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Notation
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: buoyancy-,

-iv_

: dimensionless parameter, defined by Eq. 2.11
: upper layer depth and lower layer depth (see Fig. 3.1)
: Chezy coefficient

dimensionless constants, defined in Table 4.1

: modelling constant, defined by Eq. 5.2
: modelling constants, defined by Egs. 3.15 and 3.16
: modelling constant, defined by Eq. 5.1

depth integrated dissipation of turbulent energy
diffusive transport terms (Eq. 5.4)

: thickness of intermediate layer
: thickness of intermediate layer after billow collapse
: estuary number, defined by Egq. 3.1

dimensionless ratio, defined by Eq. 4.21

: turbulent flux of mass in vertical direction
: densimetric Froude numbers, defined by Egs. 2.13 and 2.3

damping functions, defined by Eqs. 6.8 and 6.11

: functional relationship between u!u' and other second-order

i3
correlations (Eq. 5.5)

: buoyancy destruction of turbulent energy
: damping function, defined by Eq. 6.8

: gravitational acceleration

: waterdepth

depth at mouth of estuary

: thickness of upper and lower layer
: eddy diffusivity
: eddy diffusivity for neutral conditions

turbulent kinetic energy (Eq. 4.12)

: bottom shear coefficient and interfacial shear coefficient,

defined by Egs. 3.10 and 2.15

: length scale of turbulence
: characteristic length of considered mass of fluid (Eq. 4.1)

Kolmogorov-, Ozmidov- and turbulence scale of

turbulence, given by Eqs. 4.2, 4.8, 4.6 and 4.7
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Notation (continued)

Qriv
Rf

Rf
Ri
Ri
Ri
Ri

® * *O

*
,RiL

Tb'Te'TL

Taisp

U'

Uriv

i.o0

Uy

U prlx g

: master length scale of turbulence, length scale of turbulence

for neutral conditions (see Section 6.1)
length of arrested salt wedge (Section 2), length of zone with
salinity intrusion (Section 3)

: Brunt-Viisidli frequency, defined by Eq. 4.3

production of turbulent energy

: river flow rate per unit width

flux Richardson number, defined by Eq. 4.16

: maximum (eritical) Rf-value, i.e maximum mixing efficiency

gradient Richardson number, defined by Eq. 4.14

: overall Rischardson number, defined by Eq 3.18
: layer Richardson number, defined by Eq. 2.1
: equilibrium value of Ri* for internal mixing (Section 4.3),

Ri*-value for d = dL

: time needed for growth and collapse of billows, for amplitude

of most unstable internal wave to increase by a factor e, for
fresh water to flow over entire length of salt wedge
dispersive transport, defined by Eq. 2.19

time

velocity scale of turbulence

: characteristic velocity of considered mass of fluid (Eq. 4.1)
: velocity component in x-direction

: river veloecity, i.e river flow rate over cross section

: amplitude of profile averaged tidal veloecity at mouth of

estuary

: shear velocity

: bottom shear velocity; u, e (rb/p)z, where T is bottom shear

stress; surface shear velocity; uy .= (ts/p), where v is

surface shear stress

: extreme values of u during ebb tide, during flood tide

velocity of upper and lower layer

: measure for potential energy of stratification, defined by Eq.

3.3

: velocity component in y-direction
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Notation (econtinued)

Au
Ap

oYy

ex’ in

superscripts

velocity component in z-direction

entrainment rates, defined by Eq. 3.14 and Fig. 3.1

horizontal coordinate in main flow direction

horizontal coordinate in transverse direction

vertical coordinate (z = 0: bottom; z = h: water surface)
efficiency of conversion from kinetic to potential energy

(Section 3); damping factor depending on Ri (Appendix B)

: ratio between total production rate of turbulent energy and

e

that due to bottom shear

ratio between £ and uih-1

difference between mean velocities of upper and lower layer

: difference in density between lower 1layer and upper layer

.

(Section 2), between sea water and river water (Section 3)
dissipation of turbulent energy per unit mass of fluid and per
unit time
von Karmann constant
kinematic viscosity
eddy viscosity
eddy viscosity for neutral conditions
density
density of either sea water or river water
density of upper layer and lower layer
density averaged from z = z to z = h
=1

£= VeKe

turbulent Prandtl number for neutral conditions

turbulent Prandtl number, ¢

turbulent shear stress

bottom shear stress, interfacial shear stress

fraction of t which is related to bottom shear stress (an
internal effect), same related to longitudinal density gra-

dient (an internal effect)

time mean value
turbulent fluctuation

depth averaged value of time mean value



Introduction

1.1 Objective of study

This report presents the findings of a literature survey on turbulence and
vertical turbulent transfer of momentum and mass in stratified tidal flows.
The objective of the study was to review the literature on the subject from

the perspective of salinity intrusion in estuaries.

In its meeting of December 6, 1985 the Working Group "Inhomogeneous Flows"
decided to have the literature survey performed. It was intended as an update
of part of a previous literature survey on the subject (Breusers, 1974). Both
the previous and the present literature survey were performed within the
framework of T.0.W., a long term research programme executed by Rijkswater-
staat (Ministry of Transport and Public Works) and the Delft Hydraulics Labo-

ratory . The present study was made by Dr. G. Abraham.

The 1974 study included reviews on internal waves and on the modelling of
turbulence. Reviews on these subjects will be presented at the Symposium on
Physical Processes in Estuaries, September 1986, to be organized by Rijkswa-
terstaat and the Delft Hydraulics Laboratory. Therefore internal waves are not
included in the present update. Turbulence modelling is dealt with only in
sofar as needed to show the implications of the effect of stratification on

turbulence for the different types of turbulence models.

1.2 Regimes of estuarine turbulence

In tidal estuaries the longitudinal density gradient has a significant effect
on the variation of the velocity over the depth. This is due to the fact that
the hydrostatic pressure at distance z from the bed is given by

P =Fg(h—z) (1.1)

and therefore, after partial differentiation in the longitudinal direction

13 _ 3 11 % 11,30
poax B 28 i x p g(2 h = z) 9% (1.2



where x: horizontal coordinate in main flow direction
z: vertical coordinate, positive when directed upward and measured from
bottom
p: pressure
g: gravitational acceleration
h: waterdepth
p: density averaged from z = 2 to z = h
p: (reference) density of either sea water or river water, which are

about equal.

Per unit mass of fluid, Eq. 1.2 gives the force in the horizontal direction
due to a variation of the pressure in this direction. The first term on the
right hand side of Eq. 1.2 is constant over the depth. Further, when the
vertical variation of QEYBx is small, the second term on the right hand side
is about constant over the depth and, while varying over the depth, depth-
averaged the third term is about zero. Therefore, the first and second term on
the right hand side of Eq. 1.2 represent forces (per unit mass of fluid) which
cause the depth-averaged tidal flow. The third term represents forces, which
cause the gravitational circulation. As the sign of éE/ax does not change with
time, throughout the tidal cycle the third term represents a seaward force at
the water surface (z = h) and a land-inward force at the bottom (z = 0).

For the Rotterdam Waterway Fig. 2.3 shows the effect of the forces represented
by the third term on the right hand side of Eq. 1.2 on the variation of the
velocity over the depth. On the ebb tide (7 hr) the variation of the velocity
over the depth is large, on the flood tide it is small to zero (13 - 15 hr),

while density induced exchange flows occur at low water slack (10 - 11 hr).

The production of turbulent energy is given by the product of the turbulent
shear stress and the vertical gradient of the horizontal velocity. On the ebb
tide the vertical gradient of this velocity is large. Hence, on the ebb tide
the production of turbulent energy is large. On the flood tide the vertical
gradient of the velocity is small, and so is the production of turbulent
energy. This means that on the ebb tide and flood tide different terms are

dominant in the conservation equation for turbulent energy.



In addition, in stratified flows distinection has to be made between what
Turner (1973, Section 4.3) calls "internal mixing processes", i.e. the energy
for the mixing is supplied from within the region where the mixing occurs
(e.g. the interface) and "external mixing processes", meaning that in this
case the energy for the mixing is supplied from a region (the solid boun-
daries) external to the region where the mixing occurs (the interior of the
fluid).

At tidal slack the bottom shear stress is small, while it must go through zero
as its direction changes from the ebb tide to the flood tide. Hence, at tidal
slack conditions are favourable for internal mixing to occur. On the (maximum)
ebb tide and flood tide the bottom shear stress is large, and external mixing

is likely to occur.

Summarizing, the following regimes of turbulence can be distinguished in

connection with salinity intrusion into estuaries

= around tidal slack mixing tends to be an internal proces

- on the (maximum) ebb tide mixing tends to be an external process, while
production of turbulent energy tends to be large

- on the (maximum) flood tide mixing tends to be an external process, while
production of turbulent energy tends to be small.

1.3 Subjects included in review

In a classification of estuaries on stratification the arrested salt wedge and
the well mixed estuary are at the extreme ends of the spectrum. For the ar-
rested salt wedge estuary mixing - if any - is primarily an internal process,
while in a well mixed estuary it is primarily an external process. Chapters 2
and 3 deal with the arrested salt wedge and the well mixed estuary respec-
tively.

Chapter 2 deals with the arrested salt wedge and the role of internal mixing
therein. For this two-layer stratified flow the internal mixing leads to the
development of an intermediate layer, induced by Kelvin-Helmholtz instability.
This layer has a stabilizing effect. Once its thickness exceeds a limiting
value, it eliminates further instability of internal waves. Then it also



suppresses turbulence. The time scale for the development of the intermediate
layer is such that around tidal slack these internal effects occur in a suffi-
ciently stratified tidal estuary.

The main issue of Chapter 3 is to illustrate that it is in essence boundary-
generated turbulence which controls the stratification of a tidal estuary by
external mixing. To this end experimental information on the overall effi-
ciency of the conversion from boundary-generated turbulent kinetic energy to
potential energy is collected. On this basis an energy balance is given and a
ceriterion for well mixed conditions is derived. Part of the underlying infor-
mation on the efficiency of the conversion is obtained from parameterization
studies on boundary induced entraimment in two-layer stratified flow. Reviews

on this subject, which are available in the literature, are summarized.

The length scale of turbulence is controled by the external boundaries of the
flow. In addition in stratified flows density stratification aects as an in-

ternal control.

Chapter 4 deals with the effects of stable density stratifications on turbu-
lence. It does so on a local level, expressing these effects in terms of local
parameters, i.e. parameters which describe the flow and turbulence at a spe-
cific location within the flow. It presents a length scale classification of
turbulence in stratified conditions, expressed in local parameters. It pre-
sents experimental support for this classification. It explains that for the
ebb tide regime and for the flood tide regime, distinguished at the end of
Section 1.2, different local parameters have to be used to describe the ef-
fects of density stratification on turbulence.

Turbulence modelling is described briefly in Chapter 5. Is distinguishes
turbulence models which require the length scale of turbulence (the mixing
length) as an empirical input from those which contain a partial differential
equation to determine the length scale. In the former group of models damping
functions are used to express the effect of stratification on the length
scale. These damping functions are expressed in local stability parameters
such as the gradient Richardson number. The latter group of turbulence models

- referred to as higher order turbulence models - give the length scale of




turbulence as a function of time and spatial coordinates, not as a function of
local stability parameters. Therefore, the above damping functions cannot be

derived from the higher order turbulence models.

Chapter 6 deals with the combined effects of the external boundaries and the
density stratification on turbulence. It deals with the effect of these fac-
tors on the mixing length and the related damping functions. In particular it
shows the difficulties involved in finding damping functions appropriate for
the different regimes distinguished at the end of Section 1.2. For reasons
explained at the end of the preceding paragraph these damping functions cannot

be derived from higher order turbulence models.

A summary of the findings of the study and some recommendations for further

study in the new DHL tidal flume are given in Chapter 7.




2 Arrested salt wedge

2.1 Stabilizing intermediate layer

The arrested salt wedge is a sub-critical stratified flow which may be treated
as a two-layer flow without mixing at or through the interface (Schijf and
Schénfeld, 1953). This is because in sub-critical stratified flows there is
the tendency towards the development of a stabilizing intermediate layer. Its
development may be looked upon as being initiated by unstable internal waves
at an originally sharp interface. The unstable waves can generate mixing as a
consequence of which an intermediate layer is formed. The thickness of the
intermediate layer can increase with time until all internal waves become
stable. This happens when the thickness of the intermediate layer is a small
fraction of the total depth of both layers (Abraham et al, 1979).

The limiting thickness of the intermediate layer can be derived from linear
instability theory, which studies the behaviour of a periodic small disturban-
ce (e.g. an internal wave) superimposed upon a background flow. It indicates
under which circumstances the disturbance is stable or unstable. The condi-
tions of stability and instability are given as a function of the wave length
of the disturbance and characteristics of the background flow by means of
neutral stability curves which separate the zones of stable and unstable

solutions.

For the background flow represented in Fig. 2.1, Miles (1961) and Howard
(1961) showed that for inviscid background flow a sufficient condition for
stability of small amplitude internal waves of all wave lengths is that the
gradient Richardson number be everywhere larger than 1/4. This criterion leads
to stability if (Thorpe (1971), Hazel (1972)) (see also Fig. 2.2).
A ¢ 4
Ri* = B0

2 =5
(u1 u2)

(2.1)

where hy, h, : thickness of upper and lower layer
g, Up velocity of upper and lower layer

Py Pyt density of upper and lower layer




Ap : difference in density between lower and upper layer

p : density of either upper layer or lower layer (p1 - 92)
: thickness of intermediate layer

g : gravitational acceleration

Ri* : layer Richardson number, defined by Eg. 2.1

For sub-critical stratified flows

u2 u2
A12 g ip S 1 (2.2)
p g h‘l E- g h2
and hence
(u, - up)?
FA <1 (2.3)

= -A-.E——
5 8 (h1+h2)

where FA: densimetric Froude number, defined by Eq. 2.3.

Eqs. 2.1 and 2.3 imply that starting from zero, the thickness of the interme-
diate layer has to increase to less than (h1+ hz)lﬂ, in order to make internal

waves of all wave length stable.

Table 2.1 summarizes growth rates of the most unstable wave, calculated by
Miles and Howard (1964), the most unstable wave being defined as the first to
become unstable for Ri* 4 %. Its wave length is about 7.5 d.The calculated
growth rate, T;1, decreases with increasing Ri* to become zero for Ri* = %,

the lowest value with stability of internal waves of all wave lengths.

