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PQ is expected to be launched in first half of 2019. The attitude of a
satellite can be referred to as its orientation in space with respect to
a inertial reference frame. The Delfi-n3Xt was the first satellite from
Delft University of Technology, to include three-axis Attitude Deter-
mination and Control System/Subsystem (ADCS). It was designed
with 5 modes of operation. Four of these were advanced modes. In
addition, the Delfi-PQ is not intended to include advanced modes of
operation. Hence, this thesis considers using the Delfi-n3Xt ADCS
software. This software is extended as a baseline implementation
on the MSP-EXP432E401Y launchpad. Nearly, 32% of the total
nominal power is assigned to ADCS. Hence, energy efficient design
alternatives could be considered for future satellite missions. In ad-
dition, ADCS is a critical subsystem, failure of ADCS means failure
of satellite mission. This thesis aims to improve performance and
energy consumption of ADCS. This thesis considers study of three
different Digital Signal Processing (DSP) alternatives: Double Preci-
sion (DP), Single Precision (SP) and Fixed Point (FxP) arithmetic.
Study in this thesis concludes that FxP alternative provides « 6.7

times better performance, and « 7 times better energy efficiency over the baseline. Hence, this thesis
proposes the use of FxP DSP alternative. It was also concluded that, the SP arithmetic has equivalent
accuracy compared with DP. Moreover, SP provides « 3 times better performance, and « 2.7 times better
energy efficiency over the baseline. Therefore, future implementations could benefit from an SP alternative.
A major part of the ADCS power is allocated to sensor and actuator. This leaves only 10 % of the total
nominal power assigned to ADCS software. Hence, the proposed alternative might not provide considerable
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ally intensive algorithm assigned with more significant amount of total nominal power, then, the proposed
alternative could serve as an initial study. However, this does not guarantee that the suggested alternative
could satisfy more accurate requirements. In such case, FxP implementation might result in accuracy vio-
lation. And use of SP alternative is proposed. In such case, a new study is suggested in order to benefit
from FxP alternative.
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Introduction 1
T

he Delfi-PQ is third satellite project from Delft University of Technology. It focuses
on the next level of satellite miniaturization. It is eight times smaller than its

predecessors the Delfi-C3 and the Delfi-n3Xt. This also implies significant constraints
on orbit average power consumption of 1 Watt 1. The Delfi-n3Xt was launched in 2013
and its predecessor Delfi-C3 was launched in 2008. The Delfi-PQ will be developed
iteratively and is expected to be launched in 2019.

Taking into consideration the increasing need for reduction in average power for future
satellite projects it becomes prominent to focus on reduction in energy requirements.
Hence, this thesis emphasizes implementation techniques to reduce energy consumption.
In particular, it focuses on implementation and verification of energy efficient software
for Attitude Determination and Control System/Subsystem (ADCS).

Attitude of a satellite is its orientation in space with respect to an inertial reference
frame. ADCS, as the name indicates is a subsystem that determines the attitude of the
satellite and controls the actuators in order to reach a desired orientation in space. As the
future missions move towards new advancements, there is increasing focus, towards the
precision requirements. For example, more precise imagery of the Earth, Sun pointing for
more efficient energy harvesting, thruster pointing for orbit maneuvers, antenna pointing
for communication with the ground station and many more applications [5]. For proper
functioning of the Delfi-n3Xt satellite, it was critical to have the rotational rates below 1
0/s. And this required an active ADCS [1]. During the early operation of the Delfi-n3Xt,
the satellite was spinning up increasing the rotational rate from 5 0/s to 45 0/s the next
day. Thankfully due to the presence of parameter upload functionality, it was possible to
switch the actuation direction of two of the magnetorquers [6]. In the worst case, failure
in ADCS also means failure in the satellite mission, as the rotational rate can increase
beyond operational limits. Therefore, robust and reliable ADCS is critical for proper
functioning of satellites also in upcoming missions. It is worth noting that energy saving
in ADCS means more energy available for other critical subsystems, such as On Board
Computing (OBC).

1.1 Previous work

In addition to satellites launched by the Delft University of Technology, there are several
other nano/pico satellites equipped with an ADCS. Database list in 2 highlights several
other satellite projects along with mission description like, TUBSAT-N, TUBSAT-N1,
Artemis JAK, Artemis Louise, Artemis Thelma, ASUSAT-1, etc. There were several

1https://www.tudelft.nl/lr/delfi-space/delfi-pq
2https://www.nanosats.eu/
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master thesis works done at Delft University of Technology, which dealt with require-
ments, design, implementation, and verification of ADCS algorithm [7][8][5][1].

Using spacecraft miniaturization CubeSats have proven their feasibility of low cost
and short development time by use of commercial-of-the-self components. The reference
document [9] presents a comparison between CubeSats and PocketQubes, and analyzes
the impact of miniaturization on spacecraft design and performance. It also presents
the preliminary design of the Delfi-PQ and concludes with a development philosophy.
Satellite miniaturization in other terms means the reduction in satellite volume. This
reduction in volume not only limits the available antenna size but also impacts the
available power, which in turn make energy efficiency and management more critical.

A new architecture for satellite electrical subsystem in order to reduce volume and
increase the empty surface usage is presented in [10]. It discusses a modular approach
by splitting the electrical power system on different surfaces and reducing the number
of voltage regulators required. It provides solutions that reduce the number of cables
running in satellite, which makes integration simpler. Their research goals focus on
turning the Electrical Power System (EPS) into a more flexible, scalable and volume-
efficient system by physically relocating its components and a lean approach.

The experiences and lessons learned from other missions are of great importance for
future satellite missions. The paper in-orbit results of the Delfi-n3Xt: Lessons learned
and move forward, presents in orbit results of the Delfi-n3Xt satellite [6]. They demon-
strate the success of in-orbit payloads and platform. In particular, four of them, including
a solid cool gas micro-propulsion system, a new type of solar cell, a more robust Com-
mand and Data Handling Subsystem (CDHS), and an integrated ADCS that perform
three-axis active control using magnetorquers and reaction wheels. They demonstrate
the following:

‚ Two cold gas generators and several thrust maneuvers are used to demonstrate
ignition of a solid cool gas micro-propulsion system. The measurements of internal
gas pressure and temperature are recorded at a frequency of 30Hz, that provide
detailed information about the system performance.

‚ Use of a new type of material a-Si:H with higher radiation tolerance, better an-
nealing properties, and a higher power-versus-weight ratio without using covering
glass.

‚ More robust Command and Data Handling Subsystem (CDHS), which show fewer
communication errors and bus lockups compared to Delfi-C3.

‚ ADCS that performs active three-axis control using magnetorquers and reaction
wheels. Even with the presence of high noise in sensors and actuators ADCS proves
to work correctly.

1.2 Problem statement

As the future satellite missions move towards miniaturization, reduction in volume has a
tremendous impact on the available power and makes energy efficiency and management

2



more critical [9]. Failure to meet such energy requirements means the requirement for a
larger battery for proper functioning of the satellite, which also means to fail in future
miniaturization.

The only satellite mission launched with active three-axis ADCS from the Delft
University of Technology is the Delfi-n3Xt. Most recent mission the Delfi-PQ, however,
does not incorporate an advanced mode that involves intensive computation. Moreover,
the source code for this mission is still in the testing phase. Hence, this thesis work uses
the source code developed as part of the Delfi-n3Xt mission.

Study on CubeSats to pocketqubes opportunities and challenges suggests the use
of MSP432P401R microcontroller, as the best-suited possibility among two other im-
plementation platforms. This study [9] may no longer hold for more advanced and
precise algorithms to be used in future missions. There is a need for a faster imple-
mentation platform running at much higher clock frequencies in order to meet Real
Time Deadline (RTD). Flash memory of microcontroller becomes a crucial element in
order to choose a microcontroller, as the requirement of more precise International Ge-
omagnetic Reference Field (IGRF) look-up requires more memory (for example, IGRF
look-up, using Single Precision (SP) data-storage, with 1 0 of precision requires 759.375
kiloByte (kB) of memory). Microcontroller MSP432P401R with a flash memory of 256
kB provisions insufficient flash memory. Hence, this may no longer be used.

Requirements for ADCS for the Delfi-n3Xt has been studied in document [1]. It
states that the rotation rate must be below 1 0/s, and sun-pointing error must be below
25 degrees. This thesis directs on these two critical requirements. In order to meet this
it is essential to have the following two modes of operation:

‚ Detumble mode: Once the satellite is ejected from launch container Detumbling
mode must bring the satellite rotational rate down to 1 0/s [8].

‚ Fine Sun Pointing (FSP) mode: This mode uses Extended Kalman Filter
(EKF) algorithm using both Sun sensor & magnetometer measurements to point
solar-panels towards the Sun. The acceptable sun-pointing error is a maximum of
25 0 in a non-eclipse period.

1.3 Thesis objective

The objective of this thesis work is to implement and verify energy efficient software for
the ADCS algorithm. Future satellite missions could benefit from the conclusions or use
the software framework if relevant. The following research questions are formulated to
accomplish the thesis objective:

‚ How can we develop a software implementation from the Delfi-n3Xt ADCS algo-
rithm which is more energy efficient?

‚ How could we verify its functionality and test if it meets the accuracy requirements?

From the above mentioned research questions the following two sub-questions are listed:

1. Is it necessary to use double-precision arithmetic to satisfy accuracy requirements
for such a system?
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2. Can we practically compare the energy efficiency of such a software implementation
with its baseline the Delfi-n3Xt ADCS algorithm?

1.4 Research methodology

The implementation and verification of energy efficient software for ADCS can be divided
in several stages:

Firstly, literature study is done. It includes study of following:

1. ADCS in general

2. ADCS in Delfi project

3. Kalman Filter (KF) in general

4. EKF in Delfi-n3Xt

5. Precision requirements

6. Accuracy requirements

Secondly, the simulation environment (in MATLAB) developed for the Delfi-n3Xt is
modified. Especially, two main modifications are considered:

1. Modes of operation other than FSP and detumble mode are removed for simplicity.
As can be seen in Figure 1.2 modes encircled in red (Coarse Sun Pointing mode,
Ground Station tracking mode and Thruster Pointing mode) will be removed from
the design.

2. To print sensor and actuator data into a text file which is used for open-loop C
code design.

Thirdly, C code from the Delfi-n3Xt will be redesigned. Two main modifications are
done:

1. The Delfi-n3Xt has a three layer software structure as shown in Figure 1.1. The
Hardware Abstraction Layer (HAL) layer is modified in this thesis. In this layer
the sensor/actuator read/write are modified by read/write from text files.

2. Similar to the simulation environment, for simplicity, modes of operation, other
than, FSP and detumble mode are removed.

3. C based source code is built using CMake 3. This is done on a MacBook-Pro
running macOS Mojave operating system. Moreover, this simulation is an open-
loop simulation using text files.

Fourthly, a complete implementation and testing of FSP mode with EKF and
Proportional and Derivative (PD) controller is done. It is important to note that C

3https://cmake.org/
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Figure 1.1: Layered software structure of ADCS in the Delfi-n3Xt

code written for the Delfi-n3Xt project although included FSP mode the implementa-
tion and verification was incomplete. Results from the previous, step open-loop C code
based simulation are compared with closed-loop MATLAB simulation. And this is reit-
erated until acceptable accuracy requirement is satisfied. Three versions of this design
are considered, which will act as:

1. Double Precision (DP): The baseline implementation.

2. SP: The first improved implementation.

3. Fixed Point (FxP): The second improved implementation.

Fifthly, MATLAB and open loop C-code are combined together to form a closed
loop design. Text file read/write are replaced with sensor/ actuator data exchange using
TCP/IP server/client.

Lastly, hardware in a loop simulation is done. Figure 1.3 shows closed loop simulation
of ADCS with hardware in a loop. That i,s C code built using CMake is ported to TI-
RTOS built on MSP432 launchpad (MSP-EXP432E401Y). Measurements of speed-up
and energy for three versions of design are recorded. The kinematics and dynamics
marked with gree inn Figure 1.3 includes properties of motion and the rules governing
the interactions. Using these models the position, velocity, angular rate and attitude of
the satellite are propagated in time [5].

1.5 Contributions

ADCS is a large software framework. Following are the contributions:

‚ A preexisting implementation from the Delfi-n3Xt project is modified as mentioned
in the previous section. This DP baseline ADCS is extended with the implemen-
tation of FSP mode, which was incomplete in the Delfi-n3Xt project.
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Figure 1.2: The possible mode switches of the ADCS [1]

Figure 1.3: Simulation of ADCS with hardware in a loop

‚ This ADCS algorithm is ported completely to SP and FxP. It also includes imple-
menting a SP and FxP matrix library.

‚ In order to test the functionality of the complete ADCS algorithm including sensor,
actuator and environment model, a hardware in loop approach is used. This in-
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cludes ADCS with detumble and FSP mode implemented in MSP-EXP432E401Y
microcontroller. Where as sensor, actuator, and environmental model are imple-
mented in MATLAB.

‚ A MATLAB script that generates IGRF look-up is written for both floating-point
and FxP implementation.

1.6 Thesis outline

This document starts with an introductory chapter (current chapter). This chapter
presents the research question, thesis objective, research methodology and personal con-
tribution. Chapter 2 presents an introduction to ADCS, i.e., the blocks marked red in
the Figure 1.3. This chapter starts with the definition of reference frames, followed by
definition and description of attitude estimation and control. It also defines kinematics
and dynamics of the satellite attitude. Chapter 3 zooms in to describe the computation
used for ADCS. That is, the Digital Signal Processing (DSP) alternatives. It intro-
duces the floating-point arithmetic followed by fixed-point arithmetic. It describes the
three versions of design alternatives. Namely, DP, SP and FxP. Chapter 4 is about
experimental results. More specifically, it includes simulation results along with plat-
forms and methods used to acquire the results. Lastly, chapter 5 presents the summary,
conclusions, main contributions, and future work.
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Attitude Determination and
Control System 2
The Attitude of a satellite can be referred to as its orientation in space with respect
to inertial reference frame. Motion of a satellite in space can be specified by its posi-
tion, velocity, orientation, and rotational rate. Attitude determination is the process of
measuring and computing the orientation of satellite in its body frame with respect to
a reference frame. This chapter begins with defining reference frames. Secondly, rota-
tional kinematics is presented, which provide a description for vector transformations. In
particular, three attitude representations. Thirdly, it describes model of physical world.
This is required in order to calculate the position, and velocity of the satellite, the dis-
turbance torques, the Sun direction, the local Earth magnetic field, and the ground
station direction respectively. Moreover, in order to estimate the attitude of satellite
it is essential to use estimation algorithm such as, EKF. The Delfi-n3Xt uses EKF for
attitude estimation. Fourthly, this chapter defines attitude estimation and describes in
detail EKF algorithm. Attitude control is the process of correcting the orientation of
satellite in a specified direction. This correction is achieved by controlling the actuators
of the satellite. Fifthly, this chapter describes attitude control algorithms that are used
in the Delfi-n3Xt. The attitude kinematics and dynamics of the satellite are modelled
in MATLAB. Hence, this chapter will not describe this, for more detailed explanation,
readers are referred to [1]. Lastly, this chapter describes power budget for ADCS in the
Delfi-n3Xt.

