash in a
smaller ORAM and amortize the sorting costs over more
steps, managing to achieve an amortized overhead of
O
(
2
√

2 log2 N ·log2(log2 N)
)

for constant client storage. An-
other important theorem from the paper is the O(logN) the-
oretic lower bound for client-server communication.

3.3 The Hierarchical Solution
In 1990, Ostrovsky came up with a novel technique [52] that
improved the bounds of the initial solution proposed by Gol-
dreich [22]. Here, outsourced storage is split into logN hash
tables, where each hash table i ∈ {0, 1, 2, 3, . . . , log2 N}
contains 2i buckets. Each hash table uses its own hash func-
tion Hi and the invariant of the algorithm is that a block x will
always reside in a level i, between 0 and log2 N in the bucket
Hi(x). To access a block, the algorithm fully scans the first
level, then it reads a bucket in each level. If the block is al-
ready found, the algorithm still does an access at every level
to ensure obliviousness through a dummy read. Otherwise, it
looks in the Hi(x) bucket. After reading an item, it always
writes it back to the first level.
At a certain point, the first level might fill up. That causes
the need for a reshuffling, in which items from the first level
are written obliviously to the second level. Still, the simula-
tion cannot reveal any information about the actual load of a
level, therefore, this reshuffling happens every 2i accesses on
the server. Thus, after 2i steps, the algorithm has to merge
levels i and i+1 and and use a new hashing function for level
i+1. This is done with the AKS Sorting Network [1] which
obliviously sorts N elements in O(NlogN) steps. However,
the constants of the AKS Sorting Network make it less practi-
cal than the Batcher’s Sorting Network [5]. Thus, the scheme
reaches an amortized cost of O(log3N) for constant client
storage, but has a worst-case cost of O(Nlog(N)). Also,
server storage is O(NlogN) due to the space complexity of
the sorting algorith.

3.4 SSS Construction
The construction by Stefanov, Shi and Song from 2012 [65],
which was later referred to as the SSS construction, is an-
other considerable improvement since it was the first one
to achieve a logarithmic overhead for the worst-case cost.

They proposed a novel partitioning scheme, where the stor-
age would be split into partitions which were functioning as
smaller ORAMs. The benefit of this construction is that it im-
proved the best ORAM construction available at that moment
by a factor of 63. However, the client storage was actually
O(N) with a very small constant that, in practice, resembled
a O(

√
N) construction. The main idea is that, after every

read or write, a block gets reassigned to a new partition, and
there is a background eviction service that makes sure that
blocks end up in the correct partition after they were read.
Each partition worked as a hierarchical ORAM, similar the
one proposed by Goodrich and Mitzenmacher [27]. In addi-
tion, an important improvement in overhead came from the
larger client storage, which can now shuffle a partition lo-
cally, but also the idea of spreading the reshuffling over mul-
tiple operations to improve online overhead, which was first
introduced by Ostrovky and Shoup [53]. Stefanov et al. [65]
also proposed a theoretical construction that actually achieves
client storage of O(

√
N) by storing the position map on the

server and accessing it recursively, but comes with another
factor of log(N) for amortized and worst-case overhead.

3.5 Binary Tree ORAMs

An important addition to the ORAM field was the Oblivious
RAM with O(log3N) access overhead solution proposed by
Shi et al. [61] in 2011. This paper used a binary tree con-
struction that later inspired Stefanov et al. [66] in their sem-
inal work about Path ORAM. However, this was not the first
time a binary tree was used in an ORAM construction, since
Damgård et al. [13] used a binary search tree in a theoreti-
cally interesting solution that did not rely on a random oracle.
The idea is that the server is laid out as a binary tree, where
each node in the binary tree is a fully functional ORAM of
capacity O(logN). Then, each block is randomly assigned a
leaf node in the binary tree and will reside somewhere along
the path from the root to that leaf. Every time a block is ac-
cessed, the client reads the entire path from the root to the
leaf, randomly assigns a new leaf to the block, and finishes
with writing the accessed block to the root node.
The client stores a data structure that assigns each block id to
one of the leaves, but this information can also be outsourced
to the server, incurring an additional overhead of O(logN)
in bandwidth, but lowering the client storage to a constant
size. To ensure that the buckets do not overflow, an eviction
scheme is running in the background, where for each level
from 1 to log2(N), a certain number of nodes are selected
for eviction, according to an eviction parameter. Then, for
the selected nodes, a write happens to both of its children
to make sure that it does not reveal any information to the
server. It should be noted that due to the randomness in evic-
tion and assigning of new leaves, an overflow can occur with
low probability, depending on the bucket size and eviction
parameter. Thus, the worst-case cost of this construction be-
comes Õ(log3 N), assuming the bucket ORAMs use the Hi-
erarchical Construction proposed by Ostrovsky [52] and that
the position map is stored on the server.
As mentioned above, this construction was used as a step-
ping stone for Stefanov et al. in the Path ORAM paper [66].



