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Abstract
This research addresses the challenge of inter-
pretability in Reinforcement Learning (RL) for
environments with continuous action spaces by
extending the Decision Tree Policy Optimization
(DTPO) algorithm, which was originally developed
for discrete action spaces. Unlike deep RL meth-
ods such as Proximal Policy Optimization (PPO),
which are effective but difficult to interpret, DTPO
offers transparent rule-based policies. We pro-
pose a continuous-action variant of the DTPO algo-
rithm, DTPO-c, which allows decision trees to out-
put Gaussian distribution parameters while main-
taining interpretability. Our experiments on the
Pendulum-v1 environment show that DTPO-c can
achieve performance comparable to Robust Pol-
icy Optimization (RPO), although it requires more
computational effort. Additionally, we investigate
the impact of discretizing continuous actions and
find that increasing action resolution does not al-
ways lead to improved performance, likely due
to limited model capacity. These results confirm
the feasibility of interpretable RL in continuous
environments, making it suitable for applications
where understanding and trusting the behavior of
the model is important.

1 Introduction
Reinforcement Learning (RL) is a field within machine learn-
ing in which agents are trained to learn to make decisions in
uncertain sequential environments by interacting with the en-
vironment. For every timestep, the agent observes the current
state of the environment, selects an action, receives a reward,
and transitions to a new state. Over time, the agent learns
to maximize its total reward or minimize the total penalty by
balancing exploration with exploitation [1]. In recent years,
RL has been increasingly used in areas such as healthcare and
autonomous driving vehicles [2, 3].

The most used approach for solving RL problems in com-
plex environments is by using deep reinforcement learning,
where deep neural networks are used to represent policies
and value functions. Algorithms such as Deep Q-Networks
(DQN) [4] and Proximal Policy Optimization (PPO) [5] have
shown strong performance on a variety of tasks. However, a
problem is that these models are mostly black boxes, where
we do not completely understand what is going on during
the prediction process. This lack of interpretability is a huge
drawback for using RL in contexts such as healthcare, where
understanding and trusting the agent’s behavior is as impor-
tant as its performance.

To overcome this lack of interpretation, interpretable pol-
icy representations such as decision trees have gained inter-
est. This is because decision trees are known for their simple,
rule-based policies that can be easily understood. After all,
the path of any prediction can be traced. However, the prob-
lem is that integrating them directly into RL is hard. This is
due to standard policy-gradient methods relying on differen-
tiability, while decision trees are non-differentiable because

of their hard splits. This means we cannot easily adjust a
decision tree using small and smooth changes, which is ex-
actly how most RL algorithms improve their policies. Up
until now, strategies such as extracting trees from pre-trained
neural network policies like VIPER [6] or relaxing decision
trees into differentiable approximations [7, 8] have already
been explored. Yet, these methods come with tradeoffs such
as reliance on other models, harder interpretability, or a loss
of performance during discretization.

Decision Tree Policy Optimization (DTPO), introduced by
Vos and Verwer, offers a way to create interpretable policies
by combining decision trees with the PPO algorithm [9]. Un-
like other methods, DTPO directly builds the decision tree
without the need for differentiability. Results in discrete ac-
tion environments show that DTPO performs competitively
with other interpretable models. Also, sometimes it even ap-
proaches the performance of deep RL methods, though it may
also perform slightly worse depending on the environment.

Still, DTPO has so far only been tested in discrete action
spaces, which limits its suitability for many real-world RL
problems that involve continuous action spaces. Therefore,
this paper aims to answer the following research question:

Can DTPO be extended to support continuous action
spaces and remain competitive with neural network

policies in terms of performance?
To help guide the answer to the main research question, we
formulate three subquestions:

RQ1: How does DTPO perform on discretized contin-
uous action spaces under varying action resolutions?
RQ2: How can DTPO be extended to directly support
continuous actions?
RQ3: How does the extended DTPO with continuous
actions compare in performance and runtime to RPO
with neural networks?

The paper is outlined as follows. In Section 2, the back-
grounds on reinforcement learning, deep RL, policy gradi-
ent methods, and the DTPO algorithm will be introduced. In
Section 3, the methodology of answering the subquestions
will be discussed. After that, the results of the corresponding
experiments will be analysed in Section 4. Then, in Section
5, the reproducibility of the study and the ethical aspects will
be discussed. In Section 6, we provide a discussion of the
results, including their implications and limitations. Lastly,
in Section 7, this paper will end with the conclusions and the
options for future work.