Objective of ADCS in this thesis work are listed below:

‚ To reduce angular velocity of the satellite below 1 0/s in detumble mode.

‚ To point solar panels towards the Sun, in order to maximize energy harvesting.
Maximum allowed Sun pointing error is 25 0 in FSP mode.

2.1 Reference frames

ADCS uses various reference frames to represent the orientation of the satellite. A
reference frame can be described as a Cartesian coordinate system with a set of three
orthogonal unit vectors. Rotation matrix can be used to represent attitude between two
reference frames. The below described reference frames are used to describe orientation
between different objects. Description of methods used to represent the orientation of
these frames with respect to the Earth Centered Inertial (ECI) reference frame, and
methods used to represent the orientation of these frames with respect to the Satellites
Body Fixed (SBF) reference frame, are not described in this document and readers are
referred to [1].
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2.1.1 ECI reference frame

ECI reference frame Figure 2.1 has origin fixed at center of mass of the Earth. The z-axis
is perpendicular to the x-axis and extends through the celestial North pole, x-axis lies in
equatorial plane and points to vernal equinox on the celestial sphere, and the y-axis is
perpendicular to both x and z-axis and completes the right-handed reference frame [8].
ECI reference frame is referred as a unit vector I = {~i1,~i3,~i3}.

2.1.2 Earth Centered Earth Fixed (ECEF) reference frame

ECEF reference frame Figure 2.1 1 is a rotating frame fixed to the Earth. The z-
axis is pointing north parallel to the rotation axis of the Earth, x-axis of the ECEF
reference frame is pointing towards 00 latitude and and 0 0 longitude, and the y-axis is
perpendicular to both x and z-axis and completes the right-handed reference frame [8].
ECEF reference frame is referred as a unit vector E = {~e1,~e2,~e3}.

The main difference of this reference frame with respect to ECI is, the ECEF reference
frame rotates along with the Earth. Consequently, a point fixed on the Earth surface
has fixed coordinates and do not change with respect to the ECEF reference frame.

Figure 2.1: The ECI and ECEF reference frame

2.1.3 Satellite Orbit Reference Frame (ORF)

The Satellite ORF has origin fixed at the center of mass of the satellite. The z-axis of the
ORF points towards the Nadir (the direction of the center of the Earth), y-axis points
toward orbital plane or tangent line of the orbit (i.e., the velocity vector), and the x-axis
is perpendicular to both y and z-axis and completes the right-handed reference frame
[8]. ORF is referred as a unit vector O = {~o1,~o2,~o3}.

1https://www.picswe.com/pics/centered-inertial-31.html
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2.1.4 SBF reference frame

The SBF reference frame has its origin at the center of mass of satellite. All the three
axes are aligned with the three principle axes of inertia of the satellite [8]. ORF is
referred as a unit vector B = {~b1,~b2,~b3}.

2.1.5 The Sun pointing reference frame

The Sun pointing reference frame has its origin at the centre of mass of the satellite. The
z-axis points towards Sun, the y-axis points towards the projection of the inertial frame
on the plane perpendicular to the Sun direction, the x-axis is perpendicular to both y
and z-axis and completes the right-handed reference frame [1]. The rotation around the
Sun direction is free. Hence, an infinite number of Sun pointing reference frames can
be defined. The specific frame chosen here requires the calculation of only two angles,
which are not discussed in this document refer [1] for more details.

2.2 Rotational kinematics

This section will provide a description of vector transformation between different refer-
ence frames. And, the orientation of a reference frame with respect to another reference
frame. This section will also provide a description of orientation when one of the ref-
erence frames is in rotational motion, with respect to the other reference frame. There
are three prominent ways in which the attitude of satellites can be represented. Namely
Direction Cosine Matrix (DCM), Euler angles, and the Quaternion representation. The
Delfi-n3Xt uses all these three representations. The equations described below are used
to propagate the attitude of satellite.

2.2.1 Direction Cosine Matrix representation

Consider ECI reference frame I, and SBF reference frames B, with a set of right-handed
orthogonal unit vectors {~i1,~i2,~i3} and {~b1, ~b2, ~b3} [1]. Basis vectors of I can be expressed
in terms of B by following equations [2]:

~i1 “ C13
~b3 ` C12

~b2 ` C11
~b1 (2.1a)

~i2 “ C23
~b3 ` C22

~b2 ` C21
~b1 (2.1b)

~i3 “ C33
~b3 ` C32

~b2 ` C31
~b1 (2.1c)

~i1.~b1 “ C11 (2.2a) ~i2.~b1 “ C21 (2.2b) ~i3.~b1 “ C31 (2.2c)

~i1.~b2 “ C12 (2.3a) ~i2.~b2 “ C22 (2.3b) ~i3.~b2 “ C32 (2.3c)

~i1.~b3 “ C13 (2.4a) ~i2.~b3 “ C23 (2.4b) ~i3.~b3 “ C33 (2.4c)
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Direction cosine, Ckl “ ~ik.~bl is the cosine of the angle between ~ik and ~bl. In other
words, relation can be written as:

»

–

~i1
~i2
~i3

fi

fl “

»

–

C11 C12 C13

C21 C22 C23

C31 C32 C33

fi

fl

»

—

–

~b1
~b2
~b3

fi

ffi

fl

“ CI{B

»

—

–

~b1
~b2
~b3

fi

ffi

fl

(2.5)

Where CI{B is called as DCM rotation matrix or coordinate transformation matrix
to I from B. Since, both reference frames B and I consists of orthogonal unit vectors,
both the DCM’s are orthonormal matrix, we have an important relationship, defined
below:

”

CI{B
ı´1

“

”

CI{B
ıT
“ CB{I (2.6)

Hence, if we have DCM CI{B then we can easily transform to CB{I , and vice-versa.
Another important relationship is:

CC{B “ CC{ICI{B (2.7)

Hence, if we want to transform a vector from reference frame B to C i.e., DCM CC{B

we can do so by two successive rotations CC{I and CI{B.

2.2.2 Euler angle representation

As we can see from previous subsection DCM requires 9 parameters to describe attitude
of a satellite, out of which 6 are redundant. DCM can be used to perform transformation
from one reference frame to other. The orientation of frame I relative to frame B can also
be described by three successive rotations around the axis of the SBF reference frame
B. For example, consider a rotation angle of ψ on z axis, θ on y axis and φ on x axis,
also referred as roll, pitch and yaw as shown in Figure 2.2.

Figure 2.2: Satellite Coordinate Frame Definition [2]

There are in total 27 rotation sequences possible out of which only 12 hold the case
that no two consecutive rotations sequences can be same. These valid rotations are:
pi, j, kq P
tp3, 1, 2q, p3, 1, 3q, p3, 2, 1q, p3, 2, 3q, p1, 2, 1q, p1, 2, 3q, p1, 3, 1q, p1, 3, 2q,
p2, 1, 2q, p2, 1, 3q, p2, 3, 1q, p2, 3, 2qu. In other words, successive rotation (1, 2, 3) can be
expressed by equation 2.8. Figure 2.3 represents this rotational sequence pictorially.

CCB{A “ C123pφ, θ, ψq “ C1pφqC2pθqC3pψq (2.8)
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Figure 2.3: Euler angle sequence (1,2,3) [3]

This can be expressed as following DCM’s [3]

C1pφq “

»

–

1 0 0
0 cosφ sinφ
0 ´ sinφ cosφ

fi

fl (2.9)

C2pθq “

»

–

cos θ 0 ´ sin θ
0 1 0

sin θ 0 cos θ

fi

fl (2.10)

C3pψq “

»

–

cosψ sinψ 0
´ sinψ cosψ 0

0 0 1

fi

fl (2.11)

By substituting equation 2.9,2.10, and 2.11 in equation 2.8 and by replacing sin with
s and cos with c we get:

CI{B “

»

–

î1
î2
î3

fi

fl “

»

–

cθcψ cθsψ ´sθ
sφsθcψ ´ cφsψ sφsθsψ ` cφcψ cθsφ
cφsθcψ ` sφsψ cφsθsψ ´ sφcψ cθcφ

fi

fl

»

–

b̂1
b̂2
b̂3

fi

fl (2.12)

Although it is much less computationally intensive to use 3 variable Euler angles
they are said to suffer from singularity that arise from gimble lock [3]. Intuitively, gimble
lock is said to arise when there is indistinguishably of changes in the first and third
Euler angles when the second Euler angle is at some critical value. For example, for a
rotational sequence p1, 2, 3q, when θ “ 900 (Pitch) the satellite is pointing straight up,
and ψ (roll) and φ (yaw) are indistinguishable.

2.2.3 Quaternion representation

Before we can define quaternions it is essential to understand Euler’s eigenaxis rotation
theorem. It states that [2]:
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“The rigid body attitude can be changed from any given orientation to any
other orientation by rotating a rigid body about an axis that is stationary in
an inertial reference frame and fixed to the body reference frame. Such an
axis of orientation, whose orientation relative to both inertial and the body
reference frame remains unchanged throughout the motion, is called the Euler
axis or eigenaxis.”-Leonhard Euler

Let us consider two reference frames B and I with a set of right-handed orthogonal
unit vectors {~b1, ~b2, ~b3} and {~i1, ~i2, ~i3}. The orientation of I with respect to B can be
characterized by an unit vector ~e along the eigenaxis. The rotation around eigenaxis can
be characterized by:

~e “ ~e1~b1 ` ~e2~b2 ` ~e3~b3 “ ~e1~i1 ` ~e2~i2 ` ~e3~i3 (2.13)

Where ~e1,~e2, and ~e3 are the direction cosines of the eigenaxis relative to both reference
frames B and I. The Euler axis or eigenaxis rotation is shown in Figure 2.4.

Figure 2.4: Euler axis or eigenaxis rotation

Quaternions are one of the most powerful way of attitude representation. They use
the above stated Euler’s eigenaxis rotation theorem. Quaternions can be represented
by 4 parameters, of which one represents scalar part and the rest represent vector part.
This can be depicted by:

q “

„

q
q4



“

»

—

—

–

q1
q2
q3
q4

fi

ffi

ffi

fl

(2.14)

Where, components q1, q2, and q3 represents vector part, and q4 represents scalar part.
These components can be rewritten in terms of eigenaxis ê as:

q1 “ ê1 sin

ˆ

θ

2

˙

(2.15a)

q2 “ ê2 sin

ˆ

θ

2

˙

(2.15b)
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q3 “ ê3 sin

ˆ

θ

2

˙

(2.15c)

q4 “ cos

ˆ

θ

2

˙

(2.15d)

These 4 components must satisfy the below equation:

a

q12 ` q22 ` q32 ` q42 “ }q} “ 1 (2.16)

Just as DCM CB{I can represent attitude of satellite the same way quaternion qB{I can
also do so. In other words, DCM and quaternion can be also be represented in forms of
each other. Equation below describes DCM CB{I in terms of quaternion qB{I :

CB{IpqB{Iq “

»

–

q1
2 ´ q2

2 ´ q3
2 ` q4

2 2pq1q2 ` q3q4q 2pq1q3 ´ q2q4q
2pq2q1 ´ q3q4q 1´ 2pq1

2 ` q3
2q 2pq2q3 ` q1q4q

2pq3q1 ` q2q4q 2pq3q3 ´ q1q4q 1´ 2pq1
2 ` q2

2q

fi

fl (2.17)

“ pq4
2 ´ }q}2qI3 ` 2qqT ´ 2rq5s (2.18)

Where, q is the vector part of quaternion, and rq5s is the skew symmetric matrix defined
by:

rq5s “

»

–

0 ´q3 q2
q3 0 ´q1
´q2 q1 0

fi

fl (2.19)

Similarly, we can describe quaternion in terms of DCM as:

q1 “
1

4q4
pC23 ´ C32q (2.20a)

q2 “
1

4q4
pC31 ´ C13q (2.20b)

q3 “
1

4q4
pC12 ´ C21q (2.20c)

q4 “ ˘
1

2

a

p1` C11 ` C22 ` C33q (2.20d)

Similar to DCM quaternion can also easily be transformed from for example qB{A to
qA{B by taking a conjugate as shown by equation below:

qA{B “ q̄B{A (2.21)

Where conjugate of quaternion q̄B{A is given by:

q̄ “

„

´q
q4



“

»

—

—

–

´q1
´q2
´q3
´q4

fi

ffi

ffi

fl

(2.22)
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Furthermore, rotation as in DCM given by equation 2.5 can be done in quaternions
using a similar property. This can be expressed by a multiplication of quaternions that
is shown by equation below:

»

—

—

–

b1
b2
b3
0

fi

ffi

ffi

fl

“ q̄B{A b

»

—

—

–

a1
a2
a3
0

fi

ffi

ffi

fl

b qB{A (2.23)

Where operator b stands for quaternion multiplication. Quaternion multiplication is
very similar to complex number multiplication with a special consideration that order of
multiplication is considered strictly and have to be followed in order. In other words, out
of order multiplication of quaternion is said to be violation of quaternion multiplication
rule and will lead to an error in result of multiplication. Lastly, frame transformation
property of DCM as in equation 2.6 can also be achieved by quaternion using following
equation:

qC{A “ qC{B b qB{A (2.24)

Two main advantages of quaternion are:

1. Compared to DCM quaternion are very compact i.e., quaternion only require 4
parameters while DCM requires 9.

2. Singulatularity issues that were mentioned to arise from gimble lock in Euler angles
are not present in quaternion. By using 4 parameters in quaternion instead of 3 in
Euler angles we get rid of Singulatularity.

In the Delfi-n3Xt, quaternion representation are used in Quaternion Feedback Regulator
within FSP mode. This will be described in section 2.5.

2.3 Model of the physical world

The physical model of the world is necessary to investigate the performance of satellite’s
ADCS. These models are necessary to calculate the position, and velocity of the satellite,
the disturbance torques, the Sun direction, the local Earth magnetic field, and the ground
station direction respectively. But, this thesis work only emphasizes the use of the local
Earth magnetic field and the Sun direction, which are described in subsections below.
For other physical models readers are referred to [1].