This paper was influential not only for its reduced worst-case
overhead compared to earlier constructions, but also for its
simplicity and applicability. For example, it was also used
in secure processor architecture, with Ascend [17] being the
first processor to implement ORAM to protect against mem-
ory access pattern leakage. Then Ren et al. [58] proposed
some optimizations that could be made to achieve a realistic
overhead and to move a step closer to practicality.
Path ORAM used a stash and stored the entire path from the
root to the corresponding leaf, when reading a block from the
server. Then contents of the stash are evicted as other ac-
cesses happen, making sure that every block stays on the path
from the root to its corresponding leaf or in the stash. An-
other change happened to the nodes of the binary tree, as they
are now of constant size Z, which is usually 4 or 5. Again,
the position map has to be stored on the server to keep the
client storage low, so the final overhead depends on the size of
the blocks, having a O(logN) worst-case overhead for blocks
Ω(log2N) bits and a O(log2N) worst-case cost for blocks of
size Ω(logN) bits. Both constructions use a relatively small
amount of client storage, O(logN)ω(1) and O(ZN), where
Z is constant, but it is worth noting for practical implications.

3.6 Other notable ORAM contributions
In 2010, Pinkas and Reinman [56] proposed an ORAM con-
struction that first used a hierarchy of Cuckoo hash tables
[54] and the Randomized Shellsort algorithm proposed by
Goodrich [26]. Their idea combined the initial Hierarchical
Solution [52] proposed by Ostrovsky with the newer tools of
Cuckoo Hashing and Randomized Shellsort. This influenced
future authors, but also provided a solution that improved
the amortized overhead to O(log2N) with smaller constants
thanks to the new sorting algorithm, but also faster look-ups
in the hash tables, compared to linear search in a bucket of
logarithmic size in the case of the Hierarchical Solution. That
is because in the case of Cuckoo hashing, only two hash ta-
bles are stored with a hash function for each and an element
will reside in exactly one of the two tables at either h1(x) in
the first, or h2(x) in the second table, where h1 and h2 are
the corresponding hash functions for the tables.
The idea of using Cuckoo hashing in this setting brought a
new problem, as pointed out by Kushilevitz et al. [39] in
2012. The authors proved that information can be leaked
when a hash table overflows, because the access patterns that
happen in a non-overflowing hash table may not be consis-
tent with the random ones that take place in the case of a
random hash function. However, Pinkas and Reinman still
inspired Goodrich et al.[28] who used their Cuckoo Hash Ta-
ble idea to which they added a stash, following the work of
Kirsch et al. [37] from 2009 who suggested the addition of
a shared stash of size O(logN) to make the Cuckoo hashing
more robust by decreasing the probability of rehashing. In
their construction, the client did not have to maintain state, so
making it suitable for a multiuser setting and also improved
the amortized cost, achieving the lower bound introduced by
Goldreich and Ostrovsky [23]. However, the worst-case cost
was still linear and made the scheme unpractical, while the
client storage was also larger, being O(nv), v > 0. Thus, the
scheme by Goodrich et al. proved to be yet another construc-

tion of theoretical interest that lacked practicality.
ObliviStore [64] is another construction that focuses on im-
proving the practicality of ORAM and was proposed in 2013.
To this extent, ObliviStore makes use of parallelism through
asynchronous operations, an oblivious load balancer on the
client-side and a scheduler that makes sure the shuffling done
in a communication round does not exceed O(logN). The
authors used the partitioning scheme proposed by Stefanov et
al. [65] an year earlier and implemented the ORAM scheme
in C#, achieving an I / O overhead of 40-50 blocks to ac-
cess a single block, while also adapting easily to a distributed
setting. However, asynchronous additions pose a new secu-
rity threat, as an attacker can now infer knowledge of stored
data based on the timing of accesses. This is mitigated by us-
ing semaphores whose behavior depends only on information
that is observable by the server. In addition, the scheme uses a
deterministic eviction schedule to ensure that the server does
not infer any knowledge based on that.
Following the ideas from ObliviStore, Burst ORAM [14] in
2014 focused on the online performance of ORAM which
was first mentioned in the work of Boneh et al. [8] in 2011.
Thus, Dautrich et al. [14] use three queues for scheduling,
one for read jobs, one for write jobs, and one for new jobs.
The idea is that they prioritize reads and use a novel band-
width reduction technique to achieve constant time responses
even in the case of bursty traffic. Here, instead of returning
all blocks that are accessed for a read, they apply an xor oper-
ation to the real and all the dummy blocks that are read from
the server, so that the client can easily obtain the real block
once retrieved. This XOR technique manages to reduce the
overall bandwidth to 23-26 blocks returned per access, im-
proving the earlier results of ObliviStore [64]. A disadvan-
tage of this construction is the larger client storage which is
O(

