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a b s t r a c t 

A passenger centric timetable is such a timetable that the satisfaction of the passengers 

is maximized. However, these timetables only maximize the probability of a passenger to 

take the train, but provide no insight on the actual choices of the passengers. Therefore, in 

this manuscript we replace the deterministic passenger satisfaction function with a prob- 

abilistic demand forecasting model inside of the passenger centric train timetable design. 

The actual forecasts lead to a realistic train occupation. Knowing the train occupation, we 

can estimate the revenue and to use pricing as a mobility management to further improve 

the level-of-service. We use a logit model that we calibrate to reflect the known demand 

elasticities. We further include a competing operator as an opt-out option for the passen- 

gers. Subsequently, we integrate the passenger centric train timetabling problem with a 

ticket pricing problem. We solve the elastic passenger centric train timetabling problem 

for various types of timetables using a simulated annealing heuristic on a case study of 

Israeli Railways. The results of our case study show that the generated revenues can be 

increased by up to 15% when taking into account the passengers’ behavior along with a 

specific pricing scheme. This study further confirms the advantages of hybrid cyclicity. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

From economic theory, it is well known that the demand is influenced by the supply. In the railway context: Different

timetables would attract different passengers, as they provide different levels of services. Therefore, it is important to include

the passenger demand and its elasticity in the timetable design. This is particularly crucial nowadays, when the railway

market is open for competition. This has lead to a release of the government’s subsidies and the operators thus face a

pressure to be profitable by increasing their revenues. 

The passenger demand itself can be predicted through the choices that the passengers face: Mode, route, operator, ser-

vice and departure time. In reality, the passengers make an integrated decision that is split into the 4-step procedure due

to its complexity. At first, the passengers decide on their mode of transport, i.e. car, bus, train, etc. Subsequently, they decide
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on their exact path within the selected mode, e.g. the exact trains and interchanges. As transportation is offered by several

providers, the passengers can select which one to take and in what kind of service, e.g. first class with a private operator,

having a club card of a specific operator, etc. Lastly, the departure time choice of the passengers is affected by the trip pur-

pose (commuting to be on time at work, leisure to be on time for cinema for instance, etc. ). This choice is the so called time

dependency of the demand. The mode choice and the operator choice are especially important when optimizing a service.

If not included, the passengers are captive in the system and such optimization would lead to unrealistic performance ( i.e.

departure times leading to a lower ridership than anticipated). 

A train timetable is defined as a set of arrival and departure times of each train from each of its stopping stations and

it is the output of the Train Timetabling Problem (TTP). Typically, the TTP models use the simplifying assumption that the

passengers always take their shortest paths (see Caprara et al., 2002 for instance) and omit the demand from the problem.

The issue of this approach is that being a shortest path is dependent on the actual departure time. Therefore, recent models

relax this assumption and include the demand in the optimization (see Schmidt and Schöbel, 2015 for instance). However,

these models only increase the attractiveness of a timetable and cannot estimate the realized demand and the underlying

revenue. In order to do so, a demand forecasting model is needed. One of such models, integrating the train timetabling

and the demand forecast, is presented by Cordone and Redaelli (2011) . However, they only consider the mode choice and

omit the other choices. Moreover, they consider the timetable only as a single cycle within a cyclic timetable. In the model

of Espinosa-Aranda et al. (2015) , the mode choice is combined with a departure time choice. But their application involves

a single high speed railway line and lacks the network dimension ( i.e. the route choice). 

In this paper, we extend and adjust the Passenger Centric Train Timetabling Problem (proposed by Robenek et al., 2016 ),

that can design a timetable for a whole railway network, with a demand forecasting model. We denote the new model

as the Elastic Passenger Centric Train Timetabling Problem (EPCTTP). The objective of the new optimization framework is

to maximize the Train Operating Company’s (TOC) revenue. The framework is using a discrete choice model to predict the

demand throughout the timetable design process. We assume prior solving of the mode choice model and we solve the route

choice model along with the departure time choice and the operator choice. The following attributes have influence on the

passengers’ choices: The travel time, the desired arrival time to their destinations (the time dependency), the ticket fare and

the capacity of the trains. We include a universal option of opting out into the passengers’ choice set(s), in order to avoid

their captivity. The demand elasticity and other parameters of the discrete choice model are calibrated to known values

from the literature and provide a “ready to use” framework. It can design cyclic, non-cyclic and hybrid cyclic timetables. The

resulted timetables increase the ridership through accounting for the passengers’ wishes and therefore, they increase the

operator’s revenue as well. We test this approach on a case study of Israeli Railways. 

In addition to the above, we further relax the ticket fare to be a decision variable. Such approach leads to a better

utilization of the TOC’s fleet and to a further increase in its revenue: Shift passengers from overcrowded trains to under-used

trains, attract back the passengers, who would otherwise opt-out, etc. The resulting framework combines pricing problem

with an integrated demand-supply timetable design. It differs from the existing literature, where the pricing and revenue

management is performed on a fixed timetable. 

The manuscript is structured as follows: Section 2 presents a survey of the literature, depicting the demand interaction

in the current timetabling models, along with the literature on railway demand forecasting as well as pricing and revenue

management in railways. Subsequently, we propose a demand forecasting model in Section 3 , that is further incorporated

into a train timetable optimization problem described informally in Section 4 . The insight, about the methodology of how

to solve such integrated demand-supply optimization framework, is given in Section 5 . The benefits and the impacts of the

framework are shown on a case study of Israeli Railways in Section 6 . We finalize the paper by drawing some conclusions

and discussion of possible extensions in Section 7 . 

2. Literature review 

Since the aim of this study is to introduce the demand and its elasticity into the train timetabling, the focus of our liter-

ature review is on the passenger demand representation in the railway planning literature. At first, we present the demand

representations used in the train timetabling problems ( Section 2.1 ) and continue with the various demand forecasting tech-

niques used in the railway context ( Section 2.2 ). Lastly, we discuss how some of the forecasting techniques are used in the

revenue management and ticket pricing within the railways ( Section 2.3 ). 

2.1. Demand representations 

The most basic representation of the railway demand is an Origin-Destination (OD) matrix. Such a matrix is typically

used in the Line Planning Problem (LPP) to determine the frequency of a train line ( Schöbel, 2012 ). However, one of the

recent models by Canca et al. (2016a) considers the actual paths of the passengers while minimizing their travel time. 

Once the lines are designed, the Train Timetabling Problem (TTP) assigns a departure time to each train subject to the

operational constraints. Two versions of this problem exist: Cyclic and non-cyclic. In the cyclic TTP ( Peeters, 2003; Zhou

et al., 2017; Sparing and Goverde, 2017 , for instance), the main focus is on the cyclicity constraints, whereas in the non-

cyclic TTP ( Caprara et al., 2002 ) the departure times do not have to follow any specific pattern. Traditionally, both problems
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assume that the passengers follow the shortest path. Therefore, there is no need to include the route choice dimension

explicitly and the optimization is performed on the attributes of the shortest paths between the ODs. 

Recently, this assumption has been relaxed and the passengers can choose from several paths while minimizing their

total travel time: Refer to Borndörfer et al. (2017) for the cyclic TTP and Schmidt and Schöbel (2015) for the non-cyclic

TTP. However, this approach can be further improved by maximizing the passenger satisfaction instead. The passenger sat-

isfaction better reflects the human behavior. It combines the in-vehicle-time, the waiting time, the number of transfers and

the desired arrival time to the destination of a given path, each weighted by the respective human perception. Such ap-

proach is called the Passenger Centric Train Timetabling Problem and it can design both: Cyclic and non-cyclic timetables

( Robenek et al., 2016 ) or a recently proposed hybrid cyclic timetable by Robenek et al. (2017) (for a further description of

this timetable refer to Section 4 ). 

A different approach is to use the passenger arrival rates to their origin stations, in order to design a timetable ( Luethi

et al., 2007; Niu and Zhou, 2013; Barrena et al., 2014a; 2014b; Sun et al., 2014; Wang et al., 2015; Yin et al., 2016; 2017 ).

Similarly, Canca et al. (2014) use the analytical approach based on the passenger arrival rates. However, this method is only

suitable for high frequency services such as the public transit. 

2.2. Demand forecasting 

In order to forecast the demand, its behavior in form of the decisions needs to be modeled. As mentioned before, the

main decisions are: Mode, route, operator, service and departure time choice. One of the first forecasting models has been

introduced by Wardman (1997) . He shows a direct demand model taking into account the mode competition (between rail

and car) and the service offer (cost and service quality). He further extends this model with additional attributes such as

car ownership, car travel time and fuel cost in ( Wardman, 2006 ). Other models are investigated by Wardman et al. (2007) .

