
Improving the Anonymity of Layer-Two Blockchains Adding Random Hops

Paolo Arash Kazemi Koohbanani1 , Stefanie Roos1 , Satwik Prabhu Kumble1
1TU Delft

Abstract
The Bitcoin Lightning Network is a layer-two so-
lution that promises instant payments, scalability,
and low transaction fees on top of the Bitcoin
blockchain. In case there is no direct channel be-
tween the sender and receiver, the routing algo-
rithm uses source routing and a shortest path algo-
rithm to determine the hops in a transaction. How-
ever, the lack of randomness in the routing decision
allows an attacker to de-anonymize either sender or
receiver, if they happen to be one of the nodes in
the transmission path. The guarantees offered by
the onion routing style algorithm are not enough
to ensure anonymity when little to no randomness
is used when choosing the path. Here we show
how it is possible to modify the path finding algo-
rithm keeping backward compatibility. It increases
anonymity between the sender and receiver adding
random hops to the already computed shortest path.
Anonymity and efficiency metrics are then anal-
ysed with respect to an adversary that is aware of
the full protocol implementation. Furthermore, as-
suming a protocol-aware adversary, an attack is de-
signed, and it is concluded to be successful at most
53% of the time and singularly de-anonymizing
both parties in 1% of the cases. The average num-
ber of hop counts increases by approximately two
and the average fee paid by the sender increases by
4.77 times. Our results suggest a possible increase
in the anonymity offered without a significant im-
pact on the complexity of the lightning protocol im-
plementation. However, transaction fees and pay-
ment success ratio should be analyzed further, es-
pecially for low-value transactions.

1 Introduction
Proof-of-work (PoW) blockchains gained significant adop-
tion in the past years as more people started using them for
different purposes such as investment, store of value, or pay-
ments [1]. The average amount of transactions per second for
the Bitcoin [2] blockchain is between 3 and 7 in contrast to the
thousands of transactions that traditional centralized systems
can achieve already [3]. Because of the limited block size,

1MB, the number of transactions per second cannot be easily
extended above 10. A proposed solution to this problem, that
allowed to scale the blockchain without a change in the con-
sensus algorithm, was to create a layer-two blockchain on top
of the main blockchain, now considered layer-one. Multiple
implementations of layer-two blockchains exist such as chan-
nels, commit-chains, or refereed delegation [4]. The channel
implementation only requires interaction with the blockchain
when opening, closing a channel, or one of the parties in-
volved in a transaction decides to dispute it. A dispute hap-
pens whenever two nodes disagree on the state of the network
or the current balance of the channel. For example, one node
might try to close the channel distributing all the remaining
balance to himself, which will generate a dispute from the
other party. The layer-one blockchain will then be used to re-
solve disputes as that has already been proven to be a reliable
mean to agree on a global state between multiple untrusted
parties.
The Bitcoin Lightning Network (LN) [5] is a layer-two solu-
tion that promises instant payments, scalability, and low costs
on top of the existing Bitcoin blockchain. Transactions exe-
cuted on the LN are not recorded on the layer-one blockchain
except for the opening and closing of the 2-of-2 multisigna-
ture address [6] when locking and releasing the collateral, and
resolving disputes. Transactions can occur between two di-
rect channels that agree on opening a channel between them-
selves or they can be routed along the network to reach the
final destination. In both cases, disputes can be resolved on
the Bitcoin blockchain by carrying out the disputed part of
the transaction directly on it [7].
Opening or closing a channel requires sending a transaction
on the layer-one blockchain. This can be an expensive oper-
ation if transaction fees are high. Channels can then be either
private or public, the latter are broadcast to the entire network
and they can be used by other nodes to process payments.
Routing a payment along the network makes it possible to
avoid the opening cost but requires a way to determine how
to route the payment across the network to reach the correct
destination [8]. When routing a payment the sender and re-
ceiver should not be known to the intermediary nodes, only
the previous and next nodes in the path should be revealed at
each hop. This is implemented using an onion routing style
algorithm where the packets that are transported only reveal
the minimum amount of information to process the payment

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



to the next node [9]. The LN uses source routing, the path is
determined by the sender of the transaction who decides the
hops that will occur when routing it. Every public node ac-
tively broadcasts information about the fee that it keeps when
routing a transaction and the time limit after which the funds
will be returned in case of a failed payment. The sender can
then choose the nodes to use to route its payment and will
usually optimize for lower fees especially when the transac-
tion amount is low, one of the use cases for the LN [10].
As such different implementations have been developed to
optimize the path finding algorithm, the three most used light-
ning implementations use modified versions of Dijkstra al-
gorithm [11] with different cost functions [12]. LND [13]
is the most used lightning implementation and uses Dijkstra
algorithm with an additional penalty for nodes that recently
failed to route a payment. C-lightning [14] also uses Dijkstra
shortest path algorithm but to reduce failures it adds a bit of
randomization in the cost function. Eclair [15] instead uses
Yen’s Algorithm [16] where it randomly chooses from the 3
shortest paths available. Overall the variations use a path find-
ing algorithm with little to no randomness added in the deci-
sion making, resulting in very few possible paths to choose
from. Although onion routing style has been successful in
maintaining privacy for the web, it was shown that this is not
enough to guarantee privacy and anonymity on the LN [12;
17].
Whenever a transaction has to go through a node, the amount
has to be locked until the transaction is completed or it ex-
pires. To enforce time expiration of payments, a Hashed Time
Locked Contract (HTLC) [18] is used. The contract crypto-
graphically ensures that if the sender does not send the funds
in time, the locked funds can be recovered safely. It works
by generating a random SHA256 [19] value of which the re-
ceiver has the preimage, the hash value is then propagated
to all nodes in the transaction. To redeem the funds, the re-
ceiver of the contract needs to provide the preimage of the
hash value determined at the start of the transaction [20]. Ev-
ery public channel sets its own expiration time in terms of
number of blocks to wait. This information is publicly broad-
cast so that it can be factored in when calculating the shortest
path. The current HTLC time is known by each node in the
chain so that it can be verified whether it expired or not. A
low expiration time means that the number of remaining hops
for that transaction are low with higher probability.
There have been already attempts to attack the LN taking ad-
vantage of the HTLC and their susceptibility to timing at-
tacks. This allows an attacker to gain information about the
parties involved in specific transactions by controlling nodes
on the path. In the case of [21], the time difference between
accepting to process a payment and its completion is calcu-
lated. Subsequently, a maximum likelihood estimator is con-
structed for the possible destinations matching the calculated
time. Sources are estimated sending a failed payment mes-
sage and calculating the time difference when the payment
is retried. Additionally in [12], the knowledge about differ-
ent routing algorithm implementations is used along with the
HTLC to discard possible pairs, singularly de-anynomizing
the parties involved in 8% of the cases. The routing im-
plementation and its predictability have also been vulnerable