2.3.1 Magnetic field of the Earth

The International Association of Geomagnetism and Aeronomy (IAGA) recommends the
use of IGRF for scientific work to empirically represent the Earth’s magnetic field. The
coefficients for the IGRF model are based on all available data sources including geomag-
netic measurements from observatories, ships, and satellites. The standard mathematical
description of the Earth’s magnetic field of IGRF has its latest release in 2014. But, the
Delfi-n3Xt was launched in 2013 and the latest version that was available at that time
was from 2010. Hence, this thesis work employs the use of 2010 release.
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Using the ECEF position of the satellite, IGRF can be used calculate the Earth’s
magnetic field. This is accomplished by using a series of mathematical models of the
Earth’s main field and its annual rate of change (secular variation). The source internal
to the Earth is the negative gradient of a scalar potential V which can be represented
using a truncated series expansion 2:

V pr, θ, φ, tq “ a
N
ÿ

n“1

n
ÿ

m“0

´a

r

¯n`1
rgmn ptq cos pmφq ` hmn ptq sin pmφqsPmn pcos θq (2.25)

In the Equation 2.25:

‚ r = radial distance from the center of the Earth

‚ a= geomagnetic conventional Earth’s mean reference spherical radius = 6371.2 km

‚ θ = geocentric co-latitude

‚ φ = east longitude

‚ Pmn pcos θq = Schmidt quasi-normalized, Legendre functions of degree n and order
m

‚ gmn ptq and hmn ptq = main field (MF) at epochs separated by 5 years between 1900.0
and 2015.0 A.D

‚ t = time of interest in years

Detailed description on the mathematical computations, for Equation-2.25 can be found
in [11].

Although the Delfi-n3Xt formulated use of IGRF this implementation was not done.
There are two possibilities to use IGRF model. Firstly, implementing the complex com-
putations on-board to directly calculate Earth’s magnetic field using the position of the
satellite in the ECEF frame as input. Secondly, generating a look-up table that can be
used to look-up Earth’s magnetic field using the position of the satellite in the ECEF
frame as input. The second option is chosen for this thesis work as the on-board com-
putation would require a considerable compute power.

Before we can use IGRF model, it is required to convert the ECEF position to
spherical coordinates. Spherical coordinates (r,θ,φ), where r is radial distance, θ is
polar/elevation angle, and φ is azimuthal angle. The radial distance is the distance
of the point from the fixed origin. The elevation angle is angle measured from a fixed
zenith direction (The zenith is an imaginary point directly above a particular location, on
the imaginary celestial sphere 3). The azimuth angle is orthogonal to the zenith and has
orthogonal projection on a reference plane that passes through the origin and is measured
from a fixed reference direction on that plane. This is shown in Figure 2.5. To be more
specific IGRF uses geographic coordinate system. The geographic coordinate system
uses latitude, longitude and elevation to enables every location on Earth Figure 2.6.
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Figure 2.5: Spherical coordinates(r,θ,φ) 4

This has a simple conversion from spherical coordinates, i.e., latitude = polar - 900, and
longitude = azimuthal.

Figure 2.6: geographic coordinate system 5

A MATLAB function igrf11syn implements IGRF model. It expects four inputs:

1. fyears = date in fractional years e.g., 2010

2. alt = altitude in (km)

3. nlat = latitude positive north(deg)

4. elong = longitude positive east(deg)

and generates output Earth’s magnetic field B = [B North; B East; B up] in (nano
Teslas). A MATLAB script is written which generates a IGRF look-up in form of a

2https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
3https://en.wikipedia.org/wiki/Zenith
4https://en.wikipedia.org/wiki/Spherical_coordinate_system
5https://en.wikipedia.org/wiki/Geographic_coordinate_system
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header file. By assuming orbit to be spherical altitude is fixed at 6978. This assumption
is made to reduce the size of look-up table which will be stored in microcontroller’s flash
memory. This MATLAB script spans over a range of longitude and latitude and generates
a header file. This scrpit for floating and fixed-point can be seen in Appendix-B.

2.3.2 Direction of the Sun

The direction of Sun can be modeled using ECI reference frame. Earth makes one
complete rotation, around Sun, per year. The start of spring is also called the moment
of Vernal equinox. During this period the Sun is in the positive x-direction. The time
since the last vernal equinox can be termed as tve. If this tve is known, then Sun direction
SI can be calculated using below equation-2.26:

SI “

»

—

—

–

cos 2πpt´tveq
Tyear

cos ε sin 2πpt´tveq
Tyear

sin ε sin 2πpt´tveq
Tyear

fi

ffi

ffi

fl

(2.26)

Where Tyear is the total time of a year in seconds, i.e., p365 ˚ 24 ˚ 60 ˚ 60q “ 31536000s.
The angle between the Earth’s equatorial plane and the orbital plane of the Earth around
the Sun is ε. And t is the current time in seconds. The distance between the center of
the Earth and the center of the satellite is negligible compared to, that of, Earth and
Sun. Hence, we can assume that the direction of the Sun from the center of the satellite,
is the same as seen from the center of Earth. When seen from the satellite the Earth
can sometimes block the Sun, and this orbit period is called an eclipse period. We can
calculate this eclipse period of the satellite using, satellite’s position vector, the Sun
direction vector and the half angular size of the Earth γEarth in the satellite’s orbit.

γEarth “ arcsin
R

R` h
“ arcsin

6378

6378` h
« 66 0 at h “ 600 km (2.27)

Where, the radius of the Earth, R =6378 km, and h “ 600 km altitude of the Delf-N3xt’s
orbit. The angle between the satellite’s position vector, rsatI , and the Sun direction
vector, SI , can be calculated as:

α=rS “ arccos
rsatI .SI

}rsatI}
(2.28)

The satellite is said to be in the eclipse period when:

π ´ α=rS ă γEarth (2.29)

This eclipse period can be visualized by Figure 2.7.

2.4 Attitude estimation using EKF

Attitude estimation is similar to estimating the rotational matrix that describe the ori-
entation in SBF reference frame with respect to a known reference frame. Generally,
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Figure 2.7: The geometry of the satellite during eclipse and non-eclipse period [1]

this known reference frame is ECI reference frame, or I frame. Both attitude and ro-
tational rate are described with respect to I frame. Moreover, the reference vectors are
also defined with respect to I frame. In general, by using various sensor measurements
and their mathematical model, vector components within several reference frames can be
collected. Later, these vector components are used in one of the estimation algorithms
to determine the rotational matrix, in the form of a DCM, Euler angles or Quaternions
[8], which were described in the section 2.2. Attitude estimation can be done using two
types of algorithms. Firstly, deterministic algorithms where attitude can be determined
using two or more vector observations from a single point in time. Secondly, recursive
algorithms which use several sensors and combine these measurements with dynamic and
kinematic models. In this thesis work, a recursive algorithm is used to estimate attitude
of the satellite.

The Kalman filter is a statistical approach to discrete data filtering problem that
offers optimal solutions for linear estimation problems. However, in practice, the physical
processes are non-linear in nature. Hence, a modified version of the Kalman filter that
linearizes the current covariance and the mean called as EKF is utilized. In the case of
the Delfi-n3Xt satellite process to be estimated are non-linear and the ADCS uses EKF
for attitude estimation. The EKF uses control inputs, sensor measurements, and the
system’s dynamical model to estimate the state of the system. All these measurements
have noise and uncertainties inherently present, but EKF works in such a way that
the estimated state has the lowest uncertainty. These uncertainties are modeled in an
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error covariance matrix. The first step of EKF is to propagate the previous state to
the current state, which is known as the prediction step or time propagation step. For
the first prediction step, the previous state is modeled as an initial state. The time
propagation step is described in the first subsection. The second step is measurement
update. This step utilizes the previous estimates and combines them with the sensor
measurements at the current time and updates the state. This measurement update step
is described in the second subsection.

2.4.1 Time propagation

This subsection describes prediction step of EKF. In order to propagate state, from
previous time to the current time, two different methods are presented. For the first
propagation step, an initial estimate is required to act as previous estimate. Hence, we
require an initial estimate for quaternion and rotational rate. Similarly, an initial process
covariance matrix is also required.

For a given current estimates for quaternion and rotational rate X̂k{k =
”

q̂Tk{k, ω̂
T
k{k

ı

,

the state can be propagated as:

φ̂k{k “ exp

ˆ

1

2
Ω̂k{k∆t

˙

(2.30)

q̂k`1{k “ φ̂k{kq̂k{k (2.31)

ω̂k`1{k “ ω̂k{k ` 9̂ωk{k∆t (2.32)

Where, Ω̂ can be defined as:

Ω̂ “

»

—

—

–

0 ω3 ´ω2 ω1

´ω3 0 ω1 ω2

ω2 ´ω1 0 ω3

´ω1 ´ω2 ´ω3 0

fi

ffi

ffi

fl

(2.33)

using the rotational dynamics equation that was not derived in this document but directly
stating from [1]:

9ω “ J´1 pT c ` T d ´ΩpJω ` hqq (2.34)

Where T c is control torque, T d is disturbance torques, J is the inertia matrix of the
Delfi-n3Xt including the non rotating reaction wheels, h is angular momentum of the
reaction wheels, and the gyroscopic effect that is cased by rotation of reaction wheels
can be seen by Ω h. 9̂ωk{k is the estimate of derivative of rotational rate, using above
equation, can be calculated as:

9̂ωk{k “ J
´1
kf

´

pmk ˆBmkq ´ Ω̂
´

Jkf ω̂k{k ` ĥk

¯¯

(2.35)

Where Jkf is the inertia matrix on-board on the Delfi-n3Xt, and this will not match with
true inertia matrix. mk is the magnetic dipole applied on magnetorquers during previous
control step, Bmk is the magnetic field vector measured during the previous control step.
ĥ is angular momentum of the reaction wheels. The other disturbace torques are omitted
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from this equation for simplicity. Two main methods will be considered to propogate
estimated error covariance matrix. Firstly an update method using Additive Extended
Kalman Filter (AEKF) is presented. Secondly, Pseudo Linear Kalman Filter (PLKF)
method is described.

Following matrix can be defined for AEKF method:

F pω̂k{kq “

»

–

0 ω3s1 ω2s1
ω3s2 0 ω1s2
ω2s3 ω1s3 0

fi

fl (2.36)

Where, ωi “ ω̂k{ki for i= 1,2,3 and

s “

»

–

s1
s2
s3

fi

fl “

»

—

—

–

Jkf 22
´Jkf 33

Jkf 11
Jkf 33

´Jkf 11
Jkf 22

Jkf 11
´Jkf 22

Jkf 33

fi

ffi

ffi

fl

(2.37)

Below matrix will is also required:

Ξ̂k{k “ Ξpq̂k{kq “

»

—

—

–

q4 ´q3 q2
q3 q4 ´q1
´q2 q1 q4
´q1 ´q2 ´q3

fi

ffi

ffi

fl

(2.38)

where, qi=qk{ki foe i = 1,2, 3,4. Using above matrices the below matrix can be defined:

Ψk “ exp

˜«

Ω̂k{k

2

Ξ̂k{k

2
0 F pω̂k{kq

ff

∆t

¸

(2.39)

Process noise matrix is as defined below:

Pw
k “

„

σ2qI4 0

0 σ2ω∆tI3



(2.40)

Here, σq and σω are tuning parameters to improve the performance of EKF. Specifically,
σq stands for standard deviation of process noise required to propagate the quaternion,
and σq stands for standard deviation of process noise required to propagate the rotational
rate. Thus, covariance matrix can be updated as:

P k`1{k “ ΨkPk{kΨ
T
k ` P

w
k (2.41)

But, a different Ψ matrix will be used for the PLKF method:

Ψk “ exp

˜«

0
Ξ̂k{k

2
0 F 1pωqm{k

ff

∆t

¸

(2.42)

It is important to note that PLKF does not require linearization. It relies on the identity
given below:

pJωq ˆ ω ” F 1pωqω (2.43)
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Where F 1pωq is given by:

F 1pωq “

»

–

0 σ1ω3 0
0 0 σ2ω1

σ3ω2 0 0

fi

fl (2.44)

Using this matrix, a new Ψ matrix can be obtained, and the covariance matrix can
be propagated using Equation 2.41.

2.4.2 Measurement update

This section will present measurement update step of EKF. Two different methods for
measurement update are presented in [7]. It is important to note that the Delfi-n3Xt uses
two sensors. But, the data from both the sensors is not available all the time. The two
sensors used are magnetometer and Sun-sensor. Here, Sun-sensor data is not available
when satellite is in eclipse period. It is also important to note that both the sensors still
will use the same measurement update algorithm. In contrast, when there is no data
available for Sun-sensor update, measurement update using Sun-sensor is skipped for
that step.

The Quaternion Kalman Filter (QKF) method as described in [7] is presented first.

sk`1 “
1

2
pbk`1 ` rk`1q (2.45)

dk`1 “
1

2
pbk`1 ´ rk`1q (2.46)

Where, rk`1 stands for reference vector with respect to inertial reference frame, and
bk`1 stands for normalized measurement vector with respect to body reference frame.
Using this observation matrix can be constructed as:

Hk`1 “

„

´rsk`15s dk`1
dTk`1 0



(2.47)

H̄k`1 “
“

Hk`1 O4ˆ3

‰

(2.48)

The sensor noise matrix can be defines as:

P v
k`1 “ σ2b I4 (2.49)

Where, σb stands for standard deviation of sensor noise, as used by the filter. This value
can be tuned to improve performance of the filter. Furthermore, state and covariance
matrix can be updated using below equations [1]:

Sk`1{k “ H̄k`1P k`1{kH̄
T
k`1 ` P

v
k`1 (2.50)

Kk`1 “ P k`1{kH̄
T
k`1S

´1
k`1{k (2.51)

X̂k`1{K`1 “
`

I7 ´Kk`1H̄k`1

˘

X̂k`1{K (2.52)
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q̂k`1{k`1 “
q̂k`1{k`1

}q̂k`1{k`1}
(2.53)

P k`1{k`1 “
`

I7 ´Kk`1H̄k`1

˘

P k`1{k

`

I7 ´Kk`1H̄k`1

˘T
`Kk`1P

v
k`1K

T
k`1 (2.54)

The second method proposed in [7] is Reduced Quaternion Kalman Filter (RQKF), is
an adaptation of the measurement update equations presented above.