Turbulent kinetic energy is produced when internal waves become unstable (see
Section 2.2). Hence, turbulence will not be able to receive energy from or to
lose energy to the mean flow, once internal waves of all wave lengths become
stable. Hence, under this condition turbulent intensity must decay owing to
the steady drain of turbulent energy by viscous dissipation, and neither
mixing due to unstable internal waves nor turbulent mixing occurs when the
condition of Eq. 2.1 is satisfied. For Ri“ ~ 0.32 the decay of turbulence

intensity was observed in experiments performed by Chu and Baddour (1984).




*
Table 2.1 T, as function of Ri for background flow of Fig. 2.1

(Miles and Howard, 1964); Tg:

of most unstable wave to increase by factor e

time needed for amplitude

|
Ri” ; I
0.05 5 d |u -0 |-1
172
0.15 10d |u, -u,|”
17"
-1
0.20 20 d [u, = u,
0.25 @

The above description of the formation of the intermediate layer is a schema-
tized one. It actually is associated with Kelvin-Helmholz instabilities, which

are described in the following section.

2.2 Kelvin-Helmholz instability

For Ri* > 0, in the internal layer the internal waves lose their stability
first in the region of the wave crests and troughs, and thereby produce turbu-
lent kinetic energy (Turner, 1973, Section 4.3.3). This energy comes from the
internal waves, and so provides a mechanism for limiting their amplitude. This
instability, and its subsequent development in a stably stratified shear flow,
is generally known as Kelvin-Helmholtz instability. Its wave length and growth
rate are in reasonable agreement with the theoretical predictions of the
preceding section (Turner, 1973, Section 4.3.3). Its development is associated
with the formation and eventually the collapse of billows (Thorpe (1973a),
Maxworthy and Browand (1975), Sherman et al (1978)).

Corcos (1979) has investigated theoretically the initial stages of Kelvin-

Helmholz billow growth from unstable waves to concentrated vortices which




repeatedly orbit and pair, finding billow heights of order (u,- u2)2 p” ! g7!

in a time or order 10 |u1~ u2| ap o g, The final stage of mixing and col-
lapse occurs in a time of the order 20 |u1— u2] Ap-Tp 3—1 (Thorpe, 1973a).
Therefore, following Imberger and Spigel (1980), for the background flow of

Fig. 2.1, a time scale for billowing may be defined as
T = 20 —mm (2.4)
where Tb: time needed for growth and collapse of billows.

In accordance with experiments performed by Thorpe (1973b), Koop and Browand
(1979), Gartrell (1980) and Chu and Baddour (1984) the corresponding thickness

of the stabilizing intermediate layer satisfies

Ap
% g dL
R Bt = 0,32 (2.5)

(u1- u2)2

where dL : thickness of intermediate layer after billow collapse
*

RiL: corresponding layer Richardson number, defined by Eq. 2.5.

*
R1L= 0.32 is slightly higher than the minimum value of Ri* required for sta-

*
bility of small amplitude internal waves (Section 2.1). It is for RiL = 0,32
that Chu and Baddour (1984) found the turbulence to decay in the intermediate
*
layer. Corcos and Hopfinger (1976) refer to RiL

criterion for the halt of the intermediate layer growth and the beginning of

= 0.32 as the experimental

its relaminarization (see also Hopfinger, 1985). Gartrell (1980) found the

*
intermediate layer to collapse to nearly laminar flow for R1L= 052

*
L= 0.32 is larger than the equilibri-

*
um Richardson number Rie, the significance of which is elaborated upon in
Section 4.3.

The relaminarization takes place since Ri
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2.3 Formation of intermediate layer

The fresh water needs a certain time to flow over the entire length of an

arrested salt wedge (u2- 0)
R (2.6)

where TL: time needed for fresh water to flow over entire length of
arrested salt wedge
Li’ length of arrested salt wedge
An intermediate layer is formed when

Tg << Ty, Ty << Ty, (2.7

From Table 2.1

d *
Tea 20 W for Ri s 0.2 (2.8)

Eqs. 2.1, 2.2, 2.3, 2.4, 2.6 and 2.8 imply

T (h.+ n.)
-,I-:-e'<5“'1T-2"— (2.9)
L i
and
T (h.+ h.)
T—t’<20--—1—1‘-—2 (2.10)
L i

For a schematized estuary with constant cross-section (Schijf and Schdnfeld,
1953)

(h,+ h,)
12
L= 3 < A (2.11)

i
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with
i 1/3_ 6 273 2.12
A SFO 2 +3F, SFO (2.12)
2
uriv
P o (2.13)
5 8 (h1+ h2)
q_.
riv
Moy (h1+ ha) (2.14)
and
'y
K& ——— (2.15)
i = )2
e Tl
where Fo : densimetric Froude number, defined by Eq. 2.13
A : dimensionless parameter, defined by Eq. 2.11
Up gy river veloecity
Qpiy? river flow rate per unit width
LI interfacial shear stress
ki : interfacial shear coefficient
For field conditions (Abraham et al, 1979)
-4
kia 410 (2.16)

Table 2.2 gives L.i(h1+l'12)"1 as a function of FE . The conditions of Eq. 2.7

are satisfied for FO S 0.6. This means that for the arrested salt wedge there
is sufficient time available for the stabilizing intermediate layer to be

formed. By itself, this prevents further internal mixing.
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Table 2.2 Length of arrested salt wedge
ky = 4 107" (Schijf and Schénfeld, 1953)

| F2 | Ly(hy+np”"

0.1 | 11.620

0.2 | 2u30
0.3 828
0.4 328
0.5 134
0.6 52
0.7 17
0.8 4.1
0.9 0.4
1.0 0

2.4 Application to conditions of tidal slack

At tidal slack tidal velocity and boundary shear stress are small, and little
turbulent energy is supplied from the solid boundaries. Then the vertical
exchange of momentum is small. This leads to a pronounced effect of the longi-
tudinal density gradient on the variation of the longitudinal velocity over
the depth.

At tidal slack conditions are favourable for internal mixing to occur. Whether
or not by then a stabilizing intermediate layer occurs depends on whether or
not the time neeged for its establishment, Tb' is a small fraction of the
tidal period.

At tidal slack the flow is density induced, and may be approximated as being
of the lock exchange flow type (Schijf and Schénfeld, 1953). This implies
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(uT-uz)2

Ap

N [ ST | (2.17)
o g (h1 +h2)

and with Eq. 2.4

Tb (h1+h2)
T "% T jo i

where T : duration of tidal cycle.

For sufficiently stratified estuaries, Eq. 2.18 implies Ty << T, meaning that
around tidal slack vertical mixing is weak, since a stabilizing intermediate
layer is formed. This condition applies to the Rotterdam Waterway Estuary,
with close to its mouth around low water slack (hy+h,) = 10 m and |u,-u,| =
1.0 m s=1 (Fig. 2.3). These parameter values imply Tb/T =10 ~.

For a station close to the mouth of the Rotterdam Waterway Estuary, the top
part of Fig. 2.3 (after Stigter and Siemons, 1967) gives the variation of
velocity and salinity over the depth throughout the tidal cycle, 11 hrs about
coineiding with low water slack. By then an intermediate layer can be recogni-
zed, with a gradient Richardson number (defined by Eq. 4.14) of the order 0.3,
at the relative depth with zero velocity.

The bottom part of Fig. 2.3 gives the dispersive transport of salt into the
estuary. It is defined as

Tdisp = h (u-u) (s-s) (2.19)
where Tdisp : dispersive transport, defined by Eq. 2.19

h : depth

s : salinity

: depth mean value of parameter

The dispersive transport is the salt transport into the estuary through a

reference plane moving at velocity 1. Salt would not penetrate further into

the estuary from its mouth than the tidal excursion length, if the dispersive




w Y1 =

transport were zero. If so, salt water which enters into the estuary from the
sea on the flood tide, will return to the sea before the end of the following
ebb tide. This is because, when moving at velocity 5, the river flow makes the
seaward displacement on the ebb tide larger than the land inward displacement
on the flood tide.

Fig. 2.3 shows that for the considered station close to the mouth of the
Rotterdam Waterway Estuary a significant fraction of the total (time integra-
ted) dispersive transport occurs around low water slack and that salinity
intrusion through that station is primarily due to low water slack flow condi-
tions. For stations further upstream in the zone of salt intrusion, the dis-
persive transport occurs on the ebb tide and around high water slack (Karelse,
1976) .

That for the Rotterdam Waterway salinity intrusion through the station close
to its mouth is primarily due to the dispersive transport around low water
slack makes it important to include the slack tide internal mixing properly in
salinity intrusion studies for that estuary. In general this applies to estua-
ries above a given level of stratification. Abraham (1980) presents a crite-
rion to determine when for a given estuary the slack tide internal mixing is a

factor to be considered.

2.5 Final remark

Treating the arrested salt wedge as a two-layer stratified flow requires
experimental information on the magnitude of the interfacial shear stress
coefficient ki’ defined bij Eq. 2.13. For various sub-critical stratified
flows experimental information on the magnitude of this coefficient can be
derived from the 1974 literature survey (Breusers, 1974) and from Abraham et
al (1979). Within the framework of the present study the literature has not
been scanned for further experimental data.
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3 On stratification of estuaries

3.1 Dimensional arguments

In estuaries stratification is induced by the differential advection, which
the gravitational circulation is associated with. Where sufficient turbulent
energy is supplied by the tidal current, the whole water column tends to
remain well mixed. The buoyancy flux into the estuary is proportional to the
product of the river flow per unit width and the density difference between
sea water and river water. The energy input by the tidal current per unit area
and per unit time is proportional to the product of the bottom shear and the
tidal velocity, i.e. to the tidal velocity cubed. Therefore, the ratio of the
energy available and needed for mixing is proportional to the parameter ED'

defined as
.
u
1 1,0
8 - el e— _1
Ep* T 3p - (3.1)
po & No'piv

where ED : estuary number, introduced by Thatcher and Harleman (1981)
Uy gt amplitude of profile averaged tidal velocity at mouth of estuary
]
Uiy @ river velocity, i.e. river flow rate over cross-sectional area

h : depth at mouth of estuary

(o]

Ap : difference in density between sea water and river water

po : density of either sea water or river water, which are about equal
g : gravitational circulation.

From Harleman and Ippen (1967) the following classification on the estuary

number can be derived for prismatic channels:

well mixed conditions Ep > 8
partly mixed conditions 8 > Ep > 0.2 (3.2)
stratified conditons for 0,2 > ED

This classification about coincides with the one given by Fischer et al (1979,
p. 243).
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3.2 Energy considerations

The following energy considerations, which are derived from van Aken (1986),
serve to substantiate the classification of the preceeding section and to
emphasize the effect of external mixing on the stratification of an estuary.
They are limited to well mixed conditions to avoid averaging of non-linear
parameters over the depth of the estuary. They provide a criterion for the
estuary to be well mixed. Application of this criterion requires quantitative
information on the efficiency of the conversion from turbulent kinetic energy

to potential energy.

3.2.1 Criterion for well mixed conditions

The potential energy of stratification may be related to the parameter v,

defined as

h
V= J (p - p) g (h-2z) dz (3.3)
)

where : p: density

p

h: water depth

z: vertical coordinate (z=0 at bottom, z=h at water surface)
v

: measure for potential energy of stratification (V=0 for well
mixed conditions, V>0 for stable stratification), and

where an double overbar refers to the depth mean value of the parameter under-

neath.

The temporal change of V is related with that of p and B. From the conserva-

tion equation for mass

(3.4)
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where F,: turbulent flux of mass in vertical direction
u,w: velocity components in x-direction and z-direction
x: longitudinal coordinate, landinward positive (x=0 at mouth of
estuary)
t£: time

For well mixed conditions (3p/9x =~ aS/ax; u ap7ax >> w 9p/3z) eq. 3.4 reduces
to

P __ g o, 0 3 _ =
3t % fz - U 3% =~ Y 3x (3.5)

The conservation equation for turbulent energy relates F, with the production
and dissipation of turbulent energy (Eq. 4.11, Section 4.3). In tidal estua-
ries the variation with time of the turbulent kinetic energy within a control
volume dxdz is primarily due.to the production and dissipation, and not caused
by the net inflow through the boundaries. Therefore, for well mixed conditi-
ons, substituting Eqs. 3.5 and 4.11 into Egs. 3.3 gives

AW . - (P - D)> - <g2 ?(u- 3 (h-z) dz> (3.6)
ot 9x 4
with
h a' ‘ h
P=f12dz D = | edz
o [o}
where P: depth integrated production of turbulent energy
D: depth integrated dissipation of turbulent energy

turbulent shear stress

~

m

: dissipation of turbulent energy per unit mass of fluid and per unit

time, and

where pointed brackets refer to time mean values, obtained by averaging over a
tidal cyecle.

Eq. 3.5 illustrates that in estuaries stratification is induced by differen-
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tial edvection, i.e. the variation of u 23p/9x over the depth.

For sufficiently well mixed estuaries to neglect the effect of aE/ax on the
variation of the velocity over the depth, calculations with linear velocity
profiles and with a variety of step and parabolic profiles indicate that a
reasonable estimate for the magnitude of the integral term in Eq. 3.5 is (van
Aken, 1986)

2

h
< (u-%) (h-z) dz> = 0.1 |u (3.7

(o}

. |n
Ly

Substituting Eq 3.7 into Eq. 3.6 gives the following criterion for a well
mixed estuary to remain well mixed (3V/3t <O0)
3p

<(P-D)> > 0.1 g == |u

T 1h2 (3.8)

riv

Eq. 3.8 gives a lower limit of <(P-D)>, as in its derivation BSIBx was assumed

not to vary with time.

3.2.2 Efficiency of conversion from kinetic energy to potential energy

Quantitative information on the overall efficiency of the conversion from
turbulent kinetic energy to potential energy can be obtained from the field
data behind the Simpson-Hunter (1974) stratification parameter for shelf seas.
It further can be obtained from the experimental information behind the para-
meterization of the entrainment for a mixed bottom layer (e.g. Kranenburg, to
be published).