The main focus is on the generalized cost, i.e. service choice. All of these models are in the settings of the British railway

market. 

Another group of demand forecasting models focuses on high speed rail. The case studies involve Italy (integrated de-

mand model combining demand growth, mode choice and induced demand by Ben-Akiva et al. (2010) ), China (hybrid

approach combining empirical mode decomposition and gray support vector machine by Jiang et al. (2014) ) and Sweden

(nested logit model for mode choice by Börjesson, 2014 ), among others. A recent survey on a high speed railway demand

forecasting models is presented by Börjesson (2014) . 

Lastly, Canca et al. (2016b) use mode choice based on the generalized cost in order to integrate and to improve the

network design with line planning. 

Remark. All above models only forecast the demand and do not combine it with a timetabling problem. The supply-

demand interaction is a fairly new topic in the timetabling context. Two applications of a train timetabling problem in-

corporating a mode choice forecast exist: Cordone and Redaelli (2011) and Espinosa-Aranda et al. (2015) . Cordone and

Redaelli (2011) maximize the demand captured by a cyclic timetable using a logit model as a mode choice and Espinosa-

Aranda et al. (2015) maximize the profit of a non-cyclic timetable using a constrained nested multinomial logit model as a

mode choice combined with a departure time choice. 

2.3. Revenue management and pricing 

Typically, the demand forecasting models are used in a combination with the Revenue Management (RM) and pricing

problems. The aim of these problems is to maximize the revenue while optimizing the prices based on the demand forecasts.

In the (railway) pricing problems, the strategy is to adjust the ticket prices based on a given timetable. The key at-

tributes justifying the price variation are space (busy parts of the network vs. under-used parts of the network) and time

of the day (peak hours vs. off-peak hours). One of the first frameworks to analyze different pricing policies was introduced

by Nuzzolo et al. (20 0 0) . They present a nested logit model that takes into account elementary trains, instead of the fre-

quencies. The model combines route choice, departure time choice and service choice. However, an empirical study of the

effects of pricing policies and demand elasticities on a service choice in the context of Dutch Railways ( van Vuuren, 2002 )

suggests that the peak hour demand is rather inelastic. This makes the strategy of higher prices during peak hours more

effective than a price reduction during the off-peaks ( Whelan and Johnson, 2004 ). This conclusion was found in the context

of avoiding train overcrowding using an incremental logit model to do the forecasts. The model is predicting route choice,

departure time choice and service choice. A similar goal, of flattening the demand throughout the service, is pursued by

Li et al. (2006) . They propose several pricing schemes combining spatial and time attributes. The passenger behavior is

mimicked through activity-based microsimulation that takes into account mode choice, route choice and service choice. 

The RM models, on the other hand, focus more on the price adjustments related to the demographics of the population.

The key attributes justifying the price variation are the time of the purchase, which is related to the trip purpose (leisure

travelers buy their tickets early vs. business travelers, who buy last minute tickets), class (1st class vs. 2nd class), and others.

For a more detailed overview discussing the principal differences in RM of airlines and railways refer to ( Armstrong and

Meissner, 2010 ). 

Overall, the literature on RM in railways is scarce and focuses solely on the price variation over the time of the pur-

chase. A quantitative analysis on the pricing suggestions for Indian Railways is shown by Bharill and Rangaraj (2008) and
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Fig. 1. Decision process of a traveler. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Hetrakul and Cirillo (2014) , a multinomial logit and latent class models are tested within the pricing optimization frame-

work. Both focus on service choice. 

2.4. Contribution 

In this paper, we present a model that combines train timetabling, ticket pricing and passenger assignment model. Our

goal is to find the desirable departure time of the trains as well as their ticket price by using probabilistic passenger assign-

ment model. We focus on double-track railway in a network with high passenger density. The problem has application in

inter-city or regional railways. 

3. Demand model 

From the demand modeling perspective, the decision of travelers are hierarchically modeled as a mode choice and route

choice. Fig. 1 presents the steps of modeling travelers’ demand. 

In this problem, we assume that a mode choice model has been already solved to predict the railway market share.

Therefore, the train operating company wishes to maximize its profit within the maximum potential demand that can be

captured by the railway company. The potential demand can be either captured by the train operating company or its

competitors. In the later case, either they use the service provided by the competitor or leave the system. 

A passenger group is characterized by an Origin-Destination (OD) pair i ∈ I and a desired arrival time t ∈ T i at destination.

The actual value of the group’s desired arrival time is represented by the parameter a it in the set T i (in our model, time

is discretized in minutes started from the mid-night as expressed as a set T̄ = { 1 , . . . , H} in which H is the length of the

planning horizon). Therefore, the combination of indices ( i, t ) forms a unique group of passengers of size n it ( i.e. number of

passengers in the group). For example, assume that there are 5 groups of passengers that wish to travel between the OD

pair i = 1 . If travelers from the third group wishes to arrive at 8 a.m., the parameter a 13 is set to 480. 

Since we assume that the line planning problem has been solved a priori, a set of lines as well as their frequencies are

known to the operator. Lines are defined by the set � ∈ L . A line is an ordered sequence of stopping stations, that includes

dwell times at the stations and travel time in between the stations. Each line also consists a set of segments s ∈ S � . A segment

is a part of infrastructure, where a train (line) does not stop. Finally, a train is defined by its line � ∈ L and its position within

the sequence of available trains v ∈ V 

� per line � . 

For each OD pair i , first we determine the set of routes (we note it by ˆ P i ) as a combination of lines connecting the origin

to the destination. Thereafter, a set of paths is defined as a product of routes and arrival times ( i.e. P i = 

ˆ P i × T ). Given the

operational constraints (capacity) of the model this set might be reduced for specific groups: P it ⊆ P i . 

To model the number of passengers captured by train competitors, we include opt-out options in the set of paths P i .

Since we assume a prior solving of the mode choice model, a passenger can exit the system only by usage of another TOC.

If a competing operator exists, it is sufficient to add his itineraries inside of the set P i . However, since the existence of

a competition is not yet wide spread, we propose the following assumption: Given the nature of the railway competition

(fighting for the same finite demand), the OD pairs served, the departure times and the prices of the competing operatos

are typically very similar, i.e. the opt-out option for every passenger group is the current shortest path (that has the lowest

value of the in-vehicle time and has zero waiting time in the transfer and arrives to the passengers’ destination exactly at
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their desired arrival time) and its underlying ticket fare. Such an assumption is realistic and allows to explore the ”worst”

case scenario. 

Consider the example, where going from point A to point B takes one hour with one change of ten minutes, using the

shortest path. The opt-out option would be set to this time, therefore, the TOC cannot offer a much worse path, otherwise

the passenger would leave the system through the opt-out option. 

When faced with a set of discrete path alternatives, it is assumed that a passenger chooses the one that yields her

maximum level of utility ( Ben-Akiva and Lerman, 1985 ). For a traveler in group ( i, t ), utility U for a path p ∈ P it is defined

as: 

U 

p 
it 

= V p 
it 

+ ε p 
it 

(1)

The deterministic component V of the utility function is a function of observable attributes, i.e. relevant variables that

describe a choice alternative and whose levels cause the expected level of utility. Note that we don’t consider any source

of individual heterogeneity outside of the error term ε. In our framework, only attributes of alternatives enter the utility

function. For a group ( i, t ), all passengers face the same levels of these attributes: V p is only function of ( i, t ). We also

assume that V p 
it 

is defined as a linear combination of the following travel attributes: 

• In-vehicle-time r 
p 
i 

– is the total time spent on board of trains in path p . 

• Waiting time w 

p 
it 

– is the total time passengers spend waiting in transferring stations. 
• Number of transfers u p 

• Schedule passenger delay – indicates the time dependency of passenger demand and drives the departure time choice.