√
N) compared to logarithmic client-side storage in the

case of other constructions such as Path ORAM [66].
After Burst ORAM, Ring ORAM [57] was proposed in 2014,
which aimed to provide a better overall bandwidth for both
small and large client storage sizes. It used the tree-based
approach of Path ORAM [66], while adding the XOR tech-
nique mentioned by Dautrich et al. [14] and made use of
de-amortization techniques for evictions. That made Ring
ORAM faster than Path ORAM for the cost of higher overall
complexity of the scheme.

4 Characteristics
4.1 Functionality
ORAM is generally used for scenarios when one or multi-
ple clients outsource encrypted data to one or multiple re-
mote repositories. Normally, it is assumed that the clients
are trusted and they need to outsource the data to untrusted
servers, for cheaper storage. Then, the communication be-
tween the client and the server happens through read and
write requests where blocks of encrypted data are sent. In or-
der to perform some computation on the data, the server has
to retrieve a block, decrypt it, compute, and then re-encrypt
the block and send it back to the server. The problem is that
usually, the storage provider cannot be fully trusted to store
and observe the interactions that the client has with the data,



since Islam et al. [33] prove that a substantial amount of infor-
mation can be inferred by an honest but curious attacker, just
by looking at the data access patterns. Thus, ORAM hides
this information through probabilistic encryption and by con-
stantly moving of the data blocks. It usually assumed that the
remote server is not used for other computations, making the
communication one-way, with the client being the one ini-
tiating the requests. Thus, initial ORAM schemes [22, 52]
followed this idea for a single client and a single server, but
newer constructions deviated from this setting, for example
Goodrich et al. [28] proposed a solution for multiple clients to
access a server without maintaining state from one access to
another. Other ORAM schemes such as ObliviStore [64] fo-
cused on the case of distributed storage, which is more com-
mon in practice. Then, authors extended ORAM schemes
for malicious servers as well, with Apon et al. [2] who for-
malized the definition of VOS, Verifiable Oblivious Storage,
providing integrity with the use of Fully Homomorphic En-
cryption. However, this technique failed to be a viable solu-
tion due to the bootstrapping which incurs a huge overhead
on the server-side. More recently, Hoang et al. [31] proposed
a technique that uses authenticated secret sharing to ensure
integrity of the data, extending ORAM functionalities to ac-
tive adversaries as well which works in a distributed server
setting.

4.2 Efficiency
Efficiency of ORAM schemes can be approached from mul-
tiple angles. Most importantly, an ORAM scheme needs to
consider the amortized bandwidth blow-up, the worst-case
bandwidth blow-up, client and server storage, and also block
size. Initially, ORAM techniques aimed to minimize the
amortized bandwidth used for the communication between
the server and the client. This ignored the worst-case cost
which can make the techniques unpractical most of the time.
Later, the focus shifted towards minimizing worst-case cost,
as that would mean a technique could be used all the time
without incurring a significant overhead on some accesses.
Also, Goldreich [22] proved that ORAM’s bandwidth has
a lower bound of O(logN) blocks. As bandwidth is usu-
ally limited, most research tried to close this gap between
the worst-case cost and the theoretical lower bound proposed
by Goldreich [22]. This meant that client storage, server
storage, or block size, were not always top priorities when
designing a new ORAM scheme. Thus, there are multiple
ORAM techniques that manage to achieve the lower bound
of O(logN) introduced by Goldreich [22], but with different
assumptions or caveats. For example, Path ORAM [66] has a
worst-case cost of O(logN) blocks only when the blocks are
of size Ω(log2N) and client storage is logarithmic in terms
of the number of blocks. Ring ORAM [57] and Burst ORAM
[14] achieved the same worst-case cost, but for blocks that
are poly-logarithmic in size and a logarithmic client storage.
Later, attempts towards closing the efficiency gap have been
made with PanORAMa [55] that achieves an amortized cost
of logN ∗ loglogN , for any block size B = Ω(logN) bits and
a constant number of blocks stored on the client side. The
loglogN gap was erased by OptORAMa [4] which proposed
the first optimal oblivious RAM scheme for blocks of size