to Denial-of-Service attacks and given that most transactions
pass through a limited number of nodes they could be easily
exploited [22].
Our work focuses on evaluating the possibility to modify the
routing algorithm to add enough randomness such that being
a node in a transaction and knowing the HTLC value will not
be enough to determine a singular anonymity set with a prob-
ability higher than 5%. The research will focus on analysing
the attack to the routing algorithm, explaining a modification
to it that will introduce randomness into the path finding pro-
cess, and showing two possible attack strategies implemented
against it.
In the following sections, we will start by describing how
the current de-anonymization attack [12] works in section 2.
Section 3 will then be dedicated to model the modification
to the routing algorithm and its integration within our sim-
ulation framework, followed by the design of a new attack
taking into account the introduced randomness. In section
4 we will list the evaluation criteria for our simulation and
critique the results obtained after the modification to the al-
gorithm. Section 5 will discuss the results obtained and com-
pare them to other alternatives analysing their advantages and
dis-advantages, following Section 6 will focus on the conclu-
sions of the work and future research. Section 7 will analyse
the ethical aspects and reproducibility of the research being
done.

2 Attacking Lightning
This section will be dedicated to explain the workings of re-
cent attacks to lightning’s anonymity. For a more complete
description we refer to [12].

2.1 De-anonymization Attack
The attack assumes there is a set of adversaries spread across
the network with multiple public channels opened. Private
channels are not taken into consideration as in the case of
source routing the sender needs to be aware of them. More-
over the adversaries are not able to determine whether they
are on the same transaction path. It is assumed that the con-
tracts used are anonymous multi-hop locks [23], generating
a different hash value for each hop in the chain. Far apart
nodes have no way of knowing whether they are on the same
transaction path. This means that if the same transaction is
attacked multiple times, the adversaries cannot share the in-
formation obtained and take an intersection of the anonymity
sets. The attack starts when the adversary happens to be on
the transaction path and it is divided into two phases. In
the first phase, the attacker collects all possible destinations
reachable while the second phase is used to discard invalid
paths and create a set of potential source and destination pairs.

Phase I
When the adversary receives a transaction to route, the cur-
rent HTLC is known, that is, how many blocks are left until
the transaction timeout. The previous and next hops are also
known. Starting from the next node, a search is performed
to go through all possible nodes that could be a destination
of the transaction, until there are no more nodes or the depth
of the path is higher than four. The average hop count per



transaction is less than seven, therefore stopping at depth four
should be large enough to reduce the number of false posi-
tives [24]. During the search, the advertised time lock value
of each hop encountered on the possible constructed path is
subtracted from the previous one. The sum of all the time
locks along the constructed path will therefore be equal to the
HTLC value the adversary has. If the recipient HTLC value
goes below zero, the hop cannot be a possible destination be-
cause a transaction would always timeout in the worst case,
the path is discarded. A similar reasoning can be done for val-
ues higher than zero, the time lock value would be more than
the one needed, causing a transaction to wait for a longer time
in the worst case. However, if shadow routing [8] is used the
time lock value will become greater than zero for most trans-
actions. In this case, the sender decides to add an offset to the
HTLC value to reduce the chances of nodes guessing the in-
tendent recipient of the transaction. If shadow routing is used,
a search can be performed only using the graph connections
without considering the time lock, we will assume it is not for
the rest of the paper.

Phase II
Once all possible destinations are found, the search for possi-
ble sources that could match the destination is started. Start-
ing from the previous node, we go through all possible con-
nected channels that might be a source for this transaction and
run the routing algorithm to see if there is a possible match.
Because the routing algorithms are known, as explained in
the previous section, we can take the possible computed path
and check if it would be the one chosen by any of the imple-
mentations. In the case of Eclair the path will be discarded
if it does not match any of the top three shortest paths. Run-
ning the routing algorithm enables to discard many paths that
would not be cost effective reducing the anonymity set size.
Nodes can publicly broadcast the implementation they are us-
ing, this information can be used by the attacker to only run
the advertised implementation when discarding paths. How-
ever, the broadcast information might not be reliable, there-
fore an adversary should consider all implementations to re-
duce the possibility of false positives.

3 New Routing Algorithm
This section is dedicated to explaining the simulation frame-
work we used to model the lightning network and the attacks
executed on it as well as detailing how the modification to the
routing algorithm is applied.

3.1 Simulation Framework
The simulation framework is written in Python and it is
used to create the network, start transactions between nodes,
route payments across the network, attack transactions,
and evaluate results. The network of nodes is initialized
from a snapshot of the lightning network where only public
channels that broadcast a public policy are used. The rest
is discarded along with channels with no capacity. The
adversaries along the network are chosen manually based
on their centrality. A mix between high and low values are
taken to have different views on the effectiveness of the
attack. Transactions are simulated by choosing two nodes at

random and initiate a payment between them. The HTLC
packets are not encrypted due to the attack not requiring
it, only the time lock value has to be taken into account.
Routing a payment amount is an instantaneous operation as
well as attacking it in case an adversary happens to be on the
path. When routing a payment, the path finding algorithm
corresponds to the advertised implementation that the node
broadcasts. When using the advertised implementation a
modified Dijkstra algorithm is also used in the case of Eclair
to return the top three paths, this is done to simplify the
implementation complexity. The obtained paths should not
differ from the ones that Yen’s algorithm finds especially for
low values of k. The same generalized version will be used
to model the modification of the algorithm to make sure all
implementations are taken into account and a possible attack
would be less effective.

Attacking payments
The routing algorithm locking the funds and moving the
amount across the network is also responsible to attack the
transaction in case an adversary occurred in the path. The
attack is started whenever the adversary receives the informa-
tion regarding the current time lock and the amount of the
transaction it needs to route. Transactions are processed one
after the other, therefore the simulation does not consider con-
current payments. Chances of locking funds and failing to
process a payment decrease, however, in a healthy network
of nodes most of the transactions should succeed. It should
still be taken into consideration that multiple payments could
be routed from the same node at the same time. The cost
function used for LND discards the notion of bias and failed
payments, which should not meaningfully impact the routing
decisions made by the nodes. It is still possible to conduct the
attack even when a transaction fails as long as the transaction
reaches the adversary node giving it the HTLC information to
compute the anonymity sets.

3.2 Routing Algorithm Modification
The algorithm modification we created is backward compat-
ible with any current implementation of the LN. Adoption
does not require consensus from a majority of the network
because the LN uses source routing. This means, the sender
determines all hops the transaction will go through when de-
ciding to route a payment across the network. The decision to
use a modification or a different implementation to compute
the path is left to the senders and cannot be known unless they
voluntarily broadcast it.
Once one or more short paths between the sender and receiver
are calculated the hops are added substituting edges of the
path at random. The algorithm goes over all edges of the
found path and randomly decides whether or not to add an
extra hop. If a hop needs to be added, it goes through all
possible nodes that connect the extremes of the edge and ran-
domly chooses one of them to form a new connection. For ex-
ample, if there is an edge A→ B, a hop can be added if there
exists a C for which a payment can flow from A→ C → B,
considering all channels have enough capacity. Each time a
random hop is added it is required to check for possible loops



that were created. The minimum number of random hops
that needs to be added is set to two, this should increase the
average hop count of a transaction by at least two, ensuring
that every transaction will be randomized. An edge case of a
transaction with only one hop will have a total of three hops,
making it more difficult to identify small anonymity sets.

Algorithm Pseudocode
Next, we will describe the pseudocode which can be found
in algorithm 1, illustrating how the modification can be im-
plemented in a LN implementation after having computed a
path with a given graph G. In the case of a direct channel the
algorithm will not apply any changes returning the same path,
the identity of the sender or receiver cannot be revealed to any
possible adversary. To add an additional level of randomness,
the number of possible hops that can be added is chosen to
randomly be between 2 and the maximum hops in the trans-
action, line 5. The loop in line 7 goes through each node in
the path, computing the hops that can be added, and return-
ing the modified path when the last one is reached. For each
node, we calculate the hops connected to it in the graph G and
at line 13 we check whether all conditions to be a hop are met,
first checking that it is not equal to the next hop on the path.
The other conditions are checked through functions that are
assumed to be implemented, we will not detail their exact im-
plementation as depending on the data structures used to store
the LN graph they will have different implementations. The
function hasEdge will return true only if in graph G there
exists a direct channel connecting hop → nextNode. This
means the hop can be inserted on the path because it connects
to the next node present in the original path. The function
noLoops will return true only in the case that adding the hop
will not create any loop on the modified path and the provided
one. Finally, the function hasEnoughCapacity makes sure
the two new channels that will be used have enough capac-
ity to forward the transaction. For simplicity, the exact fee
calculation is excluded from the pseudocode, but in a realis-
tic implementation it should be calculated to correctly check
the capacity of the channels. To implement the fee calcula-
tion it is advised to reconstruct the path backwards using the
original amount as a starting point, this will make sure the
recipient will get the same amount and decrease the possi-
bility of failed payments. If there are still hops to be added
and there are multiple possible hops which can be used, the
algorithm will choose between them at random, the function
random at line 17 is assumed to take an array of values and
randomly return one of them. In some edge cases of the net-
work, it might not be possible to add any random hop causing
a transaction to use the shortest path that was found. In this
case, we advise to compute it on a suboptimal path for which
at least 1 random hop is added. Given that the timestamps
of a transaction can be known, the randomness used when
calculating the choices should not be predictable, therefore
a cryptographically secure random algorithm should be used
[25].

Runtime Complexity
The worst case algorithm complexity is O(V ∗ E) for a path
that spans the entire network of V nodes where each node
has E connections that need to be checked. The if condition

at line 13 should be amortized O(1) considering the graph is
stored to easily retrieve edges between nodes and hash tables
are used to check for loops. Moreover in a realistic implemen-
tation, the path length should grow at most O(logV ) [26] and
each node will have a constant number of channels connected
[27]. Therefore it can be concluded that the algorithm com-
plexity is a lower bound with respect to Dijkstra algorithm
making it a viable option to adopt.

3.3 Attacking the Modification
If the modification is used when calculating the path to route
a payment, the attack to the LN anonymity will not be as suc-
cessful due to the fact that it will discard paths with more
hops than the optimal one. If an adversary is not aware of it,
the anonymity will definitely increase as it will not be able to
realize that the paths that are being used are not the shortest
ones. However, we will design a new attack considering an
adversary that is aware of the complete implementation. The
objective of the attack will be to reduce the number of false
positives while keeping the computation complexity feasible
in terms of runtime. A false positive is defined as having
a singular anonymity set which does not contain the actual
sender or receiver of the transaction.
Phase I of the attack described in the previous section will
not be changed as the search for possible destinations works
the same way using the remaining time lock value. Although
knowing that the path length increases by at least two hops,
an attacker should try to raise the depth limit if computation
power permits. Due to limited computation power, the depth
limit of the attack will remain unchanged. Phase II instead
has to be changed to account for hops that might have been
added by the modification and should not discard pairs early
in the search. We will detail two different strategies to attack
a transaction during Phase II and evaluate their results later
on.
The first strategy uses the same search for sources as in the
original attack, the condition for discarding a pair is slightly
modified. The pseudocode for a function checking whether a
suboptimal path might be generated by the modification can
be found in algorithm 2. Whenever an optimal path contain-
ing the adversary is found, the first condition that needs to be
met is that the optimal path should not contain more nodes
than the suboptimal one, this is achieved by subtracting the
size of the sets in line 2. If the first condition is met, a walk
is started from the first node in both paths. At each point, the
same hop should be found for both paths, if this is not the
case then a random hop might have been added in that spot.
To test whether a random hop was added, the algorithm com-
pares the next hop in the suboptimal path to the current opti-
mal path hop. If they are equal, that means a random hop was
added, otherwise the function returns discarding this subpath.
In the original attack, a singular source set containing the pre-
vious node was returned whenever a more optimal path was
found by the adversary. This is because a suboptimal path is
used only if the sender does not have enough forward balance
to use the best path, due to the nature of randomly choosing
hops this assumption was removed from the new attack.
The second strategy instead goes through all nodes in the LN
and checks whether they can be a source for all possible des-



Algorithm 1 Adding random hops to a given path

1: function ADD RANDOM HOPS(G, path, amount)
2: if length(path) ≤ 2 then return path

3: modifiedPath← {}
4: len← length(path)
5: hopsToAdd← randomBetween(2, len− 1)
6: addedHops← 0
7: for all node ∈ path do
8: nextNode← next(path, node)
9: if nextNode = ∅ then

10: modifiedPath← modifiedPath+ node return modifiedPath

11: possibleHops← {}
12: for all hop ∈ edgesOut(G,node) do
13: if hop 6= nextNode ∧ hasEdge(G, hop, nextNode) ∧ noLoops(modifiedPath, path, hop) ∧

hasEnoughCapacity(G,node, hop, nextNode, amount) then
14: possibleHops← possibleHops+ hop

15: modifiedPath← modifiedPath+ node
16: if addedHops < hopsToAdd ∧ length(possibleHops) > 0 then
17: modifiedPath← modifiedPath+ random(possibleHops)
18: addedHops← addedHops+ 1

tinations that were found in Phase I. For each sender and re-
cipient pair, the path finding algorithm is executed, if the at-
tacker appears on the found path it is added to the anonymity
set. If the attacker is not found, the algorithm checks for
each connection the nodes on the path have, and if the ad-
versary is connected, it is added to the anonymity set. Check-
ing all nodes for every destination is a slower strategy, but it
should reduce the number of false positives to a minimum.
If the search during Phase I has completed, the anonymity
set should contain both pairs in 100% of the cases. The next
best possible attack available would be to compare all des-
tinations against all sources, bruteforcing all possible paths
that are available. Due to its runtime complexity the exhaus-
tive search will not be analysed. We would like to note that
for adversaries with high centrality, constructing paths from
all nodes in the network will result in adding the adversary to
many of them due to their strategic position.

Attack Complexity
The conclusion of [12] regarding the attack complexity of the
first phase remains unaltered. The attack goes through all
possible hops after the adversary that could be a destination
up to a max depth of four. Therefore, the runtime complexity
of Phase I will still be O((Degmax)

d) where Degmax is the
maximum degree of the LN and d is the depth after which the
search is stopped.
In the second phase of the first strategy, the attack goes
through all possible destinations and computes a set of
sources, the worst case scenario for this is when all nodes
have to be checked with O(V ) complexity. For each destina-
tion a generalized version of Dijkstra algorithm which does
not stop at the best path is used. The algorithm is going to
stop only after having analysed enough suboptimal paths that
could be generated from the modification. The modification
limits the maximum number of nodes to be added therefore
the value of suboptimal paths to be considered will be at most

constant k. Yen’s algorithm to find the top k subpaths, can
be seen as a generalization of adding random hops along the
path. For this reason, the runtime complexity of Yen’s algo-
rithm will be used, which is O(kV (E+V logV )) [28]. Com-
bining everything together the overall runtime complexity of
the first strategy is O((Degmax)

dkV 2(E + V logV )).
The second strategy worst case scenario would be to run Di-
jkstra algorithm with both source and destination set cor-
responding to the entire network. The runtime complex-
ity is O(V 2) for a search spanning the entire network and
O((E + V )logV ) for Dijkstra algorithm implemented us-
ing a binary heap. Checking the path length for the ad-
versary will have a worst case complexity of O(logV ) [26]
which is a lower bound with respect to Dijkstra algorithm.
Hence, the overall runtime complexity for the second strat-
egy is O((Degmax)

2V 2(E + V )logV ).
While the first strategy has worse runtime complexity, in the
average scenario, the number of sources that will be analysed
will not be in the order of O(V ). On the other hand, the sec-
ond strategy forces the attack to go through all existing nodes
each time impacting the runtime of every attack.

Algorithm 2 Checking a subpath contains random hops

1: function IS MODIFIED PATH(G, subpath, optimal)
2: if len(optimal − subpath) > 0 then return False

3: i← 0 j ← 0
4: while i < len(optimal) ∧ j < len(subpath) do
5: if optimal[i] 6= subpath[j] then
6: j ← j + 1
7: if j ≥ len(subpath) ∨

optimal[i] 6= subpath[j] then
8: return False
9: i← i+ 1 j ← j + 1

return j >= len(subpath)



4 Evaluation Metrics and Simulation Results
In this section we will first describe the evaluation criteria
used to asses the impact on the anonymity and efficiency of
the modification. Following we will illustrate the dataset used
for the simulation and explain the results obtained after sim-
ulating it.

4.1 Anonymity and Efficiency Criteria
The purpose of the evaluation is to analyse whether it is pos-
sible to improve the anonymity of the LN and measure the
cost of improving it. For this reason, we selected anonymity
metrics to measure the degree to which users can be de-
anonymized in the network. On the other hand, the efficiency
metrics focus on the usability and scalability aspects of the
LN.

Anonymity metrics
• Size of source and destination anonymity sets.

• The ratio Ratt between the transactions attacked and the
total number of transactions.

• The average ratio Avatt of transactions that were at-
tacked by multiple adversaries.

• The correlation between the size of source or desti-
nation anonymity sets with their distance, respectively
CorrDS and CorrDR.

• The percentage anonymity sets with a correct singular
source SingS , destination SingR or both SingBoth.

• The percentage of the attacks that completed phase I of
the attack CompI .

• Percentage of transactions for which the recipient and
the sender were included in the anonymity set thus de-
anonymizing both parties Successatt.

• The percentage of false positives with regards to
source FalsePosS , destination FalsePosR or both
FalsePosBoth, meaning a singular set was found but
it contained the wrong node.

Efficiency metrics
• The runtime complexity of the routing algorithm with

the modification.

• The percentage of failed transactions Fail.

• The average number of hops Avhop excluding sender
and receiver as they are not considered hops.

• The average fee Avfee paid by the sender of the transac-
tion.

• The average fee normalized by the transaction amount
Nfee.

4.2 Dataset
The snapshot of the LN is taken from lnchannels [29] which
contains a list of all publicly broadcast information about live
nodes and channels. When populating the graph for the sim-
ulation, channels with no capacity are excluded as well as the
ones that did not broadcast a policy containing their fee rate
and time locks. The number of nodes being tested are 4791

having 28997 channels, transactions between them are ran-
domly initiated with amounts ranging between 1 and 100000
satoshis. The amounts are uniformly distributed for each or-
der of magnitude. Due to limited computation power, the
snapshot of the LN is used to only evaluate the efficiency of
the modification. The evaluation of the anonymity aspect is
done through smaller constructed graphs using Barabasi &
Albert construction (BA) [30] and Erdos & Renyi (ER) con-
struction [31]. Using BA method two graphs are constructed,
one with 100 nodes and 2 edges each (BA 100), and the other
one with 500 nodes and 5 edges each (BA 500). ER method
is used to construct one graph with 500 nodes and a proba-
bility of edge creation of 0.02 (ER 500). For each graph, the
adversaries are chosen to be the top ten nodes with the highest
betweenness centrality metric [32]. The channels are popu-
lated with random values for their fee calculation, time lock,
balance, and age. 5000 transactions are executed to obtain the
efficiency metrics and 1000 for the anonymity ones.

4.3 Results
Table 1 displays the efficiency metrics previously defined, the
two columns respectively represent the results obtained be-
fore and after the modification.

Parameter Before Modification After Modification

Fail 0.08 0.1
Avhop 2.41 4.57
Avfee 2.85 13.78
Nfee 0.09 0.43

Table 1: Efficiency metrics for the LN snapshot

The ratio of failed transactions increased from 8% to 10%
mostly due to the increase in hop counts. Increasing the num-
ber of nodes involved in a transaction raises the probability of
one channel not having enough balance to forward it or a node
going offline. In line with the minimum number of hops that
should be added, the average hop count increased by 2.16.
This means the average transaction is able to add two hops,
but not necessarily all transactions can, especially in less con-
nected parts of the LN. The average fee increased by almost
five times from 2.85 to 13.78. To consider low-value trans-
actions, we normalize the fee calculation to the transaction
amount, this still shows an increase in fee of 4.77 times.

Table 2 and 3 display the anonymity metrics, respectively,
for the first and second strategy. Each column represent a
different graph structure and the rows correspond to one of
the metrics defined before.

The first strategy shows a success rate between 29% and
50% for the different graph structures. With the increasing
number of nodes, the completion of Phase I decreases from
8% in BA 100 to 6% in BA 500, consequently the success
rate drops with an increase in destination false positives. The
ER method constructs a more sparse graph for which the
completion of Phase I is 23% but the number of attacked
transactions is much lower at 17%. In all simulations, the
number of destination false positives is higher than 4% there-
fore the algorithm to discard pairs early in the search seems



Parameter BA 100 BA 500 ER 500

Ratt 0.9 0.73 0.17
Avatt 2.38 1.75 1.09

CorrDS 0.4 0.46 0.35
CorrDR 0.36 0.3 0.34
SingS 0.01 0.0 0.0
SingR 0.42 0.19 0.28

SingBoth 0.0 0.0 0.0
CompI 0.08 0.06 0.23

Successatt 0.36 0.29 0.5
FalsePosS 0.01 0.0 0.0
FalsePosR 0.06 0.08 0.04

FalsePosBoth 0.0 0.0 0.0

Table 2: Anonymity metrics for the first attack strategy with three
different graph structures (BA 100, BA 500, ER 500)

Parameter BA 100 BA 500 ER 500

Ratt 0.88 0.76 0.21
Avatt 2.2 1.76 1.07

CorrDS -0.02 -0.29 0.05
CorrDR 0.55 0.49 0.65
SingS 0.01 0.0 0.02
SingR 0.33 0.16 0.24

SingBoth 0.01 0.0 0.01
CompI 0.12 0.09 0.31

Successatt 0.44 0.43 0.53
FalsePosS 0.02 0.0 0.01
FalsePosR 0.0 0.0 0.0

FalsePosBoth 0.0 0.0 0.0

Table 3: Anonymity metrics for the second attack strategy with three
different graph structures (BA 100, BA 500, ER 500)

to discard valid destinations in multiple occasions.
The second strategy reduces the destination false positives
by analysing all possible sources and therefore avoiding the
chance of returning early with a smaller anonymity set. The
destination false positives for all graph structures is in fact
0%, although in some cases when Phase I does not com-
plete, a false positive source might be added. For all graph
structures, the success of an attack increased with respect to
the first strategy. In 1% of the cases for the BA 100 and
ER 500 graphs, it is possible to singularly de-anomymize
both the sender and the receiver of the transaction. Singu-
lar anonymity sets for sources were found at best in 2% of
the attacks in the case of ER 500. On the other hand, singular
destinations were found in at least 16% of the attacks making
them more exposed to de-anonymization.
The randomization involved when generating transactions
can be seen in the percentage difference of the transactions
being attacked between the first and the second run. The sec-
ond attack strategy seems to be more successful, although it
should be noted that the approach is much slower than the first
one if many transactions have to be attacked. In the average
scenario the first strategy will not consider the entire network
as a possible source set, which makes the first strategy more

affordable in case of limited computation power.
We also note that the average number of attacks per trans-

action is bigger than one, thus some transaction paths were
long enough to go through multiple adversaries. In this case, a
set intersection could be used to reduce the size of anonymity
set even more if anonymous multi-hop locks are not used
[23].

In Fig. 1 we plot the size of the anonymity sets as a cumula-
tive distribution function for both source and destination sets.
The plots only show the run on the BA 500 graph for both
the first and second strategy, false positives are excluded. The
blue line corresponds to attacks for which Phase I has com-
pleted, this happened 6% and 9% of the time for the first and
second runs. In both cases a completion of phase I produces
an anonymity set size of less than 10 for the destinations.
Failing to complete Phase I shows the first strategy return-
ing smaller anonymity sets while the second one, considering
all nodes, creates much larger anonymity sets. On the other
hand, the sender anonymity sets appear to be smaller than
10 only in less than 20% of the cases for the first strategy,
indicating a similar growth whether Phase I has completed
or not. Completion of Phase I is instead important to create
small anonymity sets in the second strategy.
When considering the entire network as a possible source, the
strategic positioning of adversaries can be seen by the larger
anonymity sets. The high centrality of each adversary causes
them to be included in many of the transactions, ultimately
creating large sets. It is important to note that a correct sender
and recipient pair was found in 29% and 43% of the cases, re-
spectively, for the first and second strategy. This means, the
size of the anonymity set is not necessarily indicating the de-
gree of the user anonymity because in more than 50% of the
cases they were not included, making the set meaningless to
the anonymous pairs.

5 Discussion
The results obtained are promising towards a successful in-
troduction of randomness into routing algorithms used by
the LN, although additional consideration regarding the in-
creased delay and cost should be made as well as the com-
plexity of the implementation. We are going to discuss what
problems might arise when adopting the described methodol-
ogy to calculate the payment path as well as alternatives that
can be used instead.
In a live implementation of the LN, there might be the need
for some users to transact relatively low amounts that do not
require a high degree of anonymity and would prefer to pay
less in transaction fees. By design, this is possible as the
random hops are added only after having computed a short
path. Due to the increased number of hops that are required
to move the funds, higher chances of slow payments arise, es-
pecially in the case of adversaries that might want to dispute
them causing an increase in layer-one transactions. In par-
ticular the chances of a node going offline or not responding
for a long period of time could slow down the fast payments
the LN promises. The impact of larger fees and the higher
chances of having to resolve disputes were not discussed in
depth and are left for future research developments.



(a) BA 500 Sources First Strat-
egy

(b) BA 500 Destinations First
Strategy

(c) BA 500 Sources Second
Strategy

(d) BA 500 Destinations Second
Strategy

Figure 1: Size of anonymity sets for the first and second attack strategy simulated on the BA 500 graph structure

The strategy described to add random hops focuses on ran-
domization rather than optimization. This has the direct
consequence of increasing transaction fees and raising the
chances of payment failure. The possibility for a malicious
party to randomly place expensive channels along the net-
work should be considered. A strategy that could be adopted
would be to choose only hops with lower transaction fees.
This would most likely decrease the average fee, but it could
open up for attacks where the adversary will be able to reduce
the number of possible added hops due to the determinism in-
volved when choosing them.
Although random hops seem to be a feasible way to increase
the anonymity while not modifying complexity of implemen-
tation, there are other possibilities that can be used. As an
example of a more complex implementation inspired by the
dovetail protocol [33] would be to use multi path segment
routing [34]. A node called dovetail would be randomly cho-
sen and the transaction is routed from sender to the dovetail
and then to the receiver. This creates two different shortest
paths for which an adversary who happens to be on the path
is not able to distinguish between increasing the anonymity
of source and destination. Similar to adding random hops, it
could be possible to insert more than one hop as in the case
of partial route computation [35] or length-bounded random
walks [36]. The disadvantage when inserting multiple hops
is that the fees might increase by larger amounts and the pos-
sibility of failed transactions too. A more general approach,
implemented in part by Eclair, is to use k sub-optimal paths
which can be considered to be a simple although efficient so-
lution [37]. Based on the chosen k the algorithm will prob-
ably find one of the paths that more specific random hops
implementation might generate. Hence, making it more diffi-
cult to design a specific attack for an adversary aware of the
implementation.

6 Conclusions and Future Work
In this work, we describe attacks developed by recent re-
search [12] that enable adversaries to de-anonymize the par-
ties involved in a transaction, if they happen to be on the
payment path. We show how a change to the randomness
involved in the path finding algorithm could increase the
anonymity. The modification involves taking a computed
short path and then add random hops reconstructing a new
one.

Two attacks are designed to account for the modification con-
sidering suboptimal paths that might have been generated af-
ter adding the hops. The first strategy focuses on determining
whether suboptimal paths can be generated by the modifica-
tion, while the second one tries to exhaustively search for all
possible sources that can match a destination.
Estimating the anonymity degree of large sets is difficult
when the probability of them containing the correct pairs
is low. For this reason further research should be done on
analysing the possible ways to estimate the anonymity of the
users involved. As an example, Shannon entropy [38] could
be used, although additional consideration should be made on
how to estimate the probabilities in a complex graph structure
such as the LN.
The performed simulation did not take into consideration the
possibility for adversaries to communicate and create inter-
sections of their anonymity sets in the case a transaction was
attacked multiple times. This happens more often due to the
increased hop counts. The assumption was that the crypto-
graphic properties of HTLC will be improved in the future
[23], removing the chance that this attack would be feasible.
It is still a possibility and ground for further research on the
topic. Simulating multiple concurrent transactions should be
tested with the modification to assess the impact of an in-
crease in hop counts on the number of failed payments and
their delays. We considered mainly anonymity metrics, but
the efficiency of the LN should be taken into consideration if
there is a chance that scalability might be impacted because
of the added random hops.
The increase in transaction fees is noticeable especially for
users sending really small amounts such as 1 satoshi. To
remedy this increase a trade-off could be made between the
chances of getting de-anonymized and the fees that are paid
by the user. As an example if a 1 satoshi transaction is al-
ready composed of 5 hops, adding more random hops would
only increase the fee paid by the sender who probably is not
concerned about the anonymity of the transaction he sent. A
solution would be to have an automatic optimization that adds
random hops based on an anonymity parameter that can be
chosen by the user. This makes it possible to have higher se-
curity levels paying a higher price. An adversary will not be
aware whether random hops were added thus he will have to
create an attack in which the user might or might not have
added random hops into the routing path.



7 Responsible Research

This work is intended to provide an overview of the current
limits on the anonymity of the Lightning Network and illus-
trate how a possible modification to its specification would
make an improvement possible. All attacks were executed
inside an offline simulation thus they never had a real im-
pact on the anonymity of any person that is using the main
network. All the assumptions made were taken from a real-
istic snapshot of the LN from which a randomly generated
simulation was designed. The data being used is therefore a
recent representation of the live version of the network but
the simulated transactions were never actually executed on
it. The list of sent payments is not public information, it
would not be possible to use it as a base dataset, attempting
to obtain a list of real transactions using the attacks specified
above is neither a feasible solution. All the simulations were
started by randomly picking nodes in the network and select-
ing an amount that should be processed without consideration
to possible connections the nodes might have. We conclude
that the anonymity of any past or current user of the LN who
might have been included in the downloaded snapshot was
never affected. Moreover, it should not be affected in the fu-
ture if steps are taken as previously suggested to reduce the
chances of de-anonymization by possible adversaries.

Reproducing the attack using a similar dataset should not
produce completely different results than the one obtained.
Nevertheless the randomization involved when creating the
graph and generating transactions can impact the end results
as can be seen in the difference between the two analysed
runs. The modification of the algorithm can be reproduced by
implementing the pseudocode in algorithm 1 and modifying
the initial attack to account for the added randomness in the
routing selection. Hence it should be possible to carry out the
same experiment on any up to date version of the LN and con-
firm its anonymity impact. We would like to note that simu-
lating the live snapshot of the LN requires to allocate enough
computational power to obtain the results in an appropriate
time. A repository containing the code, the dataset, and the
results obtained from the simulation is also available at https:
//github.com/paolokazemi/Lightning-Network-Anonymity.

The environmental impact of Proof-of-Work blockchains
should also be taken into consideration. The LN has a lower
impact due to the fact that most of the transactions should be
processed off-chain, except for the opening or closing of a
channel and handling disputes. The modification explained
in this work increases the average hop count that a transac-
tion needs to take to reach its destination. This has the con-
sequence that a potential longer route could have problems
with nodes taking more time to unlock the funds and higher
chances of payment failures. In these cases, a user might de-
cide to execute the transaction on the layer-one blockchain in-
stead, increasing its load. However, we argue that this would
happen only if most of the hops involved in a transaction de-
cided to dispute it which would have the same consequences
on the existing version of the LN. In fact, the base principle
of the LN is to connect nodes by means of contracts that can
be validated using the Proof-of-Work of the blockchain, but
this should be done only in specific circumstances.

References
[1] R. Houben and A. Snyers, “Cryptocurrencies and

blockchain,” Bruxelles: European Parliament, 2018.
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash

system.” https://bitcoin.org/bitcoin.pdf, 2008. [Online;
Accessed: Jun. 27, 2021].

[3] G. Di Stasi, S. Avallone, R. Canonico, and G. Ventre,
“Routing payments on the lightning network,” in 2018
IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (Smart-
Data), pp. 1161–1170, IEEE, 2018.

[4] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry,
and A. Gervais, “Sok: Layer-two blockchain protocols,”
in International Conference on Financial Cryptography
and Data Security, pp. 201–226, Springer, 2020.

[5] J. Poon and T. Dryja, “The bitcoin lightning network:
Scalable off-chain instant payments.” https://lightning.
network/lightning-network-paper.pdf, 2016. [Online;
Accessed: Jun. 27, 2021].

[6] M. Araoz, R. X. Charles, and M. A. Garcia, “Struc-
ture for deterministic p2sh multisignature wallets.”
https://github.com/bitcoin/bips/blob/master/bip-0045.
mediawiki, 2014. [Online; Accessed: Jun. 27, 2021].

[7] “BOLT #5: Recommendations for On-chain Trans-
action Handling.” https://github.com/lightningnetwork/
lightning-rfc/blob/master/05-onchain.md, 2016. [On-
line; Accessed: Jun. 27, 2021].

[8] “BOLT #7: P2P Node and Channel Discovery.”
https://github.com/lightningnetwork/lightning-rfc/
blob/master/07-routing-gossip.md, 2016. [Online;
Accessed: Jun. 27, 2021].

[9] “BOLT #4: Onion Routing Protocol.” https:
//github.com/lightningnetwork/lightning-rfc/blob/
master/04-onion-routing.md, 2016. [Online; Accessed:
Jun. 27, 2021].

[10] B. Vu, “Exploring Lightning Network Routing.”
https://blog.lightning.engineering/posts/2018/05/30/
routing.html, 2018. [Online; Accessed: Jun. 27, 2021].

[11] E. W. Dijkstra et al., “A note on two problems in con-
nexion with graphs,” Numerische mathematik, vol. 1,
no. 1, pp. 269–271, 1959.

[12] S. P. Kumble, D. Epema, and S. Roos, “How lightning’s
routing diminishes its anonymity,” in Proceedings of the
16th International Conference on Availability, Reliabil-
ity and Security, pp. 1–10, 2021.

[13] “Lightning Network Daemon.” https://github.com/
lightningnetwork/lnd, 2021. [Online; Accessed: Jun.
27, 2021].

[14] “c-lightning: A specification compliant Lightning
Network implementation in C.” https://github.com/
ElementsProject/lightning, 2021. [Online; Accessed:
Jun. 27, 2021].

https://github.com/paolokazemi/Lightning-Network-Anonymity
https://github.com/paolokazemi/Lightning-Network-Anonymity
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0045.mediawiki
https://github.com/lightningnetwork/lightning-rfc/blob/master/05-onchain.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/05-onchain.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://blog.lightning.engineering/posts/2018/05/30/routing.html
https://blog.lightning.engineering/posts/2018/05/30/routing.html
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning


[15] “Eclair.” https://github.com/ACINQ/eclair, 2021. [On-
line; Accessed: Jun. 27, 2021].

[16] J. Y. Yen, “An algorithm for finding shortest routes
from all source nodes to a given destination in general
networks,” Quarterly of Applied Mathematics, vol. 27,
no. 4, pp. 526–530, 1970.

[17] G. Kappos, H. Yousaf, A. Piotrowska, S. Kanjalkar,
S. Delgado-Segura, A. Miller, and S. Meiklejohn, “An
empirical analysis of privacy in the lightning network,”
arXiv preprint arXiv:2003.12470, 2020.

[18] “Hash Time Locked Contracts.” https://bitcoin.it/wiki/
Hash Time Locked Contracts, 2019. [Online; Ac-
cessed: Jun. 27, 2021].

[19] H. Handschuh, SHA Family (Secure Hash Algorithm),
pp. 565–567. Boston, MA: Springer US, 2005.

[20] “BOLT #3: Bitcoin Transaction and Script Formats.”
https://github.com/lightningnetwork/lightning-rfc/blob/
master/03-transactions.md, 2016. [Online; Accessed:
Jun. 27, 2021].

[21] E. Rohrer and F. Tschorsch, “Counting down thun-
der: Timing attacks on privacy in payment channel net-
works,” 2020.

[22] S. Tochner, S. Schmid, and A. Zohar, “Hijacking routes
in payment channel networks: A predictability trade-
off,” arXiv preprint arXiv:1909.06890, 2019.

[23] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind,
A. Kate, and M. Maffei, “Anonymous multi-hop locks
for blockchain scalability and interoperability,” in 26th
Annual Network and Distributed System Security Sym-
posium, NDSS 2019, 2019.

[24] I. A. Seres, L. Gulyás, D. A. Nagy, and P. Burcsi,
“Topological analysis of bitcoin’s lightning network,”
in Mathematical Research for Blockchain Economy
(P. Pardalos, I. Kotsireas, Y. Guo, and W. Knottenbelt,
eds.), (Cham), p. 4, Springer International Publishing,
2020.

[25] J. Kaltz and Y. Lindell, “Introduction to modern cryp-
tography: principles and protocols,” 2008.

[26] D. Coppersmith, D. Gamarnik, and M. Sviridenko, “The
diameter of a long-range percolation graph,” in Mathe-
matics and computer science II, pp. 147–159, Springer,
2002.

[27] “Lightning Network Statistics — 1ML - Lightning Net-
work Search and Analysis Engine - Bitcoin mainnet.”
https://1ml.com/statistics, 2021. [Online; Accessed:
Jun. 27, 2021].

[28] E. Bouillet, G. Ellinas, J.-F. Labourdette, and R. Rama-
murthy, Path routing in mesh optical networks, pp. 128–
129. Wiley Online Library, 2007.

[29] “lnchannels.” https://ln.fiatjaf.com/, 2021. [Online; Ac-
cessed: Jun. 27, 2021].

[30] A.-L. Barabási and R. Albert, “Emergence of scaling in
random networks,” science, vol. 286, no. 5439, pp. 509–
512, 1999.

[31] P. Erdős and A. Rényi, “On the evolution of random
graphs,” Publ. Math. Inst. Hung. Acad. Sci, vol. 5, no. 1,
pp. 17–60, 1960.

[32] U. Brandes, “A faster algorithm for betweenness cen-
trality,” Journal of mathematical sociology, vol. 25,
no. 2, pp. 163–177, 2001.

[33] J. Sankey and M. Wright, “Dovetail: Stronger
anonymity in next-generation internet routing,” 2014.

[34] J. Heemskerk, S. P. Kumble, and S. Roos, “Improving
anonymity of the lightning network using multiple path
segment routing,” 2021.

[35] R. de Boer, S. P. Kumble, and S. Roos, “Improving
blockchain anonymity using hop changes with partial
route computation,” 2021.

[36] M. E. Ozkan, S. P. Kumble, and S. Roos, “Improving the
anonymity of blockchains: The case of payment chan-
nel networks with length-bounded random walk inser-
tion,” 2021.

[37] M. Plotean, S. Roos, and S. P. Kumble, “Improving the
anonymity of the lightning network using sub-optimal
routes,” 2021.

[38] A. Serjantov and G. Danezis, “Towards an information
theoretic metric for anonymity,” in International Work-
shop on Privacy Enhancing Technologies, pp. 41–53,
Springer, 2002.

https://github.com/ACINQ/eclair
https://bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md
https://1ml.com/statistics
https://ln.fiatjaf.com/

	Introduction
	Attacking Lightning
	De-anonymization Attack
	Phase I
	Phase II


	New Routing Algorithm
	Simulation Framework
	Attacking payments

	Routing Algorithm Modification
	Algorithm Pseudocode
	Runtime Complexity

	Attacking the Modification
	Attack Complexity


	Evaluation Metrics and Simulation Results
	Anonymity and Efficiency Criteria
	Dataset
	Results

	Discussion
	Conclusions and Future Work
	Responsible Research