The energy supplied by the tidal current plays an important role in the Simp-
son-Hunter (1974) stratifiecation parameter. This parameter is introduced to
distinguish areas in shelf seas where sufficient turbulent energy is supplied
by the tidal current to keep the whole water column well mixed from those
areas where the stabilizing heat flux at the sea surface in spring and summer
is capable of overcoming the mixing by the tidal current. In the underlying

energy considerations (P-D) is parameterized as
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~ 3
u
<(P-D)> = a 3 kbp u, (3.9)
with
B =2 _ 8 =2
Ty kbpu 5 Pu (3.10)
C
where Tb: bottom shear stress
u : depth averaged velocity
kb : bottom shear coefficient
C : Chezy coefficient _
a : efficiency of conversion from kinetic to potential energy
The efficiency o satisfies
a=(0.3t0 2) % o

Efficiencies of this order were obtained from shelf sea field data by Fearn-
head (1975) (1%), Garrett et al (1978) (0,3%), Schumacher et al (1979) (2%)
and Simpson and Bowers (1981)(0,4%).

The efficiencies applied in the parameterization of the boundary-induced
entrainment of a stratified two-layer flow coincide with the lower limit given
by Eq. 3.11. This is elaborated upon in Section 3.3. In addition, Eq. 3.8
gives a lower limit of the energy needed to keep an estuary well mixed. There-

fore, in the following text the lower limit given by Eq. 3.11 is applied.

3.2.3 Criterion for well mixed conditions (continued)

In first approximation

>

« 22 (3.12)

wlw
“iol
s

where Li: length of zone with salinity intrusion.

Substituting Egs. 3.9 and 3.12 into Eq. 3.8 gives as the condition for a well

mixed estuary to remain well mixed
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2
N<coir E 20101 3C

3 h
3t D -E-g-—'L-— (3.13)

i

Typical values for C and [..ih'1 are 60 m’és'1 and 1000 respectively. Substitu-
ting these values into Eq. 3.13 and deriving o from the lower limit of Eq.
3.11 gives Ep2 9 as the condition for an estuary to remain well mixed. This
limiting value is of the same order of magnitude as the limiting value given
in the classification after Harleman and Ippen (1967) (Ep 2 8, Eq. 3.2). This
agreement is only an order of magnitude one, since Lih'1 varies with Qpive
Nevertheless it 1illustrates that in essence boundary generated turbulence

controls the stratification of an estuary.

3.3 Boundary-induced entrainment

In recent years considerable progress has been made in the modelling of boun-
dary-induced entrainment. Reviews on the subject are presented by Sherman et
al (1978), Tennekes and Driedonks (1980) and Imberger and Hamblim (1982). A
condensed summary of these reviews is given by Kranenburg (1986). Turner
(1981) reviews the literature on the subject from the oceanographic point of

view.

Kranenburg (1986) deals with the boundary-induced entraimment of a stratified
two-layer flow as a two-way process. To this end he defines two effective
interfacial transports (entrainment rates) Wq and w, (notation as in Fig. 3.1)
so that

Wo~ Wy = mean vertical volume flux through interface (3.14)

W - W = mean vertical mass flux through interface

- I L

where wq, W, : entrainment rates, defined by Eq. 3.14 and Fig. 3.1
Prr Pyt density of homogeneous parts of upper and lower layer
(see fig. 3.1).

The entrainment rate Wq represents a transport of fluid from the homogeneous
part of the upper layer to the lower layer caused by the bottom-induced turbu-

lence in that layer. The entrainment rate Wo represents an upward transport

caused by the turbulence induced at the free surface.
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Disregarding a possible interaction between the two processes causing en-
trainment into either layer - as found justified for grid-stirred experiments
1973,
tion for turbulent energy (Eq.

(Turner, Section 9.1.1) - Kranenburg integrates the conservation equa-

4.11) over either layer. Introducing closure
assumptions as introduced in the above mentioned reviews, he obtains the

following equations.

In the case of entrainment into the turbulent upper layer:

o™ Py 2 2 3
%(—-E-——)g a,wy= % e W, Au"+ % cTu*.slAu]+ % oeguy g (3.15)
where a, : upper layer depth (see Fig. 3.1)
Au : difference between mean velocities of upper layer
and lower layer
Ux g : surface shear stress velocity; ux g = (ts/p)1/2, where Ts is
surface shear stress
ce,cr,cs : modelling constants

and for the case

of entrainment into the turbulent lower layer:

y Pa” B ¥ 2, y 2 + ¥ 3 (3.16)
H(———)g ajw = % c W au"+ % cTu*.b]Au| , CgUx 4, 3.
where a, : lower layer depth (see Fig. 3.1)

.

Ux p, : bottom shear stress velocity; ux y = ('rb/p)y2 where Ty is bottom

shear stress.

The terms in Eqs. 3.15 and 3.16 represent increase in potential energy caused

by buoyancy transport, shear production caused by transport of mass, shear
production caused by momentum transport and the net production of turbulent
kinetic energy by external shear.

kinetic energy must be added to the left hand side of Egs. 3.15 and 3«101in

A term accounting for storage of turbulent
applications to weakly stratified flows (see e.g. Bloss and Harleman, 1980).

Kranenburg gives the following values for the model constants: c, = 0,22,

g_» 0.14 and ey = 0.17. These values are derived from laboratory measurements,

and for c¢g a1so from field experiments (Fisher et al, 1979, Section 6.3.2).
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For Au = 0, ¢, = 0.17 and C = 60 maés'1 (Eq. 3.10), Eq. 3.16 reduces to

s
%(p,= p )8 a,w,~ 0.0045 T u, (3.17)

where u, : mean velocity of lower layer.

Eq. 3.17 implies a = 0.45%.

Unified presentations of the entrainment rates measured under different condi-
tions are presented by Anwar and Weller (1981), by Alavian (1986) and in the
review by Cristodoulou (1986). Their accuracy is limited, however, because
experimental results of different flow types are included: stratified flows
driven by a surface stress, buoyant overflows over stagnant heavier water,

buoyant underflows underneath stagnant lighter water and counterflows.

Christodoulou (1986) distinguishes four different entrainment regimes, de-
pending on the magnitude of the overall Richardson number, defined as
Ap g h1 Ap 8 h2
By o~ b Rl m = (3.18)
pA u pA u
where RiO: overall Richardson number, defined by Eq 3.18

h1,h2: depth of flowing lager

For supercritical conditions, Christodoulou indicates, mixing takes place
through vortex entrainment and a Rio'Z relation holds. For subcritical condi-
tious mixing occurs by cusp entrainment and a Rio"3/2 relation holds. In the
intermediate range of Rlo the two mechanisms coexist and the entrainment

appears to be described by a Rio'1

relationship. Finally for Rio - 0, an
asymptotic relation of the form Rioo applies, corresponding to mixing in a
homogeneous fluid. Inspection of Christodoulou's final graph (his fig. 5)

shows that the range of Rio—values corresponding to the different regimes

varies with the type of flow.
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4 Effect of stable stratification on turbulence

4,1 Scales of turbulence, limiting conditions

A buoyancy scale, Ly, can be derived from the condition that inertial forces

and buoyancy forces are of the same order, i.e. from

2 Ty

F%—:l--s;%v (4.1)

where g : gravitational acceleration
z : vertical coordinate, positive when directed upwards
U': characteristic veloeity of considered mass of fluid
L': characteristic length of considered mass of fluid
p : density

: time mean value of parameter.

The length scale L', which satisfies Eq. 4.1 is the buoyancy scale L, i.e.

==

L, = (4.2)

b

=l

_ (-1 3%
with N = ( 5 8 az) (4.3)

where N : Brunt-Vdisdld frequency

Ly represents the largest vertical excursion a mass of fluid can have before
converting all its kinetic energy into potential energy

In Eqs. 4.1 and 4.2 the characteristic velocity may be due to either turbulen-
ce or internal waves. When entirely due to turbulence, or considering only the
effect of turbulence

ur = U L'=s L (4.4)

with (Tennekes and Lumley, 1972, Sections 3.1 and 3.2)

3 2

g = {-’— 9 = ‘§ Lt =y ot T @t<) (4.5)




= Dl =

where U : velocity scale of turbulence
L : length scale of turbulence

u,v,w: velocity component in x-, y- and z-direction

X : horizontal coordinate in main flow direction
y : horizontal coordinate in transverse direction
€ : rate of dissipation of turbulent energy per unit mass of fluid

Y : turbulent fluctuation of parameter.

The Ozmidov scale, LR. is the length scale L, which satisfies Eq. 4,1, deri-
ving U' from Eqs. U4.4 and 4.5 i.e.

Ly = (e N (4.6)

It defines the upper limit permissible for the size of overturning turbulent
motions. Larger scales of turbulent motion are confined to horizontal movement
(Ozmidov, 1965).

The typical vertical distance travelled by particles before either returning

towards their equilibrium level or mixing is the turbulence scale, Lt' def ined

on the basis of the rms p' -value as (Ellison, 1957)

p
Lt= PTS (4.7)
ap
92
The smallest scales of turbulence are characterized by the Kolmogorov scale,
Lk, i.e.
L= (% (4.8)

where v : kinematic viscosity
For L = Lk viscous and inertial forces are ofthe same order.

A simplified length scale classification of the fluctuating motions in a

stratified fluid is shown in Table 4.1. In this table Cq and Cp represent
dimensionless constants. Experiments, which are described in Section 4,2 show
that C; = 0(1) and C, = 0(10). The latter value has to be related with the
fact that the peak of the normalized dissipation spectrum, related to isotro-

pic turbulence, occurs at L =5 L  (Tennekes und Lumley, 1972. Chapter 8).
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Table 4.1 Classification of fluid motion in stratified fluid (after
Stillinger et al, 1983)

1 Fully turbulent flow C1LR >L> Csz

Largest scale of the motion L¥ < C,Lg everywhere in the flow. Behaviour’

can be described by the statistical laws of nonstratified turbulence.

Efficiently mixes scalar fluid properties.

2 Combined turbulent/wave field !
Scales with C1LR ¥ Lo Czhk are still actively turbulent, but the largest!

scales of the flow L*> C1LR have insufficient energy to overturn. Wave- '

like oscillations result. Reduced ability to mix scalars.

3 Internal wave field C1LR =L = C2Lk (LR L;1= C;Tcz). No overturning}

occurs and no transport of scalar quantities. Overturning motions cease%

to exist due to combined effect of buoyancy and viscosity.

As indicated by Rohr et al (1984), in the above classification the scale of
turbulent eddies remains unaffected by buoyancy until the largest eddies reach
a scale proportional to the Ozmidov scale LR' after which they can no longer
overturn. The next regime in the evolution of turbulence is one marked by a
mixture of some scales overturning (the smaller ones farthest removed from
buoyancy constaints) while the larger ones have retired in bobbing (wavelike
motion) and could perhaps be forming a quasi two-dimensional turbulent field.
RL;1= 0;102, )
the original three-dimensional turbulence is considered extinct, even though

Finaly, when there if no possible overturning at any scale (L

wavelike motions may persist for a long time afterwards.

The spectral distributions associated with the above length scale classifica-
tion are given in Table 4.2, which is primarily derived from Turner (1973,
Section 5.2.2). Detailed considerations on spectral distributions of turbulent
energy and density fluctuations are given by Bogliano (1959), Lumley (1964)
and Weinstock (1978 and 1985). Scheffers (1984) presents spectral distribu-

tions, measured at the North Sea under stratified conditions.
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Table 4.2 Spectral distributions associated with the length scale
classification given in Table U4.1.

(1 Large scale wave-like motions and internal wave regime, L' > CqLp

When at each length scale L' the largest vertical excursion possible
occurs U' ~ L' (Eq. 4.1), (u)aLr - (L')3, i.e. k73 energy spectrum.
Under buoyancy dominated conditions L, ~ L' (Stillinger et al (1983),
Rohr et al

(1985)). Therefore p' -~ L', (p‘? L= (L'? , 1.2, k™3 spectrum of density

fluctuations.

12 Turbulence regime, C4Lg > L > Coly

Turbulent energy is dissipated at scales of the order Lk. Therefore, at
scales larger than Ly, U - ¢ /°L'/3 (gq. 4.5), 02L - 13/3, 1.e. k™73

turbulent energy spectrum

|3 Small scale wave-like motions and internal wave regime, L' < Csz.

Considerations which are given for item 1 of this table apply.

4,2 Experimental data

Dickey and Mellor (1980) and Stillinger et al (1983) conducted experiments on
decaying grid-generated turbulence in homogeneous and stratified unsheared
fluids. Stillinger et al measured all relevant turbulence properties, inclu-
ding turbulent stress, turbulent transport of mass, spectral distribution of
turbulent energy and dissipation rate. The measurements of Dickey and Mellor
were restricted to turbulent velocity fluctuations. Therefore turbulence

modelling is required to derive the scales Lp and Ly from their experiments.

For grid-generated unsheared turbulence, decaying in a homogeneous fluid
(Tennekes and Lumley, 1972, pp. T0-73)

U~ x L - xz e - x-z (4.9)
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where x: distance from grid

Hence, with constant N and v

L

%_ - x3/2 EE - g 372 %— ~ constant (4.10)
R k k

From the measurements of Stillinger et al (1983) Cq= 1.4, C, = 15,4 and

C;1C2= 11. The constant C4q is determined from measuring the ratio L/Lg at the
estimated distance x, where the growth of L first falls from the curve descri-
bing its growth under homogeneous conditions. The constant 02 is determined
from measuring the ratio LR/Lk at the estimated distance x, where W'p' first
goes to zero. Stillinger et al find the energy gpectra for stratified and
homogeneous fluid to coinecide only in the range of scales satisfying 1.4 Lg <

L < 15.4 L (see Fig. LI

Itsweire et al (1986) re-examined the data of Stillinger et al. From their
analysis C,= 1.7, C,= 13-17 and cﬂcza 8-10.

In their stratified experiments on decaying grid-generated turbulence, Dickey
and Mellor (1980) found a transition in the energy decay rate. Up to some
distance x, the decay rate was in accordance with Eq. 4.9. Beyond this dis-
tance it was slowed down and oscillated with time. Dickey and Mellor charac-
terize the transition in the energy decay rate as a transition from a turbu-
lence regime to a coherent internal wave regime. Analyzing the experimental
results of Dickey and Mellor, Stillinger et al (1983) indicate that at the
transition 1.4 Lg =L = 15.4 L, (C;1CZ= 11). This implies that all overturning
motions have ceased to exist due to the combined effect of buoyancy and vis-

cosity, and only wave-like motions and internal waves remain.

