
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Enabling Multi-Tenancy: An Industrial
Experience Report

Cor-Paul Bezemer, Andy Zaidman, Bart Platzbeecker, Toine
Hurkmans and Aad ’t Hart

Report TUD-SERG-2010-030

SERG



TUD-SERG-2010-030

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 26th IEEE Int. Conf. on Software Maintenance
(ICSM), 2010, IEEE.

c© copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Enabling Multi-Tenancy:
An Industrial Experience Report

Cor-Paul Bezemer and Andy Zaidman
Faculty of EEMCS

Delft University of Technology, The Netherlands
Email: {c.bezemer, a.e.zaidman}@tudelft.nl

Bart Platzbeecker, Toine Hurkmans and Aad ’t Hart
Research & Innovation
Exact, The Netherlands

Email: {bart.platzbeecker, toine.hurkmans, aad.hart}@exact.com

Abstract—Multi-tenancy is a relatively new software archi-
tecture principle in the realm of the Software as a Service
(SaaS) business model. It allows to make full use of the economy
of scale, as multiple customers – “tenants” – share the same
application and database instance. All the while, the tenants
enjoy a highly configurable application, making it appear that
the application is deployed on a dedicated server. The major
benefits of multi-tenancy are increased utilization of hardware
resources and improved ease of maintenance, resulting in lower
overall application costs, making the technology attractive for
service providers targeting small and medium enterprises (SME).
Therefore, migrating existing single-tenant to multi-tenant ap-
plications can be interesting for SaaS software companies. In
this paper we report on our experiences with reengineering an
existing industrial, single-tenant software system into a multi-
tenant one using a lightweight reengineering approach.

I. INTRODUCTION

Software as a Service (SaaS) represents a novel paradigm
and business model expressing the fact that companies do not
have to purchase and maintain their own ICT infrastructure,
but instead, acquire the services embodied by software from
a third party [1], [2]. The customers subscribe to the software
and underlying ICT infrastructure (service on-demand) and
require only Internet access to use the services. The service
provider offers the software service and maintains the appli-
cation [3]. However, in order for the service provider to make
full use of the economy of scale, the service should be hosted
following a multi-tenant model [4].

Multi-tenancy is an architectural pattern in which a single
instance of the software is run on the service provider’s
infrastructure, and multiple tenants access the same instance.
In contrast to the multi-user model, multi-tenancy requires
customizing the single instance according to the multi-faceted
requirements of many tenants [4]. The multi-tenant model also
contrasts the multi-instance model, in which each tenant gets
his own (virtualized) instance of the application [5]. We define
a multi-tenant application and tenant as the following [6], [8]:

Definition 1. A multi-tenant application lets customers (ten-
ants) share the same hardware resources, by offering them
one shared application and database instance, while allowing
them to configure the application to fit their needs as if it runs
on a dedicated environment.

Definition 2. A tenant is the organizational entity which rents

a multi-tenant SaaS solution. Typically, a tenant groups a num-
ber of users, which are the stakeholders in the organization.

The benefits of the multi-tenant model are twofold. On one
hand, application deployment becomes easier for the service
provider, as only one application instance has to be deployed,
instead of hundreds or thousands. On the other hand, the
utilization rate of the hardware can be improved as multiple
tenants share the same hardware resources1. These two factors
make it possible to reduce the overall costs of the application
and this makes multi-tenant applications especially interesting
for customers in the small and medium enterprise (SME)
segment of the market, as they often have limited financial
resources and do not need the computational power of a
dedicated server.

Because of these benefits, many organizations working with
SaaS technology are currently looking into transforming their
single-tenant applications into multi-tenant ones. Yet, they see
a major barrier in the reengineering process that they should go
through for this transformation [7]. In previous work, we have
proposed a lightweight approach for carrying out this process
in a structured manner and applied it to a small-scale open-
source software project [8]. In this paper, we present a case
study of applying this approach to an industrial application.
Our main aims are to show that migrating from a single-tenant
setup to a multi-tenant one can be done (1) easily, in a cost-
effective way, (2) transparently for the end-user and (3) with
little effect for the developer, as the adaptations are confined
to small portions of the system, creating no urgent need to
retrain all developers.