2 Background
2.1 Reinforcement Learning
The difference between RL and supervised learning is that,
unlike in supervised learning, the model does not know the
correct input-output pairs beforehand and learns through trial
and error. Through iterative interaction with the environment,
the agent optimizes its cumulative reward by exploring differ-
ent actions and favoring those that consistently yield higher
rewards.

The environment can be modeled as a discounted Markov
Decision Process (MDP), which is defined by the tuple
⟨S,A, P,R, γ⟩ where:



• S is the set of possible states,

• A is the set of possible actions,

• P (s′|s, a) is the probability of moving from state s to s′

after action a,

• Rt+1 is the received reward after action At from state
St,

• γ ∈ [0, 1] is the discount factor that determines the im-
portance of future rewards.

So, at each time step t, the agent observes a state St, takes
an action At, and receives a reward Rt+1, transitioning to the
next state St+1 (see Figure 1).

Figure 1: Schematic of the Markov Decision Process (MDP) inter-
action loop. Adapted from [1].

The behavior of the agent is determined by a policy π, which
maps states to a probability distribution over actions. This
is denoted as π(a|s), and the objective is to find an optimal
policy π∗ that maximizes the expected return. This return of
a policy π is the total accumulated reward from time t:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1

To evaluate how good it is to be in a certain state or to
take a certain action, we define the state-value function as
vπ(s) = Eπ[Gt|St = s] and the action-value function as
qπ(s, a) = Eπ[Gt|St = s,At = a]. Now, the optimal value
functions v∗(s) and q∗(s, a) correspond with the maximum
expected return that is achievable from state s, or state-action
pair (s, a) respectively.

In this paper, the primary focus will be on policy gradient-
based methods. These methods directly parameterize and
optimize the policy, which is especially useful when deal-
ing with high-dimensional environments or continuous action
spaces.

2.2 Deep RL and Policy Gradient Methods
When we are dealing with environments with small and dis-
crete state and action spaces, it is feasible to store and up-
date values for every possible combination. Methods that use
this strategy are called tabular methods. The problem with
tabular methods is that they are not scalable if we are deal-
ing with complex environments with high-dimensional state
spaces. This is where deep reinforcement learning (deep RL)
comes in. Here, deep neural networks are used to approxi-
mate the policies or value functions.

A popular deep RL algorithm is the Deep Q-Network
(DQN), which approximates the Q-value function Q(s, a) by

using a neural network [4]. While this algorithm works well
in discrete action spaces, it is less suitable for continuous ac-
tion spaces where computing a maximum over actions be-
comes relatively infeasible.

To be able to handle continuous action spaces more effec-
tively, policy gradient methods are often used. In these meth-
ods, a parameterized policy πθ(a|s) is learned where the pa-
rameters θ are directly optimized by estimating the gradient
of the expected return with respect to the policy. They allow
for stochastic policies and support continuous outputs, mak-
ing it more suitable for RL problems where the number of
actions to choose from is high.

From the policy gradient methods, Proximal Policy Opti-
mization (PPO) is one of the algorithms that is widely used
due to its combination of performance and stability [5]. By
making sure that changes to the policy are clipped during up-
dates, large and unstable jumps are prevented during training.
This makes sure that the learning is more consistent over-
all. In their original paper, PPO showed good performance
across different benchmark tasks, including complex contin-
uous control environments in MuJoCo.

However, the main drawback of using (deep) neural net-
works in RL is their lack of interpretability. Since it is dif-
ficult to understand why specific decisions are made, these
models are often seen as black boxes. Especially in domains
where RL is increasingly used nowadays, like healthcare or
autonomous driving, it is important to understand and trust
the choices made by the model, as incorrect decisions can
have serious consequences.

2.3 Interpretable RL
To address the challenge of interpretability in RL, Bastani et
al. [6], Silva et al. [7], and Paleja et al. [8] have looked at
more transparent models such as decision trees. In supervised
learning, decision trees are popular because they provide sim-
ple decisions that humans can easily trace. Starting from the
root of the decision tree, a path to a leaf node can be made.