Field measurements on the decay of unsheared turbulence in a stratified fluid
have been taken by Gargett et al (1984). They took measurements in Knight
Inlet behind the front of an internal wave train generated at a sill. They
found the turbulence to decay with increasing distance from the area of gene-
ration under the influence of a stable background stratification. In the
experiments LRL;1 ranged from 4000 to 50. These values are too large to derive

information on C, from the experimental results.
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The turbulent energy spectra presented by Gargett et al coincide with the

normalized ones, related to isotropic turbulence, for 0,1 LR> L > 10 Lk. Only

for LRL;1 values of 100 and less turbulent fluctuations of velocity in the

horizontal direction were found to be larger than those of veloeity in the

vertical direction. For LR> L2>0.1 LR'
-1

LRL K’ Gargett et al found a k™1 range in the one-dimensional energy spec-

and relatively small values of
trum for the vertical velocity components.

Gargett et al (their tables 1 and 3) give measured values of ¢, N and the
three turbulent velocity component variances of Eq. 4.5. Substituting this
information into Eqs. 4.5 and 4.6 gives Cy = 1.

Rohr et al (1985) extended the unsheared grid-generated turbulence study
reported in Stillinger et al(1983) to a stratified shear flow. Measurements
taken close to the grid are in both cases characterized by decaying grid-
generated turbulence. Only farther from the grid, and when the gradient Ri-
chardson number, Ri, is small enough to allow turbulent growth (see Section
4.3) do the features of the sheared flow distinctively depart from decaying
unsheared grid-generated turbulence. It appeared that for large enough Ri-
number (larger than 0.2) the shear may only marginally influence the develop-
ing flow.

For the two decaying shear cases studied, where Ri ~ 0,36, Rohr et al (1985)

found C1 = 2,2 and 02 = 1T.6, 0;1 C. = 8, using the same procedure as Stellin-

2
ger et al (1983).

4.3 Limiting conditions based on Richardson number

4,3.1 Shear flow; turbulence in local equilibrium

For a stable stratification, neglecting the effect of diffusive transport, the

turbulent energy balance can be written as
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with

k=¥ (2 +v?ewd) (4.12)

where k: turbulent kinetic energy
t: time

Coefficients for turbulent exchange of momentum and mass are defined as:

1 ' = et 1 ! o - u'
u'w Ve 32 w'p Kt 5% (4.13)
where Ve * eddy viscosity

Kt : eddy diffusivity

For turbulence in conditions of local equilibrium (dk/dt = 0 and no diffusive

transport in Eq. 4.11) Egs 4.11 and 4.13 imply

-2 —
3u _Ri _ _ B 3p/3z
€ = v ( az] (4 = = Ri St (4.14)

£ 5 (ouroz)?

where Ri: gradient Richardson number, defined by Eq 4.14
. 1 1 = -1
0 * turbulent Prandtl number, o Ve Kt

The gradient Richardson number is a measure of the relative importance of the

stabilizing buoyancy and destabilizing shear.

Eq 4.14 leads to the existence criterion of turbulence (see e.g. Monin, 1959)

Ri < Ricr = o (4.15)
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Of more direct physical significance is the flux Richardson number Rf, defined
as the ratio of the rate of removal of turbulent energy by buoyancy forces to
its production by shear. For turbulence in conditions of local equilibrium Rf
represents the mixing efficiency, i.e the efficiency of the conversion from
kinetic turbulent energy to potential energy. For local equilibrium, in terms

of Rf the limiting conditions can be expressed as

Tyg!
Rf = &L X . ? <Rf, (4.16)
Eu‘"' ﬂ t
9z

where Rf: flux Richardson number, defined by Eq 4.16.

For turbulence (g = 0) in conditions of local equilibrium Rfcr < 1, since for

these conditions

Rf = 1 - ——— (4.17)
9u
1 ) [t
u'w Az
In accordance with Table 4.1 internal wavelike motions occur when L 2 C1 LR.

Under these circumstances Rf=o. Therefore, deriving the value of C1 from the
experiments listed in Section 4.2, the conditions with internal wavelike

motion are characterized by

L 2 (1¢to2) Lg Rf=0 (4,18)
Further
2 tot 3_;_2
L uw (az) (4.19)

Substituting Eqs. 4.3, 4.6, 4.17 and 4.19 into Eq 4.18 gives

Ri 21 to 2.5 (4.20)

Hence, internal wavelike motions occur when the conditions represented by Eq

4,20 are satisfied. This finding is compatible with experimental observations
by Kondo et al (1978), Komori et al (1983, p.20) and West et al (1986, p.
175).




_31-

4,3,2 Equilibrium Richardson number for internal mixing

Turner (1973, Sections 10.2.1 and 10.2.2, and 1981, Section 8.4.1) introduces
a critical equilibrium Richardson number Hie* of the order 0.1 which applies
to conditions as found in the stabilizing intermediate layer of an arrested
salt wedge, with Ri* defined by Eq 2.1. This equilibrium Richardson number
applies to a deep region of stable fluid, having linear profiles of both
density and velocity through it, when there in a constant momentum flux and
buoyancy flux through the region, sustained by small scale turbulent motions.
The above conditions imply that there is also a constant rate of turbulent
energy supply through the region. A further contition is that only internal
length scales (e.g. Lg) are relevant, not external length scales (e.g. overall
depth or distance from the boundaries).

Turbulence can be maintained in the above equilibrium state only when the rate
of turbulent energy supply exactly matches the internally regulated gradients
(Ri* = Rie*). For a given fixed energy supply, if Ri* < Rie*, the shear will
dominate and mixing reduces the density gradient. Since °t is a weak function
of Ri for Ri < 0.1 (Fig. 6.7) and the supply of turbulent energy is fixed, the
reduction of the density gradient is assoclated with a reduction of the mixing
efficiency Rf. When Ri* > Rie* the density gradient Is the dominant factor and
turbulence 1s suppressed. This is also associated with a reduction of the
mixing efficiency Rf. Consequently Rf has a maximum value for Ri* = Rie*. This

is 1llustrated by Fig. 4.2, which is derived form Turner (1981).

Fig 4.3 shows a comparison of Rf versus Ri* given by Linden (1979) on the
basis of various experiments, in which external length scales are irrelevant.
Fig. 4.3 confirmes that Ri_" is of the order 0.1.

Rle* = 0.1 is smaller than RiL* =~ 0.32 (Eq 2.5) This explains the relaminari-
zation referred to in Section 2.2 (see Fig 4.2).

Rohr et al (1984) performed measurements on grid-generated turbulence like the
ones made by Stellinger et al (1983) (Section 4.2). For both sets of measure-

ments, made for conditions In which external length scales are irrelevant,
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they found a rélationship between Rf and Ri*. which agrees with the one given
by Linden (1978). The absolute numerical agreement 1s somewhat fortuitous,
however, as Rohr et al used a rather arbitrary definition of Ri*. Rohr et al
found a peak Rf value of 20%, ie a peak value of the same order as given by
Linden (Fig 4.3). Rohr et al argue that is the experiments which they analyzed
this peak value occurs when the overturning eddies have the largest size

allowed by buoyancy.

According to McEwan (1983) for large Ri*-values mixing events are infrequent
and limited in volume. Therefore, while molecular diffusivity may be insigni-
ficant in the mixing events themselves, averaged over the whole volume of the
layer with linear profiles of density and velocity the dissipation rate e may
include a 1large component of laminar viscous dissipation which contributes
nothing to the vertical mixing. On this basis, McEwan relates the mixing
efficiency to the dissipation in the mixing events only. Doing so, he relates
the mixing efficiency only to a fraction of e. Because of Eq. 4.17, this means
that he finds higher mixing efficiencies than given by Linden (1979). Making
the above distinction in the analysis of measurments which he performed,
McEwan found a mixing efficiency of the order 0.26 (based on the energy dissi-
pation in the mixing events themselves) which in first approximation is inde-
pendent of Ri" for Ri*s 0.4, the range of Ri*—values covered in the experi-

ments.

The above limiting Rf values apply for conditions of local equilibrium, i.e
when the effect of diffusive transport and variations with time may be neglec-
ted in the turbulent energy balance (Eq 4.11). For E' > 0.5, Gartrell (1980)
found experimentally that Rfcr becomes larger with increasing values of the
parameter E*. defined by the relationship

o (4.21)

where E* . dimensionless ratio, defined by Eq 4.21.
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The lncrease of Rf 1s apparently due to the fact that in Gartrell's experi-
ments part of the mixing is induced by the turbulent transport of turbulent

*
energy, when E > 0.5.

4,4 Summary

This chapter gives the effect of stable density stratification on turbulence.
It does so in terms of the Ozmidov length scale of turbulence, LR and the
Kolmogorov length scale of turbulence, Ly (Tables 4.1 and 4.2). Overturning
turbulent motions cannot be maintained and internal wavelike motions result
when the length scale of the largest overturning motions exceeds the Ozmidov
length scale. This was shown to be equivalent to the gradient Richardson
number, Ri, being in the order 1 to 2.5. Overturning turbulent motions cease
to exist because of the combined effect of buoyancy and viscosity when the
parameter Lgp Lk'1 is smaller than the dimensionless parameter C1'1 C,. From
experiments C1'1 C, was found to be of the order ten.

The effect of density stratification on turbulence can be related to the
gradient Richardson number, Ri, provided that the local production of turbu-
lence energy is an important factor in the turbulent energy balance. If not,
the effect of stratification on turbulence has to be related to the parameter
E*, defined by Eq 4.21. This means that different dimensionsless parameters
have to be used to describe the effect of a stable stratification for the ebb
tide and flood tide regime of turbulence, distinguished at the end of section
Vs
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5 On turbulence modelling

5.1 Introduction

This chapter lists the main characteristics of some turbulence models. This
information is wused in the following chapter to show the implications of
including the effect of stratification in turbulence modelling.

Various reviews on turbulence modelling are available in the literature (Mel-
lor and Yamada (1974), Reynolds (1976), Saffman (1977), Rodi (1980)). Reviews
including applications to stratified flows are given by Mellor and Yamada
(1982) and Rodi (1985). Among the most advanced applications in three-dimen-
sional salinity intrusion modelling is the application of the algebraic

stress/flux relations by Oey et al (1985) in their study of the salinity

intrusion in the Hudson-Raritan Estuary.

In turbulence modelling the following distinction is being made:

(1) Zero-equation models : models using only partial differential equations
(pde's) for the mean velocity and mean concentration field, and no turbu-
lence pde's; in stead they use empirical expressions for mixing length,
eddy viscosity and eddy diffusivity

(2) One-equation models : models involving an additioﬁal pde relating to the
turbulent velocity scale

(3) Two-equation models : models involving additional pde's relating the
turbulent velocity scale and the length scale of turbulence

(4) Stress-equation models : models involving pde's for all components of the
turbulence stress tensor, and

(5) Large-eddy simulations : computations of the three-dimensional time-depen-
dent large-eddy structure and a low-level model for the small-scale fturbu-

lence.

Large-eddy simulations are serving mainly to help assess the lower level mo-
dels. For this reason large-eddy simulations are not discussed further in this

review.

The applications to stratified flows listed by Mellor and Yamada (1982) and
Rodi (1985) primarily deal with two-equation models and algebraic stress-

equation models.
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5.2 Zero-equation models

Zero-equation mdels are essentially based on equations like Eq 4,13, According
to Boussinesq's eddy viscosity concept, the eddy viscosity Ve is treated as a
scalar quantity, though, from theoretical arguments (Hinze , 1975, pp 23-25)
it may be concluded that the eddy viscosity is a tensor of second or higher
order. This is not too important, however, for two-dimensional salinity intru-
sion modelling (one dimension being the vertical one), as in this type of
modelling it is sufficient to reproduce the vertical turbulent transport of

momentum and mass.

5.3 One-equation models

In addition to Eq 4.13, the one-equation models are based on the equations

4 -1
Vg cu k= L Kt L1 Ve (5.1)
and € = ch3/21.'1 (5.2)
where vt : eddy viscosity
Kt : eddy difusivity
Oy : turbulent Prandtl number
k : turbulent kinetic energy
dissipation rate of turbulent energy per unit mass of fluid
L : length scale of turbulence
cu,CD : modelling constants.

Egqs. 5.1 and 5.2 express v K.and € in k and L. Hence, the turbulent tran-

£ 't
sport of momentum and mass can be derived from the conservation equation of
turbulent kinetic energy, which contains k and e, and from a specification of

the variation of L in the considered flow.

In its complete form, in addition to the turbulent transport of momentum and

mass (double correlations between turbulent fluctuations), the conservation
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equation for turbulent energy contains trirple correlations between turbulent
fluctuations (see e.g. Rodi (1980), Eg. 2.34). Hence, when applying the above
procedure, the triple correlations contained in the conservation equation for
turbulent energy must be modelled, i.e. expressed in the double correlations.
For the modelling procedures involved, the reader is referred to the literatu-
re on the subject (e.g. Rodi (1980), Section 2.5).

5.4 Two-equation models

Combining Eqs. 5.1 and 5.2 gives

= C k25‘1 K = 0-1

V= ¢y = % Vg (5.3)

Eq. 5.3 expresses Ve and Ktin k and e, Hence the turbulent transports of
momentum and mass can be derived from the conservation equation for turbulent
energy, k, and the conservation equation for dissipation, e, provided that the
triple correlations contained in these transport equations are modelled (see

e.g. Rodi (1980), Section 2.6).
The conservation equation for dissipation may be looked upon as a pde for the
length scale of turbulence. Other versions of this pde are given by e.g.

Mellor and Yamada (1982).

5.5 Stress-equation models

Solving the conservation equations for the stress-tensor uiu& and for the mass

flux vector G:FT should be the correct way to get around the limiﬁations of
the eddy viscosity concept, underlying the models mentioned in the preceeding
sections. But owing to the occurrence of higher-order correlations in these
transport equations modelling assumptions concerning these higher-order corre-

lations are to be introduced.

Rodi (1985) concludes that stress-equation models involve quite a large number
of differential equations, the solution of which is not a trivial task and may

also be expensive. He further observes that at present stress-equation models

have their largest practical significance as starting point for the develop-
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ment of two-equation models using non-isotropic algebraic stress/flux rela-
tions (see also Rodi (1980), Section 2.7).