B = Ω(logN) and constant client storage using a hierarchy
of hash tables and efficient multi-array shuffling. However,
OptORAMa [4] hides a huge constant due to the use of cer-
tain expander graphs in its construction, making it impractical
at the moment.
Thus, different techniques suit different use cases and a user
may choose a different implementation based on its needs.
For example, Burst ORAM can achieve constant bandwidth
blowup in scenarios where a user focuses more on online
bandwidth, rather than overall bandwidth. Also, there are
constructions that aim to improve the efficiency of other as-
pects. For example, Octopus ORAM [42] focused on mini-
mizing server storage trading it for slightly higher client-side
storage. Also rORAM [9] uses data locality to make an effi-
cient scheme for performing range queries.

4.3 Security
The purpose of ORAM is to hide data access patterns and pro-
vide a software-based solution to accessing data stored in an
untrusted server. Being a software-based solution means that
ORAM can be vulnerable to different side-channel attacks.
For example, at attacker may observe the frequency of data
access patterns, or may measure how long each access take
and based on that, tell if it was a real or a fake access. Besides,
a malicious server may be able to infer knowledge based
on power consumption or electromagnetic emissions. Even
though ORAM can achieve zero leakage in theory, when it
is deployed on hardware, other issues can arise, which are
generally not considered in the ORAM papers. Another po-
tential problem is that ORAMs usually use pseudo-random
generation functions, meaning that the algorithm’s behavior
is not deterministic and there is a probability that the stash,
in case of Path ORAM [66] can overflow which would result
in a malfunction of the technique. However, the probabil-
ity of the stash overflowing is inversely polynomial in terms
of the number of blocks, making it negligible. As for the
server, it was usually assumed that servers follow the honest-
but-curious adversary model, but Hoang et al. [31] showed
how authenticated secret sharing can be used to achieve in-
tegrity in the malicious adversary scenario.

4.4 Usability
As mentioned earlier, ORAM hides the data access patterns
considering an untrusted server. This can have multiple ap-
plications and can contribute towards minimizing leakage in
different settings. Path ORAM [66] was already implemented
in various secure processors, thanks to its simplicity and rel-
atively low overhead. For example, Fletcher et al. [17, 18]
proposed a secure processor architecture that hides which in-
struction is being run at any point in time. This can be partic-
ularly useful in cases where an untrusted server runs a propri-
etary encrypted program which should not disclose its struc-
ture. Also, Maas et al. [43] made a step towards practical
oblivious processors with the proposal of Phantom that made
use of parallelism and memory controllers to improve per-
formance. Besides, it can also be used to build secure query
processors for selections, joins, grouping and aggregations in
databases as shown by Arasu and Kaushil [3]. Later Eskan-
darian and Zaharia [16] proposed ObliDB, another oblivious



database engine. In addition, ORAM can also be used in dis-
tributed file systems to maintain and protect against malicious
adversaries, as shown by Hoang et al. [31]. Subsections
5.3, 5.4, 5.5 and 5.6 discuss more use cases where ORAM
can complement other privacy-preserving computation tech-
niques to achieve different goals.

5 Comparison
The comparison will be made with 4 other techniques,
namely Homomorphic Encryption, Structured Encryption,
Secure Multiparty Computation and Trusted Execution En-
vironments. They all act as important tools in the landscape
of computation and managing of encrypted data, so the
comparison aims to better highlight the nuances of each
and help a reader understand which one is best for different
scenarios, but also show how they can complement each
other to achieve a certain goal. First, each technique is
briefly introduced in Subsection 5.1, followed by a pairwise
comparison. The main points of comparison are described
in Subsection 5.2 and two tables, providing a high-level
comparison are present in the Appendix. First table 2
displays the functionality and usability and the second one 3
shows some important aspects of security and performance.