However, integrating decision trees into RL frameworks
has its challenges. The main challenge is that most modern
RL algorithms, like DQN or PPO, use gradient descent to im-
prove the policy. Similarly to training neural networks, small
changes in the parameters are computed based on how much
the output (in the case of RL, the reward) changes. Since de-
cision trees contain hard splits, they are non-differentiable,
which means we cannot easily compute gradients for their
parameters. As a result, standard methods for training deep
policies cannot be applied directly to trees.

To tackle this problem, Bastani et al. [6] proposed pol-
icy extraction methods, where a decision tree is learned after
training a neural network policy. An example of this is the
VIPER algorithm, which extracts a verifiable decision tree
from a pre-trained DQN. A downside of this is that it creates
a dependency on the original neural network that is used. An-
other approach was introduced by Silva et al. [7], and later
refined by Paleja et al. [8], who made decision trees differ-
entiable by relaxing the hard decisions into soft decisions.
These soft decision trees use functions such as a sigmoid to
approximate the splits. While this approach allows for train-
ing with gradients, it often makes the trees harder to interpret,



which is why we want to use them in the first place.

2.4 DTPO: Decision Tree Policy Optimization
To overcome the limitations of previously researched meth-
ods to interpretable reinforcement learning, Vos and Verwer
proposed an algorithm called Decision Tree Policy Optimiza-
tion (DTPO) [9]. Unlike methods that rely on neural networks
or soft decision trees, DTPO directly optimizes a decision tree
policy without requiring the model to be differentiable.

The DTPO algorithm is based on the Proximal Policy Op-
timization (PPO) algorithm [5]. Instead of using gradients to
update the parameters of a neural network, DTPO optimizes
the structure and parameters of the tree itself. The algorithm
treats the decision tree as a policy, where the internal nodes
split on state variables and leaf nodes represent actions. It
improves its policy by using regression tree learning to up-
date the tree without taking gradients of the parameters. This
is similar to gradient boosting, but DTPO updates one tree
instead of adding more trees.

Initial experiments have shown that DTPO can achieve
competitive performance compared to other interpretable
methods such as VIPER, and can even match or exceed
the performance of deep RL in some discrete environments.
However, it may also perform slightly worse depending on
the environment [9]. Thus, the combination of a strong per-
formance and interpretability makes it a good candidate for
RL applications.

However, the biggest downside of the DTPO algorithm is
that it is only able to handle and has been tested in environ-
ments with discrete action spaces. Since many real-world
problems involve continuous actions, we are interested in ex-
tending DTPO to also handle continuous action spaces and
test its performance.

3 Methodology
3.1 Comparison Baseline and Implementation

Basis
To evaluate the effectiveness of our continuous-action DTPO
variant, we compare it to a strong baseline. Since DTPO is
based on the principles of PPO, PPO is a natural starting point
for comparison. However, we choose to use Robust Policy
Optimization (RPO) instead. RPO is an extension of the PPO
algorithm that adds uniform noise to the action mean during
training. Aside from this modification, it shares the same ar-
chitecture and training procedure as PPO. The goal of RPO
is to provide a better representation of the action space by
encouraging actions with high entropy [10].

In Figure 2, the performance of PPO is compared with the
performance of RPO. On the x-axis, we see the total accu-
mulated number of timesteps, and on the y-axis, the mean
undiscounted return is shown. The PPO graph is plotted in
light blue, and the RPO graph is plotted in dark blue. Here,
we see that after around 250 thousand timesteps, the curve for
the graph of RPO starts to go up steeper, whereas the curve
for the PPO graph stays generally flat. For this reason, we
will use RPO as a baseline for performance comparison with
the extended DTPO.

Figure 2: PPO (light blue) vs RPO (dark blue). The cumulative
timesteps are plotted on the x-axis, and the mean undiscounted re-
turns are plotted on the y-axis. The learning curve for RPO starts
to go up steeper after around 250 thousand timesteps, whereas the
curve for the PPO graph stays generally flat.

Although RPO performs better in this environment, we
choose to base our continuous-action DTPO implementation
on PPO. This is because attempts to integrate action sampling
in the same way as RPO into DTPO led to unstable training
and poor performance. We hypothesize that this is due to the
noise making the training targets inconsistent, since decision
trees are much more sensitive to noisy data than neural net-
works. Therefore, the tree-fitting process becomes unstable,
which in turn leads to a degraded policy performance.