The structure of this paper is as follows: first, we briefly in-
troduce Exact, our industrial partner where we have performed
our case study. In Section III, we provide a summary of our
reengineering pattern which supports the transformation of a
single-tenant into a multi-tenant application. In Section IV we
describe the industrial target application which we migrated
using this pattern. The actual case study is dealt with in
Section V. We then discuss our findings and their threats
to validity in Section VI, before detailing related work in
Section VII. Section VIII presents our conclusions and ideas
for future work.

1Please note that virtualization would also enable improved hardware
utilization, but would not solve issues with maintenance, as each virtualized
instance should be maintained.

SERG Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report

TUD-SERG-2010-030 1



II. EXACT AND MULTI-TENANCY

Exact2 is a Dutch-based software company, which spe-
cializes in enterprise resource planning (ERP), customer re-
lationship management (CRM) and financial administration
software. Exact has over 2200 employees working in more
than 40 countries. Founded in 1984, Exact has over 25 years
of experience in multi-user client/server software and web
applications. Since several years, Exact has also been offering
a successful multi-tenant SaaS solution.

Multi-tenancy is an attractive concept for Exact because
they target the SME segment of the market. By having the
opportunity to share resources between customers, services
can be offered to the customers at a lower overall price. In
addition, maintenance becomes easier — and thus cheaper —
as less different instances must be maintained.

One of the research projects of the Research and Innovation
department of Exact is to migrate an existing single-tenant to
a multi-tenant application. In the next section, we explain the
reengineering pattern that we used for this migration, while
Sections IV and V deal with respectively the target system,
Codename, and the actual case study.

III. MULTI-TENANCY REENGINEERING PATTERN

Our multi-tenancy reengineering pattern [8] takes into ac-
count some of the key aspects of multi-tenancy:

1) The possibility to share hardware resources, enabling
cost reductions [9], [10].

2) A high degree of configurability, enabling each customer
to create his own look-and-feel and workflow within the
application [11], [12], [13].

3) A shared application and database instance, enabling
easier maintenance [4].

Figure 1 provides an overview of the multi-tenancy reengi-
neering pattern that we have previously developed [8]. The
primary goals of the pattern are the following:

1) Migrate a single-tenant to a multi-tenant application with
minor adjustments in the existing business logic.

2) Let application developers be unaware of the fact that
the application is multi-tenant.

3) Clearly separate multi-tenant components, so that moni-
toring and load balancing mechanisms can be integrated
in the future.

In order to reach our goals, our reengineering pattern
requires the insertion of three components in the target applica-
tion. The remainder of this section will explain the importance
and the requirements of each of these components.

A. Authentication

Motivation. Because a multi-tenant application has only
one application and database instance, all tenants use the same
physical environment. In order to be able to offer customiza-
tion of this environment and to make sure that tenants can only
access their own data, tenants must be authenticated. While

2http://www.exact.com

Client

Authentication

Authentication Module
createTicket()

Ticket Server

-tenantToken

SessionTicket

+createTicket()

Tenant

Auth

Data 

H
T

T
P

 

R
e

q
u

e
s
t

Database Pool

Data DataData

D
a

ta

Database

Query adjuster Load balancer

Record initializer

Q
u

e
ry

Configuration

Configuration Component

File I/O Component

Layout Component

Tenant 

Config 

Data

Workflow Component

Current System

Single-tenant business logic

Fig. 1. Multi-tenancy reengineering pattern

user authentication is possibly already present in the target ap-
plication, a separate tenant-specific authentication mechanism
might be required, for two reasons: (1) it is usually much easier
to introduce an additional authentication mechanism, then to
change the existing one, and (2) tenant authentication allows
a single user to be part of more than one logical organization,
which extends the idea of user authentication with “groups”.
A typical example of such a situation would be a bookkeeper,
who works for multiple organizations.

Implementation. The authentication component provides
the mechanism required to identify a tenant throughout the
application, by generating a session ticket after a tenant
successfully logs in. The correct application configuration
is loaded based on the values in this ticket. Note that this
mechanism does not interfere with the authentication logic of
the single-tenant application, which means that any security
measures implemented in this logic are still in order.

B. Configuration

Motivation. In a single-tenant environment, every tenant
has his own, (possibly) customized application instance. In
multi-tenancy, all tenants share the same application instance,
although it must appear to them as if they are using a dedi-
cated one. Because of this, a key requirement of multi-tenant
applications is the possibility to configure and/or customize
the application to a tenant’s need [12].

In single-tenant software, customization is often done by
creating branches in the development tree. In multi-tenancy
this is no longer possible and customization must be made
possible through configuration [11].

Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report SERG

2 TUD-SERG-2010-030



Implementation. In order to enable multi-tenancy and let
the user have a user-experience as if he were working in a
dedicated environment, it is necessary to allow at least the
following types of configuration:

1) Layout Style: Layout style configuration allows the use
of tenant-specific themes and styles.

2) General Configuration: The general configuration com-
ponent allows the specification of tenant-specific configura-
tion, encryption key settings and personal profile details.

3) File I/O: The file I/O configuration component allows
the specification of tenant-specific file paths, which can be
used for, e.g., report generation.

4) Workflow: The workflow configuration component al-
lows the configuration of tenant-specific workflows. An ex-
ample of an application in which workflow configuration is
required is an ERP application, in which the workflow of
requests can vary significantly for different tenants.

C. Database

Motivation. Because all tenants use the same database
instance, it is necessary to make sure that they can only access
their own data.

Implementation. Because current off-the-shelf DBMSs are
not capable of dealing with multi-tenancy themselves [14], this
should be done in a layer between the business logic and the
application’s database pool. The main tasks of this layer are
as follows:

1) Creation of new tenants in the database: If the applica-
tion stores and/or retrieves data, which can be made tenant-
specific, in/from a database, it is the task of the database
layer to create the corresponding database records when a new
tenant has signed up for the application.

2) Query adaptation: In order to provide adequate data
isolation, the database layer must make sure that all queries are
adjusted so that each tenant can only access his own records.

3) Load balancing: To improve the performance of the
multi-tenant application, efficient load balancing is required
for the database pool. Any Service Level Agreements
(SLAs) [15] or financial data legislation should be taken into
account.

IV. EXACT CODENAME

As stated in Section II, multi-tenancy is an attractive concept
for Exact, because it allows Exact to deliver highly customized
applications to their SME customers at an attractive price,
which can be reached through the economy of scale benefits
that multi-tenancy offers. While Exact has experience with
multi-tenancy, they also have existing single-tenant applica-
tions that they want to transform into multi-tenant ones.

One of these applications is a research prototype, dubbed
Exact Codename. Codename is a proof of concept, single-
tenant widget framework that offers the possibility of creating
software solutions using widgets as building blocks. The Exact
research team has been working for 4 years on Codename and
it is the intention to integrate parts of Codename in commercial
Exact products in the short to medium term future.

ListManager EntityManager

Data Access Layer

SQL

Application Server

Web Server

Client

ClientControls

List Entity

DataModel

EIS

Exact Identity Server

User account 

serviceList

Proxy

ListControl

Entity

Proxy

EntityControl

Definitions

Fig. 2. Architecture of Exact Codename

Codename is being developed in C# and ASP.NET and
consists of approximately 165K lines of code. Figure 2 depicts
the (simplified) architecture of Codename.

A. Architecture of Codename

Codename is built upon two major concepts, the List and
the Entity. A list represents a list of data, such as a list of
documents. An entity represents an object, such as News (a
news item).

An entity and a list are described using a domain specific
language and the descriptions are currently stored in definition
files. These definitions are stored separately from the frame-
work code, which allows them to be edited by non-technical
domain experts. Such a definition file may contain details
about how to retrieve the entity or list from the database, or
behavior. For example, the definition of News contains details
on how a News item can be found in the database, and it also
tells us that News is a type of Document (which is itself an
entity). The default HTML layout of an entity or list is also
stored in a (separate) definition file.

Because an entity or list can be created using a definition
file only, it is easy for domain experts to add new or edit
existing entities or lists.

On the application server, the ListManager and EntityMan-
ager can be used to instantiate a new list or entity. When a new
list or entity is created, these managers read the corresponding
definition file and generate the required object. All database
access is done through the Data Access Layer. To allow the use
of multiple data sources, possibly in different formats, logical
names are used for database columns or tables rather than
the physical names. In the Data Access Layer, these logical
names are translated to physical names (using the DataModel
definitions).

The web server communicates with the application server
using Windows Communication Foundation (WCF) services
and a proxy. The goal of the web server is to generate HTML
and JavaScript (JS) representations of the lists and entities
for the client. A client can request a list or entity using the
ListControl or EntityControl web services. The client can only

SERG Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report

TUD-SERG-2010-030 3



retrieve data from or write data to the database using these two
services.