The Observation matrix H from Equation 2.47 can be rewritten as:

H “

»

—

—

–

0 s3 ´s1 d1
´s3 0 s2 d2
s1 ´s2 0 d3
´d1 ´d2 ´d3 0

fi

ffi

ffi

fl

(2.55)

If we carefully look at the H matrix written above it has a rank 2. row1 and 2 are linearly
independent. While, row3 = -column3, and row4=-column4. Hence, it is possible to
reduce this matrix in order to reduce computational burden in the EKF. In oder to pick
the ’richest’ pairs of row. We can see that there are six 2 x 4 sub-matrices of H. Let
us denote this with Hij , where ij={ 43,42,41,32,31,21 }. Then the trace of HT

ij Hij can
be calculated for each Hij matrix. The pair yielding the maximum trace can then be
selected as the reduced measurement matrix. For instance in case of H12, the reduced
matrix is:

H̄ “
“

H12 0
‰

“

„

0 s3 ´s1 d1 0 0 0
´s3 0 s2 d2 0 0 0



(2.56)

This reduced matrix can then be used in measurment update step, where the sensor
noise matrix can now be defined as:

P v
k`1 “ σ2b I2 (2.57)

For the filter to have previous estimates when the filter is just started, there is a need
for initial estimates. Hence the table- lists the initial values that are used in EKF of
Delf-N3xt.

Table 2.1: Initial estimate values for EKF

Parameter Value

q̂0 r´s r´0.415120208428812,´0.679093418021986,´0.341331718645127, 0.5s
T

ω̂0

“

deg s´1
‰

r0, 0, 0s
T

P̂ 0 r´s diag
`“

1e´2, 1e´2, 1e´2, 1e´2, 1e´2, 1e´2, 1e´2
‰˘

2.5 Control algorithms

This section describes two different control algorithms that are used in the Delfi-n3Xt.
First is Bdot controller which is a basic controller that requires magnetometer and mag-
netorquer to stabilize the satellite. Second is Quaternion feedback regulator that may
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use more than one sensor data to estimate the current attitude and rotational rate. And
may use more than one actuator to control the satellite. Since, Bdot is a less intensive
algorithm and requires only one sensor and actuator it is considered to be more robust
and reliable.

2.5.1 Bdot controller

As the satellite is ejected from the launch container for the Delfi-n3Xt it was expected
to have atleast 10 degrees per second initial rotational rate of satellite around each axis,
and this had to brought to below one degree per second as explained in introduction
chapter. If this is not achieved the satellite mission can fail. Hence, detumbling has to
be achieved by a failure free and robust algorithm.

In principle Bdot algorithm is a simple algorithm. Magnetometer on-board performs
magnetic field measurements, and this magnetic field vector is measured in SBF reference
frame. Using a minimal computation Bdot algorithm generates control torque that
is used by magnetorquers to control the satellite. The control law equation which is
proposed in [12], is given by:

m 9B “ ´k 9B
9BB (2.58)

Where m 9B refers to the magnetic dipole vector that has to be generated by magne-
torquers in order to achieve detumbling. k 9B is the positive controller gain which is

dependent on expected rotational rate of satellite. And, 9BB is the time derivative of
magnetic field vector in SBF reference frame. The torque that is acted upon satellite
due to the magnetic dipole vector produced by magnetorquers to contract tumbling of
satellite is given by:

T 9B “m 9B ˆBB (2.59)

Where, BB is the magnetic field vector in SBF reference frame. 9BB the time derivative
of magnetic field vector in SBF reference frame is given by:

9BB “ 9BI ` ω
I{B ˆBB “ 9BI ´ ω

B{I ˆBB (2.60)

Where, ωB{I is the rotational rate of the SBF reference frame (B frame) with respect to
ECI reference frame (I frame). Similarly, ωI{B is rotational rate of I frame with respect
to B frame. ωB{I ” ω can be referred to as body rotational rate in short.

But, the Delfi-n3Xt requires a discretized algorithm and the following equations are
implemented on board. The magnetic field in B frame is measured by magnetometer
during each control loop i, where BBmi ” Bmi. The time derivative of magnetic field
measurements can be calculated using the two consecutive measurements (control steps)
given by:

9Bi “
Bmi ´Bmi´1

∆t
“

∆Bm

∆t
(2.61)

Where, ∆t is the time step, which is of 2 seconds. With the calculated value of 9Bi and
using Equation 2.58 the desired magnetic dipole is given by:

m 9Bi
“ ´k 9B

9Bi (2.62)
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In order to deliver the control torque given by:

T 9Bi
“m 9Bi

ˆBBi (2.63)

The k 9B is choosen in such a way that the magnetorquers are fully utilized and for the
Delfi-n3Xt this is calculated as k 9B = 50000Am2 s T´1 [1]. To understand more in detail
how the T 9Bi

influences the rotation of satellite readers are referred to [1].

2.5.2 Quaternion feedback regulator

In FSP mode we require much more advanced controller than Bdot to calculate control
torque that will rotate the satellite to the desired attitude much more accurately. The
Delfi-n3Xt uses control law equation proposed in [13] for calculating torque in Quaternion
feedback regulator. The following is the control law equation to calculate the control
torque:

T control “ ´dJωe ´ kJqe ` Ω̂Iω̂ (2.64)

Where k is proportional gain, d is differential gain, J is the moment of inertia matrix
of the satellite, error between desired and estimated inertial rotational rate is ωe, error
between desired and estimated quaternion is qe, estimated rotational rate of satellite it
ω, and skew symmetric matrix constructed using estimated rotational rate is Ω̂. Error
between desired and estimated rotational rate ωe, can be calculated using desired rota-
tional rate (00 on each axis) ωd and estimated rotational rate ω̂, and the desired inertial
attitude quaternion qd and the estimated inertial attitude quaternion q̂. The error in
rotational rate is given by:

ωe “ ω̂ ´ ωdqe “

»

–

qd4 qd3 ´qd2 ´qd1
´qd3 qd4 qd1 ´qd2
qd2 ´qd1 qd4 ´qd3

fi

fl q̂ (2.65)

In principle Ω̂Iω̂ is added to counteract the gyroscopic coupling effect, that is created
by satellite during rotation. In case of the Delfi-n3Xt satellite, which will not be rotating
during normal operation, this term adds computational complexity with no additional
control accuracy [1]. Hence, this term is neglected and control torque equation can be
rewritten as:

T control “ ´dJwe ´ kJqe (2.66)

The scalar gain parameters k and d determine the settling and damping time of the
control algorithm. The control torque T control has to be delivered using both or either
of actuators, magnetorquer and reaction wheels. For the Delfi-n3Xt satellite, this load
division of T control is done by following scheme:

T control “ T rw ` Tmtq “ ´ 9hc `mc ˆB (2.67)

The magnetic dipole that needs to delivered by magnetorquers, mc, is given by:

mc “ ´
T control ˆB

}B}2
. (2.68)
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The acceleration which has to be delivered by reaction wheels is given by:

9hc “ pmc ˆBq ´ T control (2.69)

This load division scheme is used in FSP mode.
Controlling of the satellite using reaction wheels requires a technique of angular mo-

mentum unloading (i.e., by dumping of stored angular momentum). In order to deliver
the required control torque magnetorquers and reaction wheels are accelerated/deceler-
ated. Because of this reaction wheel can store an angular momentum. But, reaction
wheels can only store a certain maximum amount of angular momentum. Thus, the
reaction wheels must be unloaded on a regular basis. For more detailed explanation
readers are referred to [1].

2.6 Power budget for ADCS in the Delfi-n3Xt

This section presents the power budget of the Delfi-n3Xt. It also presents power budget
for ADCS in the Delfi-n3Xt. It is important to note that the Delfi-n3Xt uses a tradi-
tional ATxmega128A1 microcontroller running at 32 Mhz. At the time this satellite was
launched this was the low power and high performance microcontroller from Atmel [1].
The Table 2.2 shows the power budget for the Delfi-n3Xt. Using Table 2.2 it can be

Subsystem Mode Power requirement (mW)
T 3µPS (micro Propulsion Subsystem) On (Measure Only) 45

SDM (Solar cell Degradation Measurement) on 84
ADCS 3-Axis control(ADCS1) 1665

PTRX (Primary Transceiver) transceive 1745
ITRX (ISIS Transceiver) receive 256

STX (S-band Transmitter) store only 75
OBC (On Board Computer) on 234

EPS (Electric Power Subsystem) MPPT 1048
DAB (Digital Audio Broadcast) Idle 84

Total Nominal 5236

Table 2.2: Power budget for nominal satellite mode in the Delfi-n3Xt [4]

calculated that « 32% of total nominal power was allocated to ADCS. The technical
report [4] provides detailed power budget for ADCS, as shown in Table 2.3. It can be
calculated, that « 32 % of power is allocated to ADCS software, with respect to total
ADCS power budget. This is « 10 % with respect to total nominal power budget for
the Delfi-n3Xt.

2.7 Summary

This chapter describes the ADCS and different algorithms that are used within the
Delfi-n3Xt. It also enlists that « 10 % of the Delfi-n3Xt, total nominal power budget,
is allocated to ADCS software.
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Subsystem Power requirement (mW)

Sun-sensor 206
Magnetorquer system 347

Reaction Wheel system 519
Main Board ADCS 1 535
Main Board ADCS 2 0

DSSB 58

Total 1665

Table 2.3: ADCS power budget [4]
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Digital Signal Processing
Alternatives 3
To efficiently implement ADCS it is essential to study DSP alternatives. Two well-known
categories can be used to store and manipulate numeric representations of data: Fixed-
Point (FxP) and floating-point. The floating-point refers to data representation where
the decimal point can float around a minimum of 32 bits. Whereas, in FxP decimal point
is fixed at a position that determines the range and precision of representation. For ex-
ample, based on word length, a FxP can represent numbers such as 123.45, 123.456,
123.4567, 123.15678, etc. Whereas, floating-point can float its decimal point and repre-
sent numbers such as 1.234567, 123456.7, 0.00001234567, 1234567000000000, etc. Hence,
the floating-point can represent a much wide range of values as compared to the FxP.

Considering the precision requirement in pointing accuracy although it seems appeal-
ing to use floating-point arithmetic, it might not be the best possible solution considering
the energy requirements. In such case, FxP arithmetic is promising alternative. But long
development time, and effort required for scaling of variables, in order to, prevent over-
flow while maintaining the accuracy requirements makes it challenging [14]. Knowing
the range and right precision required for an algorithm can be a tedious task. But, the
FxP designer library from MathWorks 1 makes this exploration fast, and interactive.
Need for rounding or saturation arithmetic, ranges of variables, a histogram to choose
precision with the lowest error is made handy by this tool.

The most openly available FxP libraries like libfixmath 2 focus on only one FxP
representation. Such representation attributes to a fixed precision and range. As the
requirement for each variable can have multiple ranges and precision, in general not all
the designs can be benefited from such fixed representation. Hence, there is a need to
design a FxP library which addresses this problem. Such a library can not only benefit
this thesis work but also, in general, any future FxP DSP. In this thesis work, a FxP
library is developed.

This chapter will describe three different DSP alternatives. Two of which are in
floating-point and third in FxP representation. It also explains the extension of an
openly available FxP numeric library 3. This library implements a basic 32-bit and 64-
bit precision. It uses 64bit arithmetic which requires 128-bit (long long) compiler. But, in
general microcontroller compilers do not support this. Hence, this library was extended
to use many different FxP precision possibilities and requiring a 64-bit compiler. First,
this chapter will begin with floating-point design alternatives. Floating-point design
uses IEEE standard for representation. Secondly, this chapter will follow with the FxP
design. The FxP design use integer representation. However, this integer representation
is not straightforward. Hence, the FxP section describes this in detail. These operations

1https://nl.mathworks.com/help/fixedpoint/
2https://en.wikipedia.org/wiki/Libfixmath
3https://sourceforge.net/projects/fixedptc/
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include addition, multiplication, division, etc. Moreover, these are the operations used
in conversion of the Delft-n3Xt library to FxP. Lastly, an overview of extension in FxP
library to accommodate many different FxP representations is explained.

3.1 Floating-point arithmetic

In DSP floating-point, arithmetic is used in the computation of data, in the form of
real numbers. These real numbers are represented using an approximation, in order to
support a trade-off between range and precision. Floating-point numbers are typically
represented in the form of scientific notation. It generally has a form of F ˚ rE , where
F is a fraction, E is an exponent of a certain radix r.

In modern computers floating-point numbers are represented using IEEE 754 stan-
dard. floating-point numbers are represented in the form of scientific notation with radix
2, represented as F ˚ 2E . Similarly, F denotes fraction part and E denotes exponent of
radix 2. Most importantly, as we use a fixed Word Length (WL), for example, 32 or
64 bits, floating-point numbers suffer from loss of precision. For example, there can be
an infinite set of real numbers between 0 to 0.5. But, a n bit binary number can only
represent a finite set of 2n numbers. Hence, not all the real numbers can be represented.
A nearest approximation is used which gives rise to a loss of accuracy 4. Floating-point
arithmetic using IEEE 754 standard, can be categorized in following four types 5:

‚ Single precision (SP): This is represented using float in C language (not guar-
anteed). It uses 4 bytes of data storage. Its fraction has a precision of 24 bits.

‚ Double precision (DP): This is represented using double in C language (not
guaranteed). It uses 8 bytes of data storage. Its fraction has a precision of 53 bits.

‚ Double extended: This is represented using long double in C language (not
guaranteed). It uses 80 bits of data storage. Its fraction has a precision of 64 bits.

‚ Quadruple precision: This is represented using float128 in C language (not
guaranteed). It uses 16 bytes of data storage. Its fraction has a precision of 113
bits.

This thesis uses only SP and DP arithmetic. Therefore only these two are explained
in following subsections. It is important to note that it only gives an overview. This
thesis uses the representation in IEEE 754 standard floating-point arithmetic, using C
language. These are implemented using a standard Floating Point Unit (FPU), in ARM-
M4 processor. In detailed understanding of floating-point arithmetic is not considered
to be essential for this thesis. Readers are referred to [15] for in detailed explanation of
each arithmetic operation.

4http://www.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html
5https://en.wikipedia.org/wiki/Floating-point_arithmetic
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3.1.1 Single precision arithmetic

Consider a single precision floating-point representation as shown in Figure 3.1: with
the 32-bit pattern as 1 1000 0001 000 0100 0000 0000 0000 0000, with:

‚ S = 1

‚ E = 1000 0001

‚ F = 000 0100 0000 0000 0000 0000

Sign bit represents the sign of the number 1 represents signed number, whereas 0 repre-
sents unsigned number.
In order to normalize, the actual fraction is added with an implicit leading 1. For this
example, the actual fraction is 1.000 0100 0000 0000 0000 0000 “ 1 ` 1 ˚ 2´5 “ 1.03125
In order to normalize, the actual exponent (1 ď E ď 254) is biased with ´127, to rep-
resent in rage (´127, `128). In this example E ´ 127 “ 129´ 127 “ 2D.
Hence, the number represented is ´1.03125 ˚ 22 “ ´4.125D.