3.2 Extending DTPO to Continuous Action
Environments

In the paragraphs that follow, we show how we can mod-
ify the existing DTPO algorithm1 to handle continuous ac-
tion spaces directly, while still keeping DTPO’s advantage of
interpretability. From now on, we will call this continuous
version of the algorithm DTPO-c for a clearer distinction.

First, the original leaf logits in the tree generated by DTPO
need to be replaced with a pair of continuous distribution pa-
rameters per action dimension. This means that each leaf
will need to output a vector of size 2 × act dim, represent-
ing the mean µ and standard deviation σ for each continu-
ous action dimension. To make training easier and deal with
fewer constraints, we use the log of the standard deviation
since log σ can freely range over (−∞,∞), whereas σ itself
must be nonnegative. In the end, this value can be exponenti-
ated for better readability when visualizing it in the tree. So,
for d action dimensions, a leaf in the tree is interpreted as
[µ1, log σ1, ..., µd, log σd].

For our implementation, three different configurations (un-
clipped gradients, clipped gradients, and clipped gradients
with a linear decay of the standard deviation) are tested for
one seed. Since the combination of clipped gradients (global
L2 norm) at 100.0, together with a linear decay of the stan-
dard deviation from 1.0 to 0.1 starting from 75 percent of the
total iterations until the end of training is the most stable, we
will use this variant. The corresponding returns per episode
plots can be found in Appendix A

1https://github.com/tudelft-cda-lab/DTPO

https://github.com/tudelft-cda-lab/DTPO


After that, we need to change how actions are sampled dur-
ing rollouts. Instead of applying softmax to logits and draw-
ing actions from a categorical distribution, we exponentiate
the log-standard deviation to obtain σ and then draw the ac-
tion from a Gaussian distribution: a ∼ N (µ, σ2). After draw-
ing the action, we clip it to the environment’s bounds.

Although in neural network-based algorithms the repa-
rameterization trick is often used to allow backpropagation
through stochastic samples [11], DTPO does not rely on this,
since gradient updates are not propagated through the action
sampling step. Lastly, for evaluation, we drop the noise term
and map each leaf directly to its mean to get a deterministic
decision tree.

These changes to the algorithm of replacing logits with
(µ, log σ), sampling actions as a ∼ N (µ, σ2), and only using
the mean for evaluation allow DTPO to work directly with
continuous actions. Above all, a single decision tree remains
easy to read, and the policy stays interpretable even when
dealing with real-valued actions.

3.3 Adapting the DTPO Training Loop for
Continuous Actions

To have the tree improve its continuous Gaussian policy, we
need to replace the discrete-action PPO loss with a continu-
ous equivalent. Originally, in DTPO, each tree leaf produces
logits over which we used a softmax to compute the corre-
sponding action probabilities. Now with DTPO-c, each leaf
outputs a mean vector µ and a log standard deviation vector
log σ instead, defining a diagonal Gaussian N (µ, diag(σ2)).
When the agent takes an action a ∈ Rd, its log-probability
under that Gaussian is

ℓnew(a;µ, σ) = −1

2

d∑
i=1

[(ai − µi

σi

)2

+ 2 log σi + log(2π)

]

Subsequently, we compare this probability to the old log-
probability ℓold = log πold(a|s), and we get the PPO clipped
objective by using

LCLIP = E[min(rA, clip(r, 1− ε, 1 + ε)A)]

where r = exp(ℓnew − ℓold) is the probability ratio between
the new and the old policies, and A is the advantage estimate.

The reason why we choose to use the log-probability in-
stead of the regular likelihood is that it simplifies mathemat-
ical analysis since we no longer need to deal with an expo-
nent that exists in the original Gaussian distribution func-
tion. Secondly, because the likelihood function is a product
of many small probabilities, it can result in a numerical un-
derflow. However, if we take the logarithm of this likelihood,
this product is converted to a sum [12]. Also, since the loga-
rithm is a monotonically increasing function, maximizing the
logarithm of a function is equivalent to maximizing the func-
tion itself. The full implementation of DTPO-c is available
on GitHub2.