5.6 Two-equation models using algebraic stress/flux relations

The conservation equation for turbulent energy may be written as

== "iﬁ - Diff(k) = P +G-¢ (5.4)
where P : production by turbulent shear
G : buoyant destruction

Diff (k) : diffusive transport terms

The transport equations for the stress-tensor are of the type (Rodi (1980),
Section 2.7.c)

utu’ u'u'
-————1 + u —————l - Diff(a'u’ uj) = F(u'u' ) (5. 5]
where
Fla'lul, ) : functional relationship between ulu! and other second-

173 1

order correlations.

The critical assumption in the derivation of the algebraic stress/flux rela-

tions is the assumption

S T
—1 + ——J— - piff (@ 0 T ——iTl [—-%‘;+ 1, %5— - Diff(k)1(5.6)
i

which implies that the temporal and spatial change of u'uj/k is small compared
with the change of uiui itself (Rodi, 1976).

When the assumption of Eq. 5.6 is satisfied, substituting Eqs. 5.4 and 5.6
into Eq. 5.5 allows the latter differential equation to be reduced to an
algebraic equation, as the substitution yields

‘—‘l(P+G'E) = F(uiuj ) {5.7)
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The parameters k, €, P and G can be derived from two-equation turbulence
models. Therefore, Eq. 5.7 is reduced to an algebraic equation when the hig-
her-order correlations contained in the functional relationship F are modelled
as is done in the stress-equation models. Reducing differential equations to
algebraic functions of k and € is the strength of the above prodedure. This is
elaborated upon further in the following chapter.
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6 Effect of stable stratification on length scales of turbulence

6.1 Effect of geometry and stratification on length scales of turbulence

In homogeneous, unstratified tidal flows the length scale L of the large
energy containing eddies is limited to a length L, which is controlled by the
external boundaries (e.g. bed and free surface). This length scale will be
referred to as the length scale for neutral conditions.

Stratified flows may exhibit interfacial zones with vertical density gra-
dients, which are substantially larger than elsewhere over the depth. For the
time being the interfacial zones are assumed to be sufficiently pronounced to
act as internal boundaries. The additional assumption is made that outside the
| interfacial zones the stratification is sufficiently weak to have no effect on
the development of turbulence. Then the length scale L is limited to a length
Lm, which is controlled by both external and internal boundaries. This length
scale will be referred to as the master length scale for stratified condi-

tions, a terminology derived from Mellor and Yamada (1982).
Generally speaking

\
L, SL (6.1)

where Ln: length scale of large energy containing eddies for neutral

| conditions, controlled by external boundaries only

Ly: master length scale for stratified conditions, controlled by both
external and internal boundaries, assuming density stratification
outside interfacial zones to have no effect on development of turbu-

lence.

Whether or not a master length scale Lm can be distinguished depends on the

vertical density gradients outside the interfacial zones.

The Ozmidov length scale Lp (Eq 4.6) is expressed in local parameters
(e and N). Hence, at a local level the Ozmidov scale defines the upper limit

I vl AT L N s
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permissible for the size of overturning turbulent motions. Therfore,

L =L, if Lg> Ly L = C4Lg 1if Lg << Ly (6.2)
where Lp: Ozmidov scale defined by Eq 4.6.
Cq: dimensionless parameter, defined in Table 1.

Further assuming a faired transition between the asymptotic values given by Eq
6.2 (Kranenburg, 1985)

LR
=f (=) L=L forL_ -+ =
iy 1 Lm m R (6.3)

cic

L = C1LR for LR + 0

where f,: functional relationship, defined by Eq 6.3, represented in Fig 6.1.

From dimensional arguments

v = cvk;L K= ;f kZL e=Cp E3/2 (6.4)
where “t : eddy viscosity
Kt : eddy diffusivity
k : turbulent energy (Eq 4.12)
o, : turbulent Prandtl number, o = v K
H rate of dissipation of turbulent energy per unit mass of fluid
cv. CD : modelling constants.

For local equilibrium (dk/dt = O and no diffusive transport in Eq 4.11),
substituting Eqs 4.13, 4.14 and 6.4 into the turbulent energy balance (Eq

4,11) gives.

1 1,83 _
( )2
P

(6.5)

Olo
< o
l"lx
n




Eqs 4.6, 6.4 and 6.5 into Eq 6.3 gives

L
e i

sl -1y 134 (6.6)
m D Lm ut

1 Ri

where Ri: gradient Richardson number, defined by Eq b1,

Appendix A elaborates upon the significance of the above findings for the
Rotterdam Waterway Estuary.

In turbulent motions collisions occur between lumps of fluid. The collisions
will influence the momentum of the lumps involved immediately, while the lumps
of fluid may retain their identity, e.g. their density. If the lumps are
temporarily in a surrounding of different density, buoyancy forces tend to
bring them back to their original equilibrium level. The time needed for
buoyancy to do so may be small in comparison with the time needed for the
lumps to exchange their density with the fluid they are temporarily surrounded
by. This means that with increasing stratification vertical exchange of momen-
tum becomes a more efficient process than vertical exchange of mass. There-
fore, and because of Eq 6.6
v

£ L
- - f (Ri) ik f (Ri) (6T
t m

%
Turner (1973, pp, 149-150) argues that the functional relationship between o
an Ri is due not to the suppression of the velocity and density fluctuations
themselves, but to a reduction of the mean product w'p' . In the limit of
pure internal wave motion, p' and w' are 90° out of phase, so this corre-

lation tends to zero. This occurs for Ri-values given by Eq 4.20.

Turbulence models need the master length scale and the functlional relation-
ships of Eq 6.7 as input, unless they are capable to produce this information
as output.

The following section relates the above input to the damping functions used in
zero-equation and one-equation turbulence models. How this input can be pro-

vided by higher-order turbulence models is the subject of Section 6.3, An

particular Section 6.3.2.
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6.2 Zero-equation and one-equation turbulence models

6.2.1 Damping functions to express effect of stratification on scale of

turbulence

Because of the considerations of the preceding section, damping functions have
to be introduced in all turbulence models which relate the eddy viscosity and
the eddy diffusivity with the length scale L.

Applying Prandtl's mixing length hypothesis to stratified flows, it is neces-
sary to include the effect of stratification, both acting as an additional
internal boundary and at local level. As an internal boundary it is included

by the parameter Lan'1, at local level by damping functions Fp and Gy, i.e.

L. 2 = L 2 =

2, m 9u 2 ., m 9u
v, = L (Ln) |55] Fo (R1) K = L (Ln) |52 <Gy (R1) (6.8)
where u : veloeity in horizontal main flow direction
A : vertical coordinate, positive when directed upwards

Fo(Ri), Gg(Ri): damping functions, defined by Eq 6.8
Except for very pronounced interfacial zones, the distinection between what
effect of stratification to include in either the damping functions or in the
parameter Lan'1 is an arbitrary one. This is an item which is elaborated upon

in Section 6.2.2.

Substituting Eq 6.5 into Eq into Eq 6.4 gives
2
=c L (= -3 =] (6.9)

For homogeneous flow Ri = 0 and L = L . Therefore, Eq 6.9 gives Cy * e 3, and
AY)

from Eqs 6.8 and 6.9
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2 2

L -B1.% -1 L _ Riy%

Fo(R1) = (1) (1 - 23) Go(RL) = o' () (1 = =2) (6.10)
m t m £

Hence in order to determine the damping functions the information of Eq 6.7

must be provided as input.

For the one-equation model, which is based on Eq 6.4, the above procedure

gives

L

v b m
F, (Ri) K, 5t K% L L F, (R1) (6.11)

L
.

L
n

Q

A
v cvk Ln

t

with

F, (Ri) = — (6.12)

where F, (Ri): damping function, defined by Eq 6:11s

Applying the k-L turbulence model to stratified flows the damping function Fqs
which is equal to L Lm'1. and the parameter L have to be specified as funec-

tions of Ri.

Hence, determining the damping functions of this model also requires the
information of Eq 6.7 as input.

6.2.2 Limitations of damping functions

Introducing the damping functions distinction has been made between the effect
of stratification acting as an internal boundary (incorporated in the length
scale Lm) and that at local level (incorporated in the damping functions).
This distinction seems to some extent an arbitrary one, since the scale of
turbulence is such that any eddy covers a considerable height range. Therefore
it is by no means obvious that there should be a simple dependence of Fg, Go
and Fq on a strictly local parameter as the gradient Richardson number, Ri
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(Ellison and Turner, 1960). Therefore, for steady flow Delvigne (1986) relates
the damping not to the local stratification, pertaining at the considered
location, but to the stratification of a more extended area around it. For the
same reason for estuarine tidal flows, throughout the depth, Odd and Rodger
(1978) relate the damping functions with the magnitude and relative depth of
the local peak Ri value. They do so unless the local Ri values inecrease conti-
nuously from the bed upwards. Only in the latter case, throughout the depth
they relate the damping functions with the local Ri values.

In line with the above observations, from a conceptual point of view Mellor
and Yamada (1982) deem it incorrect in turbulence modelling to use an equation
which describes the small-scale (local) turbulence to determine the master
length scale. This they observe in connection with the dissipation transport

equations of the k-e model.

In tidal estuaries the bed shear stress is proportional with the velocity
squared. Therefore it is about zero at tidal slack. By then, in partly mixed
estuaries the local shear stress 1s primarily influenced by longitudinal
density gradients, and this influence remains large compared to that of the
bed shear during a significant part of the tidal cycle (Abraham, 1980). For
this part of the tidal cycle Lan'1 +« 1, and L has to be specified when
applying Eqs 6.10 - 6.12. This information on Lm cannot be derived from measu-
rements made in steady atmospheric or laboratory flows, since in these flows
longitudinal density gradients tend to be small. These arguments are elabora-

ted upon in appendix B.

For homogeneous tidal flows, neglecting the convective accelerations while
subtracting the depth averaged equation of motion from that pertaining at a

local level gives

(6.13)

1_?3(&'-3) 1 g
—_ 3 =R T -
p 0

t
P

where T : turbulent shear stress (positive when decelerating fluid above
flowing in positive direction)

rb: bottom shear stress
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z : vertical coordinate, positive when directed upward, z =0
corresponds to bottom
h : water depth

7 : depth averaged value of u

For Ty > 0 and accelerating flow (aﬁxac > 0), the integral of Eq 6.13 is
negative for any z, while for decelerating flow it is positive. Further, in
homogeneous flow
- 2
- 2 ,9u
= — R
T=9p Ln (az (6.14)
Therefore, 2 being equal, 1in accelerating homogeneous flow production of
turbulent energy, T 33732. tends to be smaller than it is in steady flow,
while in decelerating flow it tends to be larger. This has the effect of an
hysteresis in the mean flow-turbulence system (Gordon (1975), Mc Lean (1983),
Lavelle and Mofjeld (1983)).

The above effect is the most pronounced when BEIBC is large compared with
(Tb/B)h-1, i.e. at tidal slack. Therefore, damping functions to be applied at
slack tide cannot be derived from steady flow experiments.

Appendix C gives the ratio of the terms at the right hand side of Eq 6.13 for
Rotterdan Waterway conditions.

The damping functions (Eqs 6.10 and 6.12) apply for conditions of local equi-
librium, i.e. when the effect of diffusive transport and variations with time
may be neglected in the turbulent energy balance. It may be expected that
these conditons are not satisfied where during the flood tide 3u/3z = 0. (Fig
2.3).By then it may be expected that the damping functions depend on the
parameter E' (Eq. 4.21), because of the arguments given in Section 4.3 when

introducing this parameter.

For stratified tidal flow the above considerations imply that the damping
functions vary through the tidal cycle. At slack tide they are to be related
to 3a/3t and Ly with Ly « L, and on the flood tide to E .
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6.3 Two-equation turbulence models

6.3.1 k-¢ model

The necessity to use damping functions does not arise in turbulence models
which relate the eddy viscosity and eddy diffusivity to local parameters. For
instance, in the k-e¢ model (Section 5.4)

n
Q
n

_(6.15)

Q
=
mlx

For local equilibrium the turbulent energy balance satisfies Eq 4,14, Substi-
tuting Eqs 4.13 and 6.15 into Eq 4.14 gives

e
g = L e Sl (6.16)

Vertical motions are damped by density stratification. Therefore the ratio
atw k-1 decreases with increasing Ri. The mixing efficiency Rf = Ri 021.

Hence, from Fig. 4.2 it follows that the term between brackets of Eq 6.16
decreases with increasing Ri for Ri < Rie*, while it increases with increasing

Ri for Ri > Rie'.

Applying the k-¢ model to stratified flows, the model constant cu and the

parameter o, have to be specified as functions of Ri. It is not necessary,

£
however, to specify the parameter L, Ln'I, as the model uses a partial diffe-

rential equation related to the turbulence length scale to determine L. This
differential equation in itself, however, is a critical issue in turbulence
modelling (Mellor and Yamada, 1982).

6.3.2 Algebraic stress/flux relations

For stratified flow under conditions of local equilibrium the procedure of
Section 5.6 gives Op s u'w' k_1 and cu (Eq 6.16) as a function of the flux



- 47 -

Richardson number, i.e. the ratio of the terms P and G contained in Eq 5.7. As
Rf = ut_1Ri, these functions can also be expressed in Ri. Using this method
distinction has to be made between the surface layer, close to the boundary,
and free shear flow, further from the boundary. This is elaborated upon fur-

ther in Section 6.4.

For stratified free shear flow under conditions of local equilibrium Launder
(1975) applied the above method. He used experiments of Webster (1964) to

determine the value of model constants. In this way he derived

-1 1 - 2.07 Rf
9% 9%0 = T = 2.97 Rf (6.17)

where Rf: flux Richardson number, defined by Eq 4.26
index 0: index referring to neutral conditions (3p/93z = 0)

In the experiments of Webster Rf, = 2.91"1. On this basis Smith and Takhar
(1979) generalized Eq 6.17 to obtain the expression (see also Smith and Tak-
har, 1981)

°t°t0-1 -1 2R 3 (6.18)
1 - Rf Rfc

where ch: maximum (eritical) Rf value, i.e maximum mixing efficiency.

Ellison (1957) derived an expression for ¢, from the conservation equation for

£
turbulent energy and approximate equations for the turbulent fluctuations of
mass and the turbulent transport of mass (see also Turner, 1973, Section

5.2.3). Under the closure assumptions adopted, Ellison obtained the expression

2
0 0y | = R (6.19)
1 = Rf Rfc

As Rf < Rf, << 1, Eq 6.19 about coincides with Eq 6.18.
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For the k-& model the relationship between Ut’ c]J and Ri can be derived from
algebraic stress/flux relations. For instance, Goussebaile and Viollet (1982)
introduced the relationship between these parameters, which can be derived
from the above work of Launder (1975), into the standard k-e¢ model to determi-

ne the development of the intermediate layer in two-layer stratified flow.