But, normalization has a serious problem that is zero cannot be represented. Hence,
let us consider denormalized form: For numbers with E=0, the denormalized form is
used. Here, the actual exponent is always ´126, and an implicit leading 0 is added
instead of 1 for the fraction. Hence, the number zero can be represented using E “ 0
and F “ 0 , as 0.0 ˚ 2´126 “ 0 4. Using this form we can also represent very small
numbers. For example, if S “ 1, E “ 0, and F “ 011 0000 0000 0000 0000 0000. The
actual fraction can be seen as 0.011 “ 1 ˚ 2´2 ` 1 ˚ 2´3 “ 0.375D. Since, S “ 1, it is a
negative number. With E “ 0, the actual exponent is ´126. Here, the number can be
seen as, ´0.375 ˚ 2´126 “ ´4.4 ˚ 10´39. Hence, this is a very small number close to 0.

Lastly, E “ 255 can be used to represent special values such as ˘8 and NaN (not
a number), which are out of scope for this document.

Figure 3.1: single precision floating-point representation

3.1.2 Double precision arithmetic

Similarly, double precision arithmetic representation is shown in Figure 3.2.In contrary
to single precesion here the WL is 64-bit where S “ 1-bit, E “ 11-bit and F “ 52-bit.
Here value of number N can be calculated as:

Figure 3.2: double precision floating-point representation
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‚ Normalized form: For 1 ď E ď 2046, N “ p´1qS ˚ 1.F ˚ 2pE´1023q.

‚ Denormalized form: For E “ 0, N “ p´1qS ˚ 0.F ˚ 2pE´1022q.

‚ Special valuse: E “ 2047, N used to represent special values such as ˘8 and NaN
(not a number), which are out of scope for this document.

floating-point arithmetic is usually accelerated using a dedicated co-processor called as
FPU. But, not all microprocessors have a dedicated FPU.

3.2 FxP arithmetic

As explained earlier not all microprocessors include FPU. Hence, DSP using floating-
point arithmetic becomes difficult. There are compiler based alternatives which are
computationally expensive. Furthermore, DSP co-processor are widely used to acceler-
ate DSP computations. These processors however only support integer/FxP arithmetic.
Moreover, old processors do not include FPU. When a processor includes FPU it in-
creases area and power to add this capability. Hence, under many circumstances FxP
DSP computation are preferred over floating-point computation. FxP computation can
be used to provide improved performance or accuracy for an application. For exam-
ple consider ARM-M3 which does not feature an FPU or ARM-M4F which does. In
terms of area, ARM-M3 uses 12mm2, where as ARM-M4F uses 0.17mm2. In terms of
power, ARM-M3 is 1µW {Mhz more efficient than ARM-M4F. Hence, ARM-M3 could
be a better platform, if power and area are both considered more important than per-
formance. However, ARM-M3 could outperform over ARM-M4F (as CoreMark{MHz
for, ARM-M4F is 0.08 better than ARM-M3) 6.

3.2.1 FxP notation

In order to represent FxP data the following generalized format, employed by [14] is
used:

ă word length, integerword length ą (3.1)

FxP notation considers the presence of a hypothetical binary point. Left of this binary
point is referred to as Integer Word Length (IWL) which determines the maximum and
minimum range of integer number that can be represented. The right of binary point is
referred as Fraction Word Length (FWL) which determines the minimum quantization
step possible for the representation. The total number of bits that are used in this
representation is referred to as WL.

Hence, range for a FxP notation can be determined based on IWL:

´ 2IWL ď R ď 2IWL (3.2)

and Quantisation steps (QS) can be determined by:

Q “ 2´FWL´1 “ 2´pWL´IWL´1q (3.3)

6https://images.anandtech.com/doci/8400/Screen%20Shot%202014-08-18%20at%206.03.23%

20PM.png
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For example, a 32bit WL having the binary point in middle i.e., IWL=16 and FWL=16
can be represented as ă 32, 16 ą in the FxP notation. It has a range of p´215, 215q and
QS of 2´15. An initial study was done by varying FWL to see the errors of variable in
EKF propagation step. Although a WL of 32 or 64bits can be used in microcontrollers
choosing a FWL for this implementation with lowest error can be benefited by such
a study. Also, custom hardware development in future using for example, an Field-
Programmable Gate Array (FPGA) can use any arbitrary WL and may have a benefit.
But, doing such a study for complete ADCS algorithm is tedious and time consuming. In
Delfi-Nxt ADCS algorithm, maximum number of variables use a range of IWL=4. Hence,
using a 32bit WL use of FxP representation ă 32, 28 ą is proposed. But, to prevent an
overflow for other variables, the same representation could not be used. Hence, a second
precision of ă 64, 28 ą is proposed. However, an arbitrary precision can also be used to
prevent overflow.

3.2.2 Basic arithmetic used in FxP numeric library

The Delfi-n3Xt ADCS algorithm uses intensive matrix DP arithmetic operations. In
order to use FxP, the matrix library from the Delfi-n3Xt is rewritten in FxP. All the
matrix operation such as matrix multiplication, addition, division, square root, expo-
nential, transpose, inverse, etc were rewritten to use FxP arithmetic. There are certain
arithmetic rules to be followed in order to produce valid results in FxP. This section
introduces to such rules and demonstrates basic FxP arithmetic to produce meaning-
ful results. Moreover, the arithmetic resources as explained below are used to rewrite
Delfi-n3Xt matrix library, using FxP.

3.2.2.1 Assignment

In order to perform assignment from one FxP variable to other it is essential that the
decimal point remains in right place. In order to demonstrate let us consider two variables
x and y. If x has an IWL of 1 and y has IWL of 2 they cannot be directly assigned. Right
or left shift has to be done before assigning as seen in Figure 3.3. For this example, y “ x
should be performed as y “ x ąą 1, and x “ y should be performed as x “ y ăă 1.

3.2.2.2 Addition and subtraction

In order to perform addition and subtraction using FxP, both the operands must have
decimal point at the same place. Moreover, decimal place of result must also be consid-
ered before performing the operation. In order to demonstrate let us consider two vari-
ables x and y. If x has an IWL of 1 and y has IWL of 2 they cannot be directly added.
In case, the IWL of result is 2, then x must right shifted once i.e., x` y “ px ąą 1q ` y
Figure 3.4. Similarly, if the IWL of result is 3, then x` y “ px ąą 2q ` py ąą 1q.

3.2.2.3 Multiplication

In order to perform multiplication using FxP, unlike other operations it is not necessary
that operands must have decimal point at the same place. Moreover, the decimal point
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Figure 3.3: Assignment operation

Figure 3.4: Addition operation

of the result is determined based on the decimal point of both the operands. In other
words, IWL of the result is the sum of IWL’s from both the operands plus one, as shown
in Figure 3.5 the result has two sign bits. Multiplication of operands with WL of w’s
produce a product of 2w. In general ANSI C compilation, the lower half of product is
considered. But, in DSP algorithms most of the operands are aligned towards the left
in order to provide maximum precision. Hence, in FxP multiplication, if we want to
truncate our result to w bits instead of using 2w product, the upper part of w must be
considered. But, a simple rounding technique could help increase the accuracy of such
truncation. This thesis implements multiplication with a simple rounding technique.
This rounding technique checks the first rightmost bit that is discarded in truncation,
and if this bit is set then the product is simply incremented by one, or the product is
unchanged. C-code for this rounding scheme is shown in Appendix A.5. However, it is
important to note that this is a simple rounding technique which do not specifically round
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negative numbers. In other words, this rounding technique could result in improper
rounding of negative numbers. For future implementations if the FxP accuracy needs
to be improved this rounding technique could be made more precise (which also could
result in extra overhead).

Figure 3.5: Multiplication operation

3.2.2.4 Division

In order to perform division using FxP, similar to multiplication it is not necessary that
operands must have decimal point at the same place. Moreover, IWL and FWL of result
is determined by IWL of first operand, and FWL of both the operands. In other words,
result has IWLr “ IWL1 ` FWL2 and FWLr “ FWL1 ´ FWL2, where FWL1 ą FWL2

(Here subscript 1 and 2 indicate operand number, and r indicates result). Figure 3.6
demonstrates this example.

Figure 3.6: Division operation
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3.2.2.5 Trigonometric functions

ARM libraries for ARM-M3 processor implements a look-up table based approach for
sin and cos functions. These were readily utilized for sin, cos and tan functions. The
Delfi-n3Xt ADCS uses inverse tan and cos function, but these are not supported by
ARM libraries. COordinate Rotation DIgital Computer (CORDIC) algorithm uses only
addition, subtraction, bit-shift and look-up table to implement these inverse trigono-
metric functions. An implementation for this algorithm is openly available at 7. Hence,
CORDIC algorithm with its simple and efficient calculations was utilized to perform
inverse trigonometric functions. For detailed explanation of CORDIC algorithm readers
are referred to 8.

3.3 Extensions for using different FxP precisions

A similar technique as explained above is used to extend different precision of arithmetic
resources. It is important to note that it can be a tedious task to determine the number
and type of shift for meaningful FxP arithmetic. The FxP library implemented in this
thesis uses macros for simplicity. Hence, by using these pre-written macros FxP library
can flawlessly perform arithmetic for arbitrary precision. For example, consider a macro
which converts a floating-point number into FxP, as shown in Appendix A.1, simply
by changing the FIXEDPT FBITS variable with required FWL a floating-point number
can be converted to FxP with required precision.

In order to switch from one FWL to another, a simple macro can perform the required
shifts, and the user do not have to take care of type and number of shift to be performed.
The Appendix A.2 shows a macro that performs conversion from FWL 28 to FWL 22.
Utilizing the previously described fixedpt rconst macro various variables can be defined,
for example π can be defined as in Appendix A.3.

Multiplication can be achieved by macro shown in Appendix A.4. Here, by varying
FIXEDPT FBITS multiplication of a new FWL can be done. Note that this macro
assumes both of its operands to have decimal point at the same position, if not FWL
conversion macro is to be used in order to make them compatible.

Similarly, division can be achieved by macro shown in Appendix A.6. And,
FIXEDPT FBITS can be varied in order to perform division of a new FWL. Note
that this macro also assumes both of its operands to have decimal point at the same
position, if not FWL conversion macro is to be used in order to make them compatible.

The algorithm, as shown in Figure 3.7, is used to multiply two 64bits numbers by
using 16 and 32bits arithmetic and produces a result of 128bits. This makes it possible
to perform 64bits arithmetic and not require a 128bit compiler support. Here, operands
a and b are split in 4 chunks of 16bits. For example, a can be split into, a0, a1, a2, and
a4.

7http://www.dcs.gla.ac.uk/~jhw/cordic/
8https://www.allaboutcircuits.com/technical-articles/an-introduction-to-the-cordic-algorithm/
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Figure 3.7: 64bits Multiplication using 16 and 32bits arithmetic

3.4 Summary

This chapter describes three different DSP alternatives. In particular DP, SP and FxP
are explained. It is concluded that if compute power is considered more important, than
accuracy, FxP computation can be considered as a better alternative. The extension
of FxP library to support various FxP representations, using a 64 bit compiler support
is explained. The FxP library implemented in this thesis, is used to port the Delfi-
n3Xt matrix library from floating into FxP. An overview of these FxP operations are
presented. In addition, extension of this FxP library in order to accommodate various
FxP representation is explained.
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Hardware in a Loop Simulation
and Optimization 4
Chapter 1 presents an overview of research methodology used in this thesis. Figure 1.3
shows a block diagram that includes MATLAB and MSP432 (MSP-EXP432E401Y
launchpad) to complete the ADCS closed-loop implementation. For simplicity, this dia-
gram is presented again in Figure 4.1. Matlab environment marked in yellow implements
the sensor, actuator, disturbance torques, attitude Kinematics and Dynamics. Where
as, MSP-EXP432E401Y launchpad marked in red implements control and estimation.
Chapter 2 ADCS algorithm describes the Delfi-n3Xt control and estimation in detail .
But, in order to verify implementation control and estimation, the MATLAB models are
also essential. If the MATLAB models marked in yellow, in Figure 4.1, are not used,
then, the real sensor and actuators along with a virtual test-bench for simulating space
environment is required. This thesis uses the MATLAB models that can simulate this
effectively. Hence, by combining the effectiveness of MATLAB and ADCS implementa-
tion and MSP-EXP432E401Y launchpad, this thesis eliminates the need for sensor and
actuator hardware.

In order to explain this in more detail, this chapter introduces to the technique that
are used. The data exchange from/to MATLAB environment and MSP-EXP432E401Y
launchpad board are required to perform hardware in loop simulation. The TCP/IP
protocol is used to perform the data transmissions. MATLAB is modeled as a TCP/IP
client and MSP-EXP432E401Y launchpad as a server. As explained in Chapter 1 this
thesis will not implement all the modes that were designed for the Delfi-n3Xt. It only
implements two of such modes which are presented in this chapter. Compiler optimiza-
tion and DSP optimization techniques can be used to improve the performance of ADCS.
This chapter explains such optimization techniques that are used in this thesis.

This chapter explains implementation and optimization techniques used in this the-
sis. Firstly, it begins by introducing to TCP/IP protocol. Secondly, describes the imple-
mentation of TCP/IP server/client software used in this thesis. Thirdly, it presents two
modes of estimation and control, that are chosen for implementation. Thirdly, it presents
advantages of using hardware in a loop simulation. Lastly, optimization techniques used
to improve the performance of ADCS are explained.

4.1 Introduction to TCP/IP protocol

The TCP/IP protocol consists of several different protocols. Two such protocols are
considered to be important. Hence, based on the importance of this two protocols, ab-
breviation for this protocol is derived as, TCP/IP. The Internet Protocol (IP) is the
primary OSI model network layer (layer 3) protocol that provides addressing, datagram
routing, and other functions in an internetwork. The Transmission Control Protocol
(TCP) is the primary transport layer (layer 4) protocol and is responsible for connection
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Figure 4.1: Simulation of ADCS with hardware in a loop

establishment and management, and reliable data transport between software processes
on devices [16]. TCP/IP uses its own four-layered architecture (almost similar to the
OSI Reference Model) for providing a framework for the various protocols. The TCP/IP
protocol suite uses the notion of client/server based network communication. Clients
normally initiate communications by sending requests, and servers respond to such re-
quests, providing the client with the desired data or an informative reply such as error
message. Although it is important to understand TCP/IP protocol, in dept theoretical
understanding of layers and its functionality is not important for this thesis. Thus, for
more detailed explanation readers are referred to an excellent guide [16].