Given the desired arrival time a it to the destination of passenger group ( i, t ), it can either be on time (equal to zero),

early or late ( ̄a it being the actual arrival time). 
• Early – δp 

it 
= max (a it − ā it , 0) 

• Late – γ p 
it 

= max (0 , ā it − a it ) 

The deterministic component is therefore defined as follows: 

V p 
it 

= −β ′ 
V · r p 

i 
+ β ′ 

W 

· w 

p 
it 

+ β ′ 
T · u 

p + β ′ 
E · δp 

it 
+ β ′ 

L · γ p 
it 

(2)

The parameters β weigh the different attributes. They model sensitivity of the passengers to the change in the related

attributes. Note that they are considered to be the same across individuals (homogeneity assumptions). The values of the βs

have to be estimated from data and have the following signs: β ′ 
V > 0 , β ′ 

W 

< 0 , β ′ 
T < 0 , β ′ 

E < 0 , and β ′ 
L < 0 . In this research,

we use values of βs from the literature. To do so, we rescale the utility function by −β ′ 
V 

in order to convert the utility into

travel time units. Indeed, the β parameters themselves are not directly transferable, since they include the scale parameter

of the error term. The scale parameter cancels out when ratios of parameters are considered, so the values of these ratios

are comparable from one model to the next. The values of the parameters are as follows: 

• βW 

= β ′ 
W 

/β ′ 
V 

is the substitution rate between waiting time and in-vehicle-time per minute. Its value is equal to −2.5

( Wardman, 2004 ). 
• βT = β ′ 

T /β
′ 
V is the penalty for having to change a train, expressed as an additional in-vehicle-time per transfer. Its value

is equal to −10 min (as used by Dutch Railways de Keizer et al., 2012 ). 
• βE = β ′ 

E 
/β ′ 

V 
is the willingness to arrive to the destination earlier then the desired arrival time, in order to reduce the

in-vehicle-time. As shown in ( Small, 1982 ), the travelers are willing to shift their arrival time by 1 to 2 min earlier, if it

would save them 1 min of the in-vehicle-time. We consider here the highest value and set βE to −0.5. 
• βL = β ′ 

L 
/β ′ 

V 
is the willingness to arrive to the destination later then the desired arrival time, in order to reduce the in-

vehicle-time. As shown in ( Small, 1982 ), the travelers are willing to shift their arrival time by 1/3 to 1 min later, if it

would save them 1 min of in-vehicle-time. We consider here the highest value and set βL to −1. 

By replacing the original βs in Eq. (2) with the estimated ones ( i.e. division by −β ′ 
V 

), we obtain function expressed in

minutes. This concept is also known as the generalized time T , that is supposed to be minimized by the travelers: 

T p 
it 

= r p 
i 

− βW 

· w 

p 
it 

− βT · u 

p − βE · δp 
it 

− βL · γ p 
it 

[ min ] (3)

Since different paths between an origin and a destination may result in different fares, we further monetarize the utility,

before we add the fare attribute. The monetarization is done by multiplying the utility by the Value-Of-Time (VOT). The VOT

is the willingness-to-pay for travel time savings. The VOT of commuters in Israel (for instance) as of the year 2012 is 21.12

New Israeli Shekel (NIS)/hour (the updated value was given to us by the author of Shiftan et al., 2008 ). It basically means

that the Israeli travelers are willing to pay in average 21.12 NIS to save one hour of travel time. Converted into the minutes,

we get 0.352 NIS/min. By using the VOT, we obtain the generalized cost C in monetary units and we can simply add the

fare f p associated to the itinerary p into its formula: 

C p 
it 

= V OT · T p 
it 

+ f p [ monetary ] (4)

Since in the utility theory, the travelers are maximizing their utility and all of the attributes in the generalized cost are

making the alternatives less attractive, we need to multiply the Eq. (4) by minus one. Indeed the higher the generalized cost

is, the lower the value of the utility is. This concept is also known as the passenger satisfaction S: 

S p 
it 

= (−1) · C p 
it 

[ monetary ] (5)



24 T. Robenek et al. / Transportation Research Part B 111 (2018) 19–38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The passenger satisfaction is now the observable part of the utility function ( V = S). Assuming that the unobservable

part of the utility function εp 
it 
, is independently and identically distributed according to the Extreme Value distribution, the

probability P r 
p 
it 

of a passenger group ( i, t ) selecting a path p is defined as a logit choice probability: 

P r p 
it 
(w 

p 
it 
, δp 

it 
, γ p 

it 
, f p | d � v ) = 

e μS p 
it 

∑ 

p ′ ∈ P it e 
μS p ′ 

it 

(6) 

The probability Pr is a function of endogenous and exogenous variables. The endogenous ones being the waiting time,

the schedule passenger delay and the fare, and the exogenous variable being the timetable (modeled through decisions

on departure times d � v ). The number of transfers and the in-vehicle-time are constant in the itinerary. They are included

inside of the term S . μ is a scale parameter. This parameter is related to the variance of ε in Eq. (1) . It indirectly controls

the elasticity of the passenger demand. A last step in calibrating the parameters of the choice probabilities is to find the

appropriate value of the scale parameter μ. It can be done by computing the elasticity of the total demand. The aggregate

direct point elasticity related to the changes in the generalized cost is given as: 

E = 

∑ 

it 

∑ 

p∈ P it 

(
∂ Pr p 

it 

∂S p 
it 

· S p 
it 

Pr p 
it 

· P r p 
it 

· n it 

)
∑ 

it 

∑ 

p ′ ∈ P it P r 
p ′ 
it 

· n it 

(7) 

Upon solving of the derivatives, this transforms into: 

E = 

∑ 

it 

∑ 

p∈ P it 
(
1 − P r p 

it 

)
· μ · P r p 

it 
· n it ∑ 

it 

∑ 

p ′ ∈ P it P r 
p ′ 
it 

· n it 

(8) 

According to Whelan and Johnson (2004) , the value of the elasticity for the railway passenger demand with respect to

the fare and the generalized cost is E = −0 . 58 . Therefore, the value of μ can be calibrated by solving Eq. (8) for any case

study. In our application, we have calibrated the value of μ to 0.06. 

Remark. In this problem, we use probabilistic passenger assignment based on a Multinomial Logit (MNL) model. MNL holds

IIA condition (Indepence of Irrelevant Alternatives). This property is a well known and well documented limitation of such

models in route choice problems due to the physical overlap of the paths ( Ben-Akiva and Bierlaire, 2003 ). In this paper, as

our focus is on the methodological integration, a Multinomial logit model has been deemed appropriate for the proof-of-

concept. In real case study, with real demand data (if they available), more advanced models (e.g. path-size logit) could be

used to correct the issue. 

4. Problem definition 

In this section, we present the Elastic Passenger Centric Train Timetabling Problem (EPCTTP) which is an extension of

the PCTTP model defined by Robenek et al. (2016) . They showed that the major improvement of this framework is in the

networks with high density of the passengers. These networks generally operate with double-track railways. Moreover, our

interest is more on studying the problem for regional or inter-city rails. The presented approach can also be applied to other

railway services as long as it satisfies the underlying assumptions. 

The aim of the EPCTTP is to design a desirable timetable maximizing the TOC’s revenue accounting for the passenger

forecasts (probabilistic demand). Whereas the aim of the original PCTTP was to design a desirable timetable maximizing

the overall passenger satisfaction (without the fare), thus securing the social optimum (the actual choice of the passengers

were unknown, i.e. the demand was deterministic). Moreover, the passenger assignment in the PCTTP was from the central

planner’s point-of-view, whereas the EPCTTP combines the First Come First Serve (FCFS) policy with the revenue maximiza-

tion (in the case of a tie). We compare the performance of the two models in Section 6.3 . Here we should note that in

desirable timetable, one is interested to know the most suitable departure time of the trains. The desirable timetable can

then be adjusted in later planning stage to assure track capacity which determines the “actual” timetable. Interested readers

are referred to Caprara et al. (2002) to determine the actual timetable based on the desirable one. Therefore, in this paper,

we assume that running time and dwell times are fixed. This way we allow higher level of flexibility to the approach used

in the later stage of timetabling. 

This section provides only the formal definition of the problem. For the reader’s convenience, we organize all the math-

ematical notation in Table 6 in Appendix C . The mathematical formulation of the EPCTTP can be found in Appendix C as

well. 

A train is defined by its line � ∈ L, i.e. the set of stations that it serves. Each line � has a train frequency and therefore, a

specific train is given by a combination of indices ( � , v ), where v ∈ V 

� is the train’s position within the set of available trains

of the line � . Note, that in some literature, the term train refers to the physical rolling stock. Therefore, the term service

might be used instead for the set v ∈ V 

� . Both lines and frequencies are given by the Line Planning Problem (LPP). Moreover,

we assume that the line frequencies obtained from line planning problem are feasible ( i.e. at least one actual timetable can

be constructed respecting line frequencies) 
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In this framework a line is uni-directional, i.e trains in the other direction are serving a conceptually different line A

timetable is defined as a set of arrival and departure times of each train ( � , v ). Since the travel times r 
p 
i 

consisting in dwell

times and running times in between stations are deterministic, it is sufficient to decide only on the departure time d � v of

each train ( � , v ) from its origin station. The problem can design three types of timetable: Non-cyclic (by default), cyclic

(imposing cyclicity constraints) and hybrid cyclic (imposing hybrid cyclicity constraints). 