2https://github.com/mishakaptein/DTPO-c

4 Results
4.1 Environment Setup and Discretization

Strategy
To answer the first research question of how the performance
of DTPO is affected by different discretization resolutions,
we first need a continuous action environment in which we
are going to perform comparisons. For this, we will use the
’Pendulum-v1’ environment [13], also known as the inverted
pendulum swingup problem. In this environment, one of the
ends of a pendulum is attached to a fixed point, and the other
end is free. The goal is to apply torque (force) on the free
end of the pendulum and swing it into an upright position.
Here, the action space is defined as a continuous range be-
tween [−2.0, 2.0], and the observation space is an array with
three values with their corresponding ranges:

• x = cos(θ) ([−1.0, 1.0])

• y = sin(θ) ([−1.0, 1.0])

• Angular velocity ([−8.0, 8.0])

Lastly, the reward is defined as

r = −
(
θ2 + 0.1 · θ̇2 + 0.001 · τ2

)
where:

• θ is the angle of the pendulum (measured from the up-
right position),

• θ̇ is the angular velocity (rate of change of the angle),

• τ is the torque applied by the agent,

This means that the agent is penalized for being far from
the upright position, moving too fast, and applying too much
torque on the free end.

The next step is to discretize the continuous action space,
so that the DTPO algorithm can use it. To analyze the
different discretization resolutions, we use a uniform spac-
ing between the actions. The resulting action space for the
Pendulum-v1 environment with K actions will then be:

Actions = {−2 + k ·∆ | k = 0, 1, 2, ...,K − 1}

where the step size is:

∆ =
2− (−2)

K − 1
=

4

K − 1

By using a uniform spacing across the different actions, we
make sure that the action space is covered evenly and gives
predictable behaviour during training. Several values for K
will be evaluated, ranging from low (such as 2 or 3 actions) to
high (32 or 64 actions), to see how the performance of DTPO
is affected by the action resolution.

4.2 Experimental Setup
To compare the performance of DTPO in a continuous envi-
ronment, we first modify the DTPO implementation to sup-
port varying discrete action sizes. Then, we run the experi-
ments across six different seeds (1, 2, 3, 4, 5, and 6) for ev-
ery action resolution to get a more accurate estimation of the

https://github.com/mishakaptein/DTPO-c


means and to lower the standard errors. To ensure the result-
ing decision tree remains interpretable, we limit the number
of leaf nodes to 16.

For DTPO, we use the same hyperparameters as the work
of Vos and Verwer: η = 1.0, γ = 0.99, λ = 0.95,
T = 10,000, and N = 1,500 [9]. All hyperparameters are
kept consistent across the different runs for fair comparison,
and the undiscounted return is used as the primary evalua-
tion metric. The experiments are executed on a machine with
an Intel Core i7-9750H processor and 16 GB of RAM, with
each method running on a single core. The full list of all the
hyperparameters can be found in Appendix B.1.

4.3 Results of Discretization Study
In Figure 3, the undiscounted return distribution is shown for
multiple action resolutions after running the experiment. The
full results can be found in Table 1. From both Figure 3 and
Table 1, we can see that a finer discretization of the action
space does not necessarily lead to better performance.

Figure 3: Undiscounted return distribution for various discretization
resolutions across six different seeds. A finer discretization of the
action space does not necessarily yield better performance.

Table 1: Mean and standard errors of undiscounted returns averaged
over six different seeds for a maximum of 16 tree leaf nodes, 10000
simulation steps, and 1500 iterations. Odd-numbered values tend to
perform better than nearby even-numbered values on average.

Actions Pendulum-v1-BangBang

2 -684.43 ± 39.08

3 -500.10 ± 95.11

4 -774.58 ± 104.34

5 -779.59 ± 129.49

6 -1116.45 ± 30.75

7 -826.87 ± 140.26

8 -938.91 ± 141.85

9 -812.78 ± 122.14

10 -927.48 ± 141.71

16 -1051.62 ± 48.65

32 -974.23 ± 126.89

64 -1029.37 ± 119.22

By taking a closer look at the values, one could notice that
odd-numbered values tend to perform better than nearby

even-numbered values on average. A possible cause of this
is that, due to the uniform spacing technique, odd-numbered
values contain the 0-action when discretizing the action
space. It shows the potential usefulness of applying zero
torque when the pendulum is upright and needs to be
stabilized. To test this hypothesis, we run the experiment
again over the same seeds for the even-numbered values with
an additional 0-action after discretizing the action space.
However, after doing this, we see that it does not have an
improved impact on the final return. The results of this
second experiment can be found in Table 2.