5.1 Overview of Techniques Compared to ORAM
Homomorphic encryption generally refers to application of
functions directly on encrypted data, without the need of de-
cryption. Initially, the concept of privacy homomorphism was
proposed, which allowed some operations on encrypted data.
[59]. Later, other Partial Homomorphic techniques were pro-
posed which allowed to perform either additions or multipli-
cations for a limited number of times. After that, Somewhat
Homomorphic techniques were discovered, which managed
to do both additions and multiplications, but for a limited
amount of times. In 2009, Craig Gentry [20] discovered the
first Fully Homomorphic scheme that allowed an unlimited
amount of computations, thanks to a technique called boot-
strapping. Thus, the comparison will focus on FHE, for be-
ing the most relevant and capable technique of the aforemen-
tioned.
Structured Encryption is a cryptographic technique that al-
lows efficient querying over encrypted data. It was inspired
by Secure Searchable Encryption [63] which allowed static
key-word searches on encrypted documents. Later, more ad-
vanced techniques were proposed, which allowed querying
on matrices, labeled data and graphs, but were still static as
they did not allow insertions nor deletions of data. Later, Ka-
mara et al. [35] introduced the first dynamic schemes, al-
lowing secure insertions and deletions to the outsourced data,
while also achieving optimal efficiency. More recently, Ka-
mara and Moataz [34] proposed a solution for encrypting
multi-maps without leaking information related to the size of
the responses.
Secure multi-party computation is a technique that is used
when multiple parties try to compute a function based on ev-
eryone’s input, without revealing this input to any of the other
parties. An initial solution to this problem involving two par-
ties was introduced by Yao [69] with garbled circuits. Then,

Goldreich et al. [45] solved the problem for more than two
parties. Then, Ben-Or et al. [67] proposed another algorithm
that uses secret sharing and worked even when some of the
parties were malicious. Later, Yao’s garbled circuits idea was
generalized for multiple-parties by Beaver et al. [6].
Trusted Execution Environments provide a different solu-
tion to secure computation, leveraging hardware-based isola-
tion, rather than relying solely on a cryptographic algorithm.
A trusted execution environment aims to provide confiden-
tiality and integrity for both the data and the code loaded in-
side it even in the presence of a malicious operating system.
However, a caveat of this approach is that the manufacturer
has to be trusted to implement secure hardware and provide
an attestation mechanism for the user. Intel SGX [12] is a pop-
ular implementation of TEEs based on secure enclaves. Later,
Keystone [40] provided an open source solution focused on
transparency and customizability. Other TEEs, such as Intel
TDX [47] and AMD SEV [36] , relied on Confidential Vir-
tual Machines [47], making TEEs easier to adopt, thanks to
their ability to provide hardware-enforced isolation, without
the need to modify existing applications or operating systems.

5.2 Criteria definition
The comparison with FHE, StE, MPC and TEEs will be
made based on the 4 subsections of Section 4, namely
Functionality, Efficiency, Security and Usability.
Functionality will contrast the different capabilities of
different techniques, by looking at how they work and what
exactly do they offer for the user. Here, several advantages
and disadvantages will be highlighted to better help the
reader understand which is more suitable for a specific
scenario.
Efficiency is the second criterion and refers to the overhead
or additional computations that are required to adopt a
specific technique. It will also talk about the additional
storage that is required for different parties in order for an
algorithm or solution to work correctly. This aims to provide
a clear overview of the costs of adopting a certain solution in
order to help decide on its feasibility in specific scenarios.
Security considers the amount of information that is leaked
by different techniques, what are their adversary models, but
also mentions discovered vulnerabilities and probability of
failure if that exists. This is an important part of the compar-
ison, since it displays the existing threats and limitations.
Usability is the last aspect that is considered for comparison
and aims to highlight different use cases and settings in
which a solution was already adopted or otherwise mention
what were the limitations or drawbacks that prevented the
method from being adopted. This focuses more on the
applicability of the techniques which were discussed more
from a theoretical perspective until this point.

5.3 ORAM and Fully Homomorphic Encryption
ORAM and FHE perform slightly different tasks, given FHE
tackles the problem of performing computations directly on
encrypted data, without the need to decrypt it first. In this
sense, FHE allows a client to perform any computation on
the data stored on the server. On the other hand, ORAM just