Based on the set of trains, the set of paths P i for each OD pair i is given. Each passenger group is having its own set

of available paths based on the original one: P it ⊆ P i . Any path can consist in several consecutive trains (limited to 3 in this

study), in the order in which they are used, i.e. a passenger takes the first train and then transfers to its second train, etc. If a

transfer is not possible (destination train departs before the arrival of the origin train), the path is removed from the set P it .

The set of all time-independent paths is pre-processed and can be created using a method which is described in Appendix A .

When making a transfer from one train to another, a minimum transfer time m is always secured. Any additional time spent

in the transferring stations is counted as a waiting time. The set of paths contains the opt-out option which is equal to the

shortest path, where the passengers do not experience any waiting time and arrive to their destinations exactly on their

desired arrival time a it . 

Note that the problem is designed to be ran by a single TOC to optimize his/her timetables. However, in case that a

competing operator exists, his/her schedule can be included in the set of paths. In such a case, the departure times need to

be fixed to its values as well as the ticket prices. The revenue generated by the competitor’s service needs to be set to zero.

The passengers are assigned to trains through the demand forecasting model presented in the previous section. The

probability of a passenger group ( i, t ) selecting a path p is given by Eq. (6) . The groups of passengers can be split according

to the probabilities of each path. Since the passengers can enter or leave a train at any of its stopping stations, each train

is further decomposed into segments s ∈ S � . The occupation o s � v of any train ( � , v ) on any of its segments s cannot exceed

its capacity W . The problem assumes a homogenous fleet of trains, but it can be easily adapted to a heterogenous one. If a

train reaches a capacity on some of its segments, all the paths containing this segment of this train of leftover passengers

are removed from their respective choice sets. The passengers are assigned to trains based on their probabilities and the

FCFS policy. If there is a tie among the passengers, then the ones who bring more revenue are assigned on the train (in line

with the objective function of revenue maximization). 

The revenue of a TOC is calculated as a function of the collected fares f s � v for each train on each of its segments (multi-

plied by the train occupation). The fare itself is a decision variable and serves as an instrument to either flatten the demand,

increase the revenue or to attract further passengers. The total fare f p is a sum of all fares on all segments of all trains f s � v .

In practice, the operators use various fare systems. Eq. (4) represents the generalized cost (within the utility function) asso-

ciated with each passenger and their choices. As this function is in monetary units and all information about the journey is

relayed through the path and the passenger, it can be used for any fare structure, as long as it can be expressed as the fare

structure associated to each path. 

In this problem, we assume that the train operating company has to run a given number of identical trains (obtained

by frequency setting in line planning problem). In addition, the average operating cost of the train (per km per day) is also

given. Therefore, the operating cost associated to each timetable is a constant value in our model and can be removed from

the objective function. In other words, by maximizing the revenue one can determine the maximum profit. 

The above model would produce a non-cyclic timetable. However, by adding some additional constraints, the model can

produce any type of a timetable. In this manuscript, we consider two additional timetable types: Cyclic and hybrid cyclic. 

Cyclic timetable. The cyclicity originates from the Periodic Event Scheduling Problem (PESP) first defined by Serafini and

Ukovich (1989) . The PESP secures that a set of events is scheduled in equally spaced intervals. In the railway context, the

departure times of the trains on the same line are scheduled in cycles of size c . Typical value of c is 60 min leading to a

clock-faced timetable. Such a measure leads to a better memorability of a timetable by the passengers. To obtain a cyclic

timetable, the below constraints need to be included in the EPCTTP: 

d � v − d � v −1 = c · z � v , ∀ � ∈ L, ∀ v ∈ V 

� : v > 1 , (9)

z � v ∈ N 

+ , ∀ � ∈ L, ∀ v ∈ V 

� . (10)

Constraints (9) secure that the departure time of two consecutive trains v and v − 1 of each line � are spaced in the

multiples z � v of cycles c . The domain constraints (10) verify that these multiples are non-negative natural numbers. 

Hybrid cyclic timetable. The cyclic timetable, when compared to other types of timetable, might be too restrictive and

in fact it may lead to worse solutions in terms of the passenger satisfaction. Instead of using a fully cyclic timetable,

Robenek et al. (2017) propose a novel hybrid cyclic timetable combining the benefits of both cyclic and non-cyclic timeta-

bles. They show that the novel timetable can achieve similar performance as the non-cyclic one in terms of the passenger

satisfaction. 

Overall, the aim of the hybrid cyclic timetable is to decide on the ratio between the cyclic and the non-cyclic trains. It

discretizes the planning horizon H into a set of unique cycles k ∈ K : K = H/c. The cyclic and non-cyclic trains have to follow

the below rules for each cycle k per each line: 

• Any cycle k can contain no train 
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• Any cycle k can contain at maximum one cyclic train 

• Any cycle k can contain one or more non-cyclic trains, only if there is a cyclic train present inside the k th cycle 

From the above rules, we define additional binary decision variables: q � v and y � 
k 
. q variable indicates if a train ( � , v ) is a

cyclic one ( = 1) or a non-cyclic one ( = 0). y variable indicates if a line � is having a cyclic train scheduled in the cycle k ( = 1),

0 otherwise. 

5. Solution algorithm 

The EPCTTP formulation has non-linear constrains resulted from using the discrete choice model. In literature, the non-

linear logit model can be linearly approximated by using piece-wise linear constraints ( Marín and García-Ródenas, 2009 ).

However, due to the complexity involved in designing the timetable and our wish to solve the problem for large instances,

we propose a heuristic algorithm which directly handles non-linear constraints. Given that the original formulation of the

PCTTP has been solved successfully with a Simulated Annealing (SA) heuristic by Robenek et al. (2017) , we use the same

algorithm with some changes to reflect the specific features of the EPCTTP formulation. The changes are related to the

value function (revenue maximization based on probabilities instead of deterministic passenger satisfaction maximization), 

the passenger assignment (user optimum to reflect better passenger behavior instead of system optimum) and new neigh-

borhood moves (for the pricing of the tickets). Even though the heuristic has been validated as compared to CPLEX in

( Robenek et al., 2017 ), its performance is not always guaranteed. In this manuscript, the results of the heuristic are later

compared to a benchmark of a real case study. 

Algorithm 1: Simulated annealing. 

Data : x c , J, ρ , T c , T f 
Result : Best timetable x ∗

1 begin 

2 Initialize 

3 repeat 

4 reset operators 

5 for j ∈ J do 

6 select a neighborhood move 

7 impose this move on x c and obtain x ′ c 
8 perform passenger assignment on x ′ c 
9 apply acceptance criterion on x ′ c 

10 update weights ρ

11 cooling of the T c 

12 until T c ≤ T f 

The Algorithm 1 shows the general pseudo-code of the heuristic. The SA heuristic was first defined by

Kirkpatrick et al. (1983) . The algorithm takes as an input an initial solution x 0 that consists in the departure times of each

train, and the initial fares per line and per segment. Since we solve this heuristic for several types of timetables (cyclic,

hybrid cyclic and non-cyclic), an initial feasible timetable for any type of these timetables is any cyclic timetable. In our

case study, we use the currently operated (cyclic) timetable of Israeli Railways. Similarly for the fares: We use the current

prices of Israeli Railways. If fares are not available, one can assign ad-hoc values proportional to the length of each segment.

The heuristic starts off with an initial temperature T 0 that has been previously calibrated to be a function of the value of

the initial solution f ( x 0 ) as follows: T 0 = 10 −5 · f (x 0 ) . This temperature is gradually cooled down up until the final temper-

ature T f is reached. The cooling scheme has been calibrated to be 5% of the initial temperature T 0 and a standard value of

the final temperature T f of 0 has been previously used. 

For each temperature, the algorithm performs J = 10 0 0 iterations (previous calibration). In each iteration j , the current

solution x c is adjusted with one of the several neighborhood moves. Two main categories of neighborhoods exist: Fare

adjusting and timetable adjusting. 

The fare adjusting neighborhood consists in a single move: A train ( � , v ) is randomly selected through subsequent uni-

form distributions U(1 , | L | ) , U(1 , | V � | ) . Since fare is related to a segment, this move also selects a random segment crossed

by the chosen train according to U(1 , | S � | ) . The fare of this segment can be either increased or decreased based on a uniform

probability of 50:50%. The actual fare is then adjusted by a value between 1 and 5 monetary units decided by the uniform

distribution U(1 , 5) . 