Table 2: Mean and standard errors of undiscounted returns averaged
over six different seeds for even-numbered values plus an added zero
action, for a maximum of 16 tree leaf nodes, 10000 simulation steps,
and 1500 iterations. Adding a zero action for the discretized action
spaces that lack one does not give improvement.

Actions
(plus 0-action) Pendulum-v1-BangBang

4 -885.72 ± 134.51

6 -1022.33 ± 113.61

8 -952.50 ± 85.84

10 -905.43 ± 93.55

16 -1090.20 ± 45.48

32 -1090.60 ± 36.54

64 -1047.21 ± 82.19

4.4 Comparison with RPO
Now that the DTPO-c algorithm is created, we can start com-
paring its performance with RPO to see if it can reach similar
results. Again, the Pendulum-v1 environment will be used
to compare the two algorithms, together with three different
seeds (1, 2, and 3). For DTPO-c, the maximum number of
tree leaves is set to 32 since we assume this to be the highest
number of nodes for the tree to still be interpretable. Next
to that, we use the hyperparameters η = 1.0, γ = 0.99,
λ = 0.95, T = 10,000, and N = 2,000 (so a total of 20
million timesteps). For RPO, we use the default parameters
as used in the implementation of rpo continuous action.py in
the CleanRL library3. The list of all hyperparameters can be
found in Appendix B.2.

4.5 Results of the Continuous DTPO vs. RPO
When comparing the learning curves of DTPO-c and RPO
after running the experiments, we can see in Figure 4 that
RPO converges to an undiscounted return of about -200 after
around 350 thousand timesteps. If we compare this to the
undiscounted return per timestep for DTPO-c in Figure 5, we
see that it takes significantly more timesteps (12.5 million) to
reach the same performance.

But, since DTPO’s deterministic tree updates require ex-
tra computation per step, it is also worth looking at how the
return grows if we look at it from a runtime perspective. In

3https://github.com/vwxyzjn/cleanrl

https://github.com/vwxyzjn/cleanrl


Figure 4: Mean undiscounted return of RPO against the cumulative
timesteps averaged across three different seeds. After around 350
thousand timesteps, the return converges to about -200.

Figure 5: Mean undiscounted return of DTPO-c against the cumula-
tive timesteps averaged across three different seeds. It takes around
12.5 million timesteps to reach the same performance as RPO, which
is significantly more than the amount RPO needs.

Figure 6, the mean undiscounted return of both DTPO-c (or-
ange) and RPO (blue) is plotted over the relative time, av-
eraged over three different seeds. We can see that DTPO-
c performs better initially, but after approximately 400 sec-
onds, RPO overtakes it again. Overall, Figures 4, 5, and 6
confirm that RPO is more computationally efficient and also
has a higher stability during learning in the Pendulum envi-
ronment than DTPO-c. However, given sufficient runtime,
DTPO-c can match RPO in terms of performance. Moreover,
DTPO-c produces an interpretable decision tree, as shown in
Figure 7, whereas the neural network of RPO remains a black
box.

5 Responsible Research
5.1 Ethical Reflection
The focus of this work is on transparency, and since decision
trees are fundamentally interpretable, domain experts can in-
spect each split in the tree to better understand and assess the
behaviour of the agent for potential unsafe actions. However,

Figure 6: Mean undiscounted return against the relative time aver-
aged across three different seeds. DTPO-c performs better initially,
but after approximately 400 seconds, RPO overtakes it again. RPO
is more computationally efficient than DTPO-c, but given sufficient
runtime, DTPO-c can match RPO in terms of performance.

such a human-readable decision tree can give a false sense of
security. This is because unseen states may still lead to un-
expected behaviour. Therefore, it is important that such pro-
duced decision trees are tested carefully for many different
cases.

Another thing to take into account is the potential for ad-
versarial misuse. Individuals who might want to cause harm
to the system might identify critical thresholds, after which
they can give inputs to the system that exploit edge cases.
This means that it might be wise to keep sensitive policy de-
tails within a trusted environment.