hides the access patterns of the client-server interaction. In
order to perform a computation, a client needs to retrieve a
specific block, decrypt it, do the computation, then re-encrypt
the resulting block and send it back to the server, but also
make sure that the whole process is oblivious to the server.
This surely impacts the performance of an ORAM scheme,
mainly because of the network latencies that it would have to
deal with to transport all blocks. To avoid this, FHE tries to
compute without decrypting first. The drawback is that per-
forming these computations directly on encrypted data take
a lot of time due to the polynomial operations involved, but
also the costly key generation algorithm. This makes it an
interesting theoretical concept, but fails to find its practical-
ity for most use cases at the moment. However, it may still be
used in scenarios where time constraints are more relaxed and
having zero leakage is important, or when it is important to
compute a function directly without the server knowing any
of the outcomes.
However, an interesting theoretical application stands in out-
sourcing computation to the server in the case of ORAM,
thus reducing communication overhead to a constant. This
was proposed as an improvement to ORAM techniques that
managed to achieve the lower bound of Ω(log(N)) blocks
proposed by Goldreich [22], such as Ring ORAM [57] for
blocks of size Ω(log2N). Although some of the ORAM con-
structions implicitly used server-side computation, most tra-
ditional ORAM techniques assumed that the client is the one
doing the computations, while the server only acts as stor-
age that retrieves blocks based on the requests of the client.
This idea was challenged by Gentry et al. [21], who initially
proposed using Fully Homomorphic encryption to improve
bandwidth cost. After that, multiple ORAM techniques tried
to make use of server-side computation to improve previous
ORAM bounds. For example, Mayberry et al. [44] com-
bined ORAM with Private Information Retrieval [38] proto-
cols to mitigate the weaknesses of each and improve overhead
for large block sizes. Later, the first ORAM to achieve con-
stant bandwidth blowup was the Onion ORAM [15], which
used either Additively Homomorphic Encryption or Some-
what Homomorphic Encryption for selections and evictions.
Of course, this reduced the bandwidth to constant, but com-
putations on the server became the bottleneck of the process,
while the blocks had to be of size Ω(log6N), which is infea-
sible in practice. This was still an influential piece of work
for its novel approach to ORAM, complementing it with HE
techniques, which paved the path towards practical sublog-
arithmic bandwidth blow-up schemes. It inspired multiple
authors such as Moataz et al. [48] or Chen et al. [10] to im-
prove block size or server computation through different HE
techniques.

5.4 ORAM and Structured Encryption
ORAM and Structured Encryption are generally used for out-
sourcing data of a client to an untrusted server. The difference
in functionality is that StE usually stores data that have a spe-
cific structure, for example, a multimap or a matrix, compared
to ORAM which stores it in encrypted blocks. Another dif-
ference is related to the security of each scheme. In case of
Structured Encryption, the server can see the access patterns

of the data and may also be able to infer keyword frequen-
cies or link different keywords based on the access patterns.
ORAM, on the other hand, does not leak any information
in its protocol, but does all of it with a cost. Thus, a clas-
sic ORAM scheme would incur a communication overhead
of at least log(N) blocks, which are needed for the obfusca-
tion of data access patterns, while StE only needs to send the
query which may have different sizes, depending on its na-
ture. This makes Structured Encryption usable in scenarios
where a certain amount of leakage is tolerated. For exam-
ple, MongoDB [49] uses StE for its Queryable Encryption
[50] feature, which allows a user to run expressive queries
over encrypted data. Another advantage of StE is its ability
to query different data structures efficiently, which might suit
various scenarios. However, it is worth noting that it only
works against a honest-but-curious adversary.
As mentioned earlier, searching on encrypted data leaks data
access patterns, and that can be a security issue for some ap-
plications. Garg et al. [19] showed how Garbled RAMs [41]
can be used to achieve a constant-round asymptotically ef-
ficient Secure Searchable Encryption scheme that also hides
data access patterns. This had an overhead λ times higher
than Path ORAM [66], where λ is the security parameter.
Boldyreva and Tang also showed how Path ORAM [66] can
complement StE to hide query, access, and volume patterns
when outsourcing an encrypted multi-map.