The zero-equation and one-equation turbulence models require o and L as
input. The required information on L, cannot be derived from algebraic stress/
flux relations as such. It can be derived from two-equation turbulence models
using algebraic stress/flux relations. However, these models contain a pde
relating to the turbulence length scale, and therefore give L as a function of
time and spatial coordinates, not as a function of Ri or other local parame-

ters.

6.3.3 Turbulent Prandtl number for neutral conditions and ecritical flux

Richardson number

In Eqs 6.18 and 6.19 the turbulent Prandtl number for neutral conditions,
°t0' and the critical flux Richardson number Rfc have to be specified. There

is no unique information on these parameters in the literature.

From atmospheric boundary layer data Mellor and Yamada (1982) give

Opg = 0.74. Businger et al (1971) o = 0.77, Pruitt et al (1973)

o = 0.88 and Webb (1970) O o = 1.0. From laboratory data, which are descri-
bed further in Section 6.5, Mizushina et al (1978) derive g = 0.83.

On theoretical grounds Ellison (1957) proposes Rf, = 0.15, which has been
spupported experimentally in the laboratory (Ellison and Turner, 1960). From
field data collected in the Great Quse estuary during the ebb tide 0dd and
Rodger (1978) derive Rf, = 0.08. From algebraic stress type turbulence models
Arya (1972) derives Rf, = 0.12 - 0.25, Yamada (1975) Rf, = 0.18 - 0.27 and
Launder (1975) Rf, = 0.31, depending on the set of empirical model constants
introduced into these models. From their laboratory experiments, Mizushina et
al (1978) find Rf, - 0.07 - 0.20 (Section 6.5, %, Flg 65,8).
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6.4 Wall effect on turbulent pressure field

Turbulence parameters and the effect of stability thereon are significantly
different for flows which are influenced by boundaries, and flows which are
not. Gibson and Launder (1978) illustrate this effect in Table 6.1, which
gives the variation of three dimensionless turbulence parameters under stable
conditions. The two flows compared are the lower region of the atmospheric
surface layer, close to the ground and a horizontal free shear flow in which a
linear vertical profile of mean velocity and density has been established. The
experimental data on the atmospheric surface layer are amongst others from
Businger et al (1971). The entries for the free shear flow relate to the wind
tunnel measurements of Webster (1964) and Young (1975). Both cases are close
to local equilibrium. The behaviour summarized is basically and consistently

different for the two situations.

Gibson and Launder (1978) relate the above difference with the wall effect on
the fluctuating pressure field. That is, the pressure contributes to correla-
tions which appear in the transport equations for Reynolds stress and mass
flux, so that turbulent transport processes are affected not only by the
stratification but also by the modification of the fluctuating pressure field
by the presence of a wall. Gibson and Launder (1978) supported this explana-
tion quantitatively by modelling the pressure-containing correlations which
appear in the conservation equation for the Reynolds stress and mass flux.
This modelling accounts for both gravitational effects and the fluctuating
pressure field by the presence of a wall. The predicted changes were shown to
agree with the differences listed in Table 6.1. The model by Gibson and Laun-
der (1978) is an extention of the model by Launder (1975), referred to in
Section 6.3.2. The latter model applies to the free shear flow.

In line with the above observations Ueda et al (1981) found the effect of
buoyaney on turbulent transport processes in the lower atmosphere to vary with
the level of the atmosphere observed. Measurements made in the surface layer,
mainly within a few metres adjacent to the ground surface (Webb (1970), Oke
(1970), Businger et al (1971) and Pruitt et al (1973)) show a weak dependence
of the ratio Kt/Kto' where index o refers to neutral conditions, while measu-
rements in the layer form 25 to 200 m (Deardorff, 1967, and Ueda et al, 1981)
show a significant effect of increasing stability (Fig 5.2).
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Table 6.1 Effects of stable stratification on atmospheric surface layer

and free shear flow (after Gibson and Launder, 1978)

r—— ' Changes produced by increasing Rf from 0 to 0.2
Turbulence Free shear flow Atmospheric surface
parameter layer
[w'w'/u'u‘]]é decreases by about 30% : increases by about 20%
W'p'/u'p! decreases by about 70% increases rapidly by

' 50%, then levels out F

at-1 decreases by about 50% | initially decreases by f
| 10%, then rises slowly |

| H

The two-equation model of Mellor and Yamada (1982), is geared to wall boundary
layers. It is this model which Oey et al (1985) apply to the Hudson-Raritan

Estuary.

6.5 Experimental data

Presenting experimental data, for reasons given at the end of Section 6.2.2

distinection has to be made between steady flow and tidal flow.

6.5.1 Steady flow

Several studies on the effect of stratification on the development of turbu-
lence in stratified open-channel flow give the dimensionless parameters

vtvto-1 and Ktho_1 as a function of the local gradient Richardson number, Ri.
These parameters may not be equated with the damping functions FO and Go’
however, unless Lm = L.rl and stratification and longitudinal density gradients
have little effect on 3u/3z (Eq 5.8).The above conditions are not satisfied
when stratification becomes of some significance. By then unique dependence on
= F Gy | !

, not for v v =1 and Ktho‘ J

Ri occurs only for F tVto

o? GO and Ut
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Mizushina et al(1978), Ueda et al (1981) and Komori et al (1982 and 1983)
describe different aspects of the same series of laboratory experiments.
Together they present detailed experimental information on the turbulence
structure in a stably stratified outer layer in steady open channel flow,
under conditions of local equilibrium. This outer layer coincides with the
layer of free shear flow distinguished by Gibson and Launder (1978) in Table
6.1. The experiments involved will be referred to as the Mizushina experi-

ments.

Fig. 6.3 gives distributions of the velocity and temperature typical for the
Mizushina experiments. In the experiments saturated steam was mildly condensed
on the free surface in order to obtain stably stratified flow. This seems to
explain the shape of the temperature distributions. For reasons explained in
Section 6.4 and presumably because of the typical shape of the temperature
distribution, the correlations given in the following text apply to that part
of the outer layer where surface effects are neglible, i.e 0.4 < z/h < 0.75
(Komori et al, 1982).

Measured phase-coherence relationships suggest that in strongly stable condi-
tions (Ri* = 0.9) background motion is a wavelike one. This is compatible with
Eq. 4.20

For 0.4 < z/h < 0.75, Fig 6.4 gives correlations of turbulence quantities with
local Ri values. The differences with the measurements of Webster (1964) seem
due to the fact that in the first position of these measurements there was an
appreciable effect of the decaying turbulence of the shear generating grid
(Rohr et al, 1985). The same seems to apply to the measurements of Young
(1975).

-1 1 -1
eV ! KthO and Ut as function

of the local Ri-value. Fig 6.8 presents the information given in Fig 6.7 by

Figs. 6.5, 6.6 and 6.7 give respectively v
comparing the local flux Richardson number with the local Ri-value.
According to Bloss (1985)the outer layer results of the Mizushina experiments

may be described by the following emperical relationships, which are plotted
in Figs 6.5, 6.6 and 6.7.
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~1 =] -1 -3 =) 2
VeV, = (1+3R1) KK, = (1 + 3R1) 0.0, = (1 +3Ri)
(6.20)

Functional relationships of this type were proposed by Rossby and Montgomery
(see Kent and Pritchard, 1959) based on the argument that the turbulent kine-
tic energy per unit mass of fluid for the neutral case should be equal to the
sum of turbulent kinetic and potential energy per unit mass of fluid for the
stable case.

For the Mizushina experiments O o = 0.8 and Rfca 0.1. (Fig 5.8 with Rf,
ranging from 0.07 to 0.2). The relationship which is obtained by substituting
these parameter values into Eq 6.18 (derived by Launder, 1975) and Eq 6.19
(derived by Ellison, 1957) is plotted in Fig 6.7.This figure shows a satisfac-
tory agreement between the above theoretical relationships and the Mizushina

experiments. However, in accordance with Eq 4.16 Rf = o, L Ri. Hence, assu-
-1

t

this to apply to Eqs 6.18 and 6.19 over the whole Ri-range of this figure.

Hence according to the models of Ellison (1957) and Launder (1975) Rf increa-

ming o = Ri™, Rf increases with increasing Ri for n < 1. Fig 6.7 shows

ses with increasing Ri for Ri up to about 3. Nevertheless, the experiments of
Fig 6.7 show a maximum Rf value for Ri = 0.3 (Fig 6.8).This may imply that the
closure assumptions underlying both models may not be applied to the extreme
of strong stability. This could well be true for the assumption behind Eq 5.6.

Fig 6.6 illustrates that the outer layer laboratory observations made in the
Mizushina experiments coincide with observations made in the outer atmospheric
layer by Ueda et al (1981).

Fig 6.9 gives a comparison of the results of the above experiments with those
of other investigators. The differences with the measurements of Businger et
al (1971) and Pruitt et al (1973) are due to the fact that these measurements
were made in the surface layer (Fig 6.2). The explanation of the differences
with the mearurements of Webster (1964) is even with Fig 6.4.

The presented experimental data relates to eddy viscosities and eddy diffusi-
vities rather than to turbulence quantities. Information on the effect of
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stratification on turbulence quantities is of interest for the development of
turbulence models and to determine model constants. It can be derived from the
Mizushina experiments (eq Komori et al, 1983) and from the experiments of
Webster (1964) and Young (1975) (Fig 6.4). Further it can be obtained from the
experiments referred to in Section 4,2, i.e. the experiments of Stillinger et
al (1983) (Fig. 4.1), experiments using the same experimental installation
(Rohr et al. 1985, Isweire et al 1986) and the field experiments of Gargett et

al (1984).

Fig. 6.10, 6.11 and 6.12 give the results of the Mizushina experiments, compa-
red with the experimental data collected in the previous literature survey
(Breusers, 1974). The v_v =4 values about coincide (Fig 6.10). The Mizushina

to

experiments tend to give lower Kth0'1 and °t_1 values (Figs 6.11 and 6.12).

For Gt-1 the tendency is about the same as the one represented in Fig 6.9.

6.5.2 Tidal flow

For salinity intrusion into a partially mixed estuary Odd and Rodger (1978)
present field data on damping funcions as observed at different instances of
time on the ebb tide. Similar data are presented by Knight et al (1980). From
their measurements 0dd and Rodger derive an empirical expression for L Ln-1.
This parameter is given as a funciton of the local Ri-value, when Ri increases
continuously from the bed upwards. If not, they relate L L.n'1 with the magni-

tude and relative depth of the local peak Ri-value.

Further field data on the effect of stratification on damping functions are
based on tidally averaged parameter values (e.g. Kent and Pritcard, 1959,
Bowden and Gilligan,1971). Damping functions obtained from laboratory measure-
ments made at different instances of time on the ebb tide are given by van
Rees (1975).

The above data are not conclusive with respect to which damping functions to
apply in salinity intrusions modelling using zero-equation or one-equation

trubulence models. Nor do they indicate how to relate Ly to L, at low water

slack. (See Section T7.1).
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Measurements on turbulence quantities and the effect of stratification thereon
are scarce. A summary is given by West et al (1986), who further present the

result of exploratory measurements on the subject made by them.

6.6 Final remark

The shear production of turbulent energy in the wall region is caused by
organized structure motions which are intermittent random cyclic motions
consisting of large eddy inrush into the region near the wall, and ejection of
near-wall fluid mass. This is referred to as the bursting process and turbu-
lent energy is mainly produced in these inrush and ejection phases. There is a
substantial literature on the subject (e.g. Talmon et al, 1986) which justi-
fies separate review. The effect of density stratification on the bursting
process has been studied in the Mizushina experiments (Ogino et al, 1982) and
8 in the field measurements of West et al, 1986. Ogino et al conclude that the
characteristics of the inrush and the ejection are well correlated with the

local gradient Richardson number.
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7 Summary and conclusions

7.1 On salinity intrusion modelling

A turbulence model, used for salinity intrusion modelling, must be capable of
reproducing the three regimes of turbulence, distinguished at the end of

section 1.2.

For the Rotterdam Waterway a significant fraction of the total time-integrated
dispersive transport through a station close to its mouth occurs at low water
slack (Fig. 2.3). Therefore salinity intrusion into that estuary is primarily
controled by the low water slack flow conditions. That makes it important to
reproduce the slack tide internal regime of turbulence, distinguished at the
end of section 1.2, properly in salinity intrusion modelling studies for the
Rotterdam Waterway in order to obtain a proper representation of the salinity
intrusion as such. In general this applies to estuaries, which in accordance
with a criterion presented by Abraham (1980) are sufficiently stratified.

When tidal currents are large, turbulent energy 1is generated at the solid
boundaries. In essence, this boundary induced turbulence is the mechanism
which controls the stratification of the estuary by external mixing. There-
fore, the ebb tide and flood tide external regimes of turbulence, distin-
guished at the end of Section 1.2, must be included properly in salinity
intrusion modelling studies in order to obtain a proper representation of the

stratification of the estuary.

In order to satisfy the above requirements the damping functions used in zero-
equation and one-equation turbulence models must vary with the regime of
turbulence. At tidal slack they have to describe mixing which is primarily
internal, to account for the effect of the acceleration 3u/d3t and to be re-
lated to the master length scale Lg, defined in Section 6.1. Because of the
density induced flow, at tidal slack Lm < Ln, where Ln is the length scale for
non-stratified conditions. On the ebb tide and on the flood tide the damping
functions have to describe mixing which is primarily external. On the ebb tide
the damping functions may be related to the gradient Richardson number, Ri, as
the production of turbulent energy is large. On the flood tide they are to be
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related to the parameter E* (Eq. 4.21), as the production of turbulent energy
is small and the turbulent transport of turbulent energy is a factor to be
considered. Damping functions, which account for the above effects explici-
tely, are not available in the literature and cannot be derived from higher
order turbulence models. This limits the capabilities of zero-equation and

one-equation turbulence models for salinity intrusion modelling.

The above issue is clearly illustrated by Smith and Takhar (1981,p. 32), who
applied a one-equation turbulence model in salinity intrusion studies. In this
application they found specifying I..m a major problem, which was solved by
deriving Lm from experiments made in steady atmospheric flow. By doing so they
in essence neglected the effect of longitudinal density gradients, because of
which at low water slack Lp = L.