Finally, deploying interpretable RL in domains that involve
human lives (such as healthcare or self-driving cars) raises
fairness concerns. In this paper, this is not applicable since
our experiments focus on a test control environment. But if a
tree (accidentally) splits on an attribute that it is not supposed
to, it could introduce bias. Unlike humans, who can consider
context and ethical values when making decisions, comput-
ers cannot easily do this. Hence, in other environments, it is
important that feature choices are verified and that protected
information is excluded before training.

5.2 Reproducibility
We have listed all of the code that has been used for this re-
search, together with the corresponding configurations and
hyperparameters to perform the experiments. Besides that,
we have also listed the GitHub repositories that we used.
Therefore, the study is fully reproducible, and the obtained
results can be verified. Additionally, the specific random
seeds used for the experiments are listed in this paper. Be-
cause the experiments are seeded, the same series of random
numbers will be generated each time the simulation is run
with the same seed.

6 Discussion
This work investigated whether the existing DTPO algorithm
can be extended to output continuous-action decision trees to



Figure 7: An example of a decision tree outputted by DTPO-c for the Pendulum-v1 environment. The first argument of the leaf nodes
represents the torque, and the second argument represents the standard deviation.

handle continuous environments directly, and if this extended
variant of the algorithm can match the performance of RPO’s
neural network policy on the Pendulum-v1 environment.

In our first experiment, we evaluated how varying levels
of discretization affect performance using the original DTPO
algorithm. The first observation that can be seen from these
results is that a finer discretization does not necessarily lead
to a better performance, while we might expect that it does,
since we are approximating a continuous action space more
closely. This likely reflects the trade-off between the number
of actions to choose from and model capacity. With a max-
imum of 16 leaf nodes for the decision tree, it might not be
expressive enough to capture optimal policies for large action
spaces. Another factor could be that many finely discretized
actions are very similar in effect, which makes differentiating
between them for the advantage function difficult. In turn,
this could lead to a weak or noisy learning signal during pol-
icy updates. Lastly, increasing the number of available ac-
tions will probably also lead to a higher amount of training
data needed to accurately estimate the relative value of each.

After the discretization study, we proposed a modification
to the DTPO algorithm (DTPO-c) that can handle continu-
ous action spaces directly and compared it against RPO. The
results show that RPO achieves a stable return of around
–200 after 350 thousand timesteps, which is approximately
450 seconds. In contrast, DTPO-c initially performs better
in early runtime, but eventually RPO overtakes it again af-
ter approximately 400 seconds. These results confirm that,
although DTPO-c requires more computational effort, it re-
mains capable of matching the performance of RPO with
longer training.

Another notable aspect is that the variance of DTPO-c’s
return is higher than that of RPO. Likely, this is due to the
fact that we use a fixed standard deviation of 1.0 in the tree’s
leaf nodes during the early stages of training, which limits
the policy’s ability to adapt its exploration. Although a linear
decay is used near the end of training, the early fixed value
may still lead to less stable learning. Additionally, the dis-
crete structure of the tree may lead to more extreme decision

boundaries, making learning less smooth compared to RPO’s
neural network. Still, DTPO-c offers a fully interpretable pol-
icy, which may defend the trade-off in efficiency for applica-
tions where transparency and verifiability are crucial.

While these first results may seem promising, there are also
some limitations to this study. First, the experiments are only
tested on a low-dimensional environment. The results that are
formed may not generalize to other higher-dimensional con-
tinuous tasks without changing the size of the tree or other
configurations. Second, when extending the DTPO algorithm
for continuous actions, using a fixed standard deviation in
each leaf simplified training but reduced the policy’s abil-
ity to adapt its exploration across different parts of the state
space. Moreover, as noted earlier, DTPO-c required signifi-
cantly more training steps than RPO to reach a closely sim-
ilar performance. This highlights a trade-off between inter-
pretability and sample efficiency.

7 Conclusions and Future Work
7.1 Conclusions
In this research, we introduced DTPO-c, a variant of DTPO
that can handle continuous action spaces by outputting Gaus-
sian action distributions while preserving interpretability.
Through experimentation on the Pendulum-v1 environment,
we demonstrated that DTPO-c can achieve comparable per-
formance with RPO, although it requires significantly more
timesteps and a longer runtime. This trade-off between trans-
parency and efficiency is key to consider in safety-critical ap-
plications.

Our discretization study revealed that a finer discretization
of a continuous action space does not necessarily yield better
performance, particularly when the tree capacity is limited.
Together, these findings support the potential of DTPO-c as a
competitive and interpretable solution for continuous control
tasks.