5.5 ORAM and Secure Multi-party Computation
ORAM and Secure Multi-Party Computation perform differ-
ent tasks in the context of privacy-preserving computations.
Mainly because MPC allows parties to compute a function
between multiple parties without any of them revealing their
input, while ORAM usually works in a client-server setting,
where the client sends read and write requests to the server.
Because of its functionality, ORAM assumes that the client is
a trusted party and only deals with a semi-honest or malicious
server. On the other hand, MPC protocols do not make the as-
sumption that a certain party is trusted but ensures the output
is correct given certain assumptions, such as the number of
malicious parties. In terms of security, none of the techniques
should leak information through their functionalities, but an
attacker may be able to infer information through physical at-
tacks on the local machines where the protocols are deployed.
For efficiency, MPC is highly dependent on the complexity of
the function being computed, while ORAM has a clear over-
head depending on the ORAM scheme used. Based on its ca-
pabilities, MPC comes with different use cases than ORAM,
as it can be used for auctions [51] or financial data analysis
[7], which is an important step forward for research while
maintaining the confidentiality of sensitive information.
ORAM and MPC can also complement each other. For exam-
ple, Gordon et al. [30] showed how a two-party computation
protocol can extend the Shi et al.[61] binary tree ORAM to
make the server find the answer to its query and nothing else
about the server’s storage. This was a step forward in the
privacy-preserving computation landscape because the client
does not need to be a trusted party in order for the compu-
tation to occur correctly. Another interesting application was
shown by Lu and Ostrovsky [41], who used Yao’s garbled cir-



cuits idea [69] to efficiently obtain garbled RAM programs.
This allowed a client to send the garbled RAM to the server
and run it securely without further interaction. In addition,
MPC protocols can be used to improve Path ORAM in cer-
tain scenarios. For example, Hoang et al. [32] used Shamir
Secret Sharing [60] and a MPC protocol to obtain a constant
bandwidth blowup ORAM in a distributed setting where there
are at least 3 servers.

5.6 ORAM and Trusted Execution Environments
ORAM and TEEs both tackle the problem of maintaining
privacy while a computation happens, but they approach it
from different perspectives. ORAM provides a software-
based cryptographic technique to hide data access patterns
in a client-server setting, while TEEs offer a hardware-based
solution that relies on vendors to create and implement an iso-
lated execution environment. The purpose of TEEs is to pro-
vide a security guarantee even when a computation happens
on a server that cannot be trusted. TEEs allow any computa-
tion to happen, as they provide a secure enclave where code
can be run without getting tampered with by a malicious op-
erating system. However, a TEE will have small memory and
will have to work with the memory of the untrusted server.
This becomes a potential source of leakages as the server
can still observe the access patterns on data, even though it
is encrypted. Thus, it allows the server to perform computa-
tions securely and provide integrity through attestation mech-
anisms. Thus, TEEs can ensure protection even against ma-
licious servers without a trade-off in efficiency. Thus, they
do not incur significant overhead, compared to a software-
based solution such as ORAM, but the manufacturer has to
be a trusted party so conflicts of interest can arise. As, with
Structured Encryption, ORAM can complement TEEs to hide
the data access patterns. For example, Eskandarian and Za-
haria [16] built an oblivious query processing engine that sup-
ports aggregation, joins, insertion, deletion, and point queries
by combining ORAM with Intel SGX [12]. This improve-
ment was to extend the functionality previously proposed by
Mishra et al. [46], which explored oblivious indexes using
ORAM and acted as a stepping stone for the secure contact
discovery feature of Signal [62]. Signal used Path ORAM
and secure enclaves, such as Intel SGX [12] to ensure users
can discover which of their contacts use Signal, without the
app being able to construct the social graph with identities.

6 Responsible Research
It should be noted that the information presented in this paper
can have a significant impact if a reader decides on a particu-
lar technique or algorithm to solve its problem. This can not
only incur financial losses, but also reputational damage for
a company in case the decision is based on untruthful claims.
Thus, great care was taken in collecting and objectively evalu-
ating previous work in the field. For that, only peer-reviewed
papers were considered for the survey and a close collabora-
tion was maintained between the student and the supervisor
to mitigate the risk of false information being emitted in the
survey.
In addition, it should be mentioned that there are no con-
flicts of interest with the authors mentioned in the report, but

also with the authors not mentioned in the report. The sur-
vey started with the 10 most cited papers related to Oblivious
RAM according to Scopus queries and the seminal work of
Stefanov et al.[66]. From there, a snowballing approach was
followed to ensure the knowledge gap to current papers is
filled, but also the continuous progress is presented. Security,
usability, functionality and efficiency were the most impor-
tant keywords that helped in choosing the papers to investi-
gate. Then, other Scopus queries were used to gather papers
where multiple techniques were combined.