The timetable adjusting neighborhood(s) consists in several moves dependent on the type of the timetable solved. The

overview of the timetable specific moves can be found in Table 1 . The columns represent the moves per timetable type and

the rows represent a stage of a move. Only the cells with a grey background constitute a move. The last column represents

the underlying distributions from which to draw randomly, in order to obtain the respective attribute’s value. 
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Table 1 

Overview of the neighborhood moves by the type of a timetable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A timetable move is imposed on the current solution x c in 3 steps: Selection, modification and application. The selection

step serves to identify that part of the current solution x c that is to be modified. The modification step serves to identify

new value(s) for the selected part of the solution. The application step effectuates the change. 

In the selection stage , two entities can be selected: A specific train ( � , v ) or the whole line � . The selection of a specific

train might be conditioned by its type ( q � v = 1 means a cyclic train needs to be selected, q � v = 0 means a non-cyclic train

needs to be selected). If no condition is specified, any train can be selected. When selecting a whole line, no conditioning is

needed. 

The aim of the modification is to find a new value for one of the 3 attributes. The concerned attributes are: The departure

time d � v , the modulo remainder d � v mod c and the k th cycle of a train. The modulo attribute represents the modulo time

within any cycle. For instance, when the cycle c is equal to one hour and the departure time of a train is 5:45, then the

modulo time is 45 min. This time is the same among all cyclic trains of the same line. The k th cycle is the cycle in which

the train is departing. For the previous example of a train departing at 5:45, the k = 5 . 

The application of the modification is always performed on the pre-selected entity. However, its application might be

conditioned. Some applications are made only to the cyclic trains of the given line ( ∀ q � v = 1 ). Other applications are condi-

tioned that the new cycle k does not already contain a cyclic train ( y � 
k 

= 0 ) or that the new departure time d � v is in a cycle

that does already contain a cyclic train ( y � 
d � v ) /c 

= 1 ). If the newly generated values of attributes fail to fulfill the last two

conditions (when they are required), the modification is repeated (until they do). 

For illustration, consider the first move of the hybrid cyclic timetable: At first a train is selected by drawing the line �

from U(1 , | L | ) and subsequently drawing the v from U(1 , | V � | ) . The drawing from the distribution(s) is repeated until the

condition q � v = 0 is satisfied. Hence, a non-cyclic train is selected. In the second phase, a new departure time d � v of this

train is drawn from U(0 , H − 1) . In the third phase, this new departure time is applied given that it is in the cycle where

there is a cyclic train scheduled ( y � 
d � v /c 

= 1 ). Otherwise the modification phase is repeated until this condition is respected. 

Each neighborhood move is assigned a weight ρ that is initialized to 1 at each new temperature (in order to avoid

one operator dominating the others). In each iteration, a neighborhood move is selected using a roulette wheel mechanism

based on the current weights ρ of all moves. The values of ρs are updated based on their performance with respect to the

acceptance criteria of the new solution x c ′ : 

• If f (x c ′ ) ≥ f (x ∗) → ρ = ρ + 3 
• If f (x c ′ ) ≥ f (x c ) → ρ = ρ + 2 
• If f (x c ′ ) < f (x c ) and the new solution is accepted with a probability r < exp(−(x c − x c ′ ) /T c ) , where r is drawn from

U(0 , 1) , then ρ = ρ + 1 

Once a new solution x ′ c is obtained (by applying a selected move), its revenue is calculated using the passenger assign-

ment in Algorithm 2 . Note, that the exhaustive list of routes (i.e. ˆ P i has been generated only once in the beginning of the

heuristic as described in Appendix A. This set contains also the opt-out option. During the timetable adjustment phase, the

set of active paths are determines P it . The passenger assignment procedure only assigns probabilities to the active paths.

Note that the opt-out option is always active. In order to model the passenger behavior as realistically as possible, the as-

signment is using a First Come First Serve (FCFS) policy. At the beginning, the probabilities of all paths of all passengers are

predicted. The passengers are then assigned to the trains in their paths with their probabilities in a non-capacitated fashion.

Afterwards, the algorithm enters a while loop that serves to resolve any capacity issues. It iterates through all overflow-

ing trains ( i.e. those exceeding their capacity) that have been sorted by their descending occupation. If a train exceeds its

capacity on any of its segments, the passengers that have entered this train on this specific segment are sorted ascending

according to the overall revenue that they bring to the company (the FCFS policy - i.e. only the entering passengers can be

used to resolve the capacity issues, the ones that are already on the train cannot be asked to leave the train). Even though

the passengers do not behave this way (they would sort themselves randomly), this policy is in line with the objective of
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Algorithm 2: Passenger assignment. 

Data : C, I, L , n it , P it , S 
� , T i , V 

� 

Result : revenue 

1 begin 

2 for i ∈ I do 

3 for t ∈ T i do 

4 for p ∈ P it do 

5 calculate P r 
p 
it 
(w 

p 
it 
, δp 

it 
, γ p 

it 
, f p | d) 

6 assign n it · P r 
p 
it 

passengers to the trains in the path p 

7 run ← true 

8 while run do 

9 run ← false 

10 sort overflowing trains (�, v ) by decreasing occupation 

11 for � ∈ L do 

12 for v ∈ V � do 

13 for s ∈ S � do 

14 if o s � v > C then 

15 sort passengers entering the train on the segment s by ascending revenue 

16 for these passengers do 

17 remove (i, t) from the current path 

18 update its probabilities 

19 run ← true 

20 if o s � v ≤ C then 

21 break 

22 if run then 

23 re-assign passengers 

24 calculate revenue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

revenue maximization. Afterwards, the algorithm removes these passengers one by one until the occupation of this train

on this segment does not exceed its capacity. For each of the removed passengers, the path that they were using to travel

on the segment of the concerned train is removed from their choice set and the probabilities of their remaining paths are

recalculated. Once all the conflicts (of this iteration of the while loop) are resolved, the algorithm again re-assigns all the

passengers to the trains in a non-capacitated fashion from scratch (the new probabilities of the removed passengers affect

other passengers and trains). The algorithm terminates when there are no capacity issues found in a single iteration of the

while loop. Lastly, the algorithm calculates the overall revenue of the current solution x c ′ . 
The heuristic terminates, when the final temperature T f is reached. 

6. Case study 

As our case study, we have selected the network of Israeli Railways (in Fig. 2 ). The aim is to evaluate the effect of dif-

ferent timetables on the revenue and what is the potential increase in the revenue, when the timetable design is integrated

with ticket pricing. The exact procedures, assumptions and information about the data can be found in Appendix A . 

We consider two instances in our study: The 2008 situation and the 2014 situation. The 2008 situation is built from

the ticket selling machines’ data of an average working day (from 6 a.m. to 1 a.m.) in 2008 in Israel. This data was kindly

provided to us by Kaspi and Raviv (2013) , who have used it in their study. In 2008, there are 126 036 passengers. The 2014

scenarios assume that the structure of the demand is the same as in 2008, with a uniform inflation of 1.6, resulting in a

total number of 193 886 passengers (based on the newspaper article in Globes, 2015 ). 

We consider the network layout of 2008: There were 47 stations and the red line in Fig. 2 was operated only between

Hod HaSharon and Tel Aviv - HaHagana . We do not consider the night line (blue with black bordering) as it runs mainly

in the period for which we do not have the demand data ( i.e. between 1 a.m. and 6 a.m.). Even though there are only 18

unidirectional lines visualized in Fig. 2 , in reality there are 34 unidirectional lines in the timetable (some lines are operated

with higher frequency of 2 or more cyclic times, e.g. every xx:15 and xx:45). Since some of the trains follow different

stopping patterns within a line, we have taken a union of stopping stations for each line (but same colored lines with
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Fig. 2. Network of Israeli Railways (www.rail.co.il). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

different cyclic times may operate different stopping patterns). Since the OD matrix is given for an average working day, we

have removed the trains that operate only during the holidays. 

The timetable operated in Israel is cyclic with a cycle of 60 minutes. We use the timetable of 2013/14 (Unlike Europe,

the timetable change in Israel happens during the summer period, i.e. the naming 13/14), which was the latest published

timetable at the time of the implementation, where 6 out of 388 trains have non-cyclic departure times. The planning

horizon H of this case study is one day. Even though the demand is between 6 a.m. and 1 a.m., we allow the PCTTP model

to schedule trains during any time of the day. We solve the PCTTP using the SA heuristic for the following timetables: 

• IR 13/14 – the departure times are fixed to the ones of IR timetable of 13/14. Since the departure times are fixed, it

serves as the benchmark for comparison of the performance of the other timetables. 
• Non-cyclic – no specific rule on the departure times is enforced. 
• Cyclic – the departure times have to be cyclic according to constraints (9) –(10) . 
• Hybrid cyclic – the departure times have to comply with hybrid cyclicity conditions described in Section 4 . 