4.2 Implementation of TCP/LWIP server/client software

This section describes implementation technique that are used for implementation of
TCP/IP based server/client, in this thesis. In order to reduce the development time of
a software, openly available software can be modified. One of the important reason for
using openly available software is to reduce possibility of bugs. The openly available
software are also maintained with frequent bug-fix, and are handy to utilize as a starting
point. As stated above MATLAB is used as a client, and MSP-EXP432E401Y launchpad
as a TCP/IP server. MATLAB TCP/IP client example explains this client implementa-
tion in detail, readers are referred to MATLAB documentation for more explanation 1.
Similar steps, as stated in this example are used in implementation of MATLAB TCP/IP
client. Below is a list of task that are performed by this client:

‚ Creating a socket with the tcpip() system function.

‚ Setting address and port number of server.

1https://nl.mathworks.com/help/instrument/tcp-ip-and-udp-interface.html
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‚ Connecting the socket to the address of the server using the fopen() system call.

‚ Sending and receive data by using fwrite/fread system call.

‚ Closing the socket at the end by using fclose() system call.

MSP-EXP432E401Y launchpad is used as a TCP/IP server and to implement estimation
and control of ADCS. Resource explorer of TI provides a wide range of examples, one
of which is tcpecho example 2. This example software uses TI-RTOS kernel with a soft
TCP/LWIP stack. It uses two tasks:

‚ tcpecho: This task creates a socket and accepts incoming connections. When a
connection is established a tcpWorker task is dynamically created to send or receive
data [17].

‚ tcpWorker: This task is responsible for sending or receiving data from/to client.

A function main sunpointingpq is implemented as a part of tcpWorker task which imple-
ments control and estimation of ADCS algorithm. This function implements the ADCS
algorithm extended from the Delfi-n3Xt. Section 1.4 explains more details on the steps
used for this extension. The ADCS used in this thesis is divided into two modes which
are explained in next section.

4.3 Estimation and control modes of operation

This section describes two different estimation and control modes of operation that
are considered in this thesis. As depicted in Figure 1.2 this thesis implements two
modes marked in green. Firstly, detumble mode once the satellite is ejected from launch
container detumbling mode must bring the satellite rotational rate to, less than 1 0 /s.
Once this tumble rate has been achieved satellite can switch from detumble mode to FSP
mode. Secondly, FSP mode uses EKF algorithm using both sun sensor and magnetometer
sensor data to point solar-panels towards sun. It is only allowed to have a maximum
of 25 degree, sun-pointing error. Figure 4.2 shows blocks representing these two modes.
Chapter-2 explains Bdot controller and Quaternion Feedback controller. It also explains
EKF in detail. All the equations responsible for ADCS algorithm are implemented
in MSP-EXP432E401Y launchpad within a function named main sunpointingpq. This
function is modified from the Delfi-n3Xt software as explained in Section 1.4, Chapter
1. It is important to note that matrix library as discussed in Chapter 3 is required to
implement the ADCS on-board.

4.4 Advantages of using hardware in a loop approach

This section describes the advantages of using hardware in a loop approach as a design
point in this thesis. In the Figure 4.1, control and estimation part of ADCS algorithm

2http://www.farnell.com/datasheets/1701911.pdf
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Figure 4.2: Estimation and Control modes of operation

was implemented as a part of on-board the Delfi-n3Xt software. But, in real case sce-
nario, sensors perform the required measurement. And actuators control the satellite
position and rotational rate. Disturbance torques and satellite dynamics are exerted by
atmosphere around satellite (space environment). But, all these other models could be
relatively modelled by considering nominal, non-nominal and practical parameters. This
work has been claimed for robustness analysis by [1]. Hence, if we can utilize the MAT-
LAB design that is developed in [1], we can eliminate the need for sensor and actuator,
hardware, drivers and interface. Moreover, this also will eliminate, the need for creating
a virtual test-bench for space atmosphere. Hence, a hardware in loop model as shown
in Figure 4.1 is considered for design, experimentation and verification in this thesis.

4.5 Optimization

This section explains the optimization techniques used to improve performance of ADCS
implemented in this thesis.

Firstly, optimization were done on DSP based arithmetic operations. The three DSP
alternatives considered for this thesis are explained in Chapter 3. These implementations
are considered in form of three alternatives. The DSP optimization done on all three
alternatives are listed together in first subsection. These three implementations are
compared in terms of performance and energy in Chapter 5.

Secondly, optimization are performed using compiler optimization options. The sec-
ond subsection explains these compiler options in detail.

4.5.1 DSP and memory optimization

This subsection explains DSP and memory optimization done in this thesis. As ex-
plained above, three alternatives are implemented. In each of these alternatives, DSP
and memory optimization were done as listed below:

‚ Redundant arithmetic were removed. For example multiplication by 2, followed by
a, division by 2.
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‚ There exists a factorial computation (n!) as part of Taylor series expansion, in
order to perform exponential calculation. This is shown in Equation 4.1. To
reduce computation load, 1

n! is replaced with a look-up table containing reciprocal
of factorial. The source code is listed in (Appendix A.7).

ex “
8
ÿ

n“0

xn

n!
(4.1)

‚ Division by a constant is replaced with multiplication by reciprocal of constant.
For example, as stated above, the look-up includes the reciprocal of constant. This
is multiplied with xn (Equation-4.1) instead of division. The source code is listed
in Appendix A.8.

‚ Multiplication with 2 were replaced with left shift once, as shown in Appendix A.9.

‚ Division with 2 were replaced with right shift once, as shown in Appendix A.10.

‚ Multiple accesses on same index of sin{cos look-up table, were replaced with single
access, followed with a local variable storage, as shown in Appendix A.11.

‚ Multiple computations on same data were replaced with, single computation, fol-
lowed with a local variable storage, as shown in Appendix A.12.

‚ IGRF reference look-up table was implemented using 3 dimensional integer array,
instead of, matrix struct used by the Delfi-n3Xt matrix library. This saves memory
usage for storing dimension of matrix. And, a const qualifier is used to indicate
compiler to save the IGRF look-up in flash memory, as shown in Appendix A.13.

4.5.2 Compiler optimization flags

This subsection explains compiler optimization flags (-O0, -O1, -O2, -O3) that are used
to study the trade-off between performance and code-size. A right candidate of opti-
mization flag for implementation are concluded in Chapter 5. In order to reduce code
size or improve performance of application ARM compiler provides various optimization
level/flag. Primarily, one can optimize for performance or for code size 3. However, there
are several options for finer control of the optimization techniques. These optimization
options are listed in subsection below.

4.5.2.1 -O0 Minimum optimization

This is the default and minimum optimization setting. Using this option one can achieve
maximum debug capability as the generated code has a direct correlation of source code
that is written. All optimization options that interfere with debug view are disabled.
In other words using this option user can set breakpoints within reachable or dead code
and value of variables are available everywhere within its scope. Hence, when the code
is still being tested for functionality and debug capability is important this is one of two
option to choose from (i.e., also -O1 is a candidate).

3http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/compiler_user_

guide_100748_0606_00_en.pdf
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4.5.2.2 -O1 Restricted optimization

This optimizes more for performance compared with -O0. This compiler option removes
unused inline or static functions or variables. In other words, setting a break point in
dead code is not possible. If the variable location is reused then content of these variables
can no longer be accessed even in there scope. Functions that result in no side effects
are removed. Hence, this optimization level can result in good correspondence between
source code and object code. ARM recommends this option for debugging.

4.5.2.3 -O2 High optimization

This optimizes more for performance compared with -O1. I performs more aggressive
instruction scheduling and can result in many to one mapping from object code to source
code. The reported variable values and expected values might be different at any point
as the instructions are allowed to cross sequence points. Hence, this optimization flag is
not recommended for debugging, but for increase in performance.

4.5.2.4 -O3 Maximum optimization

This optimizes more for performance compared with -O2. This option generally result in
poorer debug view even compared with -O2 and ARM recommends lower optimization
level for this purpose . It includes High-level scalar optimization such as loop unrolling.
This can result in a significant performance gain at a small code size cost, but at the risk
of a longer build time. This regressive optimization can effectively rewrite the source
code resulting in a smallest source-code to object-code density. Such a high level of
optimization results in worst correlation from object code to source code and can hence
result in a worst debug view. Since, this optimization affects the mapping of object
code to source code there are additional optimization levels that can be chosen such
as -Ospace and -Otime. These advanced compiler optimization are not utilized for this
thesis work, curious readers are referred to 4for more detailed explanation.

4.6 Summary

This chapter describes hardware in a loop simulation. It presents the two different modes
of operation that are used in this thesis. It enlists different optimization techniques used
in this thesis work. Primarily these were divided into two categories: DSP optimization
and compiler optimization. It explained each of these optimization technique, in terms
of, use case, in this thesis.

4http://infocenter.arm.com/help/topic/com.arm.doc.100748_0606_00_en/compiler_user_

guide_100748_0606_00_en.pdf
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Results 5
In this chapter, three different DSP alternatives are compared with respect to perfor-
mance and energy, specifically for the ADCS used in the Delfi-n3Xt. These three different
DSP alternatives have been presented in Chapter-3. The Delfi-n3Xt employs the use of
DP implementation and this is considered as baseline. As described in Chapter-4 an
MSP-EXP432E401Y launchpad is used with a hardware in the loop approach. However,
by using this approach there is a considerable overhead due to the TCP/IP stack. But,
in a real satellite software framework, this will not be present. Hence, a method that
removes this overhead is considered. In general, the performance can be boosted using
compiler optimization flags. As explained in Chapter 4 these flags result in a trade-
off between performance and code-size. Hence, performance measurements for different
compiler optimization flags and the resulting code-size are presented. It is important to
note that the MSP-EXP432E401Y launchpad does not feature on-board energy trace.
In order to perform power measurements, a traditional current measurement method
is employed. This current measurements are then multiplied with voltage to produce
the power measurements. A total energy consumption heuristic is proposed to extrap-
olate the energy measurements. Using this heuristic the total energy consumption for
different DSP alternatives are calculated. It is important to observe that all three imple-
mentation alternatives must satisfy the functional requirements. Hence, this correctness
is confirmed by means of graphs. Lastly, conclusions are drawn based on energy and
performance measurements.

First this chapter begins with presenting performance versus code size trade-off for
different compiler optimization level. This includes Compute Time (CT) for detumble
and FSP mode separately. Secondly, power measurements are presented. Thirdly, the
total energy is extrapolated using the proposed heuristic. Fourthly, graphs showing
functional correctness are plotted. Finally, the chapter closes by drawing conclusions.

5.1 Performance verses code size trade-off for different
compiler optimization levels

Chapter 4 presented performance verses code-size trade off provided by ARM. This
understanding is henceforth, employed to study ADCS, specifically used in the Delfi-
n3Xt. This section presents the CT for detumble and FSP mode separately. It tabulates
code-size for each compiler optimization flag. The compiler flag that results in best
performance is chosen to determine the performance boost with respect to baseline im-
plementation. Then, performance boost are tabulated.
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5.1.1 Performance gain in detumble and FSP mode

This subsection presents performance gain in detumble and FSP mode. The CT in
seconds, recorded by detumble and FSP mode, using different compiler optimization
flags are tabulated. As shown in Table 5.1 for FSP mode and Table 5.2 for detumble
mode.

Table 5.1: CT in FSP mode, with different compiler optimization flag

DSP alternatives -O0 (s) -O1 (s) -O2 (s) -O3 (s)

DP 1157.15513 1120.66666 1117.55269 1159.96650

SP 471.798210 440.436187 429.986995 430.712860

FxP ă 32, 4 ą 427.337499 178.202572 169.925313 167.888228

Table 5.2: CT in detumble mode, with different compiler optimization flag

DSP alternatives -O0 (s) -O1 (s) -O2 (s) -O3 (s)

DP 0.79985517 0.79764839 0.76478392 0.82630401

SP 0.28138630 0.18191871 0.17492267 0.17576879

FxP ă 64, 36 ą 2.32246298 0.79596296 0.67871100 0.62388371

By using the Table 5.2 and 5.1 we can note that, O-2 compiler flag gives the best
performance for the floating-point arithmetic(DP and SP), and O-3 gives the best per-
formance for FxP arithmetic. Using these boosted options a speed-up is calculated, with
respect to baseline. Let us consider Total Compute Time (TCT) as total compute time
in FSP mode. This can be seen in Table 5.3 for detumble mode and Table 5.4 for FSP
mode.

Table 5.3: Performance gain in detumble mode

DSP alternatives CT Speed-up

DP 0.76478392 -N.A-

SP 0.17492267 4.37x

FxP ă 64, 36 ą 0.62388371 1.22x

Table 5.4: Performance gain in FSP mode

DSP alternatives TCT Speed-up

DP 1117.55269 -N.A-

SP 429.986995 2.59x

FxP ă 32, 4 ą 167.888228 6.66x
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5.1.2 Code size in kB

This subsection tabulates the code size in kB, as the compiler optimization flag is varied.
We can note from the datasheet of MSP-EXP432E401Y that, it has 1 MB of flash memory
and 256 kB of SRAM 1. As shown in Table 5.5 and Table 5.6, it can be noticed that the
variation in code size, is not considerable.

Table 5.5: Flash memory usage, for different compiler optimization flag

DSP alternatives -O0 (kB) -O1 (kB) -O2(kB) -O3 (kB)

DP 933.183 926.531 926.491 926.407

SP 930.719 923.595 922.691 922.591

FxP 927.587 923.903 923.904 922.579

Table 5.6: SRAM usage, for different compiler optimization flag

DSP alternatives -O0 (kB) -O1 (kB) -O2(kB) -O3 (kB)

DP 183.350 183.314 183.314 183.330

SP 181.362 181.334 181.334 181.346

FxP 181.671 181.641 181.643 183.410

5.2 Power measurements

A traditional current measurement method is used to perform power measurement. A
multimeter in ammeter setting is connected in series between 3.3v line and micro con-
troller. The current is recorded for three different DSP alternatives and bare-metal
TCP/IP implementation, as show in Table 5.7. The Power equation, were power is
given by product of voltage and current is used. As shown below:

P “ V ˆ I (5.1)

Where, V stands for voltage i.e., 3.3 v in our case, and current I is the measurement
recorded on ammeter. Using the above equation power is calculated and tabulated in
Table 5.7.