7.2 Future Work
There are several promising directions for extending this
work. To begin with, the effects of other action space dis-



cretization techniques could be studied concerning the dis-
cretization study. In this paper, evenly spaced actions are
used. Though, depending on the environment, there exist bet-
ter alternatives that yield more efficient split decisions in the
tree. In addition, it would be worth investigating how the tree
capacity, such as the depth or number of leaves, affects the
performance across the different discretization levels. This
could further clarify the limitations of expressiveness in deci-
sion trees.

The DTPO-c variant implemented in this paper can also
be tested in higher-dimensional control environments, such
as HalfCheetah or Walker. This will help with understand-
ing how the tree depth or leaf count must scale before we
lose interpretability. Subsequently, DTPO-c can be modified
to allow each leaf to learn its standard deviation, rather than
using a fixed or linearly decaying value. This can help with
adapting exploration to different parts of the state space and
reducing the variance of the return.

Finally, next to improving scalability and expressiveness,
future work could also address the limitations in how trees
are constructed and used during training. Currently, a new
tree is learned from scratch at every update step. This can
be inefficient and may cause instability by discarding useful
structure from previous trees. Exploring methods that can re-
fine or reuse parts of existing trees could help improve train-
ing stability and efficiency.
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A DTPO-c Configuration Overview

(a) Not clipping the global L2 value and no linear decay of the standard
deviation.

(b) Clipping the global L2 value and no linear decay of the stan-
dard deviation.

(c) Clipping the global L2 value combined with a linear decay
of the standard deviation.

Figure 8: Three different returns per episode plots for various DTPO-c implementation configurations. Clipping the global L2 norm (b) and
(c) to a value of 100.0 leads to faster learning compared to not clipping (a). Adding a linear decay for the standard deviation from 1.0 to 0.1
starting from 75 percent of the total training iterations to the end leads to more stability.



B Hyperparameters
B.1 Discretization Experiment

Table 3: Hyperparameters used for DTPO in the discretization ex-
periment.

Hyperparameter Value
DTPO

env name Pendulum-v1
max depth None
max leaf nodes 16
simulation steps 10000
num envs 1
max iterations 1500
max policy updates 1
ppo epsilon 0.2
learning rate 1.0
gamma 0.99
normalize advantage True
early stop entropy 0.01
evaluation rollouts 1000
warmup iterations 0
anneal lr False
use linear value function False
verbose True

B.2 Continuous Action Comparison

Table 4: Overview of the hyperparameters used for DTPO-c in the
comparison.

Hyperparameter Value
DTPO-c

env name Pendulum-v1
max depth None
max leaf nodes 32
simulation steps 10000
num envs 1
max iterations 2000
max policy updates 1
ppo epsilon 0.2
learning rate 1.0
gamma 0.99
normalize advantage True
early stop entropy 0.01
evaluation rollouts 1000
warmup iterations 0
anneal lr False
use linear value function False
verbose True
grad clip norm 100.0

Table 5: Overview of the hyperparameters used for RPO and PPO
in the comparison.

Hyperparameter Value
RPO

exp name rpo continuous action
torch deterministic True
cuda False
track False
wandb project name cleanRL
wandb entity None
capture video False
env id Pendulum-v1
total timesteps 8000000
learning rate 0.0003
num envs 1
num steps 2048
anneal lr True
gamma 0.99
gae lambda 0.95
num minibatches 32
update epochs 10
norm adv True
clip coef 0.2
clip vloss True
ent coef 0.0
vf coef 0.5
max grad norm 0.5
target kl None
rpo alpha 0.5
batch size 2048
minibatch size 64
num iterations 3906

PPO
exp name ppo continuous action
torch deterministic True
cuda False
track False
wandb project name cleanRL
wandb entity None
capture video False
save model False
upload model False
env id Pendulum-v1
total timesteps 1000000
learning rate 0.0003
num envs 1
num steps 2048
anneal lr True
gamma 0.99
gae lambda 0.95
num minibatches 32
update epochs 10
norm adv True
clip coef 0.2
clip vloss True
ent coef 0.0
vf coef 0.5
max grad norm 0.5
target kl None
batch size 2048
minibatch size 64
num iterations 488
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