B. Exact Identity Server

A separate component in Codename’s architecture is the
Exact Identity Server (EIS), which is an implementation of
the Microsoft Identity Foundation. In the EIS a token is
generated when a tenant successfully logs in to the system.
This (encrypted) token contains enough information to identify
the tenant throughout the system without contacting the EIS
again. This allows single sign-on (SSO) for multiple Exact
applications (relying parties). The protocol used to do this
is SAML 1.1. A token contains several claims, such as the
Globally Unique Identifier (GUID) of the user which is logged
in. The EIS offers a User Account Service as well, which
allows relying parties to add their own users to the EIS.

V. CASE STUDY: CODENAMEMT

In this section, we present our case study of enabling multi-
tenancy in a single-tenant application using the multi-tenancy
reengineering pattern that we discussed in Section III. Our
target application is Codename, of which we gave an overview
in Section IV.

A. Motivation

In addition to the general advantages of multi-tenancy [6],
[8], being able to reengineer existing single-tenant applications
into multi-tenant ones is interesting for a number of reasons:

1) Existing business logic can be reused with minor adap-
tations.

2) As our reengineering pattern is lightweight and requires
minor adaptations only, most developers will not be
aware of the fact that the application is multi-tenant,
which means that not all developers need to be trained
in multi-tenancy.

3) Lessons learned from applying a pattern may lead to
improvements in the architecture of existing multi-tenant
products.

B. Applying the Multi-Tenancy Pattern

In our case study, we will apply our multi-tenancy reengi-
neering pattern to Codename, resulting in a multi-tenant
application CodenameMT . For transforming Codename into
CodenameMT , we are introducing the components that we
have explained in Section III into Codename.

1) Authentication: As identifying to which tenant a user
belongs can be done using the tenant’s ID only, the existing
authentication mechanism could easily be extended. We added
CodenameMT to the EIS as a relying party, so that we could
add users for this application to EIS. After this, we extended
the Codename User object with a TenantID property,
which is read from the token after a user successfully logs
in. Because the User object is globally available throughout
Codename, the TenantID is available globally as well. Note
that EIS does not keep track of tenant details other than the
TenantID. Currently this is the task of the relying party.

// attach event
protected void Application_PreRequestHandlerExecute(
object s, EventArgs e){
Page p = this.Context.Handler as Page;
p.PreInit += new EventHandler(page_PreInit);

}

// set tenant-specific theme and master page
protected void page_PreInit(object s, EventArgs e){

Page p = this.Context.Handler as Page;
p.Theme = TenantContext.GetTenantTheme();
p.MasterPageFile = TenantContext.GetTenantMasterpage();

}

Fig. 3. Dynamically setting the tenant-specific style

After our adaptations, an EIS token for the CodenameMT

application contains a GUID and a TenantID. The
TenantID is used to identify the tenant to which the owner
of the token belongs. The GUID is used to identify the user
within CodenameMT . Note that the user identification process
is unchanged compared to the process in Codename, leaving
any values like security levels intact.

2) Configuration: While applying the pattern to the single-
tenant configuration, we limited our case study to the degree
of configuration currently possible in Codename. In contrast
to the pattern, CodenameMT stores all configuration data in
the application database, rather than in a separate database.

a) Layout Style: In Codename, the layout style of the
application is managed by the following:

• ASP.NET master pages
• ASP.NET themes
The .NET framework offers the possibility to dynamically

change these by attaching an event early in the page lifecycle.
We have adapted the global.asax3 file of the application with
the code depicted in Figure 3, which loads the tenant-specific
style for each page request.

b) General Configuration: All general configuration, e.g.
profile settings, in Codename is stored in the database. This
means that making the configuration tables multi-tenant also
makes the general configuration multi-tenant.

c) File I/O: The only file I/O used in Codename is to
load the definition files on the application server. Originally
these definition files were loaded from the xmd/list and
xmd/entity directories. We have adapted this code to check
if the xmd/tenantID/list or xmd/tenantID/entity
directory contains the requested file. If it exists, the tenant-
specific file is loaded, otherwise, a default file is loaded. We
have implemented this mechanism to allow tenants to decide
whether they want to configure their own lists and entities or
use the defaults. Codename also implements a caching system
for definition files, which we have adapted to be aware of the
existence of tenant-specific definitions.

d) Workflow: In Codename, the application workflow
can currently only be configured by physically changing the
.aspx page, which describes the process, so that it uses the

3In ASP.NET, the (optional) global.asax file is used to access session and
application-level events.

Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report SERG

4 TUD-SERG-2010-030



Type of query Query extension
SELECT Add Filter(‘TenantID’, 123)
JOIN Add Filter(‘TenantID’, 123)
UPDATE Add Filter(‘TenantID’, 123)
DELETE Add Filter(‘TenantID’, 123)
INSERT Add Field(‘TenantID’, 123)

TABLE I
MULTI-TENANT QUERY EXTENSIONS FOR TENANTID ‘123’

required library. While tenant-specific workflow configuration
using this approach was included in the case study design, the
implementation remains future work.

Codename uses a URL rewriting mechanism to allow
application users to request URLs which contain less ma-
chine code (friendly URLs). This leads to better read-
able URLs such as docs/person/corpaul instead of
?page=person&id={12345-abcde-890}. By altering
this rewriting module to load a tenant-specific .aspx page,
workflow configuration can be established.

3) Database: All database queries in Codename are gener-
ated using the Data Access Layer, so that metadata stored in
the data model definitions can always be used during query
generation. Because all queries are created in one compo-
nent, automatically extending them to use the TenantID is
straightforward. To prevent unnecessary duplication of data,
we added the property IsMultiTenant to the data model.
Setting this property to false indicates that data in the table
is not tenant-specific, such as country ISO codes or postal
shipping rates. This allows us to generate more efficient
queries. We added a TenantID column to the tables that
were specified as multi-tenant.

After this, we adapted the module which generates the
query. For each queried table, the table metadata is retrieved
from the data model to see whether the table contains tenant-
specific data. If this is the case, the query is extended using
the extensions depicted in Table I. Note that for all subqueries
and each JOIN clause in a SELECT query, the same occurs.
In the Data Access Layer, a Filter adds a criterion to the
WHERE clause of a query and a Field adds a column update
to the SET clause of a query.

Future work regarding the database component includes
adding usage of the TenantID to indexes on tables that
contain multi-tenant data.

In this case study, we did not implement automatic creation
of new tenants in the database. We plan on doing this when the
signup process is linked with the EIS User Account Service.
In addition, we did not implement load balancing. This is
a very difficult task due to the number and complexity of
constraints in financial software, e.g., because of the legislation
of several countries on where financial data may be stored.
Load balancing in a multi-tenant application will be addressed
in future research.

C. Evaluation

For testing whether our reengineering pattern that trans-
formed Codename into CodenameMT did not break any of

the major functionalities in Codename, we followed a double
approach using code reviews and manual tests. As such, we
performed a code review together with the third author of
this paper, one of the lead architects of the Exact research
team. Furthermore, we manually tested the most important
functionality of the application. While we consider manual
testing to be sufficient for this particular case study, amongst
others due to the support from Exact, we do acknowledge
that automated testing is a necessity, which is why we aim
to investigate an automated test methodology for multi-tenant
applications in future research.

For the actual testing of CodenameMT we first added two
test users with different TenantIDs on the EIS. Then we
created tenant-specific themes and master pages and verified
that they were loaded correctly after logging the test users in.
After this, we created a number of tenant-specific definition
files and verified that the correct ones (including default files)
were loaded.

To test the database component, we have assigned different
documents to each test user and verified the correct ones were
shown in document listings after logging in. In addition, we
have verified that queries were extended correctly by manually
inspecting a random subset of queries taken from a SQL Server
Profiler trace, recorded during usage of the application.

Our double approach where we combined code reviews and
manual tests to verify whether CodenameMT did not break any
of the major functionality from Codename yielded no reports
of any faults.

VI. LESSONS LEARNED & DISCUSSION

In this paper we have applied our reengineering pattern
that guides the reengineering of single-tenant applications into
multi-tenant ones. In previous work [8], we have applied this
pattern on a small-scale open source wiki system, and in this
paper we report on our experiences with the reengineering
pattern in an industrial environment. We will now touch upon
some of the key lessons that we have learned when applying
our reengineering pattern.

A. Lessons learned

a) Lightweight reengineering approach: We have ap-
plied our multi-tenancy reengineering pattern by extending the
original Codename code with approximately 100 lines of code,
thus transforming it into CodenameMT . This shows that our
pattern can assist in carrying out the reengineering process in
an efficient way, with relatively little effort. In our case study,
the reengineering could be done in five days, without prior
knowledge of the application, but with the help of domain
experts from Exact. The ease by which we were able to
reengineer the original Codename into CodenameMT is of
interest to our industrial partner Exact, and other companies
alike, as it shows that even the initial costs of migrating
towards multi-tenancy are relatively low and should thus not
be seen as a barrier.