7 Conclusions and Future Work
This survey investigated the evolution of Oblivious Random
Access Machines and positioned them in the landscape of
Privacy-Preserving Computation Techniques, namely Fully
Homomorphic Encryption, Structured Encryption, Secure
Multi-party Computation, and Trusted Execution Environ-
ments. The main research question was how did ORAM
reach the current state and it was shown how different ORAM
schemes optimize for different tasks, but most of them were
inspired by either the initial Hierarchical Solution by Ostro-
vsky [52] or the binary tree construction of Shi et al. [61].
ORAM can provide strong protection against data access pat-
tern leakage which is overlooked by multiple other cryp-
tographic techniques. Among ORAM constructions, Path
ORAM [66] stands out due to its simplicity and adoption
in real-world systems such as secure processors or oblivious
database engines.
The comparative analyses showed that FHE excels in scenar-
ios requiring direct encrypted computation, but suffers from
significant computation complexity. On the other hand, it
could complement ORAM and improve brind down band-
width costs to constant. StE allows for efficient queries on
encrypted data structures, but leaks data access patterns and
can use ORAM to hide that. MPC provides strong security
guarantees and does not require a trusted party, but can re-
quire a lot of communication for computations to happen.
TEEs offer an efficient solution to preserve privacy, but re-
quire a trusted manufacturer.
Notably, the paper highlights how hybrid solutions combining
multiple techniques can build systems with stronger security
guarantees. For example, ORAM and TEEs can make an ef-
ficient and oblivious query engine, as shown by ObliDB[16].
There are several promising paths for future research in the
field. For example, an improvement in FHE techniques can
make ORAM widely adopted and ensure it can efficiently
work against malicious servers. In addition, more attention
can be brought towards side-channel resilience in case of
ORAM and software-based techniques. Besides that, more
recent work can be analyzed, as there are papers that are con-
tinuously published in the field and this survey stopped at pa-
pers published in 2024.



Table 1: Comparison of ORAM Constructions

Scheme Block Size Amortized Cost Worst-case Cost Client Storage Server Storage

Ostrovsky [52] Ω(1) O(log3 N) O(Nlog(N)) O(1) O(N log(N))

SSS [65] Ω(logN) O(log2 N) O(
√
N) O(

√
N) O(N)

Binary Tree ORAM [61] Ω(logN) Õ(log2 N) Õ(log3 N) O(1) O(Nlog(N))

Goodrich-Mitzenmacher [27] Θ(1) O(log2 N) O(N logN) O(Nα), α < 1 O(N)

Path ORAM[66] (B = Ω(log2 N)) Ω(log2 N) O(logN) O(logN) O(logN)ω(1) O(ZN)

Path ORAM[66] (B = O(logN)) Ω(logN) O(log2 N) O(log2 N) O(logN)ω(1) O(ZN)

Ring ORAM[24, 57] Ω(log2 N) O(logN) O(logN) O(logN) O(ZN)

Burst ORAM[14] Ω(log2 N) Õ(logN) Õ(logN) Õ(logN) O(ZN)

Õ(f(N)) is used to hide the polynomials of log(log(N)), so O(f(N)polylog(log(N))

Z is a parameter denoting the number of blocks in a node of the binary tree

A Appendix A: Comparison Table of ORAM techniques
B Appendix B: Other Privacy Enhancing Techniques

Table 2: Functionality and Usability Comparison of Privacy-Enhancing Techniques

Technique Computation
Type

Parties
Communication Applicability Use Cases

FHE Any computation Non-interactive
Client–server

Available in
open-source libraries

Medical data analysis
Recommender systems

Confidential ML

MPC General computation
(excluding specialized protocols)

Multiple clients or
distributed parties

Used in practice
but with limitations

Secure auctions
DNA comparison

Collaborative research

ORAM Data access Non-interactive
Client(s)–server(s)

Used in secure processors
and oblivious DBs

SGX integration
ObliDB, Signal protocol

StE Specific data access
on encrypted structures

Non-interactive
Client–server

Practical protocols for
specific structures

Encrypted DBMS
(e.g. MongoDB)

TEE Any computation
Interactive

Client–server with
attestation service

Optional in real world
cloud deployment

Data analytics
Trusted AI workloads

Medical Federated Learning



Table 3: Security and Performance Comparison of Privacy-Enhancing Techniques

Technique Threat
Model

Information
Leakage

Performance
Overhead

FHE IND-CCA2
Adaptive attack None by itself High: Key Generation

& Polynomial Operations

MPC Semi-honest or
malicious

Nothing beyond
function output Constant or Linear

ORAM Semi-honest or
malicious

Leakage through
side-channel attacks Logarithmic

StE Semi-honest Access pattern
sometimes response volume Sublinear

TEE Malicious actor
controlling server

Access patterns,
plaintext in CPU

Generally near-native,
bottleneck in I/O heavy
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