The revenues of each type of timetable are given in NIS. At first, the problem is solved without pricing and subsequently,

it is solved with pricing. Each time, the heuristic is given as an initial solution the previously found timetables (IR timeta-

bles for the cyclic version, cyclic for the hybrid cyclic version and the hybrid cyclic for the non-cyclic one). The solution

methodology has been coded in Java and it was ran on a Unix server with up to 24 cores of 3.33 GHz and 62GiB RAM. 

6.1. Results without pricing 

The results of the EPCTTP model without pricing can be found in Tables 2 and 3 . Therefore, the prices in the model

are fixed to those used by Israeli Railways (obtained from IR’s website www.rail.co.il ). The columns represent the different
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Table 2 

Computational results of the various timetables for 2008 situation without pricing. 

IR 13/14 Cyclic Hybrid cyclic Non-cyclic 

Revenue [NIS] 4 865 777 5 083 828 5 299 618 5 269 661 

Revenue gain [NIS] – + 218 051 + 433 841 + 403 884 

Market share [%] 73.61 75.47 77.96 –

# Transported passengers 92 779 95 127 98 267 –

Avg. train occupation 116 121 126 –

Median train occupation 84 90 98 –

Solution time [sec] 7 174 897 164 828 167 939 

Table 3 

Computational results of the various timetables for 2014 situation without pricing. 

IR 13/14 Cyclic Hybrid cyclic Non-cyclic 

Revenue [NIS] 7 150 254 7 490 054 7 896 806 7 905 615 

Revenue gain [NIS] – + 339 800 + 746 552 + 755 361 

Market share [%] 70.63 72.78 75.56 75.59 

# Transported passengers 136 981 141 143 146 535 146 606 

Avg. train occupation 172 180 189 189 

Median train occupation 130 141 159 157 

Solution time [sec] 11 287 531 295 501 298 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

types of timetables (as described above) and the rows show the values of various attributes. The concerned attributes are:

The revenue, the revenue gain as compared to the initial IR 13/14 timetable, the market share (percentage of passengers

transported by IR), the number of passengers transported by IR, the average and the median train occupation and the

solution time of the heuristic. 

In all cases, the SA algorithm terminates after 30 0,0 0 0 s. The reason is that we set 10 0 0 iterations for each temperature

unit. Moreover, the solution time also depends on the number of passengers’ groups. 

Both tables show that taking into account passenger behavior leads to better performing timetables (in all of the con-

cerned attributes). The EPCTTP based timetables were able to attract back some passengers from the competition and thus

increase the IR’s market share. The average revenue increase is 5% and 10% for the cyclic and hybrid cyclic timetable respec-

tively. 

We used the hybrid cyclic timetable as the initial solution for the non-cyclic one in the 2008 situation. However, it

has failed to find a better solution than the hybrid cyclic one. In the 2014 situation, it was able to improve the solution

only marginally. The marginal differences are caused by the randomness of the heuristic approach. The similarity, in the

solutions of the two types of timetables, shows that the concept of the hybrid cyclic timetable can diminish any impact

of the cyclicity constraints on the performance of the timetable (the impact being the differences between a cyclic and a

non-cyclic solution). 

The average ratio between the cyclic and the non-cyclic trains, in the hybrid cyclic timetable, is around 50:50%. The

solution time of the heuristics was on average 2 (for 2008) and 3 (for 2014) days. 

In order to better understand, what is the cause of the additional revenue, we plot the difference in composition of

passengers per timetable as compared to the IR 13/14 timetable in Fig. 3 . This Figure shows the revenues generated by 4

different groups of passengers: in – the ones who were not using IR in the original timetable, out – the ones who were

using IR in the original timetable and left, higher – the passengers who stay and pay more, lower – the passengers who stay

and pay less. The sum of these groups per timetable provides the value of revenue gain. It can be seen that the main source

of the additional revenue across timetables is the new coming passengers. However, we can see that in the hybrid cyclic

and non-cyclic timetables for the situation in 2014, the strategy also includes preference to the more paying passengers. The

cause of this is the fact that in the case of a tie the passengers who pay larger fare ( i.e. longer distance passengers) gain

preference. Therefore, some of the shorter distance passengers might choose a path that is longer than their shortest path

and some of them might opt-out (if the marginal utility loss to the opt-out option is too high). 

6.2. Results with pricing 

The results of the EPCTTP model with pricing can be found in Table 4 . The prices are now decision variables with their

initial values set to those of IR. The revenue gain is now the additional revenue as compared to the solution of the same

timetable without pricing. The overall revenue shows the additional profit as compared to the original IR 13/14 timetable. 

The pricing was able to further improve the revenue of the timetables. All timetables increased the ridership with ex-

ception of the hybrid cyclic one for the 2008 situation. However, it has still managed to achieve a higher profit. This is due

to the fact, that the passengers who left were generating lesser profit than the ones who came in ( Fig. 4 (e)). The additional

increase in the revenues by pricing is up to 5%. We used the hybrid cyclic timetable as the initial solution for the non-cyclic

one in the 2008 situation. However, it has failed to find a better solution than the hybrid cyclic one. 
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Fig. 3. Difference in composition of passengers for the various timetables. 

Table 4 

Computational results of the various timetables with pricing. 

Cyclic Hybrid cyclic Non-cyclic 

2008 2014 2008 2014 2008 2014 

Revenue [NIS] 5 256 959 7 767 140 5 461 559 8 229 227 – 8 259 557 

Revenue gain [NIS] + 173 132 + 277 087 + 161 942 + 332 421 – + 353 942 

Market share [%] 76.31 74.05 76.87 75.99 – 76.32 

# Transported passengers 93 848 139 451 96 886 147 373 – 148 017 

Avg. train occupation 127 188 128 194 – 196 

Median train occupation 95 148 99 156 – 157 

Solution time [sec] 97 105 185 560 89 044 197 695 – 182 810 

Overall revenue gain [NIS] + 391 183 + 616 887 + 595 783 + 1 078 973 – + 1 109 303 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to analyze the pricing scheme, we plot various graphs in Fig. 4 . At first, we look at the pricing variations by

location – Fig. 4 (a) and (b). Both plots show the overall increase/decrease in price per segment of the network as compared

to the original prices set by Israeli Railways. The x -axis represents the segments by volumes of passengers traveling on

them. For low demand segments ( < 20 0 0 0 pax) the pricing can go either way, whereas for the high demand segments

( > 20 0 0 0 pax) the prices go strictly up. The boundary between the two pricing strategies is around 20 0 0 0 passengers per

segment. 

Subsequently, we look at the price variations based on the time of the day – Fig. 4 (c) and (d). Both plots show the overall

increase/decrease in price per hour in the network as compared to the original prices set by Israeli Railways. The figures

exhibit clear patterns on how to adjust the pricing: Increase the price for high demand density periods and decrease the

price for low demand density periods. Since the morning peak is more dense, its prices are higher than of the evening peak

(the evening demand is more spread). The price decreases, as compared to the increase in peak hours, is lower. This might

be due to the fact that during the off-peak hours also the supply is more scarce, i.e. the prices can be higher. The cyclic

timetable has less extreme changes than the hybrid cyclic one. This is due to the fact that the cyclicity makes the trains

more spread. Therefore, the results in Fig. 4 (c) are somewhat more aggregate (the hours contain a larger mix of trains with

increased and decreased prices). 

Finally, to understand the changes in the served passengers, we plot the differences in the composition of the passengers

for various timetables as compared to their previous versions without pricing in Fig. 4 (e). The legend is the same as in

Fig. 3 . It can be seen, that as compared to the timetabling without pricing, the higher paying passengers are now having a

larger contribution to the revenue gain. In the hybrid and non-cyclic timetables, the share is even larger than that of the

new coming passengers. The revenue loss of leaving and less paying passengers is now larger. These passengers are most

likely left out or less paying, in order to free the space in the trains desired by the higher paying passengers. This behavior

is in line with the objective of maximizing revenue, but might not be desired by public owned operators. Therefore, we

further investigate what is the impact of this approach on the passengers’ satisfaction, in the next Section. 
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Fig. 4. Pricing analysis. 
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Table 5 

Differences between passenger satisfaction (s) and revenue (r) oriented timetable designs. 