SERG Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report

TUD-SERG-2010-030 5



b) Importance of architecture: While not surprising, an-
other lesson we learned from the migration was that having a
layered architecture is essential, both for keeping our reengi-
neering approach lightweight and for doing the reengineering
quickly and efficiently [16]. Without a well-layered architec-
ture, applying our pattern would have taken much more effort.

c) Automated reengineering proves difficult: The ease by
which we were able to reengineer Codename automatically
raises the question whether it is possible to automate the
reengineering process. Unfortunately, we think this is very
difficult to achieve, as the reengineering requires a consid-
erable amount of architectural and domain knowledge of the
application, which is difficult and costly to capture in a reengi-
neering tool. Furthermore, the integration of the components
of our multi-tenancy pattern is strongly dependent on the im-
plementation of the existing application. A similar observation
about the difficulty to automate design pattern detection and
reengineering approaches was made by Guéhéneuc and Albin-
Amiot in [17]. Specifically in our industrial environment, the
architectural and domain knowledge of the lead architect of
Codename — the third author of this paper —, proved very
valuable for the quick and efficient reengineering of the target
application. Capturing this tacit knowledge in an automatic
reengineering tool would prove difficult and expensive.

d) Fully transparent for the end-user: An interesting
observation is that no changes had to be made to the client
side of the application, i.e., in terms of JavaScript. This serves
a first indication that the end-user will not be aware of the fact
that he is using a multi-tenant application instead of a single-
tenant one. Furthermore, the (manual) tests have also shown
that the other parts of the user interface have not evolved when
going from Codename to CodenameMT .

e) Little effect for the developer: Because we could
enable multi-tenancy by making small changes only, most
developers can remain relatively uneducated on the technical
details. For example, they do not have to take multi-tenancy
into account while writing new database queries as these are
adapted automatically.

B. Discussion

In this version of CodenameMT we did not implement
workflow configuration. The reason for this is that we limited
our case study to the degree of configuration currently possible
in Codename. A first step towards workflow configuration is
to implement the tenant-specific friendly URL mechanism as
described in Section V-B2d. This approach still requires the
tenant (or an Exact developer) to develop a custom .aspx page.
In a future version of CodenameMT , Exact is aiming at making
workflow configuration possible by enabling and disabling
modules and widgets using a web-based administration, rather
than requiring a tenant to make changes to an .aspx page.

We have applied our pattern by modifying existing single-
tenant code. One may argue that multi-tenant code additions
should be completely isolated, e.g., by integrating the code
using aspect-oriented programming. As typical aspect-oriented
programming (following the AspectJ model) does not offer a

fine enough pointcut mechanism to target all join points that
we would need to change, we decided not to use aspects.
Please note however, that using aspect-oriented programming
would become applicable after a thorough refactoring of the
source code, but this was beyond the scope of the lightweight
reengineering pattern that we intended for.

C. Threats to Validity

We were able to apply our multi-tenancy pattern with
relatively little effort. One of the reasons for this is the
well-designed and layered architecture of Codename. In our
previous case study on an open source wiki system called
ScrewTurn [8], applying the pattern took more time because
of the lack of architectural documentation and knowledge. In
addition, the existing integration of the authentication using
EIS and the possibility to add a TenantID claim to the token
considerably shortened the implementation time for the au-
thentication component. Finally, the database component could
be adapted relatively easily as well, as all queries are created in
one single component, i.e., the Data Access Layer, which made
searching for query generations throughout the application
superfluous. As such, we acknowledge that Codename might
not be representative for all systems, but we also acknowledge
that having intimate knowledge of the application is equally
important for the reengineering of single-tenant into multi-
tenant applications. Another confounding factor is the com-
plexity of both the source code and the database schema, as
both can have a direct influence on the ease by which an
existing single-tenant application can be reengineered.

We have manually verified the correctness of the imple-
mentation of the functionality in CodenameMT . While we are
confident that the verification was done thoroughly and was
supported by one of the lead architects of Codename, we do
see the need for automatic testing in this context. As such,
we consider investigating the possibilities of defining a test
methodology for multi-tenant applications as future work.

The case study we have conducted is not complete yet. For
example, we have not implemented workflow configuration
and automated tenant creation. As it is possible that these
implementations introduce performance penalties, we did not
formally evaluate the performance overhead of our approach.
Although we have not encountered performance drawbacks
yet, we consider a formal evaluation of the performance as
future work.