Table 5.7: Power measurements in mW, for different DSP alternatives

DSP alternatives Current (mA) Power (mW)

Bare-metal TCP/IP 90.0 297.0

DP 106.2 350.46

SP 105.9 349.47

FxP ă 32, 4 ą 105.2 347.16

1http://www.ti.com/document-viewer/MSP432P401R/datasheet/specifications - t287270728
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Bare-metal TCP/IP implementation is introduced for the first time in Table 5.7.
Bare-metal TCP/IP implementation is made in order to remove the unwanted over-
head that is added. To understand this let us look at Figure 1.2, Simulation of ADCS
with hardware in a loop. Here we can see that TCP/IP is the way by which both
MATLAB and MSP432 hardware, exchange data in order to form a closed-loop. Bare-
metal TCP/IP implementation implements the similar closed loop, but without ADCS
in MSP432, and without any models in MATLAB. The MSP432 will run a Bare-metal
TCP/IP server implementation which will echo received data. Similarly, MATLAB will
implement TCP/IP echo client. It is worth noting that if power from such an implemen-
tation is subtracted from actual hardware in loop implementation, as shown in Figure
1.2, then we arrive at the interesting part of the power which will actually be part of
satellite software. In other words, this gives the power computation of actual ADCS
algorithm. It is shown in Table 5.8.

Table 5.8: Power measurements in mW, for ADCS and DSP alternatives

DSP alternatives Power(mW)

DP 53.46

SP 52.47

FxP ă 32, 4 ą 50.16

5.3 Total energy extrapolation

As mentioned in Chapter 2, the Control Step Time (CST) ∆t=2 s for the Delfi-n3Xt.
However, the whole 2 s time window is not used for computation. Hence, each CST can
be divided into compute and hibernation time for each control step as shown in Figure
5.1.

Figure 5.1: Continuous control step windows

Let us consider Control Step Compute Time (CSCT) as compute time for each control
step, then Control Step Hibernation Time (CSHT) can be given by:

CSHT “ p∆t´ CSCTq (5.2)

The performance gain tabulation, Table 5.4 records TCT for the FSP mode. The
total number of control steps in FSP mode for the performed simulation is 16960. In
other words, Total Control Steps (TCS)=16960. Hence, CSCT can be calculated as:

CSCT “
TCT

TCS
“

TCT

16960
(5.3)

The Table 5.8 gives the Compute Power (CP) for the different implementations. However,
to calculate approximate Hibernation power (HP) we can refer to TI data-sheet. Using
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the low power mode, LPM4 TI records current consumption to be as low as 2.2µA 2.
Using Equation 5.1 we can calculate HP= 2.2µA˚3.3v = 7.26µW . The total energy can
be computed using the above defined equations. The following heuristic is proposed for
total energy calculation:

E “ TCSˆ ppCSCTˆ CPq ` pCSHTˆHPqq (5.4)

The Table-5.9 presents the energy extrapolation. Using the Equation 5.4 total en-
ergy (E) is calculated. Energy saving is calculated with respect to E of baseline (Which
is 59.97939). The energy calculation heuristic that is proposed might not be the most
optimal approach. But, this provides a closest intuitive approximation to energy con-
sumption in a real satellite.

Table 5.9: Total energy extrapolation

DSP alternatives TCT (s) CSCT (s) CSHT (s) E (J) Energy saving
DP 1117.55269 0.06589 1.93411 59.97939 -N.A-
SP 429.986995 0.02535 1.97465 22.79688 2.631x

FxP ă 32, 4 ą 167.888228 9.89907m 1.99010 8.66631 6.920x

5.4 Functional correctness

This subsection presents the graphs that confirm the functional correctness. As discussed
earlier the two main functional requirements are:

‚ After detumble mode, for proper functioning of satellite, rotational rate of satellite
must be below 1 0 /s.

‚ In FSP mode, Sun-pointing error must not exceed 25 0 for non eclipse period.

The following subsection will provide a summery about each plots. Each subsection
will display plots for three different DSP alternatives.

5.4.1 Rotational rate in detumble mode

In this subsection, rotational rate plots are presented. It can be seen in Figure 5.3,
Figure 5.2 and Figure 5.4. It is important to note that these plots verify the functional
correctness of the first requirement about the rotational rate. That is close to 2 ˚ 104 on
the x-axis the rotational rate falls below 1 0 /s.

5.4.2 Sun-pointing error

This subsection presents plots for Sun-pointing error. It is important to note that these
plots satisfy the second functional requirement. That is the maximum pointing error is
below 25 0. This can be seen from Figure 5.5, Figure 5.6 and Figure 5.7.

2http://www.ti.com/document-viewer/MSP432P401R/datasheet/specifications - t287270728
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Figure 5.2: Rotational rate in detumble
mode DP

Figure 5.3: Rotational rate in detumble
mode SP

Figure 5.4: Rotational rate in detumble
mode FxP

Figure 5.5: Sun-pointing error for DP

5.4.3 Rotational rate error in FSP mode

This subsection presents plots for rotational rate in FSP mode. These plots also confirm
the first functional requirement, that is after detumble mode, the rotational rate error
must be below 1 0 /s. This can be seen from Figure 5.8, Figure 5.9 and Figure 5.10.

5.4.4 Quaternion plots

This subsection presents quaternion trend plots. It has three subplots. First, the true
quaternion that is expected estimated quaternion, from MATLAB model. Second is
the estimated quaternion (q̂), from attitude estimation algorithm. Third, is the desired
quaternion (qd) that are fixed at q0 the initial value stated in Chapter 2. This can be
seen in Figure 5.11, Figure 5.12 and Figure 5.13.
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Figure 5.6: Sun-pointing error for SP Figure 5.7: Sun-pointing error for FxP

Figure 5.8: Rotational rate error in DP Figure 5.9: Rotational rate error in SP

5.4.5 Angular velocity plots

This subsection presents angular velocity trend plots. It has three subplots. First, the
true angular velocity that is expected estimated angular velocity, from MATLAB model.
Second is the estimated angular velocity (ω̂), from attitude estimation algorithm. Third,
is the desired angular velocity (ωd) that are fixed at ω0 the initial value stated in Chapter
2. This can be seen in Figure 5.14, Figure 5.15 and Figure 5.16. In addition, Figure 5.17
shows coastal line of earth with the Delfi-n3Xt orbiting.

5.5 Conclusion

Based on the experimentation’s and study done in this chapter, the following conclusions
can be drawn:

‚ The SP based implementation is 2.59 times faster and consumes 2.631 less energy
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Figure 5.10: Rotational rate error in FxP Figure 5.11: Quaternion plots in DP

Figure 5.12: Quaternion plots in SP Figure 5.13: Quaternion plots in FxP

than the baseline.

‚ The FxP based implementation is 6.66 times faster and consumes 6.920 less energy
than the baseline.

‚ From the functional correctness plots, it can be verified that SP provides acceptable
performance and energy consumption. Moreover, ADCS for the Delfi-n3Xt does
not require DP arithmetic.

‚ The FxP based implementation has more error compared to SP, but satisfies func-
tional requirements. This can be seen from sun-pointing error Figure 5.7. In future
satellite projects, if more accuracy is expected, then SP based implementation is
proposed over FxP.

‚ There is no considerable changes observed in code size with respect to compiler
optimization flags. Hence, we may focus on performance gain and neglect the
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Figure 5.14: Angular velocity in DP Figure 5.15: Angular velocity in SP

Figure 5.16: Angular velocity in FxP Figure 5.17: The Delfi-n3Xt orbit

consideration on code size.
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Conclusions 6
This chapter presents conclusions of this work. Section 6.1 summarizes the thesis. Sec-
tion 6.2 presents conclusions drawn. Section 6.3 enlists main contributions from this
thesis. Section 6.4 presents recommendations on possible future work.

6.1 Summary

This section offers a summary for the whole thesis. Furthermore, it presents a short
description in terms of each chapter.

Chapter 1 provides an introduction to the thesis. Firstly, it presents motivation and
objective for this work. Secondly, it gives an overview of research methodology that has
been used throughout this thesis. Lastly, it enlists personal contribution and outlines
the thesis.

Chapter 2 explains ADCS algorithm that has been used by the Delfi-N3xt satellite,
and this thesis. Firstly, it describes an overview of reference frames. Secondly, it defines
rotational kinematics and three main attitude representations. Thirdly, it describes a
model of physical world that is required in order to understand the Sun direction and
Earth’s magnetic field calculation, performed in the Delfi-N3xt. Fourthly, it explains
attitude estimation algorithm, i.e., EKF algorithms. Fifthly, it describes an overview of
attitude control algorithms used by the Delfi-N3xt. Lastly, it presents power budget for
ADCS, in the Delfi-N3xt.

Chapter 3 explains three different DSP alternatives that have been used in this
thesis. Firstly, it explains two floating-point representations that are used in this thesis.
Secondly, it explains FxP representation and arithmetic techniques. Lastly, it presents
an overview for extension of the Delfi-N3xt FxP library.

Chapter 4 explains the hardware in a loop simulation with respect to this thesis.
Firstly, it briefly introduces the TCP/IP protocol. Secondly, it describes the imple-
mentation of TCP/IP server and client. Thirdly, it presents the two different modes
of operation that have been used in this thesis. Lastly, It enlists different optimization
techniques used in this thesis work. Primarily these were divided into two categories:
DSP optimization and compiler optimization.

Chapter 5 compares different DSP alternatives, presented in Chapter 3, with respect
to performance, energy and code-size. Firstly, it presents performance versus code size
trade-off for different compiler optimization levels. Secondly, it enlists power measure-
ments. Thirdly, the total energy is extrapolated using the proposed heuristic. Fourthly,
graphs showing functional correctness are plotted. Lastly, the chapter closes with draw-
ing conclusions.

Chapter 6, the current chapter summarizes the whole thesis. Firstly, it begins with
a summary of the whole thesis document. Secondly, it enlists main contributions of this
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thesis. Lastly, it proposes the recommendations for future work.

6.2 Conclusions

This section underlines the conclusions that can be drawn from this thesis.

1. ADCS is a critical subsystem. It was important to satisfy two main objectives, be-
fore proposing energy improvement alternatives. This thesis considers the following
two main objectives of ADCS:

‚ Detumble mode, to reduce angular velocity of the satellite below 1 0/s.

‚ FSP mode, to point solar panels towards the Sun, with a maximum allowed
Sun pointing error of 25 0.

2. The FxP implementation of ADCS is proposed in this thesis. This performs « 6.7
times faster than the baseline. In addition it consumes « 7 times less energy, with
respect to the baseline.

3. The FxP matrix library implements all the functions necessary for the Delfi-N3xt
ADCS. Therefore, this library could be directly, or with a little modification, be
used for future satellite projects.

4. The power budget for the Delfi-N3xt ADCS software is « 10 % of total nominal
power budget. A major amount of ADCS power budget is consumed by sensors
and actuators. Hence, the performance and energy gain that are observed in this
thesis are not considerable to improve energy, for direct deployment, such as, in
terms of the Delfi-N3xt total nominal power budget. It is important to note that
the only computationally intensive algorithm present in the Delfi-N3xt was ADCS.

5. However, in future, if there exists more compute intensive algorithm, that might
require considerable amount of total power, then the conclusions observed in this
thesis can be used as an initial study. But, this does not mean that the same
conclusions can be drawn for future satellite algorithm. Since, it must also satisfy
the precision requirements of such algorithm, which directs towards use of a similar
research methodology, to define meaningful conclusions.

6. This thesis extends the Delfi-N3xt ADCS algorithm with two modes of operation.
This implementation uses DP alternative, and acts as a baseline. For the ADCS,
implemented in this thesis, SP performs « 3 times better and saves « 2.7 times
more energy, compared to the baseline.

7. Moreover, this study also suggests that SP has a similar accuracy compared with
DP implementation. Hence, for future implementation this thesis suggests to con-
sider SP as a better alternative than DP, which was used in the Delfi-N3xt.

8. Lastly, conclusions drawn in this thesis, in terms of power and energy consumption,
are considerably important for Delfi satellite project. Because, this thesis for the
first time fully implements one of the 4 advanced modes. These advanced modes
were missing in previous work by Johannes P.J. Reijneveld, M. Vos, et al.
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6.3 Main contributions

The following are the main contributions from this thesis:

1. The Delfi-N3xt ADCS algorithm is extended with two modes of operation. This
includes a complete implementation of FSP mode. This implementation uses DP
alternative, and is used as a baseline throughout this work.

2. Porting of ADCS algorithm as mentioned above, to SP and FxP. It includes
implementing a matrix library in, SP and FxP.

3. A MATLAB script that can auto-generate IGRF look-up table (header file), for
both SP and FxP.

4. A proposed implementation in FxP that can perform « 6.7 times faster than the
baseline, and consumes « 7 times less energy, than the baseline.

6.4 Future work

The following recommendation are made for possible future work:

‚ The other advanced modes of the Delfi-N3xt use the same EKF algorithm. With
a minimum effort it must be possible to extend current implementation with other
advanced modes. Hence, it is recommended to extend the implementation by
complete the Delfi-N3xt ADCS algorithm.

‚ In this thesis no changes were made with the gain parameters, compared with the
Delfi-N3xt ADCS algorithm. By tuning derivative gain of the Quaternion feedback
regulator controller, it is possible to tune the damping that is observed in FxP
implementation. Tuning this parameter, might result in improved FxP accuracy.

‚ The current work uses hardware in a loop approach. However, it is recommended
to interface sensor and actuators with the future implementation. This will give an
accurate measurement of accuracy and performance achieved by FxP implementa-
tion.

‚ For simplicity, all the implementations in this thesis were done on a microcontroller
featuring ARM-M4F. But, the area and power consumption of M3 is less compared
with M4 1. This can result in power saving with FxP implementation. Hence, it
is recommended to use a ARM-M3 processor and perform accurate measurements
of power.

‚ By gprof based flat profiling of software developed in this thesis, it was observed
that EKF propagation function consumes 34 % of total compute time. Hence,
this can be accelerated using microcontroller featuring an accelerator. This might
result in lowered energy consumption.