Revenue [NIS] Satisfaction [NIS] # Transported passengers 

Cyclic 2008 (s) 4 950 614 −10 264 108 93 580 

Cyclic 2008 (r) 5 083 827 −10 314 244 95 127 

Hybrid 2008 (r) 5 299 618 −10 396 741 98 267 

Non-cyclic 2008 (s) 5 043 234 −10 281 466 95 438 

Cyclic 2014 (s) 7 287 127 −15 630 858 138 778 

Cyclic 2014 (r) 7 490 054 −15 680 300 141 143 

Hybrid 2014 (s) 7 526 215 −15 647 618 142 228 

Hybrid 2014 (r) 7 896 806 −15 920 860 146 535 

Non-cyclic 2014 (s) 7 452 564 −15 627 362 141 918 

Non-cyclic 2014 (r) 7 905 615 −15 952 986 146 606 

Cyclic 2008 (p)(s) 5 142 573 −10 311 044 95 396 

Cyclic 2008 (p)(r) 5 256 959 −10 399 474 96 196 

Hybrid 2008 (p)(r) 5 461 560 −10 564 349 96 886 

Cyclic 2014 (p)(s) 7 596 212 −15 686 365 143 135 

Cyclic 2014 (p)(r) 7 767 140 −15 955 037 143 612 

Hybrid 2014 (p)(s) 7 821 338 −15 855 025 143 345 

Hybrid 2014 (p)(r) 8 229 227 −16 174 935 147 373 

Non-cyclic 2014 (p)(s) 7 749 755 −15 803 502 143 227 

Non-cyclic 2014 (p)(r) 8 259 557 −16 166 223 148 017 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3. Maximize satisfaction or maximize revenue? 

Maximizing revenues is a natural objective in a competitive environment. However, in many countries, particularly in

Europe, there is little or no competition. Moreover, many railway operators are subsidized by public money, and must focus

on public services as well. Therefore, the revenue maximization might be considered controversial. In order to analyze the

situation, two approaches are evaluated against each other: One timetable designed to maximize the satisfaction of the

passengers ( Robenek et al., 2017 ), and one timetable designed to maximize revenues, as described in this paper. In order

to do so, the timetables ( i.e. the decision variables d � v ) created by Robenek et al. (2017) (through the passenger satisfaction

maximization) are given as a fixed input to the probabilistic model of EPCTTP. The comparison consists in the resulting

revenue, satisfaction and number of transported passengers per timetable in Table 5 . 

In this Table, (s) denotes satisfaction maximization approach, (r) denotes the revenue maximization approach and (p)

denotes the presence of prices generated by the pricing problem. If (p) is missing, the original prices given by IR are used.

Note that in the 2008 situation, the hybrid cyclic timetable was not designed using the satisfaction approach (due to the

insignificant differences in satisfaction among the cyclic and non-cyclic timetables in 2008 Robenek et al., 2017 ). The non-

cyclic timetable in 2008 with pricing is not included as it did not improve the revenue and its fares were never reported. 

The main observation from the results is that even though the objectives were different, the resulting passenger satisfac-

tion is more or less similar. Indeed, when maximizing the revenue, the passengers need to be satisfied, in order to take the

train. The main difference, between the two approaches, is the generated revenue. This is again in line with the objectives:

The objective of revenue maximization takes care of both revenue and satisfaction, whereas the other approach only cares

about the satisfaction. Notable to mention, that the presence of pricing did not distort the average values of the satisfaction.

Its values are similar with and without pricing. The cause of it is most likely the reduced fare for some of the passengers. 

It could be objected that the satisfaction is now similar across conceptually different timetables and that it is caused by

the opt-out option of the competitor. However, given that the number of passengers is more or less the same between the

two concepts of the design, it proves that the somehow “capitalist” concept of revenue maximization is not anti-passenger

and that it is suitable for the public operators as well. This should encourage operators to consider the new approach

proposed in this research to design their timetable. 

7. Conclusion 

In this research, we further extend the passenger centric train timetabling approach with the concept of the competitive

market by accounting for elasticity of the passenger demand. We include a competing operator into the market, so that the

passengers are not captive in the system. This framework allows for a prediction of the realized demand, which subsequently

allows to calculate the revenue of the operator. In the second phase, we integrate the proposed timetabling problem with

the ticket pricing problem. 

The results of our case study show that accounting for the behavioral dimension of the problem has a significant impact

on the generated revenue. We show on our case study that the passenger oriented timetabling can be combined with the

ticket pricing. The resulting pricing strategies suggest higher prices for large volumes of demand by location and time. The

two together can further increase the revenue up to additional 15%. Given that we used the best possible competitor, in

our case study, the gain is expected to be even larger, when this is not the case. Lastly, we provide empirical evidence that
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Table 6 

Mathematical notations. 

Name Description Units Type 

L set of operated train lines given by the LPP – set 

V � set of available trains for the line � (frequency) – set 

( � , v ) a train v serving the line � – index 

I set of origin-destination pairs – set 

T i set of desired arrival times for OD pair i – set 

( i, t ) a passenger group traveling between OD pair i with a desired arrival time t – index 

P i set of possible paths between OD pair i – set 

P it set of available paths for a group ( i, t ) – set 

K set of cycles within the planning horizon – set 

S set of segments in the network – set 

S � ordered set of segments crossed by the line � to get from its origin station to its 

destination station 

– set 

H duration of the planning horizon min parameter 

βs as given in Section 3 1 
min 

parameter 

VOT value-of-time monetary 
min 

parameter 

n it number of passengers wishing to travel between OD pair i at time t – parameter 

a it desired arrival time of a passenger group ( i, t ) to its destination min parameter 

b p� 

i 
time to get from the origin station of a train on line � in path p to a boarding station 

of passengers traveling between OD pair i 

min parameter 

m minimum transfer time from one train to another min parameter 

r p 
i 

total time spent on board of trains on path p between OD pair i min parameter 

r p j 
i 

in-vehicle-time on train j in path p between OD pair i min parameter 

C maximum capacity of any train on any of its segment – parameter 

u p is the number of transfers in the path p – parameter 

c size of the cycle min parameter 

W train capacity – parameter 

x ps 
� v 1 – if path p uses train ( � , v ) on segment s , 0 - otherwise binary parameter 

ā p 
it 

actual arrival time of passenger group ( i, t ) to its destination using path p min decision 

o s � v occupation of a train ( � , v ) on a segment s – decision 

f s � v ticket fare of traveling on segment s with a train ( � , v ) monetary decision 

f p total ticket fare of using path p monetary decision 

Pr p 
it 

probability of the passenger group ( i, t ) to select the path p as a linear function of w, 

δ, γ on the current timetable d 

– decision 

d � v the departure time of a train v on the line � (from its first station) min decision 

w 

p 
it 

waiting time of a passenger group ( i, t ) using path p min decision 

w 

p j 
it 

waiting time of passenger group ( i, t ) using path p while transferring from train j to 

train j + 1 

min decision 

δp 
it 

the schedule passenger delay of being early in path p of a passenger group ( i, t ) min decision 

γ p 
it 

the schedule passenger delay of being late in path p of a passenger group ( i, t ) min decision 

z � v dummy variable to help modeling the cyclicity N 
+ decision 

q � v 1 - if a train ( � , v ) has a cyclic departure time, 0 - otherwise binary decision 

y � 
k 

1 - if there is a cyclic train scheduled in the cycle k on the line � , 0 - otherwise binary decision 

τ p 
it 

1 – if path p is included in the choice set of passenger group ( i, t ); 0 – otherwise binary decision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the concept of revenue maximization is in line with passengers’ objective of their satisfaction maximization. Therefore, this

concept is suitable for public operators as well. 

In this research, we have considered the passengers to be homogeneous. However, in the real world, this is not the

case. Each person has a different behavior. This behavior is incorporated in the discrete choice model through the taste

parameters beta. These parameters may vary across the population. We propose to treat this as a possible future extension.

Subsequently, this would allow for an introduction of different class fares and to further improve the revenue of the operator.

Moreover, many pricing estimation techniques are used by the industry, such as the zone pricing, OD pair pricing, time

period pricing, etc. Based on the characteristics of the selected pricing scheme, the presented simulated annealing algorithm

can be adapted. In this case, a study evaluating and generalizing the pricing system could be other future direction of this

research. 

Appendix A. Data description 

The data used in this study were obtained from the IR’s website ( www.rail.co.il/EN ) and from other studies concerning

the IR’s network ( Kaspi and Raviv, 2013 ). An algorithm in Java was coded, in order to find a set of all possible paths between

every OD pair. The algorithm allows a maximum of 3 consecutive lines to get from an origin to a destination. The algorithm

iterates through all OD pairs, where at first it considers the paths that consist of a single line and then the paths that would

transfer from the currently selected line up to two other lines. The transfer from one line to another can be made only

at one of the designated transfer points (there are 7 recommended interchange stations in the network of Israel – Fig. 2 ).