D. Multi-Tenancy in the Real World

Although the benefits of multi-tenancy are obvious, there
are some challenges which should be considered before im-
plementing it.

Because all tenants use the same hardware resources, a prob-
lem caused by one tenant affects all the others. Additionally,
the data of all tenants is on the same server. This results in
a more urgent requirement for scalability, security and zero-
downtime measures than in single-tenant software.

Finally, because multi-tenancy requires a higher degree of
configurability, the code inherently becomes more complex,

Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report SERG

6 TUD-SERG-2010-030



which may result in more difficult software maintenance if
not implemented correctly [6].

VII. RELATED WORK

Most research in the field of reengineering in the area
of “service-oriented software systems” has focused on ap-
proaches to migrate, port and wrap legacy assets to web
services. Two notable examples in this context are the works
of Sneed and Canfora et al. Sneed reports on an approach
to wrap legacy code behind an XML shell [18]. Sneed’s
approach allows individual legacy functions to be offered as
web services to any external user. The approach has been
applied successfully to the integration of both COBOL and
C++ programs in a service-oriented system. Canfora et al.
presented an approach to migrate form-based software systems
to a service [19]. The approach provides a wrapper that
encapsulates the original user interface and interacts with the
legacy system which runs within an application server.

We are currently not aware of any research that investigates
the reengineering of the first generation of service-oriented
systems, an area that we believe to be an important one, as
many of the first generation service-based systems have carried
over some of the flaws from the systems from which they
originate. In particular, we are not aware of any multi-tenancy
reengineering strategies.

That being said, multi-tenancy is a relatively new paradigm
and a number of papers have been written on different models
of multi-tenancy (e.g., the work of Kwok et al. [4]) and the
performance of multi-tenancy [9].

VIII. CONCLUSION

In this paper, we have applied our lightweight multi-tenancy
reengineering pattern to Codename, an industrial single-tenant
application engineered by Exact. This reengineering pattern
is a guiding process that allows to quickly and efficiently
transform a single-tenant application into a multi-tenant one,
thereby also providing capabilities for tenant-specific layout
styles, configuration and data management. The result is
CodenameMT , a multi-tenant version of Codename, offering
the typical benefits of multi-tenancy, i.e., increased usage of
hardware resources and easier maintenance.

Our case study has learned us that our approach:
1) Is lightweight, as implementation was done in about

100 lines of code, which took approximately 5 days
to implement. This makes the approach attractive for
Exact and other companies, because of the low initial
investments. On a side note, we do observe that having
a nicely layered architecture is a benefit for doing the
migration quickly and efficiently.

2) Is transparent to the end-user, as (1) the look-and-feel
of the application does not need to be changed and (2)
the end-user does not know that the application is multi-
tenant.

3) Does not require all developers working on the project
to be trained in multi-tenancy, as the changes to the code
are minimal and confined to some small parts.

As important directions for future work, we see the de-
velopment of a test methodology and a real-time monitoring
mechanism for multi-tenant applications. The former will
enable to determine the optimal moment for online software
evolution in the face of zero-downtime for customers, while
the latter is essential when tackling larger reengineering efforts
in the realm of multi-tenancy. In addition, we will continue
to work with Exact on extending the configuration options
for CodenameMT , in particular, the workflow configuration
support.

ACKNOWLEDGMENT

The authors would like to thank Exact for providing the
funds and opportunity to perform this research. Further support
came from the NWO Jacquard ScaleItUp project.

REFERENCES

[1] N. Gold, C. Knight, A. Mohan, and M. Munro, “Understanding service-
oriented software,” IEEE Software, vol. 21, no. 2, pp. 71–77, 2004.

[2] M. Turner, D. Budgen, and P. Brereton, “Turning software into a
service,” Computer, vol. 36, no. 10, pp. 38–44, 2003.

[3] J. M. Kaplan, “Saas: Friend or foe?” in Business Communications
Review, June 2007, pp. 48–53, http://www.webtorials.com/abstracts/
BCR125.htm.

[4] T. Kwok, T. Nguyen, and L. Lam, “A software as a service with multi-
tenancy support for an electronic contract management application,” in
Proceedings of the International Conference on Services Computing
(SCC). IEEE Computer Society, 2008, pp. 179–186.