1https://www.arm.com/products/silicon-ip-cpu

57



‚ Results from a study shown in Figure 3.3 suggests that WL of 36 results in lowest
error in FxP alternative. However, microcontrollers are designed for instance,
to use a WL of 32 or 64 bit. Use of custom hardware implementation, using
an FPGA, could benefit from such study. A custom WL could be considered for
such implementation. In addition, software implementations from different satellite
subsystems could be combined in a single FPGA. Moreover, sensor and actuator
interface drivers could also be implemented together on the a same FPGA. This
could result in an FPGA implementation higher performance and lower energy
consumption, than the proposed alternative in this thesis.
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Fixed-point Design definition A
A.1 Floating point to FxP

#define fixedpt_rconst(R) ((fixedpt)((R) * (((fixedptd)1 << FIXEDPT_FBITS) +

((R) >= 0 ? 0.5 : -0.5))))

A.2 Conversion from one FWL to other

#define fixedpt_cov_F28_to_F22(R) ((R>>6))

A.3 Defining a FxP Variable

#define FIXEDPT_PI fixedpt_rconst(3.14159265358979323846)

A.4 Multiplication

/* Multiplies two fixedpt numbers, returns the result. */

static inline fixedpt

fixedpt_mul(fixedpt A, fixedpt B)

{

int64_t product;

product = (int64_t)A * B;

return (fixedpt)(rnd(product >> (FIXEDPT_FBITS-1)));

}

A.5 Rounding result from Multiplication

#define LOWER_RND 0X00000001

static inline int32_t rnd(int64_t x)

{

int32_t y;
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y=x>>1;

if(x&LOWER_RND)

y=y+1;

return(y);

}

A.6 Division

/* Divides two fixedpt numbers, returns the result. */

static inline fixedpt

fixedpt_div(fixedpt A, fixedpt B)

{

if(B==0)

return 0;

else

return (((fixedptd)A << FIXEDPT_FBITS) / (fixedptd)B);

}

A.7 Look-up Factorial

static int32_t k[17]={FIXEDPT_ONE,FIXEDPT_ONE,fixedpt_rconst(1.0/2),

fixedpt_rconst(1.0/6),fixedpt_rconst(1.0/24),

fixedpt_rconst(1.0/120),fixedpt_rconst(1.0/720),

fixedpt_rconst(1.0/5040),fixedpt_rconst(1.0/40320),

fixedpt_rconst(1.0/362880),fixedpt_rconst(1.0/3628800),

fixedpt_rconst(1.0/39916800), fixedpt_rconst(1.0/479001600),

fixedpt_rconst(1.0/1932053504), fixedpt_rconst(1.0/1278945280),

fixedpt_rconst(1.0/2004310016), fixedpt_rconst(1.0/2004189184)};

A.8 Exponential calculation

#define MAT16_EXP(A, terms, RES) do { \

MAT16_int32_t_t temp1, temp2, temp3; \

MAT_PREP_DIAG((RES), (A).rows, (A).cols, FIXEDPT_ONE); \

MAT_PREP_DIAG(temp1, (A).rows, (A).cols, FIXEDPT_ONE); \

uint8_t i;\

for (i=1; i <= (terms); i++){ \

MAT_MUL((A), temp1, temp2); \

temp1 = temp2; \

MAT_SCALE(temp2, (int32_t)k[i], temp3);\

MAT_ADD((RES), temp3, (RES)); \

} \
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} while(0)

A.9 Multiplication with two

M = ((mul_alg_F22(GC_PI , (fixedpt_rconst_64_F22(B_meas ->

spt_begin+t_error))))<<1); //mul with 2 is left shift once

A.10 Division with two

E_32=E_32>>1;//divide by 2 is right shift once

A.11 Multiple access replaced with single access

cosr = cos_F31(RAAN); // this is fixed why access again and again?

sinr = sin_F31(RAAN);

coso = cos_F31(omega);

sino = sin_F31(omega);

cosi = cos_F31(incl);

sini = sin_F31(incl);

l1 = (fixedpt_mul_F31(cosr , coso) -

fixedpt_mul_F31((fixedpt_mul_F31(sinr,sino)) , cosi));

l2 = (fixedpt_mul_F31(-cosr , sino) -

fixedpt_mul_F31((fixedpt_mul_F31(sinr,coso)) , cosi));

m1 = (fixedpt_mul_F31(sinr , coso) +

fixedpt_mul_F31((fixedpt_mul_F31(cosr , sino)) , cosi));

m2 = (fixedpt_mul_F31(-sinr , sino) +

fixedpt_mul_F31((fixedpt_mul_F31(cosr , coso)) , cosi));

n1 = fixedpt_mul_F31(sino , sini);

n2 = fixedpt_mul_F31(coso , sini);

A.12 Multiple computation replaced with single computa-
tion

local_az = (((*az)>>18) + 180);

local_elev = (((*elev)>>18)+90);

B_E_ref.comp[0] = B_ref_lut[local_az][local_elev][0];

B_E_ref.comp[1] = B_ref_lut[local_az][local_elev][1];
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B_E_ref.comp[2] = B_ref_lut[local_az][local_elev][2];

A.13 IGRF look-up in fixed-pointă 32, 4 ą

const int32_t B_ref_lut[361][181][3]={

{

{2558,-1656,10707},

{2649,-1670,10816},

{2739,-1684,10920},

{2827,-1697,11019},

{2914,-1710,11114},

{3000,-1723,11203},

{3085,-1735,11288},

{3168,-1746,11366},

{3249,-1758,11439},

{3329,-1769,11506},

{3408,-1779,11567},

{3484,-1789,11622},

{3559,-1798,11671},

{3633,-1807,11713},

{3704,-1815,11749},

{3774,-1822,11778},

{3842,-1829,11801},

{3908,-1835,11818},

{3973,-1840,11828},

{4036,-1845,11832},

{4096,-1850,11829},

{4155,-1853,11820},

{4212,-1856,11805},

{4267,-1858,11783},

{4320,-1860,11756},

{4371,-1861,11724},

{4420,-1861,11686},

{4467,-1861,11642},

{4511,-1860,11593},

{4554,-1859,11540},

{4595,-1856,11482},

{4633,-1854,11420},

{4669,-1851,11353},

{4702,-1847,11283},

{4733,-1843,11209},

{4762,-1838,11132},

{4788,-1832,11051},

{4811,-1826,10968},

{4831,-1821,10883},

{4848,-1814,10795},

{4863,-1806,10705},

{4874,-1799,10613},
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{4882,-1790,10520},

{4887,-1781,10425},

{4887,-1772,10329},

{4885,-1763,10232},

{4879,-1753,10135},

{4868,-1743,10037},

{4854,-1732,9938},

{4836,-1721,9839},

{4814,-1709,9741},

{4787,-1698,9642},

{4757,-1686,9544},

{4721,-1674,9446},

{4682,-1661,9349},

{4637,-1648,9251},

{4589,-1635,9155},

{4535,-1622,9060},

{4477,-1608,8966},

{4415,-1595,8872},

{4347,-1581,8781},

{4275,-1567,8689},

{4198,-1553,8600},

{4117,-1538,8511},

{4031,-1524,8424},

{3941,-1509,8338},

{3847,-1494,8254},

{3748,-1479,8171},

{3645,-1464,8090},

{3538,-1449,8011},

{3427,-1434,7933},

{3313,-1419,7857},

{3195,-1404,7782},

{3075,-1388,7710},

{2951,-1373,7639},

{2824,-1358,7570},

{2695,-1343,7503},

{2564,-1328,7439},

{2430,-1313,7376},

{2295,-1298,7315},

{2159,-1282,7257},

{2021,-1267,7201},

{1883,-1253,7147},

{1744,-1237,7095},

{1605,-1222,7046},

{1466,-1208,6999},

.

.

}

};
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IGRF B
B.1 MATLAB script to generate floating point header

%script to create look-up-table header file for B_ref

%az range -180 to +180 degree

%elev range -90 to +90 degree

magmode = ’IGRF’; % mode: dipole, IGRF, wrldmagm

fileID = fopen(’dump/B_ref.h’,’w’);

fprintf(fileID,’// B_Ref.h\n’);

fprintf(fileID,’// Auto-written by matlab for igrf look-up\n’);

fprintf(fileID,’// IGRF reference look-up dump for r fixed at 6978\n//

B_E[azimuth][elevation]\n’);

fprintf(fileID,’// note azimuth real range is from -180 to +180 degree but in

LUT it has offset of +180\n’);

fprintf(fileID,’// example azimuth = 0 in LUT is -180 in reality\n’);

fprintf(fileID,’// similarly elevation has an offset of +90\n’);

fprintf(fileID,’// Created by hemanth singh jagadeeshwar on 5/8/18.\n’);

fprintf(fileID,’const float B_ref_lut[361][181][3]={’);

fprintf(fileID,’\n’);

for az_deg=-180:180

fprintf(fileID,’{’);

fprintf(fileID,’\n’);

for elev_deg= -90:90

r =6978;

az=deg2rad(az_deg);

elev=deg2rad(elev_deg);

[r_Ecd(1),r_Ecd(2),r_Ecd(3)] = sph2cart(az,elev,r);

B_E = getMagField(r_Ecd,magmode);

B_E = round(B_E/2e-9)*2e-9;

fprintf(fileID,’{%.20f,’,B_E(1));

fprintf(fileID,’%.20f,’,B_E(2));

fprintf(fileID,’%.20f}’,B_E(3));

if elev_deg ~= 90

fprintf(fileID,’,’);

end

fprintf(fileID,’\n’);

end

fprintf(fileID,’}’);

if az_deg ~= 180
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fprintf(fileID,’,’);

end

fprintf(fileID,’\n’);

end

fprintf(fileID,’};’);

fclose(fileID);

function [B_E] = getMagField(r_E,varargin)

% This function returns the magnetic field in ECEF at the given position

% r_E in km in ECEF

%% Convert the ECEF position to spherical coordinates

r_E = r_E*1000; % first a conversion to meters

[elong,nlat,r] = cart2sph(r_E(1),r_E(2),r_E(3));

%% Check varargin

if isempty(varargin)

varargin{1} = ’dipole’;

end

%% Select the right model

switch varargin{1}

case ’dipole’

mu_0 = 4*pi*10^-7; % magnetic permeability of free space [kg m A^-2

s^-2]

m = 7.94*10^22; % Earth’s best fit dipole moment [A m^2]

B0 = mu_0*m/(4*pi*r^3);

B_r = 2*B0*cos(.5*pi-nlat);

B_t = B0*sin(.5*pi-nlat);

B_E(1,1) = (B_r*cos(nlat)-B_t*sin(nlat))*cos(elong);

B_E(2,1) = (B_r*cos(nlat)-B_t*sin(nlat))*sin(elong);

B_E(3,1) = B_r*sin(nlat)+B_t*cos(nlat);

case ’IGRF’

B_tpr = igrf11syn(2010,r/1000,rad2deg(nlat),rad2deg(elong))*10^-9;

B_rpt = [B_tpr(3);B_tpr(2);B_tpr(1)];

C = get3RotMatrix([nlat;-elong;0],’231’);

B_E = C*B_rpt;

case ’wrldmagm’

B_E = wrldmagm(r/1000-6371.2, nlat, elong, 2010)*10^-9;

otherwise

warning(’Unexpected Magnetic model. Nothing returned...’);

end

end
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B.2 MATLAB script to generate fixed-point header

%script to create look-up-table header file for B_ref

%az range -180 to +180 degree

%elev range -90 to +90 degree

fileID = fopen(’dump/B_ref.h’,’w’);

fprintf(fileID,’// B_Ref.h\n’);

fprintf(fileID,’// Auto-written by matlab for igrf look-up\n’);

fprintf(fileID,’// IGRF reference look-up dump for r fixed at 6978\n//

B_E[azimuth][elevation]\n’);

fprintf(fileID,’// note azimuth real range is from -180 to +180 degree but in

LUT it has offset of +180\n’);

fprintf(fileID,’// example azimuth = 0 in LUT is -180 in reality\n’);

fprintf(fileID,’// similarly elevation has an offset of +90\n’);

fprintf(fileID,’// Created by hemanth singh jagadeeshwar on 5/8/18.\n’);

fprintf(fileID,’const int32_t B_ref_lut[361][181][3]={’);

fprintf(fileID,’\n’);

for az_deg=-180:180

fprintf(fileID,’{’);

fprintf(fileID,’\n’);

for elev_deg= -90:90

r =6978;

az=deg2rad(az_deg);

elev=deg2rad(elev_deg);

[r_Ecd(1),r_Ecd(2),r_Ecd(3)] = sph2cart(az,elev,r);

B_E = getMagField(r_Ecd,magmode);

B_E = round(B_E/2e-9)*2e-9;

fprintf(fileID,’{%d,’,fixedpt_rconst(B_E(1)));

fprintf(fileID,’%d,’,fixedpt_rconst(B_E(2)));

fprintf(fileID,’%d}’,fixedpt_rconst(B_E(3)));

if elev_deg ~= 90

fprintf(fileID,’,’);

end

fprintf(fileID,’\n’);

end

fprintf(fileID,’}’);

if az_deg ~= 180

fprintf(fileID,’,’);

end

fprintf(fileID,’\n’);

end

fprintf(fileID,’};’);

fclose(fileID);

function [B_E] = getMagField(r_E,varargin)
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% This function returns the magnetic field in ECEF at the given position

% r_E in km in ECEF

%% Convert the ECEF position to spherical coordinates

r_E = r_E*1000; % first a conversion to meters

[elong,nlat,r] = cart2sph(r_E(1),r_E(2),r_E(3));

%% Check varargin

if isempty(varargin)

varargin{1} = ’dipole’;

end

%% Select the right model

switch varargin{1}

case ’dipole’

mu_0 = 4*pi*10^-7; % magnetic permeability of free space [kg m A^-2

s^-2]

m = 7.94*10^22; % Earth’s best fit dipole moment [A m^2]

B0 = mu_0*m/(4*pi*r^3);

B_r = 2*B0*cos(.5*pi-nlat);

B_t = B0*sin(.5*pi-nlat);

B_E(1,1) = (B_r*cos(nlat)-B_t*sin(nlat))*cos(elong);

B_E(2,1) = (B_r*cos(nlat)-B_t*sin(nlat))*sin(elong);

B_E(3,1) = B_r*sin(nlat)+B_t*cos(nlat);

case ’IGRF’

B_tpr = igrf11syn(2010,r/1000,rad2deg(nlat),rad2deg(elong))*10^-9;

B_rpt = [B_tpr(3);B_tpr(2);B_tpr(1)];

C = get3RotMatrix([nlat;-elong;0],’231’);

B_E = C*B_rpt;

case ’wrldmagm’

B_E = wrldmagm(r/1000-6371.2, nlat, elong, 2010)*10^-9;

otherwise

warning(’Unexpected Magnetic model. Nothing returned...’);

end

end

function [outputArg1] = fixedpt_rconst(inputArg1)

%fixedpt_rconst Summary of this function goes here

%converts from double to fixed point F28(4.28)

if (inputArg1) >= 0

internal = bitsll(1,28) + 0.5;

else

internal = bitsll(1,28) - 0.5;

end

outputArg1= int32((inputArg1) * internal);
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