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ABSTRACT: A load moving on a center-fixed ring and the reciprocal problem, namely a rotating ring subjected to a moving 

load have been used in several works to study the tire dynamics. In contrast, very few papers exist in which the ring model has 

been used in order to study the dynamics of a train wheel. In this paper, a thin ring model is introduced to model a flexible train 

wheel with distributed springs acting in the radial, circumferential and rotational directions to study the wheel dynamic 

response. A so-called “method of images” is applied to solve the governing equations. The idea of this method is that the 

response of the rotating ring to a stationary load is equivalent to the response of an axially moving, infinitely long beam 

subjected to a set of loads located equidistantly on the beam. Taking advantage of linearity of the problem, the response is 

obtained as a superposition of the responses to the individual loads. The method of images combined with the contour 

integration technique, allows to obtain an exact analytical solution to the problem that includes neither infinite series nor 

integrals. The exact maximum bending moment in the ring obtained using the method of images is compared to that resulting 

from a series representation of the solution based on the modal expansion. The results show that many terms in the modal 

expansion are necessary in order to accurately approximate the exact solution. This means that the method of images is 

significantly more efficient than the modal expansion method.  

KEY WORDS: Flexible train wheel; Rotating ring; Method of the images. 

1 INTRODUCTION 

The vibrations of rotating rings were studied by many authors. 

The influence of different factors, such as shear deformation, 

rotatory inertia, non-linear behavior etc., was considered in 

the literature. The main engineering application of those 

studies was in the field of dynamics  of the pneumatic tires. 

Based on thin shell/ring theory, Soedel [1] studied the 

dynamic response of rolling tires by formulating the three-

dimensional Green’s function based on the natural modes and 

frequencies derived from the non-rotating tire. The contact 

force was assumed to travel around the tire. Padovan [2] 

investigated the effect of internal damping on the 

development of standing waves with the help of the classical 

ring on elastic foundation model. Endo [3] derived the 

equations of motion from the Hamilton’s principle and 

included the initial tension due to rotation. Experiments were 

conducted by Endo to verify the model and comparisons were 

made between the model he used and some models in the 

literature. Huang and Soedel analyzed the free and forced 

vibrations of rotating thin rings and shells on elastic 

foundation in Ref. [4]. A modal expansion was implemented 

based on so-called “rotating modes”. The resonant conditions 

of a rotating cylindrical shell were obtained for four cases by 

Huang and Hsu in [5]. Kim and Bolton [7] illustrated the 

effect of rotation by assuming a wave-like solution. They 

concluded that the dispersion curves in the rotating and fixed 

coordinate systems can be correlated kinematically. 

In this paper, a thin ring model with distributed springs 

resisting in the radial, circumferential and rotational directions 

is introduced to describe the dynamics of a flexible train 

wheel. This springs represent the reaction of spokes that 

would connect the hub and the rim of the wheel. A so-called 

“method of the images” [6] is applied to solve the problem. 

The idea of this method is that the response of a finite length 

system to a load is equivalent to the response of a part of an 

infinity long system described by the same equations and 

subjected to an infinite set of equally-spaced loads. The 

maximum change of curvature which represents the maximum 

bending moment of the ring using the modal analysis 

technique is compared with the exact result obtained by the 

method of the images. The comparison shows that the latter 

method is superior to the commonly used modal analysis. 

2 MODEL AND EQUATIONS OF MOTION  

2.1 Model 

The model of a flexible train wheel is shown in Figure 1 along 

with the coordinate system. The hub and the rim are 

connected by visco-elastic spokes which are modeled as 

distributed springs.  

 

Figure 1. Rotating ring under a stationary load. 
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 It is assumed that the mean radius of the wheel is R and 

w and u are the small displacements in the radial and 

circumferential directions,  respectively. The stiffnesses of the  

radial, circumferential and rotational springs per unit length 

are designated as rk , ck and rotk  respectively. It is also 

assumed that all springs possess viscosity per unit length 

equal to  . Furthermore,   is the mass density of the 

rim, E is the Young’s modulus, F is the cross-sectional area 

and I is the cross sectional moment of inertia. 

0( ) exp(i )fP t P t   is the magnitude of the  radial point load 

which represents the contact force between the rail and the 

wheel.  is the angular frequency of the wheel rotation. 

The stiffness of the rotational spring can be related to that of 

the circumferential one by considering the spoke as an Euler-

Bernoulli beam clamped at the hub. Under this assumption,  

the rotational stiffness can be expressed in terms of the 

circumferential stiffness ck  as  

 

 
2

3
rot c

R
k k . (1)                          

2.2 Equations of motion 

The derivation of the equations of motion can be done 

similarly to Ref. [4] with the help of the Hamilton’s principle. 

Since the rotational springs are introduced, the potential 

energy stored by the rotational springs should also be included. 

So the total potential energy stored by all the springs is
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where   /w u R      is the rotation angle. 

Then, following the procedure outlined in Ref. [4], the 

equations of motion for the ring in the rotating with the ring 

reference system can be obtained in the following form:  
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 (3) 

 

In equations (3),   designates the partial derivative with 

respect to   while t  represents the partial derivative with 

respect to time. The displacements should also satisfy the 

periodicity condition: 
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Equations (3) can be analyzed by means of the commonly 

used modal analysis, see Ref. [4], for example. In this paper, 

however, a more efficient method of the images will be 

employed as described in the next Section. 