[5] F. Chong, G. Carraro, and R. Wolter, “Multi-tenant data architecture,”
http://msdn.microsoft.com/en-us/library/aa479086.aspx, June 2006.

[6] C.-P. Bezemer and A. Zaidman, “Multi-tenant saas applications: Main-
tenance dream or nightmare?” in Proceedings of the 4th International
Joint ERCIM/IWPSE Symposium on Software Evolution (IWPSE-EVOL).
ACM, 2010, p. To appear.

[7] C.-H. Tsai, Y. Ruan, S. Sahu, A. Shaikh, and K. G. Shin, “Virtualization-
based techniques for enabling multi-tenant management tools.” in 18th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM), ser. LNCS, vol. 4785. Springer, 2007, pp.
171–182.

[8] C.-P. Bezemer and A. Zaidman, “Challenges of reengineering into multi-
tenant saas applications,” Delft University of Technology, Tech. Rep.
TUD-SERG-2010-012, 2010.

[9] Z. H. Wang, C. J. Guo, B. Gao, W. Sun, Z. Zhang, and W. H.
An, “A study and performance evaluation of the multi-tenant data tier
design patterns for service oriented computing,” in Proceedings of the
International Conference on e-Business Engineering (ICEBE). IEEE
Computer Society, 2008, pp. 94–101.

[10] B. Warfield, “Multitenancy can have a 16:1 cost advantage
over single-tenant,” http://smoothspan.wordpress.com/2007/10/28/
multitenancy-can-have-a-161-cost-advantage-over-single-tenant/ (last
visited on May 20th, 2010), October 2007.

[11] Nitu, “Configurability in SaaS (software as a service) applications,” in
Proceedings of the 2nd annual India Software Engineering Conference
(ISEC). ACM, 2009, pp. 19–26.

[12] S. Jansen, G.-J. Houben, and S. Brinkkemper, “Customization realization
in multi-tenant web applications: Case studies from the library sector,”
in Proceedings of the 10th International Conference on Web Engineering
(ICWE), ser. LNCS, vol. 6189. Springer, 2010, pp. 445–459.

[13] J. Müller, J. Krüger, S. Enderlein, M. Helmich, and A. Zeier, “Customiz-
ing enterprise software as a service applications: Back-end extension in
a multi-tenancy environment,” in Proceedings of the 11th International
Conference on Enterprise Information Systems (ICEIS), ser. Lecture
Notes in Business Information Processing, vol. 24. Springer, 2009,
pp. 66–77.

[14] D. Jacobs and S. Aulbach, “Ruminations on multi-tenant databases,”
in Datenbanksysteme in Business, Technologie und Web (BTW), 12.
Fachtagung des GI-Fachbereichs Datenbanken und Informationssysteme
(DBIS), Proc. 7.-9. Mrz, ser. LNI, vol. 103. GI, 2007, pp. 514–521.

SERG Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report

TUD-SERG-2010-030 7



[15] X. H. Li, T. Liu, Y. Li, and Y. Chen, “Spin: Service performance isolation
infrastructure in multi-tenancy environment,” in Proceedings of the 6th
International Conference on Service-Oriented Computing (ICSOC), ser.
LNCS, vol. 5364. Springer, 2008, pp. 649–663.

[16] P. Laine, “The role of SW architecture in solving fundamental problems
in object-oriented development of large embedded SW systems,” in Pro-
ceedings of the IEEE/IFIP Working Conference on Software Architecture
(WICSA). IEEE Computer Society, 2001, pp. 14–23.

[17] Y.-G. Guéhéneuc and H. Albin-Amiot, “Using design patterns and
constraints to automate the detection and correction of inter-class design
defects,” in Proceedings of the International Conference on Technology

of Object-Oriented Languages (TOOLS). IEEE Computer Society,
2001, pp. 296–306.

[18] H. M. Sneed, “Integrating legacy software into a service oriented ar-
chitecture,” in Proceedings of the Conference on Software Maintenance
and Reengineering. IEEE Computer Society, 2006, pp. 3–14.

[19] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana, “A wrap-
ping approach for migrating legacy system interactive functionalities to
service oriented architectures,” Journal of Systems and Software, vol. 81,
no. 4, pp. 463–480, 2008.

Bezemer, Zaidman, Platzbeecker, Hurkmans & ’t Hart – Enabling Multi-Tenancy: An Industrial Experience Report SERG

8 TUD-SERG-2010-030





TUD-SERG-2010-030
ISSN 1872-5392 SERG