The above effect of the longitudinal density gradient is further neglected in
the applications of zero-equation turbulendce models in salinity intrusion
modelling made by Hamilton (1975), Blumberg (1977), Odd and Rodger (1978),
Perrels and Karelse (1981,1986), Wang (1983) and Bloss (1985). These models
use a variety of damping relations, each in agreement with a particular set of
data. Some of these relations are given in Figs 7.1, 7.2 and 7.3. These figu-
res give the relation between “tvbo-1' KK i

t'to * %o
derived from the damping relations used, assuming that stratification does not

and Ri, as can be

influence the vertical gradient of the horizontal velocity component. The
-1

damping relations used by Blumberg show the unrealistic feature of VeVt o

increasing with increasing Ri.

In principle a two-equation turbulence model, such as the k-¢ model, in com-
bination with algebraic stress/flux relations are capable to describe the
three regimes of turbulence distinguished at the end of Section 1.2. The
algebraic stress/flux relations are to be used to express the effect of stra-
tification on the model constants of the two-equation model. This leads to the
type of turbulence model applied by Oey et‘al (1985). A factor to be con-
sidered in such models is whether the wall effect on the turbulence pressure

field is included properly.



_57_

Two-equation turbulence models contain a partial differential equation to
determine the length scale of turbulence. Hence, they give this length scale a
function of time and spatial coordinates, not in terms of local parameters
which characterize the local flow or the local turbulence. Therefore, the
damping functions to be wused in zero-equation or one-equation turbulence
models cannot be derived using the algebraic stress/flux approach.

7.2 On boundary-induced entrainment

The 1limited information on boundary-induced entrainment, included in this

review, is summarized in Section 3.3.

7.3 Recommendations for further research

This section gives some recommendations for the study of turbulence under
stratified conditions, leaving aside subjects like the effect of three-dimen-
sional topographic features either on the bottom or on the banks of a channel
or the interaction between internal waves and turublence.

The effect of the longitudinal density gradient on the flow makes it necessary
to distinguish the three regimes of turbulence, referred to at the end of
section 1.2. Experimental studies on these regimes require this effect of the
longitudinal density gradient to be reproduced. The DHL tidal flume satisfies

this requirement.

A critical issue for a turbulence model to be applied in salinity intrusion
modelling is whether or not it reproduces the internal mixing at low water
slack correctly. The k-e model using algebraic stress/flux relations seems to
satisfy this requirement (Goussebaile and Viollet, 1982). Another option is
the two-equation turbulence model wusing algebraic stress/flux relations,
developed by Mellor and Yamada (1982), and applied in three-dimensional sali-
nity intrusion modelling by Oey et al (1985).

Whether or not a given turbulence model reproduces mixing, which is primarily
internal, can be studied performing experiments and collecting data on the

development of the intermediate layer in steady stratified flow. In the ana-
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lysis of the measurements, it is to be checked how well the above turbulence
models reproduce this data, for practical reasons to begin with using the k-e
model. This procedure will give a first insight into the capabilities of these
models at slack tide. This procedure is recommended as in steady flow turbu-

lence measurements are less involved than in tidal flow.

Reproduction of the longitudinal density gradient and the effect of 3u/3t on
the variation of the flow over the depth is essential in the experiments to
check whether or not a given turbulence model reproduces the internal slack
tide turbulence regime and the external ebb tide and flood tide turbulence
regimes. This requires tidal flume experiments to be performed either to
measure turbulence characteristies or to determine the main flow. Whether
under these circumstances the considered turbulence model works satisfactorily
can be checked either on the turbulence level or on the main flow level,

depending on the type of measurements made.

Turbulence ceases to exist because of the combined effect of buoyancy and

viscosity when LRL;1 < C;1 02 (Table 4.1, item 3), where the experimental
value of C-1C is of the order 10.. In the tidal flume this situation may

2
occur around tidal slack, when viscous effects are relatively important. If

so, viscous effects are a factor to be considered in the calibration and
verification of mathematical salinity intrusion models, using tidal flume

experiments as a reference.

Whether or not the above situation occurs depends on whether or not at tidal
1

slack local LRqu-values are below the above limiting value. The Lgl, = -
values can be determined from the local values of the buoyancy frequency, N,
and the rate of dissipation of turbulent energy, €. (Eqs. 4.6 and 4.8) In the
tidal flume, the latter parameter is difficult to be measured. However, using
the tidal flume experiments as a reference in the calibration and verification
of mathematical models, the parameter e can be derived from these models. If
based on two-equation or higher order turbulence models, these models give €

directly. If based on zero-equation or one-equation turbulence models, a first

estimate of € can be obtained assuming turbulence to be in local equilibrium.
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It is recommended to apply the above procedure in the calibration and verifi-
cation of mathematical models to determine whether or not viscous effects play

a role in the reference material derived from the tidal flume.
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2.2 Neutral stability curves derived for the background flow given by
Fig. 2.1, the zone indicated by u being the zone of unstable condi-
tions and the zone indicated by s being the one of stable conditions
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after Dingemans (1972)); (h = h,, [u |=|u,| and (b =d (h + h,)) ');
A: wave length of disturbance
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Fig. 3.1 Definition sketch showing entrainment rates and density distribution
as observed in the experiments of Kranenburg (to be published). The
horizontal dashed lines bound the transition layer; the dash-dot
line defines the interface between upper and lower layers (after
Kranenburg, to be published).
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Fig. 4.1 Normalized vertical velocity spectra (after Stillinger et al, 1983).
In Figs. (a)-(e): ——N = 0.45 rad/s; ----N=0; Fig. f compares

| spectra measured at different stations, both for N=0.
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Fig. 4.2 Schematic relation between the flux Richardson number Rf (Eq. 4.16)
and the overall Richardson number Ri* (Eq. 2.1) for internal mixing
(after Turner, 1981). The maximum of the curve corresponds to the
equilibrium condition. Ri: is the Ri* value imposed by Kelvin-Helm-

holz instabilities (Section 2.2). External length scales are not
relevant.



0.3

0.2 -

Rf L 4

0.1 OIQ 4.

o‘f.’ ¥ *
D,f'! A
Ve A
! i |
| ¢
0 0.1 0.2 0.3
.
Ri

Fig. 4.3 The flux Richardson number Rf plotted against the overall Richardson
number Ri* for a number of different experiments. e , data from
mixing produced by dropping a grid of square bars through a density
interface. v , mixing induced by firing a number of vortex rings at
an interface. 0 , values calculated from density profiles measured
in the wake of a vertical plate O, a are values of Rf measured for
mixing induced by shear instability at an interface. The broken line
is an approximate representation of the data of Grigg and Stewart
(1963). In the experiment external length scales are not relevant
(after Linden, 1979).
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Fig. 6.1 Suggested relationship between length scales L and Lg defined by Eq.
6.3 for C4= 1 (after Kranenburg, 1985).
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Appendix A: Application of length scale classification to Rotterdam

Waterway Estuary

1 Introduction

This appendix gives an analysis of the maximum ebb conditions observed in the
Rotterdam Waterway Estuary in a station close to its mouth. For this station
Fig. 2.3 gives the vertical distribution of velocity and salinity, 18 hours
coinciding with maximum ebb. The maximum ebb profiles are represented separa-

tely in Fig. A.1.

Approximating the vertical variation of veloeity as indicated in Fig. A.1, up
to a depth of about 10 m, 33/3z = 0.13m s~ ', 3p/3z = - 0.94 kg m ', Ri = 0.56

(Eq. 4.14) and N = 0.097 s~! (Eq. 4.3).

-1
2 LRLN ratio

The vertical distribution of salinity of Fig. A.1 does not exibit an interfa-

ce. Therefore

L~ L, (A.1)
where L;: master length scale, defined in Section 6.1

Ln: length scale for neutral conditions, defined in Section 6 1%
The length scale for neutral conditions can be derived from (Perrels and

Karelse, 1981).

1
Ln= K Z zZ S T h
(&.2)

L = 3 Kk h oy 1 h
n- 4 n
where z: vertical distance from bottom

h: depth

k: von Karmann constant.
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As shown in Appendix B, production of turbulent energy is influenced by both
bottom shear and longitudinal density gradients. From this appendix, for

conditions of maximum ebb velocity

B = [1 +—gz |a§| 1—l-] (A.3)

where 8 : ratio between total production rate of turbulent energy and
that due to bottom shear (Appendix B)
SE/ax : longitudinal gradient of depth mean density
Ty : bottom shear stress.
In first approximation the dissipation rate of turbulent energy rper unit mass
of fluid may be estimated as that pertaining under neutral conditions, the
depth averaged velocity being the same, multiplied by the ratio B. Therefore
3

Uy

E=8Y ¢ (A.4)

where ¢ : disspation rate of turbulent energy per unit mass of fluid
u -

=
Y : ratio between e and ufh_1u

shear stress velocity

The ratio Y varies with z. It can be derived from experimental data as presen-
ted by Hinze (1975, Fig. T7.67).

Eq. 4.6 and Eqs. A.1 - A.4 can be used to determine the ratio LnLR_T. This
procedure gives the results which are listed in Tables A.1 and A.2, for values
of the Chezy coefficient of 80 m%s~1 and 60 m%s”! respectively. The former
value applies to the 1956 stratified maximum ebb conditions (Dronkers, 1969).
The latter value applies to neutral conditions. For z h™! > 0.2 both tables
give values of the ratio LnLR-1 which are substantially larger than the para-
meter C1, defined in Table 4.1, whiech according to the experiments described
in Section 4.2 C1 ranges from 1.4 to 2.0. This means that for the conditions
represented in Fig. 4.1 turbulence is influenced by stratififcation. Given the

Ri-value of 0.56 this was to be expected (Figs. 6.5 - 6.7).
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- value
3 FO a

From Eq. 6.3, for L, >> Ly it may be expected that
- A.
L C1LR (A.5)
where L : length scale of energy containing eddies
Cqy : dimensionless parameter defined in Table 4.1

Lg : Ozmidov length scale (Eq. 4.16).

Hence from Egqs. 6.10, A.1 and A.5

L
R.2,. . BL.¥
FO(Ri) = (C1 E;) (1 ;:) (A.6)

where F,: damping function, defined by Eq. 6.8
Ri: gradient Richardson number, defined by Eq. 4.16
o, ¢ turbulent Prandtl number, o, = vtK;1(vt: eddy viscosity, Kg: eddy
diffusivity).

Figs. 6.5 - 6.7, derived from the Mizushina experiments, apply to steady open
channel flow, where the effect of longitudinal density gradients on the varia-
tion of the horizontal velocity over the depth is small. Hence, from these
figures which apply to 0.4 < z h~1 < 0.75, o;1= 0.2 and F, = 0.4 for Ri =
0.56.

1*valu.es from Tables A.1 en A.2 into

Substituting Ri = 0.56, o;1= 0.2 and L Lo

Eq. A.6 gives F, values which are listed in these tables.

The Fo-values derived from Eq. A.6 are of the same order of magnitude as the
value derived from the Mizushina experiments for the same Ri-value. This
111ustrateé that the length scale considerations of Chapters 4 and 6 are
consistent. Perfect agreement between the F -values is too much to be expected
since turbulence in the three-dimensional Rotterdam Waterway Estuary must have
features which are different from that pertaining in the experiments from

which experimental C1-values and the experimental Fo-value where derived. In



addition, the calculated Fo-values are quite sensitive for the approximations
made in the derivation. With respect to the effect of the Chezy-coefficient
this is illustrated by the difference in F,-values between Tables A.1 and A.2.
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Table A.1: Length scales for Rotterdam Waterway
1956 maximum ebb conditions (C = 80 mzs'1)

R Y L Ly [lnly F_(Eq.A.6) F,
Eq.A.3| 1) | Eq.4.6]| Eq.A.2 Cy=1.4|Cq=1.7 [Cy=2.0 |(Fig.6.5)
0.1| 1.05 | 22.5| 0.73 m| 0.48 m| 0.7
0.2 | 1.09 |12.3[0.51 | 0.96 1.9
0.3 1.1% | 8.5]0.43 | 1.20 2.8
0.4] 1.19 | 6.1]0.37 | 1.20 3.2 | 0.18 | 0.26 | 0.36 0.40
0.5| 1.24 | 4.7]0.33 | 1.20 3.6 | 0.14 | 0.21 | 0.29 0.40
0.6 | 1.29 | 3.8|0.31 |[1.20 3.9 | 0.12 | 0.18 | 0.25 0.40
0.7| 1.36 | 3.1]0.28 | 1.20 4.3 | 0.10 | 0.15 | 0.2 0.40
0.8| 1.39 [ 2.6]|0.26 | 1.20 4.6
0.9 1.45 | 2.1]0.24 | 1.20 5.0
1.0] 1.50 | 1.9/0.23 | 1.20 5.2

characteristic parameter values

h =12m 3u/dz = 0.13 s~'  (Fig. A.1)
u =1.5m s 3p/9z = 0.94 kg n Y (Pig. A1)
G - 80 m4s™! (Dronkers, 1969) Ri = 0.56

3p/3% = 1.1 1073 kg u™¥ 0 =0.2 (Fig. 6.7)

1) after Hinze (1975, Fig. T7.6T)
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Table A.2: Length scales for Rotterdam Waterway
1956 maximum ebb conditions (C = 60 mgs'1)
zn | g Y Lp L || Bube F.(Eq.A.6) F,
Eq.A.3 | 1) | Eq.4.6 [ Eq.A Cy=1.4|Cy=1.7 [Cy=2.0 [ (Fig.6.5)

0.1 1.03 22.5|1.02 m | 0.48 0.5
0.2 1.05 12.3 | 0.76 0.96 . 1.3
0.3 1.08 8.5 | 0.64 1.20 1.9
0.4 1.10 6.1 ] 0.55 1.20 2:2 0.39 0.57 0.79 0.40
0.5 1.13 4,71 0.49 1.20 2.4 0.31 0.45 0.63 0.40
0.6 116 3.8 0.45 1.20 2.7 0.26 0.38 0.53 0.40
0.7 1.19 3.1 ] 0.41 1.20 2.9 0.22 0.32 0.44 0.40
0.8 1.21 2.610.38 1.+20 3.2
0.9 1.24 2.1 0.34 1.20 3.5
1.0 1.27 1.9]0.33 1.20 3.6

characteristic parameter values
h =12m du/d3z = 0.13 87! (Fig.A.1)
i =1.5ms 3/9z = 0.94 kg m™ ¥ (Fig.A.1)
C  =60mks RL = 0.56
3p/3x = 1.1 1073 kg oY 021 = 0.2 (Fig.6.7)

1) after Hinze (1975, Fig. 7.67)
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Fig. A.1 Rotterdam Waterway Estuary, station 1030 km, June 1956; variation of
velocity and salinity over depth at 18 hrs (maximum ebb velocity).
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Appendix B: Effect of longitudinal density gradient on turbulence in
stratified tidal flow

1 Introduction

In stratified tidal estuaries, the flow has the same direction over the whole
depth, except at tidal slack, and the density varies in the 1ongitﬁdina1
direction. In steady stratified open-channel flow with the same direction of
flow over the whole depth, the density varies primarily over the depth, while
the variation of the density in the longitudinal direction is small. Within
this context, this appendix addresses the question whether or not there is a
difference in turbulence between flows with and without a longitudinal density
gradient.

The appendix expands previous considerations on this matter (Abraham, 1980) .

2 Effect of longitudinal density gradient on production of turbulent kine-
tic energy

With a variation of density in the longitudinal direction, the variation of
velocity and turbulent shear - and hence that of the production of turbulent
energy - over the depth is different from as it is without. The longtidudinal
density gradient may be expected to influence turbulence, when there is a
significant difference in the production of turbulent energy with and without
such gradients.

Neglecting the variation in the lateral direction of salt concentration,
velocity and water depth, neglecting advective accelerations, and finally
neglecting the variation of 23p/3x en du/3t over the depth (9p/3x = a?xax,

3u/3t = 3u/adt), for a stratified flow over a horizontal bottom the equation of

motion may be written as

3u 3h 1 3 1 91
e i Z) b == ==0 (B.1)
at x = ax = 0z

where x: longitudinal coordinate, positive when directed landinward
z: vertical coordinate, positive when directed upward and measured
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from the botton (z = 0)

t: time

u: velocity in x-direction

h: water depth

g: gravitational acceleration

1: turbulent shear stress, positive when deceratating fluid above flo-
wing in positive direction

p: density

: depth mean value of quantity

L for z =0 ; 1t=0 for z =h (B.2)

where Tb: bottom shear stress

Integrating Eq B.1 with respect to z gives (Abraham, 1980)

(h=-2) 1 3 kN
T T = t 32 (h = z) g = (B.3)
with on the flood tide r, > 0, 39p/3x < 0, and on the ebb tide
T, < 0, 3p/9x < 0.
When damping of turbulence by stratification may be neglected
Ju =2z
T =PV 3o with v = c|u, | z (B.4)

where ux: bottom shear stress velocity; ux = (pr‘1)i
vt: eddy viscosity
k: von Karmann constant.

Eqs B.3 and B.U4 give an expression for 93u/3z. Multiplying this expression

with 1 gives

1 3p 2 (B.5)
E & 9x



B3 =

and

?ﬂaz— L v1nd) 2,102,312k 30y2) (g
T3z 92 ° % N T 20 B3y W T on B 3% '

29 pKlu*l

where zq: small value of z; u=0 for z=2(; 2Zg << h.

Intergrating 3u/3z from Egs B.3 and B.4 with respect to z gives

1T Z 2 =
g - T .. 0y, 1 gh 9p (,2Z_
(u = u) o (1 + 1n n ) + e = e (2 = 1) (B.T)
p[u*| plu*

Substituting u(zo) = 0 into Eq B.7 yields

T z 2 .=
-1 Db 0, , 1gh 3
[ugl == SO+ + o % (B.8)
pu pu
For 3p/3x = 0
[u,l %
|ul

where C : Chezy coefficient.

Assuming that in first approximation Eq B.9 may be applied for 3;/Bx = 0, Egs
B.8 and B.9 imply
2,

0 C
(1 + 1n h—) = K—Z (B.10)

g
Eq B.5 gives the variation over the depth of the production of turbulent
energy. Eqs B.6 and B.10 give the depth integrated production. The contribu-
tion of aE/ax to the production of turbulent energy can be derived from these

equations, assuming t_ to be the same for 3p/9x = 0 and 3p/dx = O.




- B.U -

In connection with the above derivation the following points are to be raised.

(1)

(2)

(3)

At tidal slack Ty u, and “t are small. Then the approximation

Ju/dt = su/dt, which is introduced in Eq B.1, is not satisfied. Never-
theless it may be concluded form Eq B.5 that by then the contrubution
of aE/ax to the production of turbulent energy is relatively large.

When there is a significant variation of 9p/3x over the depth Eq B.1 must
be written as

3u oh 1 1 31
®EH BT o O LR

where p: density averaged form z = z to z = h.

When 3p/9x decreases with increasing z, only at the bottom E = E. while
elsewhere over the death (z > 0) 3 < p. By then Egs B.5 and B.6 overesti-
mate the effect of dp/dx. The opposite applies when 3p/9x increases with

increasing z.
Damping of turbulence by density stratification implies

h=z
v = alRi]| k |uy| == 2 a1 (B.12)

where a: damping factor, which depends on Ri.

Damping implies that in Eq B.5 the factor x has to be replaced by the
factor ax. This has no effect on the ratio of the terms between the

brackets, which determines the relative contribution of BB/Bx to
t 3u/dz. In Eq B.6 the effect of a varying with z must be taken into

account when performing the integration.

3 Application to Rotterdam Waterway estuary

Abraham (1980) separates the turbulent shear stress into the following parts

T=1_ + 1 (B.13)
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with

(B.14)

bord =%
»“ioi

_(_l'_!_._-_Z_)_ =lz(h—z)g

Tex =~ b h Tin =~ 2

where Togt fraction of t which is related to bottom shear stress (an ex-
ternal effect)
Tint fraction of t which is related to longitudinal density gra-
dient 3p/9x (an internal effect)

From an analysis of field data, which were collected in the Rotterdam Waterway
estuary in April 1971 (Abraham, 1980, Table 1) .

> ¥ throughout the ebb tide

> 1 for half of the ebb tide

> 1/5 throughout the flood tide

> 1 for one third of the flood tide

Tin’ Tex

ltin/rex|

These paramtere values imply that leax may be expected to have a significant
effect on du/9dz.

Table B.1 gives characteristics of the conditions of the Rotterdam Waterway
April 1971 measurements. Table B.Z2 gives the BE/BX contribution to the depth
integrated production of turbulent energy. Table B.3 gives the aE/ax contri-
bution to the production of turbulent energy at level z = % h, where Tin has a

maximum value (Eq B.14).

Table B.2 gives the relative magnitude of the terms between brachets of Eq.
B.6. Table B.3 gives the relative magnitude of the terms obtained by taking
the square of the terms between brackets of Eq B.5. The relative magnitude of
the above terms is given for different ebb velocities (E =u and

mle -

1/2 Em.e) anf flood veloiities (u=- U po u=1/2 U ps U = 173 Up e
and u = 1/4 um f) where u o and um £ are respectively the extreme value

of u during the ebb tide and the flood tide.

Depth integrated the 33/3x contribution to ¢ gu/3z is of the same order as

the Ty contribution or larger when




|a] < 172 lam.el on the ebb tide
|3] < 174 |u_ .| on the flood tide.
m.f

For z = 1/2h thoughout the tidal cycle the 9p/93x contribution to 1t 3u/3z is
of the same order as the Ty contribution, except during that fraction of the
flood tide with 1/2 Gm >u > 1/3 Gm

.f .f

Tables B.2 and B.3 are obtained for a chlorinity distrubution in the Rotterdam
Waterway estuary as represented in Fig. B.1. There are locations along the
estuary where |3p/dx| increases with increasing z, as well as zones where

| 3p/3x| decreases with uncreasing z. Given point (2) raised at the end of
Section 2, this implies that a first estimate of the effect of aB/ax on

1 du/9z may be derived from Tables B.2 and B.3. The parameter values given in
these tables show that the effect of aB/ax on 1 du/9z is significant.

4 Coneclusion

For the Rotterdam Waterway April 1971 conditions the above observations lead
to the conclusion that because of the longitudinal density gradients turbulen-
ce is different than it would be without. For zero-equation and one-equation
turbulence models this means that the effect of longitudinal density gradients
on the length scale of turbulence has to be specified.
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Table B.1: Characteristics of the conditions of the Rotterdam Waterway
April 1971 measurements (Abraham, 1980).

h =15m

9%/3% = 1.2 1073 kg m~
u = 1.05 ms™!

_m.e _ m.e

um ¢ 1.05 ms 1 £ : maximum flood velocity
C

2

: maximum ebb velocity

sil_cu
8

= 70 m"ész."1
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Table B.2: 3p/3x contribution to depth averaged production of turbulent
energy (Eq A.6); Rotterdam Waterway Estuary. April 1971.
0 35 1 2 4 352
-(1+ln—ﬁ~) g 3y ﬂsh(é—x)
ebb U = u 0.08 0.01
m.e
N\ = J
0.09
G-l 0.31 0.14
2 ‘m.e g g
N\ \ J
0.45
flood u = u -0.08 0.01
m.f .
\ J
-0.07
Bl -0.31 0.14
2 m.f * :
\ SR J
-0.17
= 'l =
u = 3 U ¢ 0.69 0.70
E( > _J
0.01
T A -1.23 2,24
4y “m.f : '
A 2 J
1.0
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Table B.3: aE/ax contribution to production of turbulent energy at half
depth (z = 1/2 h) (Eq A.5); Rotterdam Waterway Estuary, April

1971.
12 - =2
i 1,9 1,22 9
2 :283x g e (5
ebb u = u 1 0.7 0.1
m.e
A g8 J
0.8
5wl 1 2.7 1.9
2 m.e ‘ E
\ J
4.6
flood u = um.f 1 e § PR : 0.1
A J
-0.6
g =18 1 -2.7 1.9
2 m.f : 4
“ = )
-0.8
* .18 1 -6.1 9.7
3 m.f ‘ L
A S J
-3.6
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Fig. B.1 Rotterdam Waterway, 1971, chlorinity data (Rijkswaterstaat, 1971);
number refer to chlorinity in gr/1.
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Appendix C: Ratio of terms at right hand side of Eq. 6.13 for Rotterdam

Waterway conditions

For homogeneous flows the velocity profile may be approximated as being loga-
rithmic when

Z =
38D e Far- B
o]

where u : veloecity in x-direction, after turbulent fluctuations are filtered
out

: depth mean value of u

: time

. vertical coordinate (z = 0: bottom, z = h: water surface)

: water depth

: density

: bottom shear

A © T N o €}

By then (Elder, 1959)
(u-u) = — (1 = 1n %) {C.2)
K h

-1
bp)
¢ : von Karman coefficient.

where uy : shear velocity (uin 1

Assuming a sinusoidal variation of velocity with time

= = t
u = ug sin 2m 3 (C.3)
where ﬁo : amplitude of Go
T : duration of tidal cycle
Eqs. C.2 and C.3 imply
jz 3(u-u) dz Z Z t
- - cos 2m =
L ¢ enon m'm PTT (C.4)
=z gk T = _z 2, t
Tb(1 h) u, 1 h sin" 2w T
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where C : Chezy coefficient

n : dimensionless parameter, defined by Eq. C.4.
The approximations behind Eq. C.Y4 are satisfied for |n| << 1.

Table C.1 gives |n|-values for homogeneous flow with h, u and C as for the

Rotterdam Waterway 1956 conditions. For velocities E, ranging from 1.50 m 3'1

(the maximum value) to about 1.34 m g~

, the |n|-value ranges from zero to
about 4%, meaning that the approximations behind Eq. C.4 are satisfied. For
velocities in this range, and accelerating flow the shear stress t is about n%
smaller than it is for steady homogeneous flow, deriving n from Table C.1,

while in decelerating homogeneous flow the shear stress is about n% larger.

The largest |n|-values occur at tidal slack, but cannot be derived from Eq.
C.4, as by then the velocity profile is no longer logarithmic because of
inertia-effects. What can be learned for the whole velocity range from maximum
flow to slack is that |n|-values are likely to be of the order of at least 5%.
Whether or not larger |n|-values occur can be studied from homogeneous tidal
flow computations using the Distro-model.




o BE

Table C.1: n-values for homogeneous flow with h, u and C as for Rotterdam
Waterway 1956 conditions

o PR X...L S
o | 0.1 | 0.2 | 0.3 | 0.4 ’ 0.5 | 0.6 | 0.7 | 0.8 | 0.9 [1.0
|

_u':in m s”! (Eq. C.3)

0 | 0.23] 0.46 | 0.68 | 0.88 | 1.06 | 1.21 1.34| 1.43 1 1.48

| ' |

z/n") [n|- values in % (Eq. C.4)2
0 »| 0 o | o | o 0 o |0 0 0 |0
0.1 ® | 68 16.9 | 7.4| 4.0 2.4 1.5 | 1.0 | 0.6 | 0.3 |0
0.2 . | 108 26.5 | 11.5 | 6.2 | 3.8 U e R B
0.3 »|138 34,0 | 14,8 | 8.0 | 4.8 3.1 | 2.0 | 1.4 0.5 | 0
0.4 » | 163 40.3 | 17.5 | 9.5 | 5.7 3.6 [ 2.3 | 1.6 | 0.6 |0
0.5 = | 185 45.7 | 19.8 | 10.7 | 6.5 w1 | 2.6 | 2.3 ] 0.7 o
0.6 | =205 50.5 | 21.9 | 11.9 | 7.2 4.6 | 2.9 | 1.7 | 0.8 |0
0.7 | =|222 | 4.9 |23.8|12.9| 7.8 | 4.9 (3.2 | 1.9 0.9 |0
0.8 =238 | 58.8 | 25.5| 13.8| 8.4 | 5.3 [3.4 | 2.0 | 0.9 |0
0.9 =253 62.5 | 27.1 | 14.7 | 8.9 | 5.6 [3.6 | 2.1 | 1.0 |0
0

1.0 | 267 65.9 | 28.6 | 15.5 | 9.4 5.9 | 3.8 | 2.3 | 1.1

characteristic parameter values
h=15m Eo- 1.5m s C = 60 mis™"

1) z = 0: bottom; z = h: water surface.

2) approximations behind Eq. C.4 are satisfied for u21.34m s~1.