Note that the fact, that a transfer is actually possible depends on the operated timetable. Therefore, some paths might be
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eliminated later on by the EPCTTP model itself. When all the possible paths are generated, the algorithm removes the paths

that a passenger would not consider (note that these rules are related to the network layout of Israel and might differ for

other case studies): 

• Paths that consist of several lines including a direct line between the given OD pair, where both options travel on the

same infrastructure ( i.e. the passenger would rather stay on the direct line instead of transferring to another line). 
• Paths that consist of several lines, where two of them can reach the given destination. Changing one train to another,

when both of them are going to the same destination would not make sense (the same does not happen for the origin).
• Paths that take 25% longer generalized time (sum of in-vehicle-times and transfer penalties) than the shortest possible

path. 
• Paths that consist of redundant transfers, i.e. transferring from one line to another line that covers the same stations. 

The traveling times have been extracted from the IR’s website along with the dwell times at stations that remain fixed

(as of the timetable 2013/14). The minimum transfer time is set to 4 min as in Kaspi and Raviv (2013) . The Value Of Time

of commuters in Israel as of the year 2012 is 21.12 New Israeli Shekel (NIS)/hour (the updated value was given to us by the

author of Shiftan et al., 2008 ). The β parameters and their values are as follows: βW 

= −2 . 5 ( Wardman, 2004 ), βT = −10

( de Keizer et al., 2012 ), βE = −0 . 5 and βL = −1 ( Small, 1982 ). 

A1. Passenger 

The OD flows were kindly provided by Mor Kaspi and Tal Raviv, who have cleaned the ticket selling machines’ data for

the year 2008 and produced the flows of an average working day in Israel. They have used this data in their study ( Kaspi and

Raviv, 2013 ). The OD matrix consists of hourly passenger rates between 6 a.m. and 1 a.m. The flows were smoothed into

minutes by using non-homogenous Poisson process, where the hourly flows per OD pair were used as the arrival rate

variable. Since the schedule passenger delay is related to the destination, we have added the time that it takes to get from

an origin to a destination using the shortest path (if the path consisted of transfers, we assumed the perfect connection, i.e.

only the minimum transfer time without any additional waiting at the transfer station). The size of the passenger groups

were left as they were generated by the Poisson process. In total there are 1 505 out of 2 162 OD pairs with 126 036

passengers in 2008 (with 95,062 passenger groups) and 193 886 passengers (with 129,780 passenger groups) in 2014. 

A2. Operator 

As no information about the rolling stock fleet of IR is available, we have introduced the following assumptions: 

• The fleet is homogenous 
• A train unit has a passenger capacity of 250 
• Each train consist of 2 train units 

In order to verify that the assumed train capacity is reasonable, we have solved the un-capacitated PCTTP of the IR 13/14

timetable under the 2008 demand, where the average train occupation was 172 passengers per train per segment (pptps),

minimum occupation was 0 pptps, maximum occupation 1188 pptps and median was 124 pptps. Thus the capacity of 250

passengers per train unit offers a good level of service. 

Appendix B. Assumptions 

In this section, we organize all the assumptions of the framework. Some of the assumptions may be replaced ,when

additional information is available. 

B1. Demand model 

• A mode choice model is solved a priori providing the potential railway mode demand population. 
• An opt-out option is needed, in order for the framework to work. The proposed generic opt-out option consist in the

shortest path with zero waiting time(s) in the transfer(s) and that arrives exactly on time to the destination (no schedule

passenger delay). Its fare is set to the initial fare of the optimized TOC. 
• No source of additional heterogeneity outside of the error term is considered. 
• The error term is independently and identically distributed according to the Extreme Value Distribution. 

B2. Supply model 

• The LPP is solved a priori and its results serve as the inputs for the EPCTTP. 
• The dwell times and the running times are kept constant, only the departures from the origin stations are treated as

decisions. 
• The passenger groups are unsplittable. However, groups of a single passenger can be used to bypass this assumption. 
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• The train fleet is homogeneous, but can be adapted to reflect heterogeneity. 
• The passengers are assigned according to the FCFS policy and their revenue potential. 
• A segment based pricing is used. However, it can be changed to OD based pricing or to a zone system. 
• The traditional TTP needs to be solved using the outputs of the EPCTTP, in order to secure the safety of the network. 

Appendix C. Mathematical formulation and notation 

The EPCTTP model is formulated as follows: 

max 
∑ 

� ∈ L 

∑ 

v ∈ V � 

∑ 

s ∈ S � 
o s � v · f s � v , (11) 

o s � v = 

∑ 

i ∈ I 

∑ 

t∈ T i 

∑ 

p∈ P it 
x ps 

� v · n it · P r p 
it 
, ∀ � ∈ L, ∀ v ∈ V 

� , ∀ s ∈ S � , (12) 

o s � v ≤ W, ∀ � ∈ L, ∀ v ∈ V 

� , ∀ s ∈ S � , (13) 

P it = 

| P i | ⋃ 

p=1 

p · τ p 
it 
, ∀ i ∈ I, ∀ t ∈ T i , (14) 

f p = 

∑ 

j∈ J p 

∑ 

s ∈ S � j 
f s � j v j , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (15) 

d � v ≤ d � v +1 − 1 , ∀ � ∈ L, ∀ v ∈ V 

� : v < | V 

� | , (16) 

d � v ∈ N , ∀ � ∈ L, ∀ v ∈ V 

� , (17) 

f s � v ≥ 0 , ∀ � ∈ L, ∀ v ∈ V 

� , ∀ s ∈ S � , (18) 

f p ≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (19) 

o s � v ≥ 0 , ∀ � ∈ L, ∀ v ∈ V 

� , ∀ s ∈ S � , (20) 

τ p 
it 

∈ ( 0 , 1 ) , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (21) 

P r p 
it 

≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (22) 

Objective function (11) is maximizing the TOC’s revenue that is given as the train occupation o s � v of each train ( � , v )

on each of its segments multiplied by the fare cost f s � v of train ( � , v ) on segment s . Constraints (12) use the logit model

to estimate the train occupation. The parameter x 
ps 
� v indicates whether path p is using train ( � , v ) on segment s (equals

to 1) or not (equals to 0). Constraints (13) secure that the capacity of a train is not exceeded at any point of its travel.

If a train is full at some of the segments, all the paths of any additional passengers using that train at that segment are

removed from their choice sets inside of the logit model. Note, that a simple multiplication by the decision variable τ p 
it 

would create a proper behavior within the optimization model, but would lead to wrong predictions of the probabilities.

Therefore, constraints (14) explicitly define those paths that are to be included in the set P it . The decision itself, on which

passenger should be restricted, is driven by the objective function. Constraints (15) calculate the fare to be payed for usage

of each path p . Constraints (16) remove the symmetrical solutions, i.e. trains are ordered according to their departure times

(ascending). The constraints (17) –(22) are the domain constraints. 

Additional constraints, modeling some of the attributes used in the observable part of the utility function, are needed: 

w 

p 
it 

= 

∑ 

j ∈ J p : j < | J p | 
w 

p j 
it 

, ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (23) 

w 

p j 
it 

= 

(
d � j+1 v j+1 

+ b p j+1 
i 

) ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , −
(
d � j v j + b p j 

i 
+ r p j 

i 
+ m 

)
, ∀ j ∈ J p : j < | J p | , (24) 

δp 
it 

≥ a it − ā p 
it 
, ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (25) 

γ p 
it 

≥ ā p 
it 

− a it , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (26) 

ā p 
it 

= 

(
d � | J p | v | J p | + b 

p| J p | 
i 

+ r 
p | J p | 
i 

)
, ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (27) 
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w 

p 
it 

≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (28)

w 

p j 
it 

≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , ∀ j ∈ J p : j < | J p | , (29)

δp 
it 

≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it (30)

γ p 
it 

≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it , (31)

ā p 
it 

≥ 0 , ∀ i ∈ I, ∀ t ∈ T i , ∀ p ∈ P it . (32)

Constraints (23) add up the waiting times in all of the transfer stations in path p . Subsequently, constraints (24) define

the value of the waiting time in the transferring stations. These constraints subtract the arrival time (departure time from

its origin station plus the time to get to the boarding station of the passenger plus the time to get to the transfer station)

of the origin train at the transferring station plus the necessary minimum transfer time m , from the departure time of

the destination train at the transferring station (departure time from its origin station plus the time to get to the transfer

station). Note, that the paths where a transfer is not possible will be removed by constraints (14) . Constraints (25) calculate

the early schedule passenger delay and the constraints (26) calculate the late schedule passenger delay. The actual arrival

time of a passenger group to its destination is given by constraints (27) . Constraints (28) –(32) are the domain constraints. 
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