3 SOLUTIONS ACCORDING TO THE METHOD OF 

THE IMAGES 

3.1 Description of “ method of images” 

The method of the images has been first applied to study the 

steady-state response of an elastic ring subjected to a moving 

load in [6]. The idea of this method is that the response of a 

bounded (in our case ring-like) system to a single load is 

equivalent to the response of a part of an infinity long system 

(described by the same equations) subjected to an infinite set 

of loads. In other words, the method utilizes the fact that by 

introducing additional loads one can satisfy the boundary 

conditions. These loads are called images since their locations 

are normally mirrored to the real load with respect to the 

boundaries. In the considered case, to satisfy the periodicity of 

the displacements, one should introduce infinitely many 

equivalent loads at fixed distance 2 R from each other, see 

Figure 2. 

Since the problem is linear, the ring response is a sum of the 

response of the “extended ring” to all the individual loads.  

 

Figure 2. Illustration of the “method of images”. 

 

The ring is extended to an infinitely long straight “beam”, it 

is more convenient to use the translational coordinate x R . 

Substituting /v R   and re-arranging all the terms, the 

equations of motion (3) can be re-written as 
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(5) 

It is customary to study the response in a reference system 

moving together with the loads. Introducing the new reference 

system according to  ,x vt t t    , the equations of 

motion can be transformed to 
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Since the exact solution is the summation of the responses 

to all the individual loads and all the loads generate equivalent 

but shifted with respect to each other displacement fields, it is 

actually sufficient to obtain the response of the axially moving 

“extended ring” to a single load and then sum up this response 

infinitely many times accounting for the spatial shift 2 R . 

One of the main advantages of the method of the images is 

that the aforementioned infinite summation can be computed 

analytically, using the formulae for an infinite geometric 

progression. 

To proceed, the following dimensionless variables and 

parameters are introduced: 
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Employing the above dimensionless variables and 

parameters and considering a single load 0n  , Equations (6) 

can be written as 
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The governing equations (8) can be solved  by means of 

application of the integral Fourier transform. Defining this 

transform as  
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and applying it to Eq.(8), one obtains 
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Solving equation (10) for the Fourier displacements 

,kw and ,ku one obtains 
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The next step is to invert the obtained solutions to the time 

domain by using the inverse Fourier transform. This can be 

done by following the  procedure introduced in Ref. [6]. After 

obtaining the solutions in the time domain for the single load 

case, the exact solution can be found by summarizing it 

infinitely many times with the space shift 2n R . After some 

manipulations, the analytical expressions of the displacements 

of the ring can be derived as 

for 2 / 0R h     : 
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for 0 2 /R h    : 
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7a B  and 
nk and 

mk  are the complex roots of the equation 

( , ) 0f k    located in the lower and upper half-planes of 

the complex k -plane, respectively. The real part of the above-

given solution should be taken if the time signature of the load 

is given as 0( ) cos( )fP t P t  , whereas the imaginary part 

corresponds to 
0( ) sin( )fP t P t  . 

  To visualize the obtained solution the shape of the ring is 

shown in Figure 3 for the following parameters of the model, 

which are the same as in Ref. [6]: 
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Figure 3. The ring shape for 100 /v m s . 

Figure 3 clearly shows that the solution obtained by the 

method of the images satisfies the periodicity condition, Eq. 

(4) for the constant load( 0f  ). For harmonically time 

varying load, the same conclusion holds.  

In the next Section the obtained solution is applied for the 

assessment of the bending moment in the contact point and, 

based on this assessment, the efficiency of the presented 

herein method is elucidates relative to the commonly adopted 

modal analysis.  

3.2 Comparison of the efficiency of the method of the 

images and modal analysis 

The moment in the contact area between the spokes and the 

wheel rim is of importance because is a “hot spot” that 

governs the wheel fatigue. In this section, the maximum value 

of this moment is computed using both the modal analysis and 

the method of the images. The latter method allows to obtain 

an exact expression for the moment, this expression 

containing a summation of six terms only. On the contrary, 

the modal analysis results in a solution in the form of an 

infinite series which, as shown below, converges quite poorly 

to the exact value of the moment. 

The maximum change of curvature can equivalently 

represent the maximum bending moment because M EIK . 

The expression of the change of curvature K reads  
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Expression for u  and w  can be obtained directly by 

differentiating equations (14)  and (15)  

for 2 / 0R h     : 
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for 0 2 /R h    : 
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Using the above-given equations, the maximum change of 

curvature can be calculated. In order to get the maximum 

change of curvature by modal analysis, the modal expansion 

method proposed in Ref. [4] is implemented. 

The results are shown in Figure 4, which is plotted using the 

parameters values given by Eq. (17) and 
f  0 (constant 

load). 

 

Figure 4. The convergence of modal analysis. 

The horizontal dotted line in Figure 4 represents the exact 

solution for the maximum change of curvature obtained using 

the method of the images. For the modal analysis, the number 

of modes considered here is 20. The plot clearly shows that in 

order to predict the maximum change of curvature accurately, 

by means of the modal analysis a large number of modes 

should be accounted for and rather erroneous results could be 

obtained with a usually adopted 10-20 modes approximation. 

4 CONCLUSIONS 

A model of a rotating ring under a stationary radial load has 

been introduced in this paper with the aim to predict the 

dynamics of a flexible train wheel as would be observed in a 

laboratory testing with a fixed axis. The wheel is assumed to 

consist of a flexible rim attached to the hub by spokes, whose 

visco-elastic reactions in the radial, circumferential and 

rotational directions are accounted for in the model.  

Along with the introduction of the new model of a flexible 

train wheel, the original result of this paper consists in the 

application of the method of the images for the analysis of the 

ring deflections and curvature. It has been shown that this 

method allows to obtain an exact analytical expression for the 

ring response. It has also been suggested that the method of 

the images is superior to the commonly adopted modal 

analysis as the latter would predict non-conservative values 

for the bending moment in the ring unless a large number of 

the modes would be accounted for.    
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