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A B S T R A C T

In the last decades, the environmental impact of aviation has been an
emerging topic of discussion worldwide. With an expected CO2 emission
increase of 21% by 2040 for air traffic, there is an urgency to reduce the
negative impact on the environment (European Commission, 2019). On top
of that, the number of passengers is expected to double within the next
20 years (International Air Transport Association, 2018). This challenge
requires intervention from governments, airlines and passengers. Creating
a more reliable flight planning would reduce the fuel consumption and
costs for airlines. However, for airlines with a hub-and-spoke network, the
schedule design relies on maximizing the connecting passengers. A more
reliable planning with embedded buffers could lead to a lower offering of
connecting flights. The goal of this research is to design a novel optimization
model for balancing reliability and connectivity by buffer scheduling in the
flight schedule, and to evaluate the impact on environmental sustainability.
This research provides a Proof of Concept with a case of KLM Royal Dutch
Airlines. The optimization model presents a Pareto optimal front that makes
the trade-off between reliability and connectivity explicit. Main findings of
this research are that (i) the model is suitable for supporting decision-making
on a basic level, (ii) the stochastic variance of the model should be limited
and (iii) the flight schedule presented by the model reduces the CO2

emissions significantly. Further research is required on how to optimize
schedules with a higher level of complexity for the methodological elements
and on the business side.
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1 I N T R O D U C T I O N

In this chapter, the main problem of this research is described. Next, the
concepts, definitions and other work in this field are examined by means of a
literature review in Section 1.2. Following, the research design including the
knowledge gaps, scope of the research, research questions and case selection
are presented in Section 1.3. Lastly, the research approach and research
methodology per subquestion is elaborated on in Section 1.5.

1.1 problem description

This section first discusses the general problem of this research. Thereafter,
the problem from the perspective of the airlines is described.

1.1.1 Problem Explanation

In recent years, the environmental impact of air traffic has been one of
the fastest emerging topics in the airline industry. In the 1990s, the first
visible negative environmental effects of aviation were pointed out (Dessens
et al., 2014; Price & Probert, 1995). The share of carbon dioxide (CO2)
emissions of aviation has increased rapidly; in the European Union (EU),
the emissions increased with 87% in the period between 1991 and 2003

(Rothengatter, 2010). Between 2013 and 2019, CO2 increased with 28% (Air
Transport Action Group, 2020; Environmental and Energy Study Institute,
2019). Next to this, CO2 and nitrogen oxide (NOx) emissions caused by
aviation are expected to increase with at least 21% and 16%, respectively, by
2040 (European Commission, 2019).

Globalization, i.e. the interaction and integration of people, governments
and companies worldwide, is one of the main causes for this growth.
The number of passengers has increased rapidly in the last decades
and is expected to continue to grow with 3.5% each year, adding up
to approximately 200% in the next 20 years (International Air Transport
Association, 2018; Pels, 2008). Aviation is essential to globalization by
providing a worldwide physical connectivity (Button, 2008). Thus, on the
one hand the need to travel among people increases due to globalization
while on the other hand, the emissions of air traffic urgently need to decrease
in order to reduce the negative impact on climate change. This contradiction
asks for action from the government, airlines and passengers.

In Europe, the Carbon Offsetting and Reduction Scheme for International
Aviation (CORSIA) has been implemented with the aim to stabilise the CO2

1



1.1 problem description 2

emissions at 2020 levels. With CORSIA, airlines are required to offset the
growth of their emission after 2020 by monitoring international routes and
compensating emission for all routes (European Commission, 2019). Many
governments have agreed to pursue emission reductions for air traffic via the
International Civil Aviation Organization (ICAO) (Gill, 2015). Next to this,
airlines take action to reduce emissions by for example sustainable fuels,
no holding patterns, i.e. no circling around the airport before landing, and
emission-free airports (Air Transport Netherlands, 2019).

The first theme defined by CORSIA in terms of sustainability is the efficient
use of fuel by optimizing the flight routes and procedures (Air Transport
Netherlands, 2019). An important factor that should be taken into account
for optimizing flight procedures is the probability of delays. Flight delays
do not only affect the passengers, airports and airlines; they also affect the
environment significantly. Both airborne delays and ground delays have
a negative effect on environmental sustainability due to the increase of
fuel consumption and gas emissions which results from the higher speed
required to catch up with the delay (Carlier et al., 2007; Sternberg et al., 2017).
Creating a more robust and predictable flight planning therefore contributes
to the reduction of the fuel consumption and is expected to contribute to 20%
of the CO2 reduction in aviation (Air Transport Netherlands, 2019; Ryerson
et al., 2014).

As airlines and governments want to tackle the negative impact on aviation
of climate change urgently, they are dedicated to create a more robust
and predicable flight planning. Therefore, it is valuable for airlines and
government to focus on designing a more reliable flight planning to reduce
CO2 emissions.

1.1.2 Problem Explanation: Airline Perspective

The design of a more reliable flight planning would also be beneficial
for airlines in terms of cost. Delays (for example due to bad weather,
technical problems, crew unavailability) are costly for both the airline and
the passengers (Peterson et al., 2013; C.-L. Wu, 2008). In particular for
hub-and-spoke networks (i.e. locations called spokes connected through an
intermediary location called a hub), delays are problematic due to the high
intensity of connecting flights, passengers and crews (Achenbach & Spinler,
2018; Hansen et al., 2001). Therefore, it would be valuable for airlines to
incorporate the probability of delays in the design of the flight schedule
(Thengvall et al., 2000). In this manner, the flight planning is less likely to
be negatively affected by delays on the day of operation (L. H. Lee et al.,
2007).

However, a reliable flight schedule could ask for more resources or more
time which is also costly for airlines. This could lead to a trade-off between
reliability and costs (Clausen et al., 2010). For hub-and-spoke airlines, costs
are primarily determined by the connecting passengers. An example of this
trade-off is when an extra five minutes is added to the ground time of a flight
to increase reliability, however this leads to missing a connecting flight for
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almost 30% of the passengers. The question arises if it is the most beneficial
to add this buffer or not in terms of cost. Currently, this decision is made
manually based on case-by-case analyses. Nevertheless, airlines still do not
have an easy way to analyze these trade-offs and no clarity on what the
actual effects of these decisions are (Wong & Tsai, 2012).

Additionally, there are many other factors that should be dealt with when
creating an airline schedule, such as crew scheduling, fleet assignment,
slot constraints, connections, and market share. This makes the trade-offs
for optimal buffer allocation increasingly complex (Etschmaier & Mathaisel,
1985).

Airlines create optimization tools to analyze a part of this complex
trade-off, for example maximizing on connectivity; parts that can be directly
implemented. However, all these optimizing tools work sequentially and not
simultaneously which makes it difficult to actually balance reliability and
connectivity. Next to that, airlines try to trade-off reliability and connectivity
in terms of costs. They want to convert delay minutes to cost and compare
this with the connectivity value. However, it is challenging and nearly
impossible to accurately convert delay minutes to cost. Due to the focus
on subparts of the main trade-off and the focus on converting delay minutes
to cost, a way to optimize multiple processes simultaneously for supporting
decision-making has not been developed yet. Therefore, it would be valuable
for airlines to investigate how they can weigh reliability against connectivity
in a clear and workable manner when creating a flight schedule.

1.2 literature review

In this section, existing literature is examined in order to explain important
concepts, to acknowledge existing research and to identify knowledge gaps.
First, literature on airline scheduling is discussed. Hereafter, literature on
flight delays and buffer scheduling in aviation is presented.

1.2.1 Airline Scheduling

Airline scheduling is one of the most challenging and important operations
for airlines. Four core problems can be distinguished in schedule planning
at airlines, namely (Barnhart & Cohn, 2004; C.-L. Wu, 2006):

1. Schedule design: Determine the markets to serve, at what frequency and
how to schedule the flights.

2. Fleet assignment: Assign the aircraft to each flight.

3. Aircraft maintenance routing: Route the aircraft such that the
maintenance requirements are satisfied.

4. Crew scheduling: Assign the crew to flights such that costs are
minimized.
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As described in Section 1.1, the main challenge is to create a more robust
flight schedule in terms of reliability and connectivity. Therefore, an
optimization model should be designed.

Ideally the four core problems are solved simultaneously in an optimization
model, however this becomes an extremely complex and large problem.
Therefore, most research focuses either on integrating two core problem or
extending one problem (Barnhart & Cohn, 2004).

Several optimization models for airlines scheduling have been defined.
Barnhart & Cohn (2004) describes optimization approaches which might be
applicable to these four core problems. These techniques are for example the
linear programming technique of branch-and-bound and branching. This is
used to construct a completely new schedule. Lessons are drawn on how
to create a solvable model. With linear programming, the main solution
for creating a solvable model is to relax the model, thus limit the number
of constraints. Ageeva (2000) also describes a linear programming model
for the development of schedules that are robust to disruptions and how
airline schedules could be evaluated to increase robustness, with focus on
the aircraft maintenance routing. Another optimization technique is used by
Şafak et al. (2017) namely multi-objective optimization. The multi-objective
optimization is a good way to optimize simultaneously. They link robust
fleet assignment, sustainability and passenger cost in a non-mathematical
optimization model. There are in total two objectives namely minimizing
the operational cost and maximizing the service level of the passenger
connections. In the operational cost, they mainly focus on fuel cost.
Moreover, Achenbach & Spinler (2018) also optimizes fuel cost and wage
cost. They proposes an arrival time prediction with a cost index optimization
for short-haul flights based on data from a European carrier. Both papers
show that fuel has a large impact on cost and also on sustainability. Thus,
fuel is an interesting variable to take into account.

An optimization model for airline scheduling can either be integral with
multiple core problems or focused on one single core problem; it can either
be defined as a linear programming model or a multi-objective model and
fuel is seen as an important variable for cost.

1.2.2 Flight Delays in Aviation

The optimization model for airline scheduling focuses on incorporating
delay and connectivity in the schedule design. Therefore, literature on
airline delay management is relevant for this research.

Flight delays are an unavoidable and crucial element in the context of
aviation; mostly for economic and environmental reasons (Sternberg et al.,
2017). Airlines need to incorporate the possibility of delays by disruption
such as weather conditions, mechanical problems, and capacity constraints
in their scheduling.

Much research has been performed on the airline delay management for
the day of operation. Santos et al. (2017) presents a linear programming



1.2 literature review 5

approach to solve the daily airline delay management problem with capacity
constraints and to make decisions on the spot. Jarrah et al. (1993) creates a
decision support framework for flight delays and cancellations during the
day of operation.

Instead of solving delays during the daily operations, delays could also
be prevented. Montlaur & Delgado (2017) shows optimization techniques
to minimize the flight and passengers delay by including or excluding
reactionary delays. Sternberg et al. (2017) shows a review of approaches
that are build to predict the flight delays and how machine learning relates
to this. In their paper, there is a distinction between root delay, i.e. local
delays, or cancellations and delay propagation, i.e. delays in a flight causes
a delay in the subsequent flights. Propagated delays are mostly caused by
the connected resources within the airline schedule such as the aircraft, crew,
passenger and airport resources (Kafle & Zou, 2016).

Propagated delay is a well-known phenomena in aviation and its impact
has been researched extensively. Kondo (2011) compares the impact of
propagated delays between hub and point-to-point airports. Churchill
et al. (2010) examines the effect of propagated delays on the daily
planning. Moreover, Qin et al. (2019) investigates how to optimize the
delay propagation in a Chinese aviation network by rescheduling flights.
Thus, delay propagation is a crucial element for airline scheduling, especially
hub-and-spoke networks (Achenbach & Spinler, 2018).

Next to this, delays can occur either on the ground, i.e. ground delay, or
in the air, i.e. en-route delay (Carlier et al., 2007). Ground delay can be
defined as the delay during the turnaround of the airplane. En-route delay
can be defined as the delay of an airplane between departure (off-blocks)
and arrival (on-blocks); this contains taxi and airborne time. En-route delay
is also known as block delay (Fricke & Schultz, 2009).

1.2.3 Buffer times in Schedule Design

Much research has shown that embedding buffers would improve the
reliability of a flight schedule. With the help of a simulation study, C.-L. Wu
(2005) states that schedules can become more robust when buffer times are
embedded. Baumgarten et al. (2014) shows that using buffer times in an
airline schedule would absorb unexpected delays. Ahmadbeygi et al. (2010)
shows that re-allocating existing slack would improve the schedule without
any increased planned cost. C.-L. Wu (2006) evaluates the effectiveness of
embedded buffer times on reliability in draft airline schedules of a small
airline network. Fricke & Schultz (2009) creates a model which optimizes
the buffer time size with respect to the expected average delay. However,
it is still unknown in which manner these embedded buffers should be
scheduled to minimize delays and what related vulnerabilities are.

Pursuing this further, the design of a schedule is a multi-objective process
for airlines. For hub-and-spoke networks, connecting passengers and flights
are the most important objectives of the design at this moment. Research
on the integration of connections and reliability is limited. Dunbar et al.
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(2012) presents a new approach on how to integrate aircraft routing and
crew scheduling to minimize propagated delay. They focus on the delays
caused by missed connection of the crew. Jacquillat & Vaze (2017) designs
and assesses a novel approach for scheduling the air traffic congestion
of an airport. They want to increase reliability, i.e. mitigate the air
traffic congestion at the airport, with network connectivity as a constraint.
However, it has not been investigated yet how to handle the trade-off
between connecting passengers and reliability in the flight schedule of an
airline.

1.3 research design

This section describes the design of the research. First, the knowledge gaps
of this research is presented. Hereafter, the scope of the research is defined.
Next, the general research method is described. Lastly, the case selection for
the Proof of Concept is discussed.

1.3.1 Knowledge Gaps

From literature review, the following knowledge gaps are identified:

• How should embedded buffers be scheduled to minimize delays in
aviation.

• How should the trade-off between connectivity and reliability be
handled in the schedule design of an airline.

Next to these knowledge gaps from literature, the airline industry
emphasizes the need for ways to incorporate the probability of delays in
the schedule design such that the gap between the schedule and actual
day-to-day operations becomes smaller. However, important connections
between flights can be lost when modifying the schedule to make it more
robust. Especially for hub-and-spoke airlines, the connecting flights is the
most important element in scheduling at the moment. Airlines want these
two factors - reliability and connectivity - to both be part of the schedule
design in order to have a reliable schedule with maximized connecting
flights. However, airlines do not know yet how to optimally align these
factors.

1.3.2 Scope

The scope of this research is defined as follows:

• Focus on hub-and-spoke network
As mentioned in Section 1.2.2, incorporating the probability of delays
is crucial for designing the schedule especially in hub-and-spoke
networks. The high intensity of connecting flights, passengers and
crews in hub-and-spoke networks make delays costly and important
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to mitigate (Achenbach & Spinler, 2018; Hansen et al., 2001; Lederer &
Nambimadom, 1998).

• Focus on schedule design
Section 1.2.1 defines four stages of airline scheduling, namely schedule
design, fleet assignment, aircraft maintenance routing and crew
scheduling. In the schedule design phase, the planning of flights is
developed and this is where buffer scheduling is done. In this manner,
it is possible to minimize delays with scheduling in advance instead
of only solving delays during the day of operation, as described in
Section 1.1.2. Next to this, the flight schedule is designed for two
seasons namely summer and winter. Thus, this research also makes a
distinction between the airline schedule of these two seasons.

• Focus on schedule of European short haul flights
The short haul flights within Europe have a high intensity compared
to the long haul flights. This makes optimal scheduling and handling
delays more challenging and difficult for European short haul flights
than for long haul flights. Due to the tight turnaround windows and
high frequency in this part of the network, there is an urgent need for
minimizing delays with buffers and integrating this with connectivity.
Long haul flights are taken into account for the connectivity aspect of
the short haul flight schedule. However, the long haul flight schedule
itself is not in the scope of this research.

• Focus on ground delay at the hub
This research focuses on ground delay for two reasons. First, airlines
already try to add buffer to block times to reduce airborne delays.
Second, tackling ground delays is also one of the most urgent matters
for airline. Delays occurs more often on the ground (75% of the time)
than in the air (25% of the time). To tackle delays at their origin,
it is the most suitable to add buffer to the ground time. Therefore,
this research focuses on modifications in ground times with respect to
buffer scheduling.

1.3.3 General Research Method

The research objective is to support decision makers, in this case
network planners, in optimally balancing reliability and connectivity when
scheduling buffer time. This objective is reached by means of a quantitative
research approach.

An optimization model is developed for simultaneously optimizing the
schedule in terms of reliability and connectivity. The optimization model
helps to understand and visualize how elements interact within a complex
socio-technical system and what the impact is of system interventions
(Creswell & Creswell, 2017; Shannon, 1998). For this case, system
interventions are the various ways of buffer scheduling. With the help
of visualizations, these insights could be communicated effectively to the
airlines. This research tries to understand and communicate how to balance
reliability and connectivity which is in line with a modeling approach.
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A case study on a real airline is conducted to evaluate how this model would
work in practice. This is used as a Proof of Concept, i.e. the model proves to
work with real data.

Concluding, this research is tackled by designing an optimization model as
quantitative research approach and provides a Proof of Concept.

1.3.4 Proof of Concept Selection

This research provides a Proof of Concept by KLM Royal Dutch Airlines, also
known as KLM. KLM is a suitable airline for this Proof of Concept since it is a
large carrier, has a leading role in the European aviation network, operates as
a hub-and-spoke network, has a strong focus on transfer passengers, actively
stimulates sustainable growth and has high data availability.

Firstly, KLM is a large carrier which makes it an interesting airline to
investigate. KLM Royal Dutch Airlines is part of the Air France-KLM
Group airline holding company. Together, this company is leading in
international cargo and passengers traffic from Europe. With 2.300 daily
flights, Air France-KLM groups operates from the two hubs at Paris-Charles
de Gaulle (CDG) and Amsterdam-Schiphol (AMS) (Air France-KLM, 2020).
Air France-KLM is also member of the SkyTeam alliance with 19 member
airlines. These airlines together serve more than 1.150 destination in 175

countries. Airlines that are also in the alliance, are for example Delta, China
Airlines and Kenya Airways (SkyTeam, 2020). KLM itself is one of the
oldest and largest international carriers operating passengers and cargo to
162 destinations. The large size of the company also makes the network
more complex and more challenging. It is interesting for this research to
investigate a large international carrier with a high complexity.

Secondly, KLM plays a leading role in the European air industry together
with Air France (KLM, 2019). Due to the focus of this research on European
short haul flights, KLM would be a well-suited case for this research.

Thirdly, KLM operates via a hub-and-spoke network. Amsterdam Airport
Schiphol functions as a hub within KLM’s network. Via this location, many
interconnections are made which allow passengers to efficiently access major
destinations in the world.

Fourthly, passenger connections are one of the most important elements
for KLM in their hub-and-spoke network. The focus of this research is
on finding a clear balance between minimizing delay and therewith the
need for high-speed flying, while at the same time maximizing passengers
connections. Thus, connections play an important role in this research and
are an essential part of the airline.

Fifthly, KLM is actively stimulating sustainable growth. Since the higher
purpose of this research is to reduce the negative environmental impact, it
is valuable to have an airline as case that support this.
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Lastly, there is much data available on flights at KLM. The advantage of a
large carrier is that many flight are executed during a period. Thus, there
are sufficient data points available to perform a trustworthy analysis.

1.4 research questions

Combining the knowledge gaps from literature and industry and the scope,
the main research question is:

How can airlines use buffer scheduling to ensure the optimal balance between the
reliability of the flight schedule and the value of passenger connections, and what is

the impact on environmental sustainability?

The following subquestions are needed to answer the main research
question:

1. How are reliability and connectivity operationalized in aviation?

2. What is the current state of reliability and connectivity of the short
haul flight schedule of KLM Royal Dutch Airlines?

3. Which optimization model is suitable for creating a reliable schedule
by buffer scheduling while trading off passengers connections?

4. How can reliability and connectivity of the short haul flight schedule
of KLM Royal Dutch Airlines be improved by buffer scheduling with
the optimization model from sub question 3?

5. What is the impact of this improvement of the short haul
flight schedule of KLM Royal Dutch Airlines on environmental
sustainability?

The goal of this research is to investigate how a reliable flight schedule can
be created to minimize delays and how this is balanced with the connectivity
of the network.

1.5 research method per subquestion

In this section, the research methodology per subquestion is discussed and
presented in a research flow diagram.

The research methodology that fits the research question varies per
subquestion. Figure 1.1 provides an overview of the suitable research
methodology for each subquestion by means of a research flow
diagram.

Subquestion 1

Subquestion 1 quantifies the relevant concepts of the main research question
namely reliability and connectivity. For this research, it is important
that these main concepts are quantified and clarified for further analysis.
Literature research is conducted to examine which information and metrics
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Figure 1.1: Research Flow Diagram

already exist on these topics in aviation. Combining this literature research
with interviews at KLM, reliability and connectivity are operationalized.
Literature research is conducted by means of search engines such as Google
Scholar and Science Direct.

Subquestion 2

Based on subquestion 1, the current state of reliability and connectivity are
evaluated. Subquestion 3 is answered by means of data analytics. The
current situation of the reliability and connectivity of a short haul flight
schedule is examined as a base case. First, the flight procedure and schedule
planning should be understood and conceptualized with the help of models
such as IDEF0. Hereafter, data on the current situation needs to be collected
such as the schedule of previous years, the actual performance during
the day, delay minutes and more. Depending on the type of data, data
is gathered by means of interviews with experts, literature research and
extracted from databases of the airline (Law, 2008). This data is analyzed in
order to examine the current state of schedule reliability.

Data on connecting passengers is also required. This data is, however, one
of the limitations of this subquestion. The real-time data on connectivity
is difficult to access since it is highly confidential and sensitive, even
within the airline. Therefore, a dummy dataset can be obtained on the
value of connectivity. Additional information on data is collected based
on interviews with commercial managers, network planners and other
stakeholders that have experience in this field. This gives an approximation
of the actual data on connecting passengers and flights. Historical data
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on connecting passengers and the price of the transfer is available for this
research.

Subquestion 3

In subquestion 3, a novel multi-objective optimization model is developed
which incorporates the relationship between reliability and connectivity for
the schedule design as quantified in subquestion 1. The optimization model
is based on the flight procedure as defined in subquestion 2. Literature
research and interviews with stakeholders is conducted to create this
optimization model. The biggest pitfall for this subquestion is that a
model will be created which will not be realistic for airlines and thus, not
accepted. Therefore, it is necessary to discuss and evaluate the characteristics
of this model with experts such as network planners and commercial
managers.

Subquestion 4

This subquestion investigates how buffers can be embedded to ensure a
more reliable and highly connected schedule by the optimization model of
subquestion 3. The optimization model proposes new schedules in which
buffers are re-allocated for minimizing delays and maximizing passenger
connections.

The impact and reliability of the schedule is tested by means of a Discrete
Event Simulation (DES) model. This model evaluates the output of the
optimization model on reliability and other key performance indicators.
In this research, the system operates on flight level, not on passenger or
baggage level. For this model, additional data on flights and distributions
of delays is required. This data is gathered via interviews with experts such
as network schedulers and data analysts, literature research and databases
for the airline. Hereafter, the model is verified, validated and experiments
are performed. Next to this, the simulation model is also used to determine
the reliability from a buffer allocation solution of the optimization model.
The limitation for this step could be the amount of data that is available
and the quality of the data (Robinson, 2010). If there is either a lack of
or a (very) small set, then an approximation of the data or distribution
should be made in consultation with experts. Since subquestion 2 already
requires data collecting in an exploratory manner, many issues with data
could be tackled there. The simulation-optimization model is developed in
the software Python, an open source programming language.

This analysis focuses on helping airlines to find the optimal balance of
reliability and connectivity in their schedule design. From this analysis, it
is expected that the trade-off between reliability and connectivity becomes
visible from the optimal solutions. The optimization model that is defined in
subquestion 3, is used to handle and analyze this trade-off for KLM.

Schedule design within aviation is a very complex and lengthy process
(Etschmaier & Mathaisel, 1985). Due to time limitations and the complexity
of the trade-off, it is not possible to re-schedule the entire Europe network
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planning. Therefore, the optimization model is tested on a small subset of
the Europe network. Later on, this could extended to a larger subset or
even the entire network. Here, the pitfall could be that the optimization
model does not work well with larger networks and is not realistic. In
close collaboration with network planners, this model should be validated
repeatedly and limitations should be made clear.

Subquestion 5

Subquestion 5, the impact of the improvements on environmental
sustainability, uses the results from the simulation-optimization study from
subquestion 4. These results are translated into a measure for sustainability.
Literature research on aviation and sustainability is conducted to find a
suitable manner for translating the results in a sustainability value. With
the help of data analytics, the impact of buffer re-allocation resulting from
the optimization model on sustainability is assessed.



2 O P E R AT I O N A L I Z AT I O N O F
R E L I A B I L I T Y A N D C O N N E C T I V I T Y

This chapter quantifies the main concepts of this research namely
reliability and connectivity. Previous studies are evaluated and combined
to obtain a suitable operationalization of reliability and connectivity.
First, the operationalization of reliability is described and following,
connectivity.

2.1 reliability

Reliability can be defined as how closely the actual day of operation matches
the flight schedule on time. However, it is infeasible as airline to actually
influence the unexpected disruptions on the day of operation. Therefore,
the flight schedule should match the day of operation closely to ensure
reliability.

The purpose of reliability in this research is to create a flight schedule that
matches the day of operation closely, given the uncertainties and disruptions,
such that executing flights becomes more reliable.

2.1.1 Previous Theories

Schedule reliability has been studied by several researchers. In most studies,
schedule reliability is related to the on-time performance of the schedule
which is in line with the definition of airlines (L. H. Lee et al., 2007). Airlines
define reliability as the on-time performance, i.e. on time compared to the
time standards. For this, the punctuality Key Performance Indicators (KPIs)
are defined for many different processes. For the reliability of the schedule,
the arrival and departure punctuality are the most important. Network
planners mostly focus on the arrival punctuality at the hub.

C.-L. Wu (2005) differentiates arrival and departure reliability of a schedule.
It defines reliability by the expected arrival and departure delay:

reliabilityD =
expected delayD

actual delayD (2.1)

and

reliabilityA =
expected delayA

actual delayA (2.2)

where

D = departing flights

13
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A = arriving flights

They assume that airlines expect a certain delay in advance. However, when
creating the schedule, most airlines do not expect any delay and this could
give an incorrect calculation of reliability.

L. H. Lee et al. (2007) and Sohoni et al. (2011) base the on-time performance
of a flight on the aircraft arriving at the gate within 15 minutes of its
originally schedule arrival time. This is an important operational measure
for schedule reliability according to these studies.

Burke et al. (2010) describes departure reliability for schedule A, R(A), as
the probability pi that the next flight ( fi + 1) of an aircraft can leave on time,
given the time that is allocated to its previous flight ( fi) and its turn around
operations. This is a measure of schedule’s ability to absorb the effects of
the operating environment. pi is estimated based on stochastic distributions
from historical data. There is a penalty when the minimum reliability, pmin is
violated. The scaling parameter y is introduced to manipulate the quadratic
shape of the function and influence the ratio for less reliable connections
versus more reliable connections. This gives the following calculation of the
reliability per flight:

pi > pmin : R(A) = f (pi) = (1− pi)
y (2.3)

pi ≤ pmin : R(A) = f (pi) = (1− pi)
y + P(pmin − pi) (2.4)

And the reliability of schedule A:

Ri(A) =
| f |

∑
i=0

Ri(A) (2.5)

Their formulation mostly focuses on the reliability of aircraft handling on
the ground and does not include the airborne punctuality of flights.

These studies have in common that they relate schedule reliability with delay
minutes of a flight. In other sectors such as railway, studies also define delay
minutes or hours as a measure for punctuality (Olsson & Haugland, 2004;
Veiseth et al., 2007). Delay minutes can also be defined as an indicator for
traffic congestion namely the weighted average of total delay minutes for
each road link with length as weight (Christidis et al., 2012). In addition,
Chen et al. (2003) notes that the average travel time and travel variability are
important measures for freeway performance.

2.1.2 Quantification

Combining the insight of previous theories and sectors, the reliability of
flight i can be measured with delay minutes, thus how many minutes a
flight has "lost" compared to the scheduled time.

The reliability of flight i can be defined by the average of delay minutes
of that particular flight in schedule ξ. It is assumed that flights with the
same flight number and on the same day, for a given time window W, is
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i = f1, f2, ..., fn
1. This gives the following formula for reliability of flight

i:

Ra(i) =
∑
f∈i

max(0, ata f − sta f )

i
(2.6)

and

Rd(i) =
∑
f∈i

max(0, atd f − std f )

i
(2.7)

where

Ra = arrival reliability

Rd = departure reliability

ata f = actual time of arrival of flight f ∈ i

sta f = scheduled time of arrival of flight f ∈ i

atd f = actual time of departure of flight f ∈ i

std f = scheduled time of departure of flight f ∈ i

Reliability of the schedule is measured by the summation of all flights in the
schedule.

Ra(ξ) = ∑
i∈ξ

Ra(i) (2.8)

and
Rd(ξ) = ∑

i∈ξ

Ra(i) (2.9)

where

ξ = flight schedule

Airlines mostly focus on the arrival punctuality as on-time performance
and therefore, this paper only uses arrival reliability as a measure of
reliability.

2.2 connectivity

The temporal configuration of an airline network, i.e. organisation of the
flight schedule such that a given number and quality of indirect connections
is offered at a station, is one of the main features of a hub-and-spoke network
(Burghouwt & de Wit, 2005). The other main feature is the concentration
of air traffic in space, i.e. spatial configuration (Reynolds-Feighan, 2001).
Spatial configuration is less relevant in this research since the amount of air
traffic and the spatial aspect of the network will be fixed.

1 For example, flight (i) KL1009 to London is scheduled on Monday. Every individual flight ( f )
KL1009 on Monday during Summer 2019 (W) is part of the collection of flights i to average
over.
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Indirect connectivity is often associated with hub-and-spoke networks. Hub
connectivity refers to the number and quality of indirect flights available
to passengers via an airline hub (Burghouwt & de Wit, 2005; Danesi, 2006;
S. Y. Lee et al., 2014). Quality can be defined in various ways for example,
Burghouwt & de Wit (2005) defines it as the attractiveness of a connection for
a passenger and S. Y. Lee et al. (2014) as the convenience level of a connection
for a passenger. According to Danesi (2006), hub connectivity depends on
three elements namely

1. number of markets linked to the hub with direct services,

2. service frequencies, and

3. times of scheduled flight arrivals and departures at the hub.

A way to enhance the hub connectivity is to adopt a wave-system in the
network. Currently, hubs operate more often with waves of flights. Purpose
of a hub wave-system is to maximize its connectivity. A wave-system
structure of an airline hub has the following elements namely, (Burghouwt
& de Wit, 2005; Danesi, 2006)

i. the number of flight waves,

ii. the timing of the waves and the time interval between the same points
of consecutive waves, also referred to as the "hub-repeat-cycle", and

iii. the structure of the individual waves.

The structure of an individual wave is determined by the minimum
connecting time for (inter)continental flights, the maximum acceptable
connecting times and the maximum number of flights that can be scheduled
in a time period.

2.2.1 Previous Theories

Hub connectivity has been quantified by several studies, mostly by means
of indices.

Burghouwt & de Wit (2005) defines the hub connectivity as the number
and quality of the indirect connections generated by the existing flight
schedule. In their case, the quality of the indirect connections refers to
the attractiveness of the connections. They specify attractiveness as the
perceived transfer time and the in-flight time compared to the direct flight
time.

A weighted indirect connectivity index (WNX) for a schedule is created
namely,

WNX = ∑(WI) = ∑
(

2.4 ∗ TI + RI
3.4

)
(2.10)

with TI the transfer index which refers to the quality of the connection,
and RI the routing index which refers to the quality of the indirect flight
compared to the direct flight. With this index, it is assumed that the
passengers perceive that their transfer time is 2.4 times longer than the
in-flight time.
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Danesi (2006) suggests a novel Weighted Connectivity Ratio (WCR)
consisting of the weighted indirect connection number and the approximate
number of weighted connections in a purely random situation, during time
period T. The weighted indirect connection number at the hub during time
period T is by the following three matrices:

i. temporal connectivity matrix, τi,j

ii. spatial connectivity matrix, δi,j

iii. weighted connectivity matrix, wi,j = τi,jδi,j

where i = 1, ..., fa is any arriving flight during T and j = 1, ..., fd is any
departing flight during T.

The number of weighted connections offered at the airline hub during time
period T is:

WNc = ∑
i

∑
j

wi,j = ∑
i

∑
j

τi,jδi, j (2.11)

This measure has a discrete character, meaning that it only has four different
states.

For the WCR, it is needed to calculate the approximate number of weighted
connections in a purely random arrival and departure timetable, WNr. With
this, WCR can show whether the viable weighted connections of the airline
are more or better than purely random. WCR is defined as

WCR =
WNc

WNr
(2.12)

It is concluded that WCR is quite precise for the evaluation procedure of the
hub connectivity and WNc can be seen as an acceptable hub connectivity
measure.

Kim & Park (2012) presents a connectivity index that measures the
relationship between arrivals and departures of flights in one day. Their
research is mostly focused on the freight connectivity within airline industry.
In their research, the quality of an indirect connection is measured by the
difference of indirect flight time versus direct flight time. The following
connectivity index (CI) for schedule is defined

CI =

√√√√ 24

∑
t=1

{(
At

AA

)
−
(

Dt+LUT

AD

)}2

(2.13)

where At is the number of flights that have yet to arrive at the hub at time
t, Dt+LUT is the number of flights that have yet to depart at the hub at time
t+ LUT, LUT is the loading and unloading time, t is the time slot that varies
from 00:00 hour to 24:00 hour for a given day, AA is the average flights of
all Ats and AD is the average flights of all Dts.

Following the WCR of Danesi (2006), S. Y. Lee et al. (2014) developed
the Continuous Connectivity Index (CCI) for hub-and-spoke operations
consisting of:

i. temporal connectivity index, τi,j
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ii. spatial connectivity index, δi,j

iii. relative intensity index, βi,j

iv. weighted connectivity index, wi,j = τi,jδi,jβi,j

The main difference between CCI and the weighted hub connectivity
measure WNc of Danesi (2006) is that CCI has a continuous character and
has an extra weighted element namely the relative intensity to reflect the
effect of direct flight frequency on transfer routes.

Lastly, O’Connell & Bueno (2018) gives an overview of the different
measurements for hub connectivity. This overview distinguishes the
temporal coordination, routing factor and the character of the connection
quality (None, Binary, Discrete or Continuous) of various hub connectivity
indices. In the end, they apply the weighted connectivity ratio of Danesi
(2006) in their research.

2.2.2 Quantification

Previous connectivity indices and studies have been combined to define a
suitable hub connectivity measure for this research.

As mentioned, hub connectivity refers to the number and quality of the
indirect connections at the hub. In this research, the quality of the indirect
connections is determined by the transfer time for the passengers and the
revenue of a connection for the airline.

In an airline with a hub-and-spoke network, schedule planners mostly focus
on the entire rotation when scheduling. A rotation, r, consist of two or
more flight legs and is seen as one block within the network schedule. In
a hub-and-spoke network, one rotation mostly consist of two flight legs
namely a flight from the hub to an outstation as outbound flight, j, and
a flight from the outstation to the hub as inbound flight, i.

With the help of the existing discrete temporal connectivity matrix of Danesi
(2006) and continuous temporal connectivity index of S. Y. Lee et al. (2014),
the temporal connectivity index for this research is operationalized. For an
airline, the actual number of passengers catching their transfer is interesting
for connectivity. The percentage of passengers that make the transfer is a
function of the transfer time, tti,j = stdj− stai, and can be extracted from real
airline data. This can be translated to the probability that a passenger will
actually be boarded on the transferring flight given the scheduled transfer
time, ptp,k(tti,j). This probability differs per transfer type k, for example
it is faster to transfer from an Europe flight to another Europe flight than
an international flight since the distance between gates for Europe flights is
often smaller. With this, the following holds for this continuous temporal
connectivity index for all possible connections between any flight arriving at
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the hub during time period T, i = 1, ...., fn, and any flight departing at the
hub during time period T, j = 1, ...., fn:

τi,j =

{
ptp,k(tti,j), if MCTk ≤ stdj − stai ≤ MACTk

0, otherwise
(2.14)

where

MCTk = minimum connecting time for a passenger with transfer type k

MACTk = maximum acceptable connecting time for a passenger with transfer
type k

The revenue of a passenger connection for an airline is included to measure
hub connectivity. The expected number of passengers connecting from flight
i to flight j, E[tp]i,j, is taken as an approximation for earnings, ρi,j, of a
connection for an airline. This is multiplied by the revenue of one passenger
connecting between flight i and j, ri,j, defined by the commercial branch.
The following holds for all possible connections between arriving flights i
and departing flight j:

ρi,j = E[tp]i,j ri,j (2.15)

The weighted connectivity matrix for a connection can be defined as:

wi,j = τi,jρi,j (2.16)

This results in the following continuous weighted hub connectivity measure,
thus the number of weighted connections offered at the airline hub during
time period T:

C = ∑
i

∑
j

wi,j = ∑
i

∑
j

τi,jρi,j (2.17)

The continuous weighted hub connectivity measure only describes the
outbound connectivity of the hub, thus which inbound flights connect to the
outbound flights at the hub during period T. The revenue of a connection
differs for inbound and outbound connections of a flight and they should
both be taken into account. Thus, it is necessary to distinguish the inbound
and outbound connectivity on rotation level in this research. Therefore, two
elements are defined for a rotation namely inbound connectivity, Cin, and
outbound connectivity, Cout. This follows:

Cin = ∑
j

∑
i

τi,jρi,j (2.18)

and
Cout = ∑

i
∑

j
τi,jρi,j (2.19)
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Figure 2.1 shows the inbound and outbound connectivity related to a
rotation.

Figure 2.1: Inbound and outbound connectivity

Note that Danesi (2006) defines the weighted connectivity ratio to show
whether the viable weighted connections during time period T are more
than purely random for optimal hub coordination. Since this research only
focuses on the hub connectivity and not the hub coordination, it is not
necessary to incorporate this step. This could be interesting to include when
testing whether the hub connectivity is improved for further research.



3 C U R R E N T S TAT E O F R E L I A B I L I T Y A N D
C O N N E C T I V I T Y

This chapter gives insight in the current state of reliability and connectivity
of the flight schedule of KLM Royal Dutch Airlines. First, the flight
procedure and the process of the schedule design are explained. Next, the
current flight schedule of Summer 2019 is evaluated.

3.1 conceptualization of flight operations

In order to understand how the flight schedule is created, it is important to
get familiar with the flight procedure. Thus, the process of executing flights
is discussed first. Hereafter, it is explained how the schedule is currently
designed.

3.1.1 Flight Procedure

A flight is a trip between origin and destination in the air. Every flight has its
own flight number, origin and destination. A flight is scheduled on a specific
day and time, and assigned to a specific aircraft type. The scheduled times
are for departing from the origin, Scheduled Time of Departure (STD), and
for arriving at the destination, Scheduled Time of Arrival (STA).

Before a flight can be executed, preparations are needed such as cleaning
the aircraft, safety checks, boarding passengers and baggage. The activities
on the ground that happen prior to take-off, are called ground processes.
The combination of these preparatory ground processes and the flight,
also known as airborne time, define a leg. Figure 3.1 visualizes these
definitions.

Figure 3.1: Conceptualization of a leg

During the day of operation, the scheduled flights are executed. A flight is
assigned to an aircraft and leaves the origin on the Actual Time of Departure
(ATD). This means that the aircraft is actually leaving the gate, also called
blocks-off. The aircraft is flying towards their destination, which is called
airborne or flight time, and arrives at the destination on the Actual Time of

21
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Arrival (ATA) at the gate. ATA is defined as the time that the aircraft is at
the gate and the blocks are on. Preferably, ATD and ATA are the same as
STD and STA which means no delay occurred.

Figure 3.2: Conceptualization of flight process

When the aircraft has arrived at his destination, it is assigned to a gate. At
the gate, the unloading of this arriving flight starts and the preparations of
the next flight begin. This procedure is called the turnaround of an aircraft,
which is the time between ATA of the arriving flight and ATD of the next
flight. The ground processes start when any door has been opened at the
gate, so either a passenger or baggage door. This is around three minutes
later than ATA. This moment is called Any Door Open (ADO) and then
the Standard Processing Time (SPT) starts. SPT is the time in which the
aircraft is prepared for the next flight until all the doors are closed (ADC).
According to the norm, the aircraft should leave soon after later after ADC;
this moment is called ATD. The ATD of a flight is determined by air traffic
control (ATC) of the origin station and this could be delayed due to, for
example, other flights that have priority. This is defined as ATC delay and is
the delay between ADC and ATD. When an aircraft gets permission to leave
the gate, the breaks are released, the aircraft starts taxiing and takes off to
the next destination. An brief overview of this flight procedure is shown in
Figure 3.2.

3.1.2 Schedule Design

The flight schedule for a season is created by the network department.
This department determines the destinations, important connecting flights,
frequency of the flights and the aircraft type, and therewith the profitability
of the schedule. They are also responsible for creating an operationally
feasible schedule by taking into account constraints such as slots and crew
(Barnhart & Cohn, 2004).
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3.2 evaluation of the base case schedule

This section contains a detailed evaluation of the flight schedule of Summer
2019 for European flights. The period of the summer schedule of KLM is
during daylight saving time in the Netherlands. The focus of this evaluation
is on the months July and August. These months are the busiest of the entire
year. Therefore, it is the most challenging and interesting to find a balance
between delay minutes and connectivity value. Next to that, the months
May and June are not suitable for analysis since there was one fewer runway
than in a normal situation due to maintenance, which led to outliers in the
data.

In this research, one week in July and one week in August is evaluated
namely the week from July 22, 2019 to 28 July, 2019 and the week from
August 12, 2019 to August 18, 2019. These weeks are chosen within July and
August to test the novel optimization model. This is the base case schedule
for the research. Note that the base case schedule already includes some
buffer, thus the base case does not mean that there is no buffer between
rotations. Currently, only one aircraft type is analyzed namely Boeing
737-900.

From the analysis, it can be there is no clear indication of the value of
reliability due to the stochastic variance. On the connectivity side, there is no
confidence interval for the percentage of missed connection by passengers.
An explanation is that there is a cluster of connections that are close to the
minimum transfer time or the maximum acceptable transfer time.

The performance of the base case schedule for July 22, 2019 to July 28,
2019 and August 12, 2019 to August 18, 2019 is used as a benchmark for
evaluating new schedules with various ways of buffer scheduling.



4 F O R M U L AT I O N O F M U LT I - O B J E C T I V E
O P T I M I Z AT I O N M O D E L

This chapter introduces a novel multi-objective optimization model for
designing a flight schedule by trading off between reliability and
connectivity. First, the methodology and search algorithm of this
optimization is described. Hereafter, the objectives are discussed. Lastly,
the model formulation is presented.

4.1 multi-objective optimization algorithm

The problem of this research has a multi-objective nature because reliability
needs to be minimized while connectivity needs to be maximized. Therefore,
a multi-objective optimization methodology is applied. Another approach to
solve this problem is to scalarize the multiple objectives to a single-objective
problem (Deb, 2014). The goal of this approach is to find a single optimum
solution. There are two disadvantages in solving the problem of this
research as a single-objective problem namely, (i) accurately converting
the two objectives to the same unit is currently impossible and (ii) the
novel optimization model supports decision-making by giving insight in
the trade-off between the objectives, this is not possible when obtaining
only one optimal solution. The single-objective approach is not suitable
for this research and thus, the multi-objective optimization methodology is
adopted.

The main advantages of the multi-objective approach are that the objectives
are optimized simultaneously, instead of sequentially, and the trade-offs
between the objectives are identified with the help of the Pareto optimal
front (Burke et al., 2010; Emmerich & Deutz, 2018; Kollat & Reed, 2007). The
Pareto front is the set of non-dominated Pareto solutions. Non-dominated
Pareto solutions are solutions that cannot improve one objective without
deteriorating the performance of another objective (Emmerich & Deutz,
2018). In the context of this research, this means that, for a Pareto solution,
buffer scheduling cannot be changed in such a manner that it improves
reliability without decreasing connectivity revenue and vice versa.

A widely used approach for optimizing a multi-objective problem is the
multi-objective evolutionary algorithm (MOEA), i.e. a population-based
search algorithm (Vikhar, 2016). In this class, genetic algorithms (GA) are
qualified to generate high-quality solutions for optimization problems based
on the concept of natural selection in Darwin’s theory of evolution (Mitchell,
1996). Over the years, numerous MOEAs are introduced by research such as
NSGA-II, NSGA-III, IBEA, SPEA2, MOED/D, ε-NSGAII, ε-MOEA, BORG.

24
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The most classic and popular approach to generate the Pareto front for
a multi-objective problem is Non dominated Sorting Genetic Algorithm II
(NSGA-II) (Deb et al., 2002; Reed et al., 2013). NSGA-II initially generates
a random parent population P0 which is sorted based on non-domination.
Then it creates an offspring population Q0 with binary tournament selection,
recombination and mutation operators. Hereafter, a step-by-step procedure
is followed: first, a combined population, Rt, is created from the random
parent population, Pt, and offspring , Qt. This combined population is sorted
on non-domination and divided in sets F1,...,l . F1 is the best non-dominated
set and will definitely be chosen for the next parent population, Pt+1. The
remaining solutions for the new population of size N will be chosen based
on the ranking and crowding distance sorting. The new population is used
for creating new offspring Qt+1 with selection, crossover and mutation. The
NSGA-II procedure is visualized in Figure 4.1 and is described in more detail
by Deb et al. (2002).

Figure 4.1: NSGA-II procedure (Deb et al., 2002, pp.186)

One of the main disadvantages of NSGA-II is the fixed-sized population,
N. The algorithm replaces offspring with existing members in the
population, which could lead to offspring being replaced with inferior
solutions. This deteriorates the quality of the solutions (Reed et al.,
2013). Therefore, ε-NSGAII with an adaptive population size and time
continuation is introduced. This search algorithm merges ε-dominance
archive with NSGA-II for more efficient, reliable and ease-to-use MOEA
(Kollat & Reed, 2006, 2007). With ε-dominance, the user is able to set the
search precision for each objective (Kollat & Reed, 2006). The adaptive
population size improves the search quality by adapting the population
based on the Pareto approximate set size (Kollat & Reed, 2006; Reed et
al., 2013). Time continuation refers to the series of connected runs where
small populations are exploited to pre-condition search and population size
is adapted accordingly (Kollat & Reed, 2005, 2006).

Kollat & Reed (2006) describes the concept of ε-dominance, used in
ε-NSGAII, with a three steps approach as shown in Figure 4.2. In step 1,
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the decision maker determines the ε search precision for each objective (f1
and f2) which results in a ε-grid. Thus, the search space is divided in grids
with ε-precision. The smaller the ε, the finer the grid and the more solutions
in the objective space. For grid blocks with multiple solutions and assuming
minimization of the objectives, the solution closest to the lower left-hand
corner of the block is kept. Step 2 conducts non-dominated sorting based
on the grid block. For example, the solution in the leftmost column on row
four from the bottom dominates the shaded grid blocks above and to the
right in terms of required precision. Step 3 then eliminates the redundant
solutions and presents a more even search of the objective space. For a more
detailed description of ε-dominance, see Deb et al. (2002) and Laumanns et
al. (2002).

Figure 4.2: Illustration of the ε-dominance concept (Kollat & Reed, 2006, pp.797)

However, ε-NSGAII is performing worse when the number of decision
variables increases (larger than 100) or when the complexity of the problem
increases. Ward et al. (2015) shows that BORG would perform better
than ε-NSGAII when the population size and number of decision variables
increases. This is tested with the performance measure hypervolume.
Hypervolume describes the ratio of dominated solution compared to the
population in the objective space (Reed et al., 2013). Their paper states that
BORG is expected to have a better performance, even the best, with many
decision variables and for a complex problem.

BORG is an optimization algorithm that combines ε-domaninance, adaptive
population size and time continuation with an adaptive operator selection
(Hadka & Reed, 2013; Reed et al., 2013). It is an extension of the
ε-NSGAII with adaptive operator selection. This means that the algorithm
keeps track of the performance of the operators and adapts to the most
appropriate operator. Operators of BORG are binary crossover, differential
evolution, parent-centric recombination, unimodal normal distribution
crossover, simplex crossover, polynominal mutation and uniform mutation.
Next to that, BORG also keep track of ε-progression. Hereby, it can easily
detect search stagnation. Another feature is that BORG is a steady-state
algorithm. BORG is mostly used for many-objectives (more than four
objectives), multimodal problems.

Due to the high complexity of the problem in this research, BORG is applied
as algorithm for the optimization. Since this algorithm has a significantly
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better performance for large problems than other algorithms, this is the most
suitable choice.

4.2 objectives

A schedule consists of u = 1, . . . , U fleetlines and these fleetlines consist
of n = 1, . . . , N rotations. Let Xu,n be the time in which the arrival and
departure of rotation n shifts in fleetline u and τ the unit of buffer time1.
This is the primary decision variable of this research since this determines
the buffer time of rotation n. One rotation consists of two or more flight legs;
within the Europe schedule, one rotation generally consist of two flight legs
namely a flight from the hub to an outstation as outbound flight, j, and a
flight from an outstation to the hub as inbound flight, i.

Reliability Objective
The reliability objective is the average arrival delay minutes of all the
rotations in the flight schedule. For rotation n ∈ N, the arrival reliability
of rotation n is the arrival punctuality of the last flight leg arriving at the
hub, the inbound flight. Thus flight i is equal to the outstation-to-hub flight
of the rotation n. This gives:

Ra(i) =
∑
f∈i

max(0, ata f − [sta f + Xnτ])

i
(4.1)

The reliability objective for a flight schedule ξ with a set of fleetlines U is
formulated as:

Ra(ξ) = ∑
u∈U

∑
n∈N

Ra(Xu,nτ) (4.2)

Connectivity Objective
The connectivity objective is total connectivity in euros of all the rotations N
in the flight schedule. The connectivity of rotation n is divided into inbound
connectivity and outbound connectivity of a rotation. Inbound connectivity
is determined by the connections between inbound flights on hub station
and the first flight leg of the rotation from hub station to outstation.
Outbound connectivity is determined by the connections between the last
flight leg of the rotation arriving at hub station from outstation and the
related outbound connection from hub station. Thus, the outbound flight
j of rotation n determines the inbound connectivity, Cin, and the inbound
flight i of rotation n determines the outbound connectivity, Cout.

Inbound connectivity for flight j of rotation n can be defined as

Cin = ∑
i

{
ptp,k(tti,j)E[tp]i,j ri,j, if MCTk ≤ tti,j ≤ MACTk

0, otherwise
(4.3)

with tti,j = [stdj + Xnτ]− stai

1 Most airlines make schedule adjustment with a unit of 5 minutes to ensure that too accurate
scheduled departure and arrival times do not occur such as a scheduled arrival at 10:12 a.m.
Therefore, this research takes into account the unit of the buffer time, τ.
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Outbound connectivity for flight i of rotation n can be defined as

Cout = ∑
j

{
ptp,k(tti,j)E[tp]i,j ri,j, if MCTk ≤ tti,j ≤ MACTk

0, otherwise
(4.4)

with tti,j = stdj − [stai + Xnτ]

The connectivity objective for a flight schedule ξ with a set of fleetlines U is
defined as follows:

C(ξ) = ∑
u∈U

∑
n∈N

Cin(Xu,nτ) + Cout(Xu,nτ) (4.5)

4.3 model formulation

To find the optimal combination of Xu,n in a chain of flights, the entire
fleetline is optimized simultaneously. The interdependencies between the
arrival and departure times are taken into account for this. There are two
main objectives for this optimization namely the average delay minutes of
the schedule and the sum of inbound and outbound connectivity of the
schedule. Let U be the number of fleetlines in the schedule and N be the
set of rotations within a schedule. This gives the following optimization
problem:

minimize ∑
u∈U

∑
n∈N

Ra(Xu,nτ), maximize ∑
u∈U

∑
n∈N

Cin(Xu,nτ) + Cout(Xu,nτ)

(4.6)

subject to ∑
n∈N

(Xu,nτ) ≤ Tu,N ∀u

(4.7)

MCTk ≤ tti,j ≤ MACTk ∀i, j
(4.8)

[stdj,n + (Xu,nτ)]− stai,n−1 ≥ MTTac ∀u, n
(4.9)

stdj,n+1 − [stai,n + (Xu,nτ)] ≥ MTTac ∀u, n
(4.10)

Constraint (3.5) ensures that no extra time could be added to a day. The
total buffer time of the day per fleetline, TN , can only be re-allocated. This
means that the sum of the buffer time of all rotations of one fleetline should
be less or equal to the total amount of buffer time that could be divided
for a fleetline. This account for all fleetlines in the schedule. Constraint
(3.6) ensures that the transfer time of a passenger between inbound flight i
and outbound flight j is not smaller than MCT and not larger than MACT.
Constraints (3.7) and (3.8) ensure that the turnaround time between two
rotations in a fleetline is equal or more than the minimum turnaround time
of the aircraft type. The sequence of the rotations is fixed since n− 1 is the
previous rotation of rotation n and n + 1 is the following rotation of rotation
n. Table 4.1 provides an overview of the mathematical notations.
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Table 4.1: Table of Notation

Objectives
Cin Inbound connectivity in euros
Cout Outbound connectivity in euros
C Connectivity, sum of inbound and

outbound connectivity, in euros
Ra Arrival reliability in minutes
Decision Variable
Xu,n Buffer time for rotation n in fleetline

u
Parameters
ac Aircraft type subscript
ata Actual time of arrival
f Flight repetition subscript
i Inbound flight subscript
j Outbound flight subscript
k Connection type subscript
n Rotation subscript (n = 1, . . . , N)
ptp,k Probability that a passenger with

connection type k will actually be
boarded on the transferring flight

ri,j Revenue of one passenger
connecting from flight i to flight
j

sta Scheduled time of arrival
std Scheduled time of departure
tti,j Transfer time between flight i and j
u Fleetline subscript (u = 1, . . . , U)
E[tp]i,j Expected number of passengers

connecting from flight i to flight j
MACTk Maximum acceptable connecting

time for connection type k
MCTk Minimum connecting time for

connection type k
MTTac Minimum turnaround time for

aircraft type ac
TN Total buffer time for a fleetline with

rotation set N
ξ Flight schedule
τ Unit of buffer time



5 C O N F I G U R AT I O N O F O P T I M I Z AT I O N
M O D E L

This section describes the configuration of the optimization model as
formulated in Chapter 4. First, the process of the simulation model and
the assumptions are presented. Next, the optimization model is described
in more depth with its’ assumptions. Following, the interaction between
the simulation model and optimization model is described, i.e. how
these models intertwine. Lastly, the Key Performance Indicators (KPI) are
defined.

5.1 simulation model

principle The simulation model Voyager is designed and developed by
KLM. Voyager is a simulation tool of the departure process, propagated
delay processes and collaborative decision making (CDM), i.e. joint
decisions between ATC, Schiphol and airlines on the day of operation to
improve the departure process. It reconstructs the departure queue and
calculates the expected range of departure delay and propagated delay
for a given KLM timetable. Voyager contains a detailed simulation of the
CDM processes which have a direct effect on when the aircraft can actually
depart. It gives insights into the relative operational performance of a flight
schedule in terms of departure punctuality. Voyager only runs for one day
of operation.

main assumptions Modifications of the simulation model for this
research led to additional relevant assumptions. The main assumptions of
the simulation model are as follows:

• Historical data of CDM is from 2017, 2018 and 2019.

• Historical rotation performance data is based on data from March 1,
2017 to October 29, 2019. The period begins at the start of Summer
2017 and ends at the last day of Summer 2019. For consistency
with CDM historical data, this time period is chosen for the rotation
performance. Also this research focuses on the summer season and
therefore, the summer period is chosen as starting and ending point.

• Rotation delays, either positive or negative, of more than 60 minutes
are not taken into account.

• Buffer time at the outstations is included in the arrival delay. When
buffer is planned at the outstation, some of the rotation delay can be
captured by this buffer. Thus, the departure delay plus the sampled
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rotation delay minus the buffer at the outstation accounts for the final
arrival delay.

• The number of replications is 10. The number of required replications
depends on the desired statistical accuracy of the research (Carson,
2004). For the inherent variability factors in the simulation, i.e.
collaborative decision making moments drawn from a distribution
and the rotation performance, 10 replications for one buffer allocation
solution are necessary.

5.2 optimization model

principle The principle of buffer scheduling in the optimization model
works as follows. Buffer values per rotation are determined by the
optimization algorithm of Section 4.1.

For one fleetline, the rotations can shift from the first arrival of the day and
the last departure of the day, taken into account the MTT of that aircraft
type. The relation within the fleetline determines the spread of buffer per
rotation. For example, if rotation 1 shifts to 10 minutes earlier and there
is 5 minutes buffer time initially scheduled between rotation 1 and 2, than
rotation 2 could shift to 15 minutes earlier. This applies to each fleetline
individually. Figure 5.1 shows the relation within fleetlines and how the
(total) buffer times are determined.

Figure 5.1: Relation within fleetlines

The relation between the fleetlines is based on connecting passengers. When
a passenger is transferring from an inbound flight of a fleetline to an
outbound flight from another fleetline, the shift of these flights affects the
transfer time. The transfer time determines whether a connection can
be offered and if the passengers actually make the transfer. Therefore,
the relation between fleetlines is important for buffer scheduling in terms
of connectivity. Figure 5.2 presents an example of this; there are three
transferring passengers from rotation 1 of unit 1 to rotation 2 of unit 2. As
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an example, the initially scheduled transfer time is 50 minutes. Rotation 1 of
unit 1 is shifted 10 minutes later and rotation 2 of unit 2 is shifted 5 minutes
earlier; this is all possible according to the buffer time within the fleetline.
However, the transfer time for these three transferring passenger is now 35

minutes which is lower than MCT. Thus, this connection could not be offered
anymore. To determine the effect of buffer scheduling on connectivity, this
relation between the fleetlines is included.

Figure 5.2: Relation between fleetlines

The principle of buffer scheduling relates to the creation of buffer values and
the calculation of the objectives in the optimization model. The optimization
itself follows the procedure of Section 5.3 and the steps of BORG algorithm
as defined in Section 4.1.

main assumptions The optimization model has the following main
assumptions:

• The model uses 10.000 function evaluations to optimize the problem.

• Time is defined as Coordinated Universal Time (UTC).

• The model optimizes for one day and one aircraft type. The model
only optimizes for one day at a time. Also, only the fleetlines of one
aircraft type can be optimized at once.

• There is a fixed fleet assignment. It is assumed that a flight has to be
performed with the assigned aircraft type.

• The model assumes that the block time is always 100% accurate. It is
assumed that the scheduled block time is 100% accurate. This means
that time between departing and arriving is the actual time that an
aircraft needs to perform the flight, with 100% accuracy.

• The model does not use early arrivals to compensate delays.
Compensating delays with early arrivals, is not be taken into account
when allocating buffers. An early arrival is seen as "on-time", so no
delay, in the model.
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• The model includes on-time maintenance. Maintenance trips are
included in the flight schedule to ensure they are executed. It is
assumed that maintenance is always finished on time.

• Probability of a passenger actually making their transfer based on
the transfer time is determined per connection type from KLM
data. By this, the Schengen versus Non-Schengen connection types
are incorporated.

More detailed description and other assumptions can be found in
Appendix A.

5.3 simulation-optimization model

A simulation-optimization model is created to find optimal combinations
of buffer allocation in a schedule. The model is developed based on
the formulation of Section 4.3 and follows the optimization algorithm as
defined in Section 4.1. The multi-objective optimization has two objectives
namely, reliability, i.e. the average arrival delay minutes of a schedule,
and connectivity, i.e. the sum of the revenue on inbound and outbound
connections in the schedule. A simulation model is used to determine the
reliability objective. This gives insight in the value of the average arrival
delay, given a certain buffer allocation and sources of uncertainties. Next to
this, the simulation model helps to evaluate and compare the optimal flight
schedules with buffer scheduling.

The simulation-optimization model works as following; first, the user
gives the desired flight date and aircraft type as input. With this part
of the schedule, the optimization starts. The algorithm generates buffer
values for all rotations in every fleetline in the schedule. Combining
these buffer values with the initial schedule, a new schedule is created to
analyze. Next, the objective values are calculated. Reliability is calculated
by means of a simulation model with multiple replications to ensure
statistical accuracy. With the results of the simulation model, the average
arrival delay minutes of the new schedule is calculated as Equation 4.2.
Simultaneously. the connectivity value is calculated by means of formulas
as defined in Equation 4.5. Connectivity, as quantified in Section 2.2.2,
has no source of uncertainty in the design of the flight schedule since this
only involves the offered connections that are fixed before the actual day of
operation. After the two objectives for the new way of buffer scheduling
are computed, the constraints of Section 4.3 are applied. Following, it is
checked whether this solution is non-dominated and saves it in the archive.
New buffer values are generated following the optimization algorithm and
the process repeats. The optimization continues until the user-defined
number of function evaluations are completed and this gives the Pareto
optimal solutions. This results in new flight schedules with optimal buffer
scheduling. Figure 5.3 gives an overview of the simulation-optimization
model and how they relate.
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Figure 5.3: Visualization of the Simulation-Optimization Model

5.4 key performance indicators

The performance of the schedules resulting from the
simulation-optimization model is tested and compared to the current
schedule. In order to test whether the Pareto solutions would perform
better than the current schedule, several measurements are defined called
KPIs. The current schedule is compared with the Pareto optimal schedules
by five performance indicators. These indicators are set in consultation
with schedule design experts. Table 5.1 gives an overview of the KPIs for
evaluating the flight schedules with various ways of buffer allocations.

Table 5.1: Key Performance Indicators

Reliability Connectivity
Average delay minutes
of the schedule (min)

Connectivity
of the schedule (AC)

Total delay minutes
of the schedule (min)

Percentage
of missed connections (%)
Average transfer time
of a passenger at AMS (min)

As shown in Table 5.1, two categories are distinguished for evaluation
namely, the two objectives reliability and connectivity. The values of the
objectives, average arrival delay minutes of the schedule and connectivity
in euros, are KPIs. Next to this, the arrival total delay minutes of the
schedule is also an valuable measure since this gives an indication of the
overall disruption. The connectivity in euros defines the offered connections
whereas the percentage of missed connections defines the realized transfer
with departure and arrival delay. The percentages of missed connections,
i.e. the realized transfers with the buffer re-allocation, is also an important
measure for connectivity purposes. This indicator depends on the arrival
and departure delay of the connection flights. For example, the initial
transfer time is 50 minutes; the inbound flight has an arrival delay of
10 minutes and the connecting outbound flight has a departure delay
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of 10 minutes. When only taken into account the arrival delay, the
recalculated transfer time becomes 40 minutes and passengers would miss
their connection. However, since the connecting flight has a departure delay
of 10 minutes, the transfer time stays the same and passengers make their
connections. Moreover, the average transfer time of a passenger at the hub
(AMS) is a measure to indicate the customer experience of the flight schedule.
A longer transfer time for a passenger results in a lower satisfaction level of
this customers since the waiting time becomes longer.

For KPIs with a source of uncertainty, a 95% confidence interval is calculated
in order to ensure statistical accuracy. This means that 95 of the 100 times the
average of that value lies within this confidence interval. Only the measure
connectivity of the schedule (AC) has no confidence interval since this is a
fixed sum of the price per connection.



6 R E S U LT S

This chapter presents the results of the optimization model. First, the
results of the simulation-optimization model are discussed. This led to
improvements in the optimization model which are explained hereafter.
Note that no exact values of the results are presented due to confidentiality
reasons.

6.1 results of simulation-optimization
model

The simulation-optimization model, as described in Chapter 5, is applied
to the schedule of two days in July 2019 namely Tuesday 23 July 2019 and
Thursday 25 July 2019. Optimization on the weeks from 22 July to 28 July
and from 12 August to 18 August is not executed completely due to time
limitations. The results of the simulation-optimization model are described
with the help of the KPIs.

23 july 2019 Optimizing the flight schedule of 23 July 2019 resulted
in two Pareto optimal solutions. Both solutions are better than the base
case schedule in terms of reliability - less delay minutes - and connectivity.
Figure 6.1 shows the Pareto front including the objectives of the base case
schedule. The arrows on the axes point out the direction of desirability. Note
that the connectivity axes are reversed: this means that the point closest to
the lower-left corner is the most optimal.

There is a trade-off visible between the two Pareto optimal solution
namely the solution with on average three arrival delay minutes has a
lower connectivity than the solution with on average four arrival delay
minutes.

Table 6.1 presents the buffer minutes added to the rotations of aircraft type
Boeing 737-900 on 23 July 2019 compared to the base case. The Pareto
optimal solutions are quite similar in terms of buffer scheduling; only five
flights have a different buffer assignment namely KL1109 to ARN, KL1289

to EDI, KL1083 to MAN, KL1823 to TXL and KL0461 to TLV. The difference
between the buffer assignment of these two optimal schedules is not more
than 10 minutes per rotation. This means that a slight shift in buffer could
already cause a different reliability value which suggests that the model is
sensitivity to small buffer changes. In both optimal solutions, the most buffer
time is added to the first flight or last flight of the day.
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Figure 6.1: Simulation result: Pareto front for 23 July 2019

To ensure that the network planners make a well-informed choice for buffer
scheduling, the KPIs for the Pareto optimal solutions are compared with the
base case schedule to evaluate the performance.

Both Pareto optimal solutions are expected to have less arrival delay minutes
on average than the base case. However, the wide of the 95% confidence
interval is for all cases extremely large. This means that there is no
clear indication of the actual value of arrival delay minutes. It could be
explained by the high stochastic variance of the flights in the simulation
model. Due to this wide confidence interval, it is not feasible to compare
these values correctly. The same applies to the total arrival delay minutes of
the schedule.

For the connectivity performance of the schedule, one of the KPIs is the
connectivity objective. The comparison of the connectivity value between
the base case and solutions is shown in Figure 6.2. This visualization shows
that both Pareto optimal solutions have a larger connectivity value than the
base case schedule. This means that more or more valuable connections can
be offered with the Pareto optimal schedules. The solution with on average
three arrival delay minutes has a slightly lower connectivity value than the
other Pareto optimal solution. It is the decision of the network department
if this difference is considered as significant or not.

Figure 6.2: Simulation result: Connectivity value of the schedule on 23 July 2019
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Table 6.1: Buffer values of the Pareto optimal solutions for 23 July 2019 in minutes

Rotation Number Destination Base Case
Solution
Reliability = 3

Solution
Reliability = 4

KL1070 MAN 0 10 10

KL1373 OTP 0 5 5

KL1705 MAD 0 5 5

KL1164 HEL 0 0 0

KL1109 ARN 0 -10 0

KL1289 EDI 0 15 10

KL1083 MAN 0 15 20

KL1372 OTP 0 0 0

KL1823 TXL 0 0 -5
KL1115 ARN 0 -5 -5
KL1379 OTP 0 0 0

KL1597 FCO 0 -25 -25

KL1169 HEL 0 5 5

KL1171 HEL 0 5 5

KL0462 TLV 0 -15 -15

KL1009 LHR 0 -5 -5
KL1189 BGO 0 5 5

KL0461 TLV 0 50 55

Figure 6.3 visualizes the percentage of missed connections by passengers in
the schedule of 23 July 2019. Once more, the Pareto optimal solutions show
a better performance in terms of percentage of missed connections. This
is in line with the expectation that a more reliable schedule results in less
missed connections. However, this does not apply for comparing the two
optimal solutions. The solution with on average four delay minutes shows a
lower percentage of missed connection by passenger than the solution with
on average three delay minutes. This solution has a higher connectivity
value, thus more (valuable) connections are offered. It could be that the
solution offers more connections with a longer connecting time; passengers
would always successfully make their transfer. So although the solution is
less reliable, the transfer time of the offered connections plays an important
role in the percentage of missed connection by passengers.
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Figure 6.3: Simulation result: Percentage of missed connections by passengers in
the schedule of 23 July 2019

When analyzing the average transfer time of the schedule, Figure 6.4 shows
that the Pareto optimal solutions have a higher transfer time than the base
case. Reasoning could be that the model tries to maximize the number of
connections; the higher the average transfer time, the more connections
could be offered. For example, a connection with a transfer time of 35

minutes cannot be offered but it is possible to sell a connection with a
transfer time of 50 minutes. The difference of the average transfer time
between the two Pareto optimal solutions is not significant.

Figure 6.4: Simulation result: Average transfer time of the schedule on 23 July 2019

In terms of connectivity performance, it can be concluded that the Pareto
optimal solutions perform better than the base case. It is recommended
to reflect on the effect of increasing the transfer time for the customers
satisfaction. The choice on which Pareto optimal solution is better depends
on the decision whether (i) the difference of connectivity value is significant
or (ii) the percentage of missed connections by passenger presents a
significant difference.

On the reliability side, it is not possible to draw a correct conclusion as to
which schedule is better. The wide of the confidence intervals of the KPIs of
this performance element is too large to provide a meaningful comparison.
This is caused by the high stochastic variance of the simulation model.
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25 july 2019 The simulation-optimization model provides four Pareto
optimal solutions for the flight schedule of Thursday 25 July 2019. Figure 6.5
shows the Pareto front including the objective values of the base case
schedule. The arrows on the axes point out the direction of desirability. Note
that the connectivity axes are reversed: this means that the point closest to
the lower-left corner is the most optimal. All the solutions perform better
in terms of reliability and connectivity than the base case. This means that
any schedule resulting from the simulation-optimization model would be a
better choice than the base case schedule.

Between the Pareto optimal solutions, there is a trade-off between reliability
and connectivity visible, i.e. the less delay minutes, the higher the
connectivity. However, the differences between the connectivity value of
the Pareto optimal solutions are relatively small. It is in the hands of the
decision maker, in this case network planners, whether this difference is
significant or not.

Figure 6.5: Simulation result: Pareto front for 25 July 2019

Table 6.2 presents the buffer minutes added to the rotations of aircraft
type Boeing 737-900 on 25 July 2019 compared to the base case. From
the 18 scheduled rotations, the Pareto optimal solutions differ in the buffer
scheduling for only 8 rotations. This difference ranges between 5 minutes to
35 minutes. Similar to Tuesday 23 July, the most buffer time is added to the
first flight or last flight of the day.
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Table 6.2: Buffer values of the Pareto optimal solutions for 25 July 2019 in minutes

Rotation
Number

Dest
Base
Case

Solution
Reliability
= 3

Solution
Reliability
= 4

Solution
Reliability
= 6

Solution
Reliability
= 7

KL1164 HEL 0 20 50 25 50

KL1109 ARN 0 5 5 5 5

KL1289 EDI 0 10 10 10 10

KL1083 MAN 0 15 10 10 10

KL1597 FCO 0 -25 -25 -25 -25

KL1169 HEL 0 0 0 0 0

KL1171 HEL 0 25 30 15 15

KL1372 OTP 0 0 0 0 0

KL1009 LHR 0 0 -5 0 -5
KL1189 BGO 0 5 5 5 5

KL0461 TLV 0 50 55 55 55

KL1070 MAN 0 0 5 10 15

KL1373 OTP 0 5 5 5 5

KL1705 MAD 0 5 5 5 5

KL0462 TLV 0 -10 -10 -15 -15

KL1823 TXL 0 0 -5 -5 -5
KL1115 ARN 0 0 -5 -5 -5
KL1379 OTP 0 5 5 40 0

Based on the objectives, the Pareto optimal solutions perform better than the
base case. However, there are other KPIs that are also important for assessing
the performance of the schedule. Therefore, the base case is compared with
the Pareto optimal solutions based on these KPIs.

Similar to the results of 23 July 2019, the 95% confidence interval on
reliability is extremely large for all cases. This means that there is no clear
indication of the actual value of average arrival delay minutes (see Figure 6.6)
and total arrival delay minutes (see Figure 6.7). It is not possible to compare
these values correctly due to this wide confidence interval.

Figure 6.6: Simulation result: Average arrival delay minutes of the schedule on 25

July 2019



6.1 results of simulation-optimization model 42

Figure 6.7: Simulation result: Total arrival delay minutes of the schedule on 25 July
2019

Complementary to the Pareto front, Figure 6.8 shows the connectivity value
of the base case schedule and the Pareto optimal schedule of 25 July 2019.
The difference between the base case and the Pareto optimal solutions
is relatively large, thus the simulation-optimization model gives better
solutions in terms of connectivity. Between the Pareto optimal solutions, the
difference is relatively small. It is the decision of the network department if
this is considered significant or not.

Figure 6.8: Simulation result: Connectivity value of the schedule on 25 July 2019

Figure 6.9 presents the percentage of missed connections by passengers of
25 July 2019. In most cases, a more reliable schedule results in a lower
percentage of missed connections. Only there is one outlier for this rule
namely the solution with on average four delay minutes. This solution
results in the higher percentage of missed connections as the base case
although the reliability has improved. Reasoning could be that the way of
buffer scheduling in this solution improved in terms of arrival delay but not
in departure delay. The percentage of missed connections depends on arrival
and departure delay. It could be that this solution offers many connections
with a short connection time, similar to the base case, and the shift of rotation
by buffer scheduling was not enough to compensate for the departure delay.
Thus, although the solution is more reliable, the transfer time of the offered
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connections plays a crucial role in the percentage of missed connections by
passengers.

Figure 6.9: Simulation result: Percentage of missed connections by passengers in
the schedule of 25 July 2019

In terms of average transfer time of the schedule, the Pareto optimal
solutions result in nearly similar average transfer times as the base case (see
Figure 6.10).

Figure 6.10: Simulation result: Average transfer time of the schedule on 25 July
2019

Concluding, it is not possible to draw a correct conclusion on the
performance of the schedules on the reliability KPIs. The wide of the
confidence intervals is too large to provide a meaningful comparison.

For the connectivity performance, it can be concluded that the Pareto
optimal solutions perform better than or similar to the base case on the
connectivity and the average transfer time. Choosing between the Pareto
optimal solutions depends on (i) if the difference of the connectivity value
is significant or not and (ii) how to rank the value of percentage of missed
connections by passengers.
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conclusion From analyzing the results of the simulation-optimization
model on Tuesday 23 July 2019 and Thursday 25 July 2019, the following
conclusion can be drawn:

• It is not possible to compare and interpret the reliability performance
due to the extremely wide confidence interval. This is the results of
the high stochastic variance of the simulation model.

• The Pareto optimal solutions perform significantly better than the base
case on connectivity. The decision on which Pareto optimal solution
performs better is in the hands of the decision maker, in this case
network planners. This depends on which difference in connectivity
value makes a significant impact.

• The transfer time of the offered connections plays a crucial role in the
percentage of missed connections by passengers.

• It is recommended to reflect on the effect of increasing or decreasing
the transfer time for the customers satisfaction.

6.2 improvements of optimization model

In response to the inability to interpret and compare the reliability
performance of the simulation-optimization model, the simulation model
is replaced by a deterministic model. As the simulation is responsible for
calculating the reliability in the optimization model, replacing this with the
deterministic model eliminates the stochastic element in the optimization.
This deterministic manner of calculating reliability is included to test
whether it would improve the performance of the optimization model.

First, the deterministic model is introduced. Hereafter, the results of the
optimization model with a deterministic reliability calculation is evaluated.
Multiple levels of stochastic variance are added to the deterministic model to
test the effect of noise on the optimization model. These results are discussed
last.

6.2.1 Deterministic Model

The deterministic model is designed such that it closely corresponds to the
principle of the simulation model without stochastic variance.

The reliability objective is calculated by means of Equation 4.2. The average
arrival delay minutes per rotation is calculated by means of Equation 4.1.
The collection of flights i is determined based on historical data of Summer
2019. Adding more buffer time to a rotation follows the assumption that
more buffer time leads to a better on-time performance and thus, less delay
minutes. This means that shifting the rotation forward, i.e. creating more
buffer, leads to less arrival delay minutes and vice versa.

Other assumptions of the deterministic model are:
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• Early arrivals are considered as on-time. Thus, when historical data
on a rotation shows a negative delay, the amount of delay minutes is
set to zero. This operation is executed before the average arrival delay
minutes of a rotation is calculated.

• Buffer time at the outstations is included in the arrival delay. Similar
to the simulation model, the buffer time at the outstations is included
in the arrival delay. This means that when a buffer is planned at the
outstation, some of the calculated average arrival delay is captured by
this buffer.

Due to the lack of a source of uncertainty in the model, no replication are
required to ensure statistical accuracy. Therefore, this model calculates the
reliability objective relatively fast (in computational time) compared to the
simulation model.

6.2.2 Evaluate Pareto Optimal Solutions

The Pareto optimal solutions, resulting from the deterministic optimization
model, for 23 July 2019 and 25 July 2019 are compared to the base case by
means of the KPIs. Note that due to the elimination of stochastic variance
in the calculation of reliability, there is no confidence interval present for the
indicators.

23 july 2019 Optimizing the flight schedule of 23 July 2019 with the
deterministic way of calculating reliability results in five Pareto optimal
solutions. Every solution has a higher connectivity value than the base case
schedule. Figure 6.11 shows the Pareto front of 23 July 2019; the graph is
presented in the same manner as the previous section. This graph shows
that almost all solutions (excluding one) are expected to perform better on
both objectives than the base case schedule.

Figure 6.11: Deterministic result: Pareto front for 23 July 2019

Figure 6.12 presents the average arrival delay minutes of the schedule, which
is similar to the reliability objective in the Pareto front. There is one optimal
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solution that is expected to lead to more delay minutes than the base case.
Since the connectivity value of this solution is the highest of all Pareto
optimal solutions (see Figure 6.11), it is still interesting to include this
solution.

Figure 6.12: Deterministic result: Average arrival delay minutes of the schedule on
23 July 2019

In terms of total arrival delay minutes of the schedule, there are two Pareto
optimal solutions that result in more total arrival delay minutes than the base
case namely the solutions with on average 6 delay minutes and on average
7 delay minutes (see Figure 6.13). The base case has the same reliability
value as the solution with on average 6 delay minutes, but the base case
has less total arrival delay minutes. When comparing the base case and this
particular solution, the buffer assignment of the base case is better in terms
of reliability performance. However, the connectivity value of the Pareto
optimal solution with on average 6 delay minutes is higher than the base
case and thus, it is still valuable to include this solution. The total arrival
delay minutes of the solution with on average 5 delay minutes is almost
similar to the base case. Since this solution has less average arrival delay
minutes, it can be noted that this solution would be superior to the base
case.
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Figure 6.13: Deterministic result: Total arrival delay minutes of the schedule on 23

July 2019

On the connectivity side, Figure 6.14 shows that all solutions have a
greater connectivity value than the base case. This means that, in terms
of connectivity, it could be better to choose a solution created by the
optimization model than the base schedule.

Figure 6.14: Deterministic result: Connectivity value of the schedule on 23 July
2019

Figure 6.15 presents the percentage of missed connections by passenger in
the schedule. This shows whether the optimal schedule would actually
positively contribute to decreasing the number of missed connections. Only
the Pareto optimal solutions with on average 3 minutes and 6 minutes delay
minutes are expected to have a lower percentage of missed connections by
passengers. The solution with on average 4 delay minutes has the same
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percentage of missed connections as the base case; so although the reliability
has improved, it does not necessarily contributes to a lower percentage of
missed connections. The solution with reliability value of 5 has a slightly
higher percentage of missed connections whereas it performed better on
the reliability performance measures as the base case. The reason could
be that the arrival delay has improved by the buffer allocation, but it did
not compensate the departure delay. Next to that, the buffer assignment of
the solution with reliability value of 6 shows a lower percentage of missed
connections by passengers than the base case. It thus contributes to less
missed connections although the reliability performance is worse. Again, the
could be result of the departure delay; the buffer assignment could lead to
less departure delay and this impacts the percentage of missed connections.
Lastly, the optimal solution with the highest average arrival delay minutes
performs the poorest on this KPI. With these results, it can be noted that
there is a significant impact of departure delay on the percentage of missed
connections by passengers.

Figure 6.15: Deterministic result: Percentage of missed connections by passengers
in the schedule of 23 July 2019

Figure 6.16 presents the results of the average transfer time of the schedule
for the base case and the Pareto optimal solutions. The difference between
the base case and the Pareto optimal solutions is quite significant but within
the Pareto optimal solutions not. Since the optimization model tries to
maximize connectivity, it could be that the model includes more connections
with a long - close to MACT - transfer time. This increases the connectivity
value and increases the average transfer time of the schedule.
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Figure 6.16: Deterministic result: Average transfer time of the schedule on 23 July
2019

Table 6.3 gives an overview of the performance of the Pareto optimal
solutions compared to the base case. The Pareto optimal solution with on
average 7 arrival delay minutes performs only better on connectivity. For the
other solutions, it is up to the decision maker to determine which solution
performs best. This overview indicates if the solution performs better or
worse than the base case; however it does not indicate value and importance
of the better or worse performance. The decision maker, in this case network
planners, need to determine rating of the KPIs when choosing.

Table 6.3: Overview of performance Pareto optimal solutions compared to the base
case of 23 July 2019

Key Performance
Indicators

———————
Solutions

Average
arrival
delay

minutes

Total
arrival
delay

minutes

Connectivity

Percentage of
missed

connections
by passengers

Average
transfer

time

Solution
Reliability = 3

+ + + + +

Solution
Reliability = 4

+ + + +/- -

Solution
Reliability = 5

+ +/- + - -

Solution
Reliability = 6

+/- - + + -

Solution
Reliability = 7

- - + - -

+ = performance is better than base case; +/- = performance is similar to base case;
- = performance is worse than base case.
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25 july 2019 Optimizing the flight schedule of 25 July 2019 with the
deterministic way of calculating reliability results in seven Pareto optimal
solutions. Every solution has a higher connectivity value than the base case
schedule. Figure 6.17 shows the Pareto front of 25 July 2019; the graph is
presented in the same manner as the previous section. A clear trade-off is
visible between reliability and connectivity. The graph shows that almost all
solutions (excluding one) are expected to perform better on both objectives
than the base case schedule.

Figure 6.17: Deterministic result: Pareto front for 25 July 2019

For the average arrival delay minutes of the schedule (see Figure 6.18), the
same applies here as to the results of 23 July 2019. Although one solution
has a lower reliability than the base case, the connectivity value is interesting
enough to include this solution in the analysis.

Figure 6.18: Deterministic result: Average arrival delay minutes of the schedule on
25 July 2019
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The total arrival delay minutes has similar proportions between the solutions
as the average arrival delay minutes of the schedule on 25 July 2019; the total
arrival delay minutes increases proportional to the reliability. Concluding,
only one solution performs worse on the reliability KPIs.

Figure 6.19: Deterministic result: Total arrival delay minutes of the schedule on 25

July 2019

In line with Figure 6.17, all Pareto optimal solutions have a higher
connectivity value than the base case. This means that more connectivity
revenue can be retrieved with these optimal solutions. Complementary to
the trade-off between reliability and connectivity, Figure 6.20 shows that
the less arrival delay minutes (higher reliability) leads to less connectivity.
The graph flattens out when the number of average arrival delay minutes
increases.

Figure 6.20: Deterministic result: Connectivity value of the schedule on 25 July
2019
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Figure 6.21 displays the percentage of missed connections by passengers for
the base case and the Pareto optimal solutions. The solution with the highest
number of arrival delay minutes results in the same percentage of missed
connections as the base case. The other solutions positively contribute to
ensuring that less passengers miss their transfer. This graph shows that the
higher the reliability, thus the lower the amount of arrival delay minutes, the
less passengers miss their connection.

Figure 6.21: Deterministic result: Percentage of missed connections by passengers
in the schedule of 25 July 2019

The average transfer time of the schedule varies (see Figure 6.22). Reasoning
could be that more long connections are newly offered or short connections
are cut-off by the optimization model. It would be valuable for KLM to
evaluate the effect on the increase of transfer time on customer satisfaction.
This could help with making a well-founded decision on the increase of
average transfer time.
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Figure 6.22: Deterministic result: Average transfer time of the schedule on 25 July
2019

Table 6.4 gives an overview of the performance of the Pareto optimal
solutions compared to the base case. The solutions with reliability value
of 3 to 7 perform similar with respect to the base case. The performance of
the other two solutions (with higher average arrival delay) is more similar
to the base case. The main contribution of these solutions is the increase in
connectivity.

Note that this overview gives an indication whether the solution performs
better or worse than the base case, not how much better or worse. The value
of the performance needs to be determined by the decision maker. The
graphs of the KPIs offer support for this. Moreover, for the KPI average
transfer time, it is recommended to investigate the impact of increasing the
transfer time on customer satisfaction.
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Table 6.4: Overview of performance Pareto optimal solutions compared to the base
case of 25 July 2019

Key Performance
Indicators

———————
Solutions

Average
arrival
delay

minutes

Total
arrival
delay

minutes

Connectivity

Percentage of
missed

connections
by passengers

Average
transfer

time

Solution
Reliability = 3

+ + + + -

Solution
Reliability = 4

+ + + + -

Solution
Reliability = 5

+ + + + -

Solution
Reliability = 6

+ + + + -

Solution
Reliability = 7

+ + + + -

Solution
Reliability = 8

+/- +/- + + -

Solution
Reliability = 9

- - + +/- -

+ = performance is better than base case; +/- = performance is similar to base case;
- = performance is worse than base case.

6.2.3 Effect of Stochastic Variance

From the previous sections, there is a clear difference visible between
the results of the optimization model with very stochastic reliability
calculation and the model with a deterministic calculation. The deterministic
optimization model did not only make the solutions more comparable
but also increased the number of Pareto optimal solutions. This last
improvement can be related to the performance of the search quality
and progress of the optimization model, i.e. how fast the optimization
convergences to optimal solutions. It appears, from this improvement, that
stochastic variance has an effect on the performance of the optimization
model. This section investigates this effect more in-depth.

In order to test the effect of stochastic variance on the performance of the
optimization model, experiments with various noise levels are performed.
Noise is added to the deterministic model on the reliability objective, i.e. the
average arrival delay minutes per schedule. The simulation model is also
included in the analysis; this model has the highest stochastic variance since
it adds noise to every individual flight instead of solely to the reliability
objective.

The performance of the optimization model is evaluated by (1) convergence,
i.e. convergence of the solution set to the Pareto optimal front, and (2)
diversity, i.e. diverse set of solutions in the objective space. (Goel & Stander,
2010; Reed et al., 2013). This research applies two performance measures to
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evaluate the convergence and diversity of the model namely ε-progress and
hypervolume.

ε-progress describes the cumulative number of improvements between the
ε-grids. It measures whether the optimization models found a substantially
better solution based on the user-defined search precision ε. When the
number of improvements stabilizes, the search of the optimization model
has fully converged (Kwakkel et al., 2016). ε-progress thus measures the
convergence of the model. Hypervolume describes the size of the objective
space that is covered by the Pareto front. The user defines the minimum and
maximum values of the objective space, and then the ratio of non-dominated
outcomes to all possible outcomes in the space is calculated. It measures
the convergence and diversity of the optimization model (Reed et al., 2013;
Zitzler et al., 2007). A hypervolume of 0 means that there are no solutions
are found in the objective space; a hypervolume of 1 means that the objective
space merely contains Pareto optimal solutions (Garner & Keller, 2018).
Similar to the ε-progress measure, the optimization model has completely
converged to Pareto optimal solutions when the hypervolume stablizes.
The value of the hypervolume determines the diversity of the optimization
model; the higher the hypervolume, the more optimal solutions are located
in the solution space (Sato et al., 2007; Trautmann et al., 2008).

Both performance measure are computed for each generation. In total, the
number of function evaluation (NFE) for this experiment is 10.000. Due to
an adaptive population size of BORG, the population differs per generation.
The initial population is set to 100.

Figure 6.23 and Figure 6.24 visualize the ε-progress of two optimization cases
namely Tuesday 23 July 2019 and Thursday 25 July 2019. In both cases,
the optimization without stochastic variance (noise = 0%) has the highest
number of cumulative improvements and the simulation model, with the
most stochastic variance, has the least number of cumulative improvements.
This means that the optimization model without any stochastic variance
converges faster to the Pareto optimal front than the optimization model
with much stochastic variance.

The ε-progress for 23 July 2019 for the other noise levels has formed a group
in the midpoint of the deterministic model and the simulation model. No
clear pattern is shaped yet between the various noise levels. An explanation
could be that the ε-progress is not stabilized yet, and since the number of
improvements for the different noise levels lie very close to each other, the
order of ε-progress of the various noise levels can easily change.

Figure 6.24 convincingly shows that more noise leads to less ε-progress,
and thus a slower convergence of the optimization model. Although the
optimization model has not stabilized yet, the ε-progress is relatively spread
and no change in sequence of the noise levels is expected.

From the ε-progress measure, it can be concluded that a completely
deterministic optimization model, i.e. no stochastic variance, results in a
faster convergence than the simulation-optimization model, i.e. a very high
stochastic variance.
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Figure 6.23: ε-progress with various noise levels of 23 July 2019

Figure 6.24: ε-progress with various noise levels of 25 July 2019

Figure 6.25 and Figure 6.26 show the comparison of the hypervolume
measure. For 23 July 2019, the hypervolume remains fairly stable throughout
each noise level after approximately 45 NFE. The value of the hypervolume
indicates that for most noise levels, the Pareto front covers a large part of the
objective space. The simulation-optimization model stabilizes relatively fast
(after 22 NFE); the model convergences fast towards a more optimal solution
while the other noise levels are still exploring the solution space (and hereby
increase in hypervolume). For 25 July, the hypervolume of the simulation
model and a noise level with 50% remains the most stable over multiple
generations. This means that the optimization model with a high stochastic
variance is not likely to find more optimal solutions than currently found.
The hypervolume of the models with a lower noise level is still increasing
and thus, can increase even more. This means that although the models with
less stochastic variance take longer to find optimal solutions, the solutions
will be more diverse and have a higher coverage of the objective space.

Thus, the hypervolume shows that the simulation-optimization model
convergence relatively fast towards a solution while other noise levels are
still exploring the solution space and hereby, maximizing their hypervolume.
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Reasoning could be that the simulation-optimization model does not
evaluate infeasible solutions; this is modelled to decrease the computational
time. This could improve convergence towards a solution but not necessarily
towards many dominated solutions that cover a significant part of the
solution space.

Figure 6.25: Hypervolume with various noise levels of 23 July 2019

Figure 6.26: Hypervolume with various noise levels of 25 July 2019

Concluding, ε-progress shows that an optimization model without
any stochastic variance leads to a faster convergence than the
simulation-optimization model. When the optimization model is stabilized
in terms of improvements, it is also expected to see that more stochastic
variance leads to less improvements, and thus a slower convergence. This is
already shown for one of the cases (25 July) but not yet for both. Moreover,
the hypervolume measure shows that the simulation-optimization model
convergences relatively fast towards a solution due to modelling techniques,
while other noise level are still exploring the solution space. However, the
simulation-optimization model will likely not present a diverse Pareto front
according to the hypervolume measure. In combination with the ε-progress
results, it can be stated that the simulation-optimization model convergence
relatively fast towards a solution but most likely not towards the Pareto
optimal solutions.



7 D I S C U S S I O N O N R E S U LT S

This chapters discusses the results of the optimization model. Challenges
for the use of the model and the results in academia, business are addressed
sequentially. Lastly, the computational challenges are presented.

7.1 methodological challenges

This section discusses the challenges related to the methodological part of
the research. The focus lies on the process of designing the optimization
model, the use of the algorithm and the effect on the results.

During the design and experiments of the optimization model, several
challenges occurred on the methodological side. This has a great effect on
the quality of the solutions. Challenges, applied solutions and the remaining
difficulties encountered in this research are as follows:

use of genetic algorithm: borg BORG is chosen as optimization
algorithm for this research since it is currently the best performing GA
optimization algorithm for complex problems (Ward et al., 2015). Results
from this study show that the optimization model has not reached the most
optimal results yet for all cases. This means that the optimization model
is still under performing. This could either be the cause of (i) too few
function evaluations as stopping criteria, thus NFE should be increased or
(ii) BORG is not suitable for handling this extremely complex multi-objective
optimization problem. When increasing NFE to a reasonable limit does not
improve the performance of the GA, then the problem lies in the algorithm
itself. This has not been investigated in this research due to time limitations.
It is difficult to find another better performing GA since BORG is currently
the best performing GAs for multimodal and complex problems. The
conclusion would then be that the problem cannot be sufficiently handled by
current state-of-art GAs. Novel GAs need to be developed that can deal with
the required degree of complexity for obtaining the most optimal results of
this problem.

convergence In the course of this study, convergence challenges are
encountered. At first, the simulation-optimization model did not deliver
any feasible solution (i.e. solution where the constraints are met). One of the
causes was the quality of the convergence of the optimization model. The
main problems of this poor convergence are (1) the completely randomly

58
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sampled initial population and (2) stochastic variance of the simulation
model.

The first problem is the completely random sampling of the initial
population. The standard algorithm, as defined in the Python library,
samples a complete randomly initial population, i.e. the start point of
the optimization model. When the start of the optimization model is
too widespread, it is difficult and time consuming for the optimization
to convergence in the right direction. In this case, the right direction is
the solution space where the feasible solutions lie. The solution for this
challenge is to change the sampling of the initial population. In this research,
there is a base case where the Pareto optimal solutions are compared with.
The base case meets all the constraints and is, thus, a feasible solution. To
ensure convergence to the feasible solution, the base case and variations on
the base case are set to fill 20% of the population. To guarantee diversity in
the solutions, the other 80% of the initial population is sampled randomly.
Figure 7.1 shows an example of the initial population that is injected in
the optimization model. This way of sampling resulted in more feasible
solutions.

Figure 7.1: Initial Population with base case, 20% variations of base case and 80%
random

The other problem is the effect of stochastic variance on convergence. As
concluded from the results, the simulation-optimization model has the
poorest convergence. This could be explained by the high stochastic variance
of the simulation model and the extremely wide confidence intervals. As a
consequence, the optimization algorithm is not consistent in determining
whether this solution performs better or worse than other outcomes. So if
a solution is evaluated twice by the model, it could give two completely
different values for reliability. This makes it nearly impossible for the
algorithm to convergence to feasible and optimal solutions. As a solution,
this research eliminates the stochastic variance by using a deterministic
model. Another solution would be to simplify the simulation model to get
less stochastic variance and hereby, a faster convergence of the model.
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size of the solution space Although the number of decision variables
is quite small (approximately 18 rotations per optimization), the variable
bounds are very large. The variables bounds depend on the total buffer time
available in one fleetline and one decision variable could have 80 possible
solutions. If all 18 rotations have around 80 possible buffer values, the
number of possible solutions becomes extremely large. In this research, the
number of function evaluations has been increased from 1000 to 10.000. The
results show that the model still did not find the most optimal solutions.
A remaining solution to obtain the most optimal results is to increase the
number of function evaluations. In this way, the optimization model is able
to evaluate more solutions of this extremely large solution space. However,
this also increases the computational time tenfold. Another solution is to
limit the decision variable bounds, however this is not desirable in terms of
model validity.

constraints The optimization problem involves only four constraints,
however these constraints are formulated quite strictly. There are many
solutions that violate these constraints and this makes it difficult to get
feasible solutions within a reasonable time. To reduce computational time,
the simulation-optimization model does not evaluate a solution when it does
not meet the constraints. However, this also limits the search quality of the
optimization model by not evaluating near-feasible results which are close
to more optimal results. In the end, the optimization did obtain feasible
solutions and therefore, it was not necessary to take action. For further
improvement of the optimization model, it would be worthwhile to handle
the constraint challenge and hereby, obtain a higher search quality.

search precision The search precision (ε) for each objective in the
optimization model is user-defined. When setting the search precision either
too small or too large, the optimization model does not return the right
results. In this research, the initial search precision was set too large for
reliability objective and too small for the connectivity objective. Whereas the
expectation was that the optimization would give multiple Pareto optimal
solutions, it only gave one solution. Patterns of the results could not
properly be explained and the expected trade-off between the objectives was
not visible. When changing the search precision to the right value, these
problems were solved immediately. Thus, the search precision is a crucial
element for the quality of the results. A suggestion for other optimizations
is to normalize the objective values and the epsilons such that it is harder to
make a mistake in this essential user-defined parameter.

The five methodological challenges encountered during this research are the
use of a genetic algorithm, poor convergence of the model, large size of
the solution space, tight constraint and incorrect search precision. These
challenges are fundamental for the quality of the results.
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7.2 business challenges

This section discusses the challenges related to the business implementation
of the model. For airlines, it is interesting to know whether it is feasible to
use the novel optimization model for creating a flight schedule. This research
defines various challenges for using the optimization model in practice.
Based on the results, the following challenges and recommendations for the
business are identified:

decision-making The optimization model is a basis for trading off
reliability and connectivity in the schedule design. Due to the novelty
of the model and time limitations, this model does not include important
constraints such as slots assignment and crew legislation. Therefore,
this model is not suitable yet for stand-alone decision-making in practice.
Human interference is needed for the actual decision-making. Nonetheless,
this model offers help and clarity in the decision-making process and could
already be used as a support for decision-making.

adding more complexity to the model The optimization model
defined in this research is very simplistic compared to the real-life schedule
design. This model only includes four simple constraints of numerous
constraints that are applied in practice. Even with these two relatively simple
constraints, the optimization models already has difficulties with finding
the optimal solutions. This gives an idea of the high level of complexity
of the problem. Therefore, when adding more constraints, it is going
to be even harder to find the optimal solutions. It could be valuable to
relax the constraints to get infeasible but good performing schedules which
might actually work better than optimal solutions. Another commonly used
solution is to apply a penalty to the objective function when a constraint
is violated instead of setting it as a hard constraint. Thus, when adding
complexity to the optimization model, a suggestion for the airlines is to be
aware of the tightness of the constraints and to relax them or work with
penalties instead.

effect of changing the transfer time on customer satisfaction
and on ticket prices The effect of changing the transfer time on
customer satisfaction and on ticket prices is not taken into account in the
model. The customer satisfaction increases when the transfer time becomes
slightly longer than the minimum transfer time; passengers do not have
to run to catch their flight. When the transfer time increases significantly,
customer satisfaction decreases; if there is no meaningful use of the waiting
time, passengers tend to experience it as unpleasant. For them, it is mostly
a trade-off between waiting time at the hub and leisure time at the origin.
(Rietveld & Brons, 2001). As a consequence, this lower desirability of trips
with longer transfer time leads to lower ticket prices. The average transfer
time of a passenger is taken as a KPI in this research. However, the effect of
increasing or decreasing the transfer time has not actively been implemented
in the model due to time limitations. Therefore, the model tends towards
maximizing transfer times since this would increase connectivity. For further
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development, it would be valuable to add this element by making the
average transfer time an extra objective or by adding a penalty to the ticket
price when the transfer time increases. However, it is worthwhile to note that
the constraint that ensures no extra time could be added to a day minimizes
the outgrow of transfer time, so transfer time does not get unrealistically
large. Also, the outbound connectivity tends to function as a counterweight
to keep the average transfer time of a rotation from becoming extremely
large.

no future connectivity data In this research, connectivity is defined
by historical connectivity data. Due to lack of data on new possible
connections, the model does not add new connections and thus, the positive
impact on revenues is not displayed. Therefore, with the current data, the
optimal solutions are expected to stay relatively close to the base case in
terms of connectivity. Shifting the rotations forward or backward would
mostly lead to removing connections, and thus less revenue of tickets. In
practice, shifting rotations could also lead to connections which have never
been performed historically. Data on possible new connections of KLM was
not available for research. Therefore, insights on these new connections still
needs to be acquired by the commercial department of an airline.

stochastic variance of the simulation A recommendation for
airlines is to limit the stochastic variance when including a simulation model
in the optimization model. A way to limit the stochastic variance of a
simulation model is to exclude extreme cases of delay. For example, only
delays of less than 30 minutes are taken into account in the new simulation
model.

computational speed of the (simulation) optimization model
The computational speed of the simulation-optimization model is slow.
It takes 3.5 days to get the Pareto front and the results show that the
model has not even completely converged yet within this time. It is
therefore not desirable to use the simulation-optimization model for fast
decision-making. However, it is still suitable as support for decision-making
during the schedule design process, since it is not real-time decision-making.
Introducing the deterministic way of calculating reliability reduces the
computational speed to 5 hours per optimization problem. This is more
reasonable considering the speed of decision-making with respect to the
schedule design. Concluding, the implementation of the optimization model
in the business still faces some challenges. The current model is a basis for
optimizing reliability and connectivity in the schedule design. Although
human interference is still required, the optimization model is already able
to support decision-making by giving a clear overview of the trade-off
between reliability and connectivity. The main challenge is to extend the
model for full optimization of the schedule.
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7.3 computational challenges

This section discusses the challenges related to the computational time. As
briefly mentioned in the other sections, there are some issues regarding
computational speed. The general computational challenges are the
following:

speed of optimization model The computational time of the
simulation-optimization model is 3.5 days and the computation time of the
deterministic optimization model is 5 hours. The experiments are run on
a computer with 32GB Memory with parallel processing over 8 cores. The
deterministic optimization model has a more reasonable computational time
for decision-making than the simulation. However, it would be desirable to
speed up the model for implementation purposes. There are many tricks to
speed up GA but these are not applied in this research as this was not the
focus. When implementing this model, it is recommended to have Computer
Engineers speed up the optimization algorithm for faster performance.

number of function evaluations The results show that the model
has not fully converged yet, i.e. ε has not stabilized yet. This means that the
number of function evaluations needs to increase. This way, more solutions
in the extremely large solution space are evaluated and the model has the
ability to converge further. However, increasing the number of function
evaluations results in an increase in run time. Therefore, it is crucial to take
the increase in computational time into account when increasing the number
of function evaluations.

adding constraints to the model In order to use this model to
truly optimize the schedule design, more constraints need to be added.
Constraints such as slot assignments, crew legislation, and swapping flights
then need to be included. However, including these constraints would it
make it even harder to find feasible solutions within a reasonable time.
Therefore, it is important to keep track of the increase of computational
time when adding constraints. When the computational time increases
tremendously, no results can be obtained within a reasonable time and the
model becomes unusable for decision-making.

Concluding, the computational challenges are how to speed up to model,
the increase of number of function evaluation and adding constraints to the
model. It is important to be aware of the increase in computational time
when adding more complexity to the model. When the computational time
becomes too large, the model cannot give results in a reasonable time and
becomes unusable.



8 A N A LY S I S O N E N V I R O N M E N TA L
S U S TA I N A B I L I T Y

8.1 operationalization of environmental
sustainability

introduction Sustainability is a broad concept; there are three main
types of sustainability namely social, economic and environmental. Social
sustainability defines the well-being of the society. Economic sustainability
means the stabilization of the economic capital. Environmental sustainability
refers to improving humans welfare by protecting raw materials used for
humans needs and humans waste is limited (Goodland, 1995; Morelli,
2011).

The environmental importance of aviation has grown in the last years since
the impact of the airline industry on climate change has become more critical
(H.-C. Wu et al., 2018). Airlines can perform many actions to reduce their
environmental impact as defined in CORSIA, such as less food waste or less
fuel use. For this research, the focus lies on the effect of reducing delays by
buffer scheduling on fuel use.

Fuel use can be directly related to the CO2 emissions of a flight; 1 kilogram
(kg) of fuel for airplanes (Jet Fuel) is equal to 71.5 CO2 kg per gigajoules (GJ)
(Vreuls & Zijlema, 2009). Fuel use during a flight depends on many factors
such as:

• speed in the air,

• route to destination,

• load weight of the passengers and baggage, and

• weight of extra fuel.

Fuel use is affected by delay with respect to the speed in the air. In particular,
departure delay and airborne delay are correlated with fuel use. The pilot
could decide to perform high-speed flying (HSF) to catch up with departure
delay. The speed in the air increases so the fuel use increases as well.
Airborne delay could cause rerouting the aircraft or increasing speed during
the flight, which also increases the fuel use (Ryerson et al., 2014). Since this
research does not change the airborne time but only the buffer on ground,
sustainability is operationalized with departure delay.

Departure delay could cause HSF which leads to an increase in fuel use.
Reverse this, less departure delay could lead to less fuel use and a reduction
in CO2 emissions.
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KLM designed a sustainability model which calculates marginal fuel usage
in kilograms of a time gain during a flight. It, for example, calculates how
much additional kilograms of fuel is used when flying 5 minutes faster. This
is used to calculate the fuel consumption.

8.2 assumptions

To determine the effect of the optimization model on environmental
sustainability, the following assumptions are made:

• An one-to-one relationship exists between departure delay minutes
and HSF. This means that if the departure delay is 5 minutes, than the
pilot tries to catch up 5 minutes with HSF.

• There are no other reasons to perform HSF. It is assumed that the
only reason for performing HSF is to recover departure delay. Other
reasons such as being on-time for a slot or a specific connection, are
not taken into account.

• There is always the possibility to perform HSF. This means that there
is always enough fuel available.

8.3 results

The environmental impact of the Pareto optimal solutions is compared with
the base case schedule. The environmental sustainability is evaluated by
means of the average fuel use per flight of a schedule. Fuel use is defined
as the additional fuel use per minute for HSF multiplied by the total flight
time (including the time gained by HSF).

Similar to Chapter 6, the results of Tuesday 23 July 2019 and Thursday 25

July 2019 are presented. For this analysis, the departure delay resulting
from the deterministic optimization model is used since this is part of the
reliability calculation. The simulation model is not suitable due to its high
stochastic variance. Note that no exact values of the results are presented
due to confidentiality reasons.

23 july Figure 8.1 presents the average fuel use per flight in the base
case schedule and the Pareto optimal solutions. It can be concluded that all
optimal solutions use less fuel kg than the base case; this means that these
solutions are more sustainable than the base case. It can also be observed
that the more reliable the schedule is, thus the less delay minutes, the less
average fuel per flight is used. It seems as if the average fuel use of the
schedule is rather in line with the reliability.
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Figure 8.1: Average fuel use per flight in the schedule of 23 July 2019

To visualize whether the sustainability pattern is similar to the reliability
pattern, a new Pareto front is created with sustainability as objective instead
of reliability (see Figure 8.2). This research tries to minimize the fuel use.
The arrows on the axes point out the direction of desirability. Note that
the connectivity axes are reversed; this means that the point closest to the
lower-left corner is the most optimal. Compared to the Pareto front of
connectivity and reliability (Figure 6.11), the position of the solutions is quite
similar expect for one solution. Excluding this one solution, it can be noted
that less connectivity leads to more sustainable solutions and vice versa.
Overall, it can be stated that any optimal solution could be more sustainable
than the base case.

Figure 8.2: Pareto front of connectivity and sustainability of the schedule of 23 July
2019

25 july Similar to 23 July, Figure 8.3 shows that the more reliable, the less
average fuel per flight is used and thus, the more sustainable the schedule
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is. Again, the Pareto optimal solutions provide more sustainable schedules
than the base case.

Figure 8.3: Average fuel use per flight in the schedule of 25 July 2019

In contrast to 23 July, the sustainability pattern is not comparable to the
reliability in the Pareto front. Figure 8.4 visualizes the Pareto front in the
same way as the previous paragraph. Compared to the Pareto front of
reliability and connectivity (Figure 6.17), the solution in this Pareto front
are randomly scattered. No clear trade-off between sustainability and
connectivity is visible and thus, sustainability cannot be directly linked to
reliability. It is again shown that the base case solution could perform worse
in terms of sustainability and connectivity.

Figure 8.4: Pareto front of connectivity and sustainability of the schedule of 25 July
2019

conclusion It can be concluded that the optimization model generates
schedules that could perform better than the base case schedule in terms of
sustainability. This means that the optimization model positively contributes
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to reduction of CO2 emissions. Also the results show that the more reliable,
the less average fuel per flight is used and thus, the more sustainable the
schedule is. A more reliable schedule could save fuel and therefore, improve
CO2. Although it could be expected that sustainability follows the trend of
reliability in this situation, there is no clear evidence for this.

8.4 discussion

The sustainability analysis in this research is focused on one element which
affects the environmental sustainability of a schedule namely the departure
delay. It is assumed that there exist an one-to-one relation between departure
delay minutes and HSF, and HSF directly impacts the fuel use. This
explains why the average fuel use per flight increases when the reliability
decreases.

Moreover, it is concluded that the optimization model positively contributes
to the environmental sustainability goals of airlines. The degree of
contribution highly depends on the assumption that departure delay directly
affects the fuel use. When adding more elements that influence the fuel
use, the magnitude of this positive contribution of the optimization model
could change. Due to the significant difference between the base case and
the Pareto optimal solutions, it can be stated that the optimization model
reduces the fuel use of a schedule.

When concluding on the greater picture of environmental sustainability
without being aware of the limitations, it could lead to incorrect information
for decision-making. Therefore, the results of the sustainability analysis
should be interpreted with the limitations in mind.
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The environmental impact of aviation has been an emerging topic of
discussion worldwide. There is a need for reducing the CO2 footprint of
airlines while they keep contributing to globalization, i.e. more travelling
passengers. Creating a more robust and predictable flight planning would
reduce fuel consumption and thus, greenhouse gas emissions, because it
results in less high-speed flying since pilots do not have to catch up with
delays. However, a more reliable flight schedule often requires more buffer
time and this takes a toll on the amount of connecting flights that can be
offered. The goal of this research is to design a novel optimization model
for balancing reliability and connectivity by buffer scheduling in the flight
schedule, and to evaluate the impact on environmental sustainability. The
following main research question is thereby formulated:

"How can airlines use buffer scheduling to ensure the optimal balance between the
reliability of the flight schedule and the value of passenger connections, and what is

the impact on environmental sustainability?"

The main research question is answered by the following sub
questions:

1. How are reliability and connectivity operationalized in aviation?

2. What is the current state of reliability and connectivity of the short
haul flight schedule of KLM Royal Dutch Airlines?

3. Which optimization model is suitable for creating a reliable schedule
by buffer scheduling while trading off passengers connections?

4. How can reliability and connectivity of the short haul flight schedule
of KLM Royal Dutch Airlines be improved by buffer scheduling with
the optimization model from sub question 3?

5. What is the impact of this improvement of the short haul
flight schedule of KLM Royal Dutch Airlines on environmental
sustainability?

For the first sub question, the reliability and connectivity for airline industry
are operationalized as follows:

* Reliability is defined as the weighted average arrival delay minutes for
flight i during time window T.

* Connectivity is defined as the revenue from passengers transferring
based on (i) the probability of passengers actually making the transfer

69



conclusion 70

given the transfer time, (ii) the number of expected passengers per
transfer and (iii) the income per passenger.

Secondly, the current state of reliability an connectivity of KLM defines a
benchmark for evaluating the optimization model.

As answer to the third sub question, the optimization model that is most
suitable for creating a reliable schedule by buffer scheduling, while trading
off passenger connections, is a multi-objective optimization model. The
constraints that are necessary to include in this optimization model are (1)
the transfer time between two flights should be larger than the minimum
connecting time for that connection type, (2) the turnaround time between
connecting flights of the aircraft should be larger than the minimum
turnaround time and (3) the total amount of slack within one fleet line can
be divided only once. A good performance of the optimization model, i.e.
a high search quality and progress to find the most optimal solutions, is
guaranteed when (i) the stochastic variance in the objectives calculation is
limited or none, (ii) including (variations of) the base case in the initial
population and (iii) perform at least 10.000 function evaluations. The
performance of this model and the quality of the results could be improved
by relaxing or penalizing the constraints and increasing the number of
function evaluations.

Fourthly, the reliability and connectivity of the short haul flight schedule
of KLM Royal Dutch Airlines can be improved by presenting the Pareto
optimum that results from the optimization model in a clear overview in
such a way that the network planners can make an explicit trade-off between
them. The results of the optimization model perform better than the base
case, so the ways of buffer scheduling resulting from the optimization model
could improve either or both the reliability and connectivity of the short haul
flight schedule, depending on the choice of the network planners.

In response to sub question 5, a more reliable schedule, resulting from the
optimization model, positively impacts the environmental sustainability of
the schedule assuming that the departure delay solely and directly affects the
fuel use. A more reliable schedule could save fuel and therefore, improve
CO2.

Concluding, the novel optimization model is a suitable way to use buffer
scheduling for ensuring the optimal balance between the reliability of the
flight schedule and the value of passenger connections. Considering that
the model does not include all the constraints required for the schedule
design and has a run time of 5 hours, the model supports decision-making
by creating insight in the trade-off between reliability and connectivity,
and by providing more optimal and sustainable solutions than the base
case. Integrating it with a high level of stochastic variance, makes it
harder to obtain Pareto optimal solutions due to the low search quality
and progression. Therefore, it is recommended to use a deterministic
optimization for supporting decision-making when balancing reliability and
connectivity in the flight schedule.
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Moreover, the optimization model positively impacts environmental
sustainability, assuming that the departure delay is the only factor that
directly influences fuel use. Adding more factors to the equation could
change the degree of this positive contribution.
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This research presents a novel optimization model for trading off the
reliability and connectivity in the schedule design by buffer reallocation.
Due to system boundaries and time limitations, elements are simplified and
could be expanded in the model. The following elements could be expanded
in further work:

• Entire float of all aircraft types. The current model optimizes the
float for one aircraft type. For further work, it would be valuable
to optimize the schedule for all aircraft types at once. Hereby, the
connections between aircraft types are also included and this makes
the connectivity measure even more realistic.

• Time period. Currently, the model optimizes for one day. It
would be beneficial to expand this to an entire season to include the
dependencies between the days. To expand the model to international
flights, this would be necessary since the schedule of international
flights often do not include overnight flights to cut the schedule into
days, as the European flight schedule does.

• Propagated delay. The reliability measure is currently the average
arrival delay minutes per flight of a schedule. It would be valuable
to also define the propagated delay as measure for reliability since this
is one of the main causes of delay in a hub-and-spoke network.

• Value of transfer time for ticket prices. The value of transfer time
for the connectivity measure would bring the model closer to reality.
As mentioned, the transfer times could increase or decrease the ticket
prices and therefore, the connectivity value.

• Value of time of the day for ticket prices. The model currently takes
historical ticket prices as revenue of a connection. However, when
changing the time of a flight by buffer scheduling, the ticket prices
could change based on the time of the day. For example, it is more
profitable to fly on Monday morning at 8 a.m. to London than on
10 a.m. to facilitate business meetings. Therefore, adding this time
element to the monetization of the connections would be interesting
for further work.

There are also elements that are necessary for decision making and have
not been included at all. To expand the model for further research, it
would be interesting to incorporate these elements and get a fully integrated
optimization model for the schedule design. The following elements could
be included:
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• Slot assignment of the hub and outstations. Slot assignment is a
complex element to add; it involves many dependencies and politics.
However, it is one of the main (and most difficult) constraint for
creating a schedule. Schedule planners manually ensure that the
number of slots available in a time window aligns with the created
schedule. The importance and complexity of this constraint makes it
very useful to add to the optimization model.

• Crew legalisation. Crew legalisation such as maximum working
hours, are restrictive for creating a flight schedule. It could determine
the flight time or how the flights are scheduled. Therefore, this
constraint would be valuable to add. Ideally, the entire crew
scheduling is aligned with the flight scheduling.

• Resource assignment. Resources such as fuel tanks, push-back truck,
ground personnel, are limited for a day of operation. The schedule
should also be aligned with the number of available resources to
ensure that the schedule can be performed as intended. For example,
ten aircraft need to have their baggage unloaded at the same time since
their STA is the same but there are only nine baggage unloading crews
available. This leads to a delay for one aircraft which could propagated
over the day.

• Fleet assignment. Fleet assignment, i.e. which aircraft type a flight
uses, is already fixed in the current optimization. In real life, schedule
planners sometimes choose to change the aircraft type to create a
more fitted schedule. It is also possible that a specific aircraft type
can only fly on one airport,which makes a change in aircraft type
impossible. Adding the possibility of changing the aircraft type would
be interesting for further work.

• Delay of a passenger. The current model focuses on the delay of
a flight. For customer satisfaction, the delay of a passenger is a
more suitable measure to incorporate. Also non-performance cost are
determined on passengers level. Therefore, it would be valuable to
add this to the optimization model.

• Block time as decision variable. Block time, i.e. the time between STD
and STA, is also interesting to take as a decision variable. The model
could then choose whether it is better to add buffer to the ground time
or to the block time.

• Flight speed as decision variable. Next to changing the block time
with buffer scheduling, flight time could also be increased or decreased
by the flight speed. This would also be an interesting element to
add as decision variable, especially for the sustainability aspect of this
research.

In addition to expanding the model, this research also gives insight in
the effect of stochastic variance on the performance of the optimization
model. In particular, it gives insight in the performance of the search
quality and progress of the genetic algorithm BORG. More in-depth research
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on the effect of stochastic variance on the optimization model would be
valuable.

It is also interesting to perform more research on the suitability of BORG for
this highly complex optimization problem. As mentioned, it could be that
BORG is not completely suitable for this level of complexity. Since BORG is
one of the best performing GAs, it means that this complexity level cannot
be sufficiently handled by the current state-of-art GA. Novel GAs need to
be developed that include more complexity for obtaining the Pareto optimal
front. Before this conclusion can be drawn, more research is required in the
performance and suitability of BORG for extremely complex problem.

Lastly, in terms of environmental sustainability, other factors that influence
fuel should be further investigated and incorporated in the sustainability
measure. As environmental sustainability is grown in importance, airlines
want to mark their environmental footprint. Therefore, it would be valuable
to create an extensive formula that could describe the actual environmental
impact of delays and different manner of buffer scheduling.
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Şafak, Ö., Gürel, S., & Aktürk, M. S. (2017). Integrated aircraft-path
assignment and robust schedule design with cruise speed control.
Computers & Operations Research, 84, 127–145.

Santos, B. F., Wormer, M. M., Achola, T. A., & Curran, R. (2017). Airline
delay management problem with airport capacity constraints and priority
decisions. Journal of Air Transport Management, 63, 34–44.



bibliography 80

Sato, H., Aguirre, H. E., & Tanaka, K. (2007). Controlling dominance area
of solutions and its impact on the performance of moeas. In International
conference on evolutionary multi-criterion optimization (pp. 5–20).

Shannon, R. E. (1998). Introduction to the art and science of simulation. In
1998 Winter Simulation Conference. Proceedings (Vol. 1, pp. 7–14).

SkyTeam. (2020). Onze member airlines. Retrieved 2020-03-05, from https://

www.skyteam.com/NL

Sohoni, M., Lee, Y.-C., & Klabjan, D. (2011). Robust airline scheduling under
block-time uncertainty. Transportation Science, 45(4), 451–464.

Sternberg, A., Soares, J., Carvalho, D., & Ogasawara, E. (2017). A review
on flight delay prediction. CoRR. Retrieved from http://arxiv.org/abs/

1703.06118

Thengvall, B. G., Bard, J. F., & Yu, G. (2000). Balancing user preferences
for aircraft schedule recovery during irregular operations. Iie Transactions,
32(3), 181–193.

Trautmann, H., Ligges, U., Mehnen, J., & Preuss, M. (2008). A convergence
criterion for multiobjective evolutionary algorithms based on systematic
statistical testing. In International Conference on Parallel Problem Solving from
Nature (pp. 825–836).

Veiseth, M., Olsson, N., & Saetermo, I. (2007). Infrastructure’s influence on
rail punctuality. WIT Transactions on The Built Environment, 96, 481–490.

Vikhar, P. A. (2016). Evolutionary algorithms: A critical review and
its future prospects. In 2016 International Conference on Global Trends in
Signal Processing, Information Computing and Communication (ICGTSPICC)
(pp. 261–265).

Vreuls, H. H., & Zijlema, P. J. (2009). The netherlands: list of fuels and
standard co2 emission factors. SenterNovem report to the Ministry of VROM
(Spatial Planning, Housing and the Environment, Utrecht, the Netherlands.

Ward, V. L., Singh, R., Reed, P. M., & Keller, K. (2015). Confronting
tipping points: Can multi-objective evolutionary algorithms discover
pollution control tradeoffs given environmental thresholds? Environmental
Modelling & Software, 73, 27–43.

Wong, J.-T., & Tsai, S.-C. (2012). A survival model for flight delay
propagation. Journal of Air Transport Management, 23, 5–11.

Wu, C.-L. (2005). Inherent delays and operational reliability of airline
schedules. Journal of Air Transport Management, 11(4), 273–282.

Wu, C.-L. (2006). Improving airline network robustness and operational
reliability by sequential optimisation algorithms. Networks and Spatial
Economics, 6(3-4), 235–251.

https://www.skyteam.com/NL
https://www.skyteam.com/NL
http://arxiv.org/abs/1703.06118
http://arxiv.org/abs/1703.06118


bibliography 81

Wu, C.-L. (2008). Monitoring aircraft turnaround operations–framework
development, application and implications for airline operations.
Transportation Planning and Technology, 31(2), 215–228.

Wu, H.-C., Cheng, C.-C., & Ai, C.-H. (2018). An empirical analysis of
green switching intentions in the airline industry. Journal of Environmental
Planning and Management, 61(8), 1438–1468.

Zitzler, E., Brockhoff, D., & Thiele, L. (2007). The hypervolume indicator
revisited: On the design of pareto-compliant indicators via weighted
integration. In International Conference on Evolutionary Multi-Criterion
Optimization (pp. 862–876).



A A S S U M P T I O N S

This appendix describes two types of assumptions, namely structural and
data assumptions. Structural assumptions are assumptions about the
operation of the real-world system. Data assumptions are assumptions on
the data used in this research (Banks, 1998).

a.1 structural assumptions

• There is a focus on scheduled passenger connections.
There are two types of passenger connections namely actual passenger
connections and scheduled passenger connections. Actual passenger
connections are the number of passengers that can actually make
the transfer they intended on the day of operation. This relates to
passenger disruptions. Scheduled passenger connections are the number
of possible connections that can be made according to the schedule.
Here, the revenue of a connection is important. In this research,
there is a focus on the scheduled passenger connections for the hub
connectivity since this is influencing the flight schedule and not the day
of operation. By increasing reliability, the actual passenger connections
is expected to increase.

• Crew scheduling is excluded.
The crew scheduling is not taken into account in this research.

• Baggage connectivity is excluded.
Together with passengers, baggage also needs to be transferred.
Different norms and processes for transferring baggage are applied.
However, when a passenger was able to transfer but the baggage was
not, it could lead to a lower customer satisfaction level. Baggage
transfers could also delay the aircraft. For this research, this baggage
flow has not been taken into account with respect to connectivity.

• Block time is always 100% accurate.
It is assumed that the scheduled block time is 100% accurate. This
means that time between departing and arriving is the actual time that
an aircraft needs to perform a flight, with 100% accuracy. In real life,
the scheduled block time is not always in line with the actual flight
time.

• On-time maintenance routing is included.
Maintenance trips are included in the flight schedule. Hereby, it is
assumed that the maintenance for an aircraft has to be performed and
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during this time, the aircraft cannot be used for a flight. It is assumed
that an aircraft is always on time after maintenance for the next flight.
Also delays on starting maintenance does not affect the time to finalize
maintenance. This means that, although the maintenance starts late
due to delays, it will always finish on time. Thus, there is no focus on
the maintenance routing but the trips itself are included in the flight
schedule.

• Standard Processing Time (SPT) for ground services is always
on-time
The processing time of an aircraft on the ground from any door open
(ADO) until all doors closed (ADC) is assumed to be always on time.

• On-time arrival of international flights (ICA) is assumed.
ICA connections are taken into account for the connectivity element
of the schedule. This means that the connections of long haul flights
with short haul flights are taken into account. It is assumed long haul
flights always arrive on time.

• There is a fixed fleet assignment.
It is assumed that a flight has to be performed with the assigned
aircraft type.

• There is a fixed amount of aircraft available.
For each aircraft type, it is assumed that there is a fixed amount of
aircraft available.

• Early arrivals are considered as on-time.
Early arrival are considered as on-time in the model, i.e. they have
zero delay minutes. The effect of early arrivals, thus compensating
some delay due to early arrivals, is not be taken into account when
allocating buffers.

• Alternative flights for a transfer are excluded.
For this research, the possibility of taking alternative flights to the
final destination is not taken into account for measuring connectivity.
Thus, when a transfer cannot be made anymore, it is not weighted
whether this is less important since there is another flight to the same
destination shortly afterwards.

a.2 data assumptions

a.2.1 General

• Time is defined as Coordinated Universal Time (UTC).
All time elements in this research are defined in UTC and not local
time. This is mostly used by the airline industry to ensure mutual
understanding on time.
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a.2.2 Optimization Values

• The model uses 10.000 function evaluations to optimize the problem.

• Optimization in this research is performed for aircraft type Boeing
737-800 and 737-900.

• Two weeks in Summer 2019 are intended to be optimized and
compared with the current schedule namely the week of July 22, 2019

to July 28, 2019 and the week of August 12, 2019 to August 18, 2019.
Due to time limitations, only Tuesday 23 July 2019 and Thursday 25

July 2019 are optimized.

• The model only optimizes for one day at a time.

• The model optimizes only the fleetlines of one aircraft type at once.

a.2.3 Simulation Model

• Historical data of CDM is from 2017, 2018 and 2019.

• Historical rotation performance data is based on data from March 1,
2017 to October 29, 2019. The period begins at the start of Summer
2017 and ends at the last day of Summer 2019. For consistency
with CDM historical data, this time period is chosen for the rotation
performance. Also this research focuses on the summer season and
therefore, the summer period is chosen as starting and ending point.

• Rotation delays, either positive or negative, of more than 60 minutes
are not taken into account.

• Buffer time at the outstations is included in the arrival delay. When
buffer is planned at the outstation, some of the rotation delay can be
captured by this buffer. Thus, the departure delay plus the sampled
rotation delay minus the buffer at the outstation accounts for the final
arrival delay.

• The number of replications is 10. The number of required replications
depends on the desired statistical accuracy of the research (Carson,
2004). There is no rule of thumb for this. For the inherent
variability factors in the simulation, i.e. collaborative decision making
moments drawn from a distribution and the rotation performance, 10

replications for one buffer allocation solution are necessary.

a.2.4 Connectivity

• Connections with a connection time longer than six hours are
excluded from the initial schedule.
Long connections of more than six hours are not desirable and thus,
not offered. This assumption ensures that a rotation will not shift that
much (e.g. more than three hours) such that these connections become
interesting. Also the computational time of the model decreases when
applying this limit.
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• Number of connecting passengers and price of the tickets is
calculated per day of the week in this research.
The number of connecting passenger and the price of the tickets
is grouped by the day of the week (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday).

• Probability of a passenger actually making their transfer based on
the transfer time is determined per connection type.
By this, the Schengen versus Non-Schengen connection types are
incorporated.

• Data on new possible connections is not included.
This research only has data on historical connections and not on
future connections based on market share. The model cannot find
opportunities to create new connections. Therefore, the optimal
schedule is expected to be quite similar to the base case in terms of
the type of connections made. Thus, the variability of the connectivity
value could be limited due to this data pitfall